
Spring 2018 Preliminary Exam – Problems and Solutions

1. For each of the following series, either prove that it converges or prove that it di-
verges.

a) 1 + 1/2− 1/3 + 1/4 + 1/5− 1/6 + 1/7 + 1/8− 1/9 + 1/10 + 1/11− 1/12 + 1/13 +
1/14− 1/15 + · · ·

b) 1 + 1/2 + 1/3− 1 + 1/4 + 1/5 + 1/6− 1/2 + 1/7 + 1/8 + 1/9− 1/3 + 1/10 + 1/11 +
1/12− 1/4 + · · ·

Solution:

(a) It diverges. The sum of the first 3n terms is greater than 1 + 1/4 + 1/7 + · · · +
1/(3n− 2) > 1/3 + 1/6 + 1/9 + · · ·+ 1/3n, which becomes arbitrarily large (one-third
of the harmonic series).

(b) It converges. Let Sn be the sum of the first n terms. Then

S4k = 1 + 1/2 + . . .+ 1/(3k)− (1 + 1/2 + . . . 1/k) = 1/(k+ 1) + 1/(k+ 2) + . . .+ 1/(3k).

Thus ∫ 3k+1

k+1
1/x dx < S4k <

∫ 3k

k
1/x dx = ln(3k)− ln(k) = ln(3),

where
∫ 3k+1
k+1 1/x dx = ln(3k + 1) − ln(k + 1) = ln(3 − 2

k+1); and so the sequence S4k
converges to ln(3). For i = 1, 2, 3, |S4k+i − S4k| < 3/(3k + 1), which approaches 0 as
k →∞; so the sequence Sn also converges to ln(3). Thus the sum converges (to ln(3)).

2. Consider the matrix

A =


1 2 3 4
0 1 1 1
0 a a 2
0 0 2 2

 ,
where a ∈ R.

a) Determine all values of a ∈ R for which the matrix A is invertible.

b) For each such a, find the determinant of A.

Solution:

(a) The matrix A is invertible iff its row rank is 4. Performing elementary row operations
yields 

1 2 3 4
0 1 1 1
0 a a 2
0 0 2 2

→


1 2 3 4
0 1 1 1
0 0 0 2− a
0 0 2 2

→


1 2 3 4
0 1 1 1
0 0 2 2
0 0 0 2− a

 ,
which is invertible iff a 6= 2.

(b) The above row operations multiplied the determinant by −1 (because of interchang-
ing rows), and so det(A) = −1 · 1 · 2 · (2− a) = 2a− 4.
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3. Assume that f : R→ R is a continuously differentiable function, and that

|f(x)− f(y)| ≥ |x− y| for all x, y ∈ R.

a) Prove that there is a function g : R→ R such that the compositions f ◦ g and g ◦ f
are both equal to the identity map.

b) Prove that the above function g is continuously differentiable.

Solution:

(a) First, the map f is one-to-one (injective). Indeed, if f(x) = f(y), then |x − y| ≤
|f(x) − f(y)| = 0, i.e. x = y. To prove that g exists, it suffices to prove that f is also
onto (surjective), since then f is bijective and thus invertible.

The hypothesis on f implies that |f ′(x)| ≥ 1 for all x, since f ′(x) = lim
y→x

(f(y) −
f(x))/(y − x). In particular, f ′(x) is never equal to 0. Since f ′ is continuous, the
Intermediate Value Theorem implies that either f ′(x) ≥ 1 for all x or f ′(x) ≤ −1 for
all x. Possibly after replacing f by −f , we may assume the former. After replacing
f by f − f(0), we may assume that f(0) = 0. So for every N > 0, by the Mean
Value Theorem there exists c with f(N)/N = (f(N)− f(0))/(N − 0) = f ′(c) ≥ 1; i.e.,
f(N) ≥ N . Thus f takes on arbitrarily large positive values; and by the intermediate
value theorem, it takes on all positive values, since f(0) = 0. Similarly, it takes on all
negative values. Hence it is surjective, and thus invertible.

(b) This is immediate from the Inverse Function Theorem, since f ′ is never equal to 0.

4. Let G be a group of order 66.

a) Find an integer n with 1 < n < 66 such that G must have a normal subgroup N of
index equal to n. Justify your assertion.

b) For this value of n, prove that every g ∈ G has the property that gn ∈ N .

Solution:

(a) n = 6 works. Namely, by the Sylow theorems, the number of Sylow 11-subgroups
is congruent to 1 modulo 11 and divides 66/11 = 6, and so equals 1. The unique Sylow
11-subgroup is thus normal, of order 11 and index 6.

(b) If g ∈ G, let ḡ be its image in G/N . Since N has index equal to 6, G/N has order
equal to 6; and so ḡ6 is equal to the identity. That is, g6 ∈ N .

5. Let a, b ∈ R and consider the differential equation f ′′(x) + af ′(x) + bf(x) = 0. For
which values of a, b does there exist a non-zero solution f : R→ R to this equation such
that f is bounded on [0,∞)? For each such a, b, find such a solution.

Solution:

Answer: Either a2 − 4b ≥ 0 and −a ≤
√
a2 − 4b; or else a2 − 4b < 0 and a ≥ 0.
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If the associated quadratic equation z2 + az + b has distinct real roots r1 < r2 (i.e., if
a2 − 4b > 0), then the solutions are of the form C1e

r1x + C2e
r2x, with C1, C2 ∈ R. For

r ∈ R, the function erx is bounded on [0,∞) iff r ≤ 0. Since the solution is assumed
non-zero, either C1 or C2 is non-zero, and so the condition is that at the smaller root
r1 is ≤ 0; i.e., −a ≤

√
a2 − 4b, in which case er1x is a bounded solution.

If z2 +az+b has a double real root r (i.e., if a2 = 4b), then the solutions are of the form
C1e

rx + C2xe
rx. The function xerx also is bounded on [0,∞) iff r ≤ 0. So in this case

the equation has a bounded solution on [0,∞) iff r ≤ 0; i.e., a ≥ 0, in which case erx

is a solution. So for this case and the previous case, the condition is that a2 − 4b ≥ 0
and −a ≤

√
a2 − 4b.

If z2 + az+ b has non-real complex conjugate roots r± is (i.e., if a2− 4b < 0), then the
solutions are of the form C1e

rx cos(sx) +C2e
rx sin(sx). Since erx is bounded on [0,∞)

iff r ≤ 0, and since cos and sin are bounded, there is a bounded solution on [0,∞) iff
r ≤ 0; i.e., a ≥ 0, in which case erx cos(sx) is a bounded solution.

6. For each of the following, either give an example or prove that no such example ex-
ists.

a) A closed subset S ⊂ R that contains Q, such that S 6= R.

b) An open subset S ⊂ R that contains Q, such that S 6= R.

c) A connected subset S ⊂ R that contains Q, such that S 6= R.

Solution:

(a) No such example exists, because Q is dense in R, and so any closed set that contains
Q must be all of R.

(b) There are many such examples, e.g., {x ∈ R |x 6=
√

2}.
(c) No such example exists. Since a connected subset of R (which is a metric space)
is path connected, if a, b ∈ S with a < b, then [a, b] ⊆ S. Since every real number lies
between two rational numbers, all real numbers lie in S.

7. For each continuous function f(x, y) on the x, y-plane, and each path C from (0, 1) to
(π, 1), consider the contour integral∫

C
y sin2(x) dx+ f(x, y) dy.

a) Find a choice of the function f(x, y) such that the value of the above integral is
independent of the choice of the path C from (0, 1) to (π, 1).

b) For your choice of f , evaluate the above integral for any choice of path C as above.

Solution:

(a) By Green’s Theorem, the integral has the required property if f(x, y) is defined
on R2 and d

dxf(x, y) = d
dyy sin2(x) = sin2(x) = 1

2(1 − cos(2x)); i.e., if f(x, y) = 1
2(x −

1
2 sin(2x)) + g(y), where g is a function of y. So we may take f(x, y) = 1

2(x− 1
2 sin(2x)).
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(b) We may take the path given by x = t, y = 1 for 0 ≤ t ≤ π. Thus dx = dx
dt dt = dt

and dy = dy
dt dt = 0. Then the second term drops out and we are left with∫ π

0
sin2(t)dt =

∫ π

0

1

2
(1− cos(2t))dt =

1

2

[
(t− 1

2
sin(2t))

]π
0

=
1

2
(π − 0) = π/2.

(If in part (a), a function f(x, y) = 1
2(x− 1

2 sin(2x)) + g(y) is chosen, then the integral
of the first term over the above path is unchanged and that of the second term remains
0, so the answer is still π/2.)

8. Let q be a power of a prime number, and let Fq be the field of q elements. Let V be
an n-dimensional vector space over Fq. For each positive integer k, let Sk be the set of
ordered k-tuples (v1, . . . , vk) of linearly independent vectors in V .

a) Show that the number of elements in Sk is (qn − 1)(qn − q) · · · (qn − qk−1). What
does this say if k > n?

b) Using part (a), determine the number of invertible n× n matrices over Fq.
Solution:

(a) There are qn elements of V . The only constraint on v1 is that it is non-zero; so
there are qn − 1 choices for v1. Once v1 is chosen, there are exactly q vectors that
are multiples of v1, and so there are qn − q allowable choices for v2. For each choice
of v1, v2, there are exactly q2 vectors that are linearly dependent on {v1, v2}, leaving
qn− q2 linearly independent choices of v3; and so on. So the number of elements in Sk,
i.e. the number of choices for (v1, . . . , vk), is (qn − 1)(qn − q) · · · (qn − qk−1). If k > n,
this number is 0, as expected, since any set of more than n vectors in an n-dimensional
vector space is linearly dependent.

(b) By considering the columns (or rows), these matrices are in bijection with the
elements of Sn. So the number of these matrices is (qn − 1)(qn − q) · · · (qn − qn−1).

9. Let I ⊂ R be an open interval, and let f : I → R be a twice differentiable function.
Suppose that a, b, c ∈ I are distinct, and that the three points

(a, f(a)), (b, f(b)), (c, f(c)) ∈ R2

lie on a line. Prove that f ′′(x) = 0 for some x ∈ I.

Solution:

Let m be the slope of this line. By the Mean Value Theorem, there exists d ∈ [a, b] ⊆ I
such that f ′(d) = (f(b) − f(a))/(b − a) = m; and there exists e ∈ [b, c] ⊆ I such that
f ′(e) = (f(c) − f(b))/(c − b) = m. By Rolle’s Theorem applied to f ′, there exists
x ∈ [d, e] ⊆ I such that f ′′(x) = 0.

10. a) Consider the ideal I = (2x2 + 2x + 1) in Z[x]. Determine whether I is a prime
ideal, and whether it is maximal.
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b) Is R = Z[x]/I an integral domain? If your answer is no, find a zero-divisor in R.
If your answer is yes, find a complex number α such that the fraction field of R is
isomorphic to Q[α].

Solution:

(a) By the quadratic formula, the polynomial 2x2 + 2x+ 1 has no roots in Q. Since it
has degree 2, it is irreducible over Q, and hence also over Z since it is primitive. Since
Z[x] is a UFD and 2x2+2x+1 is irreducible, the principal ideal I is a prime ideal. This
ideal is not maximal, because it is strictly contained in (2x2+2x+1, 3). (To see that the
latter ideal is proper and maximal, note that 2x2 + 2x+ 1 is irreducible in F3[x], being
of degree 3 and having no roots; and so F3[x]/(2x2 + 2x + 1) = Z[x]/(2x2 + 2x + 1, 3)
is a field.)

(b) R is an integral domain because I is a prime ideal. Let α = (−1 + i)/2 ∈ C, which
is a root of 2x2 + 2x+ 1. Then R is isomorphic to Z[α], and so the fraction field of R
is isomorphic to Q[α].

11. a) Show that in some open neighborhood of the origin in the (x, y)-plane R2, there is
a differentiable function z = f(x, y) satisfying

z5 − z = x2 + y2.

b) On a sufficiently small neighborhood of the origin, how many such implicit functions
f are there?

c) For each such implicit function f , determine whether the origin is a critical point.

Solution:

(a) At (x, y) = (0, 0), the condition is that z5 = z; i.e., z ∈ {0, 1,−1}. Let F (x, y, z) =
z5 − z − x2 − y2. Then ∂F/∂z = 5z4 − 1, which does not vanish at any of the above
three values of z. So by the Implicit Function Theorem, for each of these three values,
there is a differentiable function z = f(x, y) defined in a neighborhood of the origin,
whose graph lies on the locus of z5− z = x2 + y2, and for which f(0, 0) is equal to that
value of z.

(b) For each choice of z ∈ {0, 1,−1} in part (a), and each sufficiently small neighborhood
of the origin, the Implicit Function Theorem says that the function f is unique. So there
are exactly three such implicit functions.

(c) For each such implicit function f , we may compute the partial derivatives implicitly:
5z4∂z/∂x − ∂z/∂x = 2x and 5z4∂z/∂y − ∂z/∂y = 2y, so ∂z/∂x = 2x/(5z4 − 1) and
∂z/∂y = 2y/(5z4− 1). At (x, y) = (0, 0), these are both equal to 0, and so the origin is
a critical point for each of the three implicit functions.

12. Let M be the 4× 4 real matrix each of whose entries is equal to 1.

a) Find the kernel, image, rank, nullity (dimension of the kernel), trace, and determi-
nant of M .
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b) Find the characteristic polynomial of M , the eigenvalues of M , and the dimensions
of the corresponding eigenspaces.

c) Determine whether M is diagonalizable.

Solution:

(a) The kernel is {(x, y, x, w) ∈ R4 |x+ y+ z+w = 0}. So the nullity is 3 and the rank
is 1. The image is {(x, y, x, w) ∈ R4 |x = y = z = w}. The trace is 4, being the sum of
the diagonal elements. The determinant is 0 since the rank is less than 4.

(b) Since the nullity is 3, there is a 3-dimensional eigenspace with eigenvalue 0. Since
the rank is 1, there is a one dimensional eigenspace with non-zero eigenvalue c. Since
the sum of the eigenvalues is equal to the trace, c = 4. So the characteristic polynomial
is X3(X − 4).

(c) Since the sum of the dimensions of the eigenspaces is the dimension of the vector
space R4, there is a basis of eigenvectors; and so M is diagonalizable.
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