Spring 2018 Preliminary Exam — Problems and Solutions

1. For each of the following series, either prove that it converges or prove that it di-
verges.

a) 1+1/2—1/3+1/4+1/5—1/6+1/T+1/8—1/9+1/10+1/11 —1/12+1/13 +

1/14 —1/15+ - -+

b) 1+1/24+1/3—-1+1/4+1/541/6—-1/2+1/7+1/84+1/9—-1/3+1/10+1/11+
1/12—-1/44---

Solution:

(a) It diverges. The sum of the first 3n terms is greater than 1+ 1/4 + 1/7+ --- 4+
1/3n—2) >1/3+1/6+1/9+ ---+ 1/3n, which becomes arbitrarily large (one-third
of the harmonic series).

(b) It converges. Let S, be the sum of the first n terms. Then
Sp=1+1/24...4+1/(3k)— (1+1/2+...1/k) = 1/(k+1) +1/(k+2) +...+1/(3k).

Thus

3k+1 3k
/ 1/xdr < Sy, < / 1/zdx = In(3k) — In(k) = In(3),
k+1 k

k+1
converges to In(3). For i = 1,2,3, [Syx+i — Sak| < 3/(3k + 1), which approaches 0 as

k — o0; so the sequence S, also converges to In(3). Thus the sum converges (to In(3)).

where f3k+1 1/zdr = In(3k+ 1) —In(k + 1) = In(3 — kiﬂ), and so the sequence Sy

2. Consider the matrix

o O O
o = N
N = W
NN

where a € R.

a) Determine all values of a € R for which the matrix A is invertible.
b) For each such a, find the determinant of A.

Solution:

(a) The matrix A is invertible iff its row rank is 4. Performing elementary row operations
yields

1 2 3 4 1 2 3 4 1 2 3 4
0111 . 011 1 . 011 1
0 a a 2 0 0 0 2—a 0 0 2 2 ’
00 2 2 0 0 2 2 0 00 2—-a

which is invertible iff a # 2.

(b) The above row operations multiplied the determinant by —1 (because of interchang-
ing rows), and so det(4) = —-1-1-2-(2—a) =2a — 4.



3. Assume that f: R — R is a continuously differentiable function, and that

|f(@) = f(y)| > |z —y| forall z,y€R.

a) Prove that there is a function g : R — R such that the compositions fog and go f
are both equal to the identity map.

b) Prove that the above function g is continuously differentiable.
Solution:

(a) First, the map f is one-to-one (injective). Indeed, if f(x) = f(y), then |z — y| <
|f(x) — f(y)] =0, i.e. © =y. To prove that g exists, it suffices to prove that f is also
onto (surjective), since then f is bijective and thus invertible.

The hypothesis on f implies that |f/'(z)] > 1 for all z, since f'(z) = lim(f(y) —

Y=z

f())/(y — z). In particular, f’(z) is never equal to 0. Since f’ is continuous, the
Intermediate Value Theorem implies that either f’(z) > 1 for all z or f'(z) < —1 for
all x. Possibly after replacing f by —f, we may assume the former. After replacing
f by f— f(0), we may assume that f(0) = 0. So for every N > 0, by the Mean
Value Theorem there exists ¢ with f(N)/N = (f(N) — f(0))/(N —0) = f'(¢) > 1; i.e.,
f(N) > N. Thus f takes on arbitrarily large positive values; and by the intermediate
value theorem, it takes on all positive values, since f(0) = 0. Similarly, it takes on all
negative values. Hence it is surjective, and thus invertible.

(b) This is immediate from the Inverse Function Theorem, since f’ is never equal to 0.

4. Let G be a group of order 66.

a) Find an integer n with 1 < n < 66 such that G must have a normal subgroup N of
index equal to n. Justify your assertion.

b) For this value of n, prove that every g € G has the property that ¢g" € N.
Solution:

(a) n = 6 works. Namely, by the Sylow theorems, the number of Sylow 11-subgroups
is congruent to 1 modulo 11 and divides 66/11 = 6, and so equals 1. The unique Sylow
11-subgroup is thus normal, of order 11 and index 6.

(b) If g € G, let g be its image in G/N. Since N has index equal to 6, G/N has order
equal to 6; and so g% is equal to the identity. That is, g € N.

5. Let a,b € R and consider the differential equation f”(x) + af’(z) + bf(z) = 0. For
which values of a, b does there exist a non-zero solution f : R — R to this equation such
that f is bounded on [0, 00)? For each such a, b, find such a solution.

Solution:

Answer: Either a? —4b > 0 and —a < v/a2 — 4b; or else a®> —4b < 0 and a > 0.



If the associated quadratic equation 22 + az + b has distinct real roots 71 < ro (i.e., if
a® — 4b > 0), then the solutions are of the form C1e™® + Cye”*, with C1,Cy € R. For
r € R, the function €™ is bounded on [0, 00) iff » < 0. Since the solution is assumed
non-zero, either C7 or Cs is non-zero, and so the condition is that at the smaller root
r1is < 0; ie., —a < Va? — 4b, in which case €"'? is a bounded solution.

If 22 +az+b has a double real root r (i.e., if a® = 4b), then the solutions are of the form
Che™ + Coxe™. The function ze™ also is bounded on [0, 00) iff » < 0. So in this case
the equation has a bounded solution on [0,00) iff r < 0; i.e., a > 0, in which case e"*
is a solution. So for this case and the previous case, the condition is that a2 —4b >0

and —a < va? — 4b.

If 22 4+ az + b has non-real complex conjugate roots r £ 1is (i.e., if a®> —4b < 0), then the
solutions are of the form Cie" cos(sz) + Coe™ sin(sx). Since e’* is bounded on [0, o00)
iff » < 0, and since cos and sin are bounded, there is a bounded solution on [0, co) iff
r < 0;i.e., a >0, in which case e"* cos(sx) is a bounded solution.

. For each of the following, either give an example or prove that no such example ex-
ists.

a) A closed subset S C R that contains Q, such that S # R.

b) An open subset S C R that contains Q, such that S # R.

¢) A connected subset S C R that contains Q, such that S # R.
Solution:

(a) No such example exists, because Q is dense in R, and so any closed set that contains
Q must be all of R.

(b) There are many such examples, e.g., {z € R |z # v/2}.

(c) No such example exists. Since a connected subset of R (which is a metric space)
is path connected, if a,b € S with a < b, then [a,b] C S. Since every real number lies
between two rational numbers, all real numbers lie in S.

. For each continuous function f(x,y) on the z,y-plane, and each path C from (0,1) to
(m,1), consider the contour integral

/ ysin®(x) dz + f(z,y) dy.
C

a) Find a choice of the function f(z,y) such that the value of the above integral is
independent of the choice of the path C from (0,1) to (m,1).

b) For your choice of f, evaluate the above integral for any choice of path C' as above.
Solution:

(a) By Green’s Theorem, the integral has the required property if f(z,y) is defined
on R? and %f(x,y) = %ysinQ(az) = sin?(z) = 1(1 — cos(2z)); ie., if f x,yz = 3(z —

% sin(2z)) + g(y), where g is a function of y. So we may take f(z,y) = 3(z — & sin(2z)).



: _ _ _ d _
(b) We may take the path given by x = ¢, y = 1 for 0 < ¢t < 7. Thus dx = F7dt = dt

and dy = %dt = 0. Then the second term drops out and we are left with

/07r sin? (£)dt — /07r %(1 ~ cos(2t))dt = % [(t - ;sin(Qt))] _ %m —0) = /2.

0

(If in part (a), a function f(z,y) = 3(z — $sin(2z)) + g(y) is chosen, then the integral

of the first term over the above path is unchanged and that of the second term remains
0, so the answer is still 7/2.)

8. Let ¢ be a power of a prime number, and let F, be the field of ¢ elements. Let V' be
an n-dimensional vector space over [F,. For each positive integer k, let S be the set of
ordered k-tuples (v1,...,vx) of linearly independent vectors in V.

a) Show that the number of elements in Sy, is (¢" — 1)(¢" — q) --- (¢" — ¢"*~1). What
does this say if £ > n?

b) Using part (a), determine the number of invertible n x n matrices over Fy.
Solution:

(a) There are ¢" elements of V. The only constraint on v; is that it is non-zero; so
there are ¢ — 1 choices for v;. Once vy is chosen, there are exactly ¢ vectors that
are multiples of v1, and so there are ¢" — ¢ allowable choices for vs. For each choice
of vy, ve, there are exactly ¢® vectors that are linearly dependent on {v1,vs}, leaving
q" — ¢ linearly independent choices of v3; and so on. So the number of elements in Sy,
i.e. the number of choices for (v1,...,v), is (¢" — 1)(¢" — q)--- (¢" — ¢*~1). If k > n,
this number is 0, as expected, since any set of more than n vectors in an n-dimensional
vector space is linearly dependent.

(b) By considering the columns (or rows), these matrices are in bijection with the
elements of S,. So the number of these matrices is (¢" — 1)(¢" — q)--- (¢" — ¢"1).

9. Let I C R be an open interval, and let f : I — R be a twice differentiable function.
Suppose that a, b, c € I are distinct, and that the three points

(a, f(a)), (b, f()), (c, f(c) € R?

lie on a line. Prove that f”(z) = 0 for some x € I.
Solution:

Let m be the slope of this line. By the Mean Value Theorem, there exists d € [a,b] C I
such that f'(d) = (f(b) — f(a))/(b—a) = m; and there exists e € [b,¢] C I such that
f'(e) = (f(c) = f(b))/(c — b) = m. By Rolle’s Theorem applied to f’, there exists
x € [d,e] C I such that f”(z) = 0.

10. a) Consider the ideal I = (222 + 2z + 1) in Z[z]. Determine whether I is a prime
ideal, and whether it is maximal.



11.

12.

b) Is R = Z[z]/I an integral domain? If your answer is no, find a zero-divisor in R.
If your answer is yes, find a complex number « such that the fraction field of R is
isomorphic to Q[a].

Solution:

(a) By the quadratic formula, the polynomial 222 + 2x + 1 has no roots in Q. Since it
has degree 2, it is irreducible over QQ, and hence also over Z since it is primitive. Since
Z[x] is a UFD and 222 + 2z + 1 is irreducible, the principal ideal I is a prime ideal. This
ideal is not maximal, because it is strictly contained in (222422 +1,3). (To see that the
latter ideal is proper and maximal, note that 222 + 2z + 1 is irreducible in F3[z], being
of degree 3 and having no roots; and so F3[z]/(222 + 2z + 1) = Z[x]/(222 + 27 + 1, 3)
is a field.)

(b) R is an integral domain because [ is a prime ideal. Let o = (—1+1)/2 € C, which
is a root of 222 4+ 2z + 1. Then R is isomorphic to Z[a], and so the fraction field of R
is isomorphic to Qla].

a) Show that in some open neighborhood of the origin in the (z,y)-plane R2, there is
a differentiable function z = f(z,y) satisfying

2P —z=a+ yz.
b) On a sufficiently small neighborhood of the origin, how many such implicit functions
f are there?

c¢) For each such implicit function f, determine whether the origin is a critical point.
Solution:

(a) At (z,9) = (0,0), the condition is that 2° = z; i.e., 2 € {0,1,—1}. Let F(x,y,2) =
25—z — 2% —y% Then OF/0z = 5z* — 1, which does not vanish at any of the above
three values of z. So by the Implicit Function Theorem, for each of these three values,
there is a differentiable function z = f(x,y) defined in a neighborhood of the origin,

whose graph lies on the locus of 2% — z = 22 +y?, and for which f(0,0) is equal to that
value of z.

(b) For each choice of z € {0,1,—1} in part (a), and each sufficiently small neighborhood
of the origin, the Implicit Function Theorem says that the function f is unique. So there
are exactly three such implicit functions.

(c) For each such implicit function f, we may compute the partial derivatives implicitly:
52402/0x — 02/0x = 2z and 52%02/0y — 0z/0y = 2y, so 0z/0x = 2z/(5z* — 1) and
0z/0y = 2y/(5z* —1). At (x,9) = (0,0), these are both equal to 0, and so the origin is
a critical point for each of the three implicit functions.

Let M be the 4 x 4 real matrix each of whose entries is equal to 1.

a) Find the kernel, image, rank, nullity (dimension of the kernel), trace, and determi-
nant of M.



b) Find the characteristic polynomial of M, the eigenvalues of M, and the dimensions
of the corresponding eigenspaces.

c) Determine whether M is diagonalizable.

Solution:

(a) The kernel is {(z,y, z,w) € R* |z +y+ z+w = 0}. So the nullity is 3 and the rank
is 1. The image is {(z,y,r,w) € R*|z = y = 2 = w}. The trace is 4, being the sum of
the diagonal elements. The determinant is 0 since the rank is less than 4.

(b) Since the nullity is 3, there is a 3-dimensional eigenspace with eigenvalue 0. Since
the rank is 1, there is a one dimensional eigenspace with non-zero eigenvalue c. Since
the sum of the eigenvalues is equal to the trace, ¢ = 4. So the characteristic polynomial
is X3(X —4).

(c) Since the sum of the dimensions of the eigenspaces is the dimension of the vector
space R%, there is a basis of eigenvectors; and so M is diagonalizable.



