Final Exam for Math 103, Fall 2004

SEE THE END FOR ANSWERS

1. Evaluate the integral

$$
\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x
$$

by interpreting it as the area of a region involving basic geometric figures.
(a) $\frac{9 \pi}{4}$
(b) $3+9 \pi$
(c) $3+\frac{9 \pi}{4}$
(d) $9+3 \pi$
(e) $\frac{3 \pi}{4}$
(f) $9+\frac{3 \pi}{4}$
2. Evaluate the integral

$$
\int_{0}^{3} \frac{x+4}{x^{2}+8 x+1} d x
$$

(a) 0
(b) $\frac{1}{2} \ln 34$
(c) $\ln 49$
(d) $\frac{1}{34}$
(e) $\frac{1}{49}$
(f) $\ln 34-\frac{1}{2}$
3. What is the equation of the line tangent to the graph of $y^{3}+3 x^{2} y^{2}+2 x^{3}=4$ at the point $(1,-1)$?
(a) $y=-1$
(b) $y=x-2$
(c) $y=2 x-3$
(d) $y=3 x-4$
(e) $y=4 x-5$
(f) $y=5 x-6$
4. A particle moves in such a way that its distance from the origin at time t is given by $x(t)=2 \sqrt{t^{2}+4}$. If $v(t)$ is the velocity of the particle at time t, what is $\lim _{t \rightarrow \infty} v(t) ?$
(a) 2
(b) $1 / 2$
(c) $1 / 4$
(d) $1 / \sqrt{2}$
(e) 0
(f) ∞
5. What are the global maximum and minimum values of the function $f(x)=\frac{x}{1+x^{2}}$?
(a) 2 and -2
(b) 1 and -1
(c) $1 / 2$ and $-1 / 2$
(d) 2 and 0
(e) 4 and -4
(f) ∞ and $-\infty$
6. The region bounded by the curve $y=2 \sqrt{x}$, the x-axis, and the line $x=4$ is revolved about the x-axis, creating a solid. What is the volume of the solid?
(a) 32π
(b) $\frac{32 \pi}{3}$
(c) 64π
(d) $\frac{64 \pi}{3}$
(e) 72π
(f) $\frac{72 \pi}{3}$

7. A stock market analyst sold a monthly newsletter to 320 subscribers at a price of $\$ 10$ each. She discovered that for each $\$ 0.25$ increase in the monthly price of the newsletter, she would lose 2 subscriptions. If she sets the price of the newsletters to bring in the greatest total monthly income, what will that income be?
(a) $\$ 3200$
(b) $\$ 4400$
(c) $\$ 5000$
(d) $\$ 5800$
(e) $\$ 6500$
(f) $\$ 7200$
8. What is $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x-1}$?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
(f) does not exist.
9. Water is draining from a conical tank at the rate of 18 cubic feet per minute. The tank has a height of 10 feet and the radius at the top is 5 feet. How fast (in feet per minute) is the water level changing when the depth is 6 feet? (Note: The volume of a cone of radius r and height h is $\pi r^{2} h / 3$.)
(a) $\frac{1}{\pi}$
(b) $\frac{2}{\pi}$
(c) $\frac{3}{\pi}$
(d) $-\frac{1}{\pi}$
(e) $-\frac{2}{\pi}$
(f) $-\frac{3}{\pi}$

10. Suppose

$$
\int_{0}^{x} f(x) d x+2 \sin x=4 x .
$$

What is the value of $f(\pi)$?
(a) 2
(b) 4
(c) 6
(d) 2π
(e) 4π
(f) 6π
11. Compute $\int_{1}^{2} 3^{x} d x$.
(a) $\frac{7}{2}$
(b) e^{3}
(c) $3 \ln 6$
(d) $\frac{6}{\ln 3}$
(e) 6
(f) $\frac{\ln 3}{6}$
12. What is the total area enclosed between the graphs of $y=4 x^{3}+3 x^{2}-1$ and $y=3 x^{2}+4 x-1$?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
(f) 6

1. C
2. B
3. E
4. A
5. C
6. A
7. C
8. E
9. E
10. C
11. D
12. B
