1. $\int_{1}^{e} \frac{2 \ln x}{x} d x=$
(a) 1
(b) 2
(c) e
(d) $\frac{e^{2}}{2}$
(e) $e-\ln 2$
(f) $2 e$
2. The point $(4,2)$ is on the graph of $x=y^{3}+7 y-18$. What is $\frac{d y}{d x}$ there?
(a) 0
(b) 1
(c) 19
(d) $1 / 19$
(e) 7
(f) $1 / 7$
3. The graph of $y=x^{2} e^{4 x}$ has (choose all that apply):
(a) a local minimum at $x=-2$
(b) a local maximum at $x=-2$
(c) a local minimum at $x=0$
(d) a local maximum at $x=0$
(e) a local minimum at $x=-1 / 2$
(f) a local maximum at $x=-1 / 2$
4. $\lim _{h \rightarrow 0} \frac{\ln \left(e^{2}+h\right)-2}{h}=$
(a) 2
(b) e^{2}
(c) $\frac{1}{e^{2}}$
(d) $\frac{1}{2}$
(e) 0
(f) ∞
5. One of the following lines through the origin is also tangent to the graph of $y=$ $\frac{1}{10-x}$. Which one? (Hint: Start by finding the equation of the tangent line to the graph at a generic point $\left(a, \frac{1}{10-a}\right)$.)
(a) $y=x$
(b) $y=x / 5$
(c) $y=10 x$
(d) $y=x / 10$
(e) $y=x / 100$
(f) $y=x / 25$
6. Evaluate (i) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$ and (ii) $\lim _{x \rightarrow \infty} x \sin \frac{1}{x}$
(a) (i) 1 , (ii) 1
(b) (i) 0 , (ii) ∞
(c) (i) 1 , (ii) ∞
(d) (i) ∞, (ii) 0
(e) (i) 0 , (ii) 1
(f) (i) ∞, (ii) 0
7. On which of the following intervals is the function $f(x)=\int_{0}^{x} e^{3 t-t^{3}} d t$ concave up?
(a) $-1<x<1$
(b) $-\infty<x<-1 \cup 1<x<+\infty$
(c) $-\infty<x<0$
(d) $0<x<+\infty$
(e) $-\sqrt{3}<x<\sqrt{3}$
(f) $\ln 2<x<+\infty$
8. A 10 -foot ladder is leaning against a vertical wall. If the bottom of the ladder slides away from the wall at a speed of $4 \mathrm{ft} / \mathrm{sec}$, how fast, in radians per second, is the angle between the ladder and the wall (at the top of the ladder) increasing when that angle is $\pi / 3$ radians?
(a) $\frac{10}{\sqrt{3}}$
(b) $\frac{\sqrt{3}}{10}$
(c) $\frac{4}{5}$
(d) $\frac{5}{2}$
(e) $\frac{\sqrt{3}}{5}$
(f) $\frac{10}{3}$
9. A cylindrical container is to be constructed having total volume 27 cubic feet. The sides are to be made of a special material that costs $\$ 2$ per square foot, while the material for the top and bottom costs only $\$ 1$ per square foot. What is the relationship between the radius r and the height h of the cheapest container that can be constructed according to these specifications?
(a) $h=3 r$
(b) $r=3 h$
(c) $h=2 r$
(d) $r=2 h$
(e) $h=r$
(f) $h=4 r$
10. Let $f(x)$ be a function with the properties that $f^{\prime}(x)>0$ for all x, and that $f(0)=1, f(1)=2, f(3)=5$ and $f(4)=8$. Which of the following must be true? (Hint: Draw a picture!)
(a) $\int_{0}^{4} f(x) d x>20$
(b) $\int_{0}^{4} f(x) d x<20$
(c) $\int_{0}^{4} f(x) d x<16$
(d) $\int_{0}^{4} f(x) d x>16$
(e) $\int_{0}^{4} f(x) d x<10$
(f) $\int_{0}^{4} f(x) d x>24$
11. Here is the graph of a certain function, $y=f(x)$:

Here is a graph of a related function:

Which of the following is the equation of this graph?
(a) $y=f(x+1)$
(b) $y=f(x+1)-1$
(c) $y=-f(x+1)$
(d) $y=-f(x-1)$
(e) $y=1-f(x-1)$
(f) $y=f(x-1)-1$
12. Suppose $f(x)$ is a continuous function and that $\int_{0}^{3} f(x) d x=7$. Calculate $\int_{0}^{9} \frac{f(\sqrt{x})}{\sqrt{x}} d x$.
(a) 7
(b) $\sqrt{7}$
(c) $\frac{7}{2}$
(d) 21
(e) $\frac{21}{2}$
(f) $\frac{\sqrt{7}}{2}$
13. Find the total area between the graph of $y=x^{3}-6 x^{2}+8 x$ and the x-axis.
(a) 0
(b) 2
(c) 4
(d) 6
(e) 8
(f) 10
14. A solid is obtained by revolving the region between the lines $x=1$ and $x=5$, the x-axis, and the graph of $y=1 /(x+3)$ around the x-axis. What is its volume?
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{8}$
(c) 2π
(d) $\frac{3 \pi}{8}$
(e) $\frac{3 \pi}{4}$
(f) $\frac{4 \pi}{3}$
15. The following shows the graph of a function $f(x)$, together with the graph of its first derivative $f^{\prime}(x)$ and its second derivative $f^{\prime \prime}(x)$. Each answer shows the same three graphs, but only one is labelled correctly. Which one?

(d)

(b)

(e)

(c)

