MATH 103 - Sample Final Exam 1

1. The domain of the function $f(x)=\sqrt{4-\sqrt{x}}$ is
(a) $x \leq \sqrt{8}$
(b) $0 \leq x \leq 16$
(c) $x \geq 0$
(d) $-4 \leq x \leq 4$
(e) all real x
2. What is the output of the following Maple statement?
$>\operatorname{limit}\left(\left(x^{\wedge} 3-1\right) /\left(x^{\wedge} 2-1\right), x=1\right)$;
(a) 3
(b) $5 / 2$
(c) $3 / 2$
(d) 0
(e) undefined
3. The function $f(x)=x^{3}+3 x-1$ has a root:
(a) between -1 and 0
(b) between 0 and 1
(c) between 1 and 2
(d) between 2 and 3
(e) between 3 and 4
4. $\lim _{x \rightarrow 0} x \cot (2 x)=$
(a) does not exist
(b) 0
(c) $1 / 2$
(d) 1
(e) 2
5. What is the output of the following Maple statement?
$>\operatorname{subs}(x=9, \operatorname{diff}(\operatorname{sqrt}(1+\operatorname{sqrt}(x)), x)) ;$
(a) 0
(b) $1 / 3$
(c) $-1 / 3$
(d) $1 / 24$
(e) $1 / 48$
6. $\lim _{h \rightarrow 0} \frac{\sqrt[3]{8+h}-2}{h}$ is
(a) ∞
(b) $\frac{1}{24}$
(c) $\frac{1}{12}$
(d) $\frac{2}{3}$
(e) 0
7. The two tangents that can be drawn from the point $(3,5)$ to the parabola $y=x^{2}$ have slopes
(a) 2 and $-\frac{1}{2}$
(b) 2 and 4
(c) 1 and 5
(d) 2 and 10
(e) 0 and 4
8. An asteroid hits the Atlantic Ocean and creates an expanding circular wave. If the area enclosed by this wave increases at the rate of $200 \mathrm{~km}^{2} / \mathrm{min}$, how fast is the diameter of the wave expanding when its radius is 20 km ?
(a) $\pi / 10 \mathrm{~km} / \mathrm{min}$
(b) $\pi / 5 \mathrm{~km} / \mathrm{min}$
(c) $5 \pi \mathrm{~km} / \mathrm{min}$
(d) $5 / \pi \mathrm{km} / \mathrm{min}$
(e) $10 / \pi \mathrm{km} / \mathrm{min}$
9. Evalutate the definite integral $\int_{0}^{2}(2 x-\sqrt{2 x}) d x$.
(a) 0
(b) 8
(c) $20 / 3$
(d) $4 / 3$
(e) 12
10. $\int_{0}^{\sqrt{\pi / 2}} x \cos \left(x^{2}\right) d x=$
(a) 0
(b) $1 / 2$
(c) 1
(d) $\pi / 2$
(e) $\sqrt{\pi}$
11. The volume of the solid obtained by rotating the region in the plane bounded by the curves $y=x-x^{2}$ and $y=0$ around the line $x=2$ is
(a) $\pi / 2$
(b) π
(c) $2 \pi / 3$
(d) $3 \pi / 4$
(e) $4 \pi / 3$
12. We have

$$
\arctan (3)=\int_{0}^{3} \frac{1}{1+x^{2}} d x
$$

Using the trapezoid method with $n=3$ intervals, give an approximation for $\arctan (3)$.
(a) $e-1$
(b) $4 / 3$
(c) $5 / 4$
(d) 2
(e) $35 / 24$
13. A bacterial culture grows exponentially from 100 to 400 grams in 10 hours.
(a) How much was present after 3 hours?
(b) What was the instantaneous growth rate of the mass of the culture at time $=5$ hours? Express your answer in grams/hour.
(c) What was the average mass of the culture over the 10 hours?
14. The graph below is the graph of $g^{\prime}(x)$ (the derivative of the function $\left.g(x)\right)$. Suppose we also know that $g(0)=10$.

(a) Fill in the following table:

x	0	1	2	3	4	5	6
$g(x)$	10						

(b) What are the maximum and minimum values of $g(x)$ for $x \in[0,6]$, and where do they occur?
(c) Where is the graph of $g(x)$ concave up?
(d) For what values of x does the graph of $g(x)$ have an inflection point?
(e) Sketch the graph of $g(x)$.
15. A landscape architect plans to enclose a 3000 square foot rectangular region in a botanical garden. She will use shrubs costing $\$ 25$ per linear foot along three sides of the region, and fencing costing $\$ 20$ per linear foot along the fourth side. Find the dimensions of the region that minimize the total cost for the shrubs and fence.
16. Let $g(x)=\frac{\ln x}{x}$ for $x>0$.
(a) For what values of x does $g(x)$ have a (local) maximum, minimum, or inflection point?
(b) Compute the range of $g(x)$.
(c) For what values of c does the equation $\ln x=c x$ have at least one solution?
(d) For what values of c does the equation $\ln x=c x$ have more than one solution?
(e) For that values of $a>0$ does the equation $a^{x}=x$ have a solution?

