Spring 2018 Preliminary Exam – Problems and Solutions

- 1. For each of the following series, either prove that it converges or prove that it diverges.
 - a) $1 + 1/2 1/3 + 1/4 + 1/5 1/6 + 1/7 + 1/8 1/9 + 1/10 + 1/11 1/12 + 1/13 + 1/14 1/15 + \cdots$
 - b) $1 + 1/2 + 1/3 1 + 1/4 + 1/5 + 1/6 1/2 + 1/7 + 1/8 + 1/9 1/3 + 1/10 + 1/11 + 1/12 1/4 + \cdots$

Solution:

(a) It diverges. The sum of the first 3n terms is greater than $1 + 1/4 + 1/7 + \cdots + 1/(3n-2) > 1/3 + 1/6 + 1/9 + \cdots + 1/3n$, which becomes arbitrarily large (one-third of the harmonic series).

(b) It converges. Let S_n be the sum of the first *n* terms. Then

 $S_{4k} = 1 + 1/2 + \ldots + 1/(3k) - (1 + 1/2 + \ldots 1/k) = 1/(k+1) + 1/(k+2) + \ldots + 1/(3k).$

Thus

$$\int_{k+1}^{3k+1} 1/x \, dx < S_{4k} < \int_{k}^{3k} 1/x \, dx = \ln(3k) - \ln(k) = \ln(3),$$

where $\int_{k+1}^{3k+1} 1/x \, dx = \ln(3k+1) - \ln(k+1) = \ln(3-\frac{2}{k+1})$; and so the sequence S_{4k} converges to $\ln(3)$. For i = 1, 2, 3, $|S_{4k+i} - S_{4k}| < 3/(3k+1)$, which approaches 0 as $k \to \infty$; so the sequence S_n also converges to $\ln(3)$. Thus the sum converges (to $\ln(3)$).

2. Consider the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & a & a & 2 \\ 0 & 0 & 2 & 2 \end{bmatrix},$$

where $a \in \mathbb{R}$.

- a) Determine all values of $a \in \mathbb{R}$ for which the matrix A is invertible.
- b) For each such a, find the determinant of A.

Solution:

(a) The matrix A is invertible iff its row rank is 4. Performing elementary row operations yields

1	2	3	4		1	2	3	4		1	2	3	4	
0	T	1	1	\rightarrow	0	1	1	1	\rightarrow	0	1	1	1	,
0	a	a	2		0	0	0	2-a			0	2	2	
_ 0	0	2	2 _		0	0	2	2 _			0	0	2 - a	

which is invertible iff $a \neq 2$.

(b) The above row operations multiplied the determinant by -1 (because of interchanging rows), and so det $(A) = -1 \cdot 1 \cdot 2 \cdot (2 - a) = 2a - 4$.

3. Assume that $f : \mathbb{R} \to \mathbb{R}$ is a continuously differentiable function, and that

$$|f(x) - f(y)| \ge |x - y|$$
 for all $x, y \in \mathbb{R}$.

- a) Prove that there is a function $g : \mathbb{R} \to \mathbb{R}$ such that the compositions $f \circ g$ and $g \circ f$ are both equal to the identity map.
- b) Prove that the above function g is continuously differentiable.

Solution:

(a) First, the map f is one-to-one (injective). Indeed, if f(x) = f(y), then $|x - y| \le |f(x) - f(y)| = 0$, i.e. x = y. To prove that g exists, it suffices to prove that f is also onto (surjective), since then f is bijective and thus invertible.

The hypothesis on f implies that $|f'(x)| \ge 1$ for all x, since $f'(x) = \lim_{y\to x} (f(y) - f(x))/(y-x)$. In particular, f'(x) is never equal to 0. Since f' is continuous, the Intermediate Value Theorem implies that either $f'(x) \ge 1$ for all x or $f'(x) \le -1$ for all x. Possibly after replacing f by -f, we may assume the former. After replacing f by f - f(0), we may assume that f(0) = 0. So for every N > 0, by the Mean Value Theorem there exists c with $f(N)/N = (f(N) - f(0))/(N - 0) = f'(c) \ge 1$; i.e., $f(N) \ge N$. Thus f takes on arbitrarily large positive values; and by the intermediate value theorem, it takes on all positive values, since f(0) = 0. Similarly, it takes on all negative values. Hence it is surjective, and thus invertible.

(b) This is immediate from the Inverse Function Theorem, since f' is never equal to 0.

- 4. Let G be a group of order 66.
 - a) Find an integer n with 1 < n < 66 such that G must have a normal subgroup N of index equal to n. Justify your assertion.

b) For this value of n, prove that every $g \in G$ has the property that $g^n \in N$.

Solution:

(a) n = 6 works. Namely, by the Sylow theorems, the number of Sylow 11-subgroups is congruent to 1 modulo 11 and divides 66/11 = 6, and so equals 1. The unique Sylow 11-subgroup is thus normal, of order 11 and index 6.

(b) If $g \in G$, let \overline{g} be its image in G/N. Since N has index equal to 6, G/N has order equal to 6; and so \overline{g}^6 is equal to the identity. That is, $g^6 \in N$.

5. Let $a, b \in \mathbb{R}$ and consider the differential equation f''(x) + af'(x) + bf(x) = 0. For which values of a, b does there exist a non-zero solution $f : \mathbb{R} \to \mathbb{R}$ to this equation such that f is bounded on $[0, \infty)$? For each such a, b, find such a solution. Solution:

Answer: Either $a^2 - 4b \ge 0$ and $-a \le \sqrt{a^2 - 4b}$; or else $a^2 - 4b < 0$ and $a \ge 0$.

If the associated quadratic equation $z^2 + az + b$ has distinct real roots $r_1 < r_2$ (i.e., if $a^2 - 4b > 0$), then the solutions are of the form $C_1e^{r_1x} + C_2e^{r_2x}$, with $C_1, C_2 \in \mathbb{R}$. For $r \in \mathbb{R}$, the function e^{rx} is bounded on $[0, \infty)$ iff $r \leq 0$. Since the solution is assumed non-zero, either C_1 or C_2 is non-zero, and so the condition is that at the smaller root r_1 is ≤ 0 ; i.e., $-a \leq \sqrt{a^2 - 4b}$, in which case e^{r_1x} is a bounded solution. If $z^2 + az + b$ has a double real root r (i.e., if $a^2 = 4b$), then the solutions are of the form $C_1e^{rx} + C_2xe^{rx}$. The function xe^{rx} also is bounded on $[0, \infty)$ iff $r \leq 0$. So in this case the equation has a bounded solution on $[0, \infty)$ iff $r \leq 0$; i.e., $a \geq 0$, in which case e^{rx}

is a solution. So for this case and the previous case, the condition is that $a^2 - 4b \ge 0$ and $-a \le \sqrt{a^2 - 4b}$. If $z^2 + az + b$ has non-real complex conjugate roots $r \pm is$ (i.e., if $a^2 - 4b < 0$), then the solutions are of the form $C_1 e^{rx} \cos(sx) + C_2 e^{rx} \sin(sx)$. Since e^{rx} is bounded on $[0, \infty)$

solutions are of the form $C_1 e^{rx} \cos(sx) + C_2 e^{rx} \sin(sx)$. Since e^{rx} is bounded on $[0, \infty)$ iff $r \leq 0$, and since \cos and \sin are bounded, there is a bounded solution on $[0, \infty)$ iff $r \leq 0$; i.e., $a \geq 0$, in which case $e^{rx} \cos(sx)$ is a bounded solution.

- 6. For each of the following, either give an example or prove that no such example exists.
 - a) A closed subset $S \subset \mathbb{R}$ that contains \mathbb{Q} , such that $S \neq \mathbb{R}$.
 - b) An open subset $S \subset \mathbb{R}$ that contains \mathbb{Q} , such that $S \neq \mathbb{R}$.
 - c) A connected subset $S \subset \mathbb{R}$ that contains \mathbb{Q} , such that $S \neq \mathbb{R}$.

Solution:

(a) No such example exists, because \mathbb{Q} is dense in \mathbb{R} , and so any closed set that contains \mathbb{Q} must be all of \mathbb{R} .

(b) There are many such examples, e.g., $\{x \in \mathbb{R} \mid x \neq \sqrt{2}\}$.

(c) No such example exists. Since a connected subset of \mathbb{R} (which is a metric space) is path connected, if $a, b \in S$ with a < b, then $[a, b] \subseteq S$. Since every real number lies between two rational numbers, all real numbers lie in S.

7. For each continuous function f(x, y) on the x, y-plane, and each path C from (0, 1) to $(\pi, 1)$, consider the contour integral

$$\int_C y \sin^2(x) \, dx + f(x, y) \, dy.$$

- a) Find a choice of the function f(x, y) such that the value of the above integral is independent of the choice of the path C from (0, 1) to $(\pi, 1)$.
- b) For your choice of f, evaluate the above integral for any choice of path C as above. Solution:

(a) By Green's Theorem, the integral has the required property if f(x,y) is defined on \mathbb{R}^2 and $\frac{d}{dx}f(x,y) = \frac{d}{dy}y\sin^2(x) = \sin^2(x) = \frac{1}{2}(1-\cos(2x))$; i.e., if $f(x,y) = \frac{1}{2}(x-\frac{1}{2}\sin(2x)) + g(y)$, where g is a function of y. So we may take $f(x,y) = \frac{1}{2}(x-\frac{1}{2}\sin(2x))$. (b) We may take the path given by x = t, y = 1 for $0 \le t \le \pi$. Thus $dx = \frac{dx}{dt}dt = dt$ and $dy = \frac{dy}{dt}dt = 0$. Then the second term drops out and we are left with

$$\int_0^{\pi} \sin^2(t) dt = \int_0^{\pi} \frac{1}{2} (1 - \cos(2t)) dt = \frac{1}{2} \left[(t - \frac{1}{2}\sin(2t)) \right]_0^{\pi} = \frac{1}{2} (\pi - 0) = \pi/2.$$

(If in part (a), a function $f(x, y) = \frac{1}{2}(x - \frac{1}{2}\sin(2x)) + g(y)$ is chosen, then the integral of the first term over the above path is unchanged and that of the second term remains 0, so the answer is still $\pi/2$.)

- 8. Let q be a power of a prime number, and let \mathbb{F}_q be the field of q elements. Let V be an n-dimensional vector space over \mathbb{F}_q . For each positive integer k, let S_k be the set of ordered k-tuples (v_1, \ldots, v_k) of linearly independent vectors in V.
 - a) Show that the number of elements in S_k is $(q^n 1)(q^n q) \cdots (q^n q^{k-1})$. What does this say if k > n?
 - b) Using part (a), determine the number of invertible $n \times n$ matrices over \mathbb{F}_{q} .

Solution:

(a) There are q^n elements of V. The only constraint on v_1 is that it is non-zero; so there are $q^n - 1$ choices for v_1 . Once v_1 is chosen, there are exactly q vectors that are multiples of v_1 , and so there are $q^n - q$ allowable choices for v_2 . For each choice of v_1, v_2 , there are exactly q^2 vectors that are linearly dependent on $\{v_1, v_2\}$, leaving $q^n - q^2$ linearly independent choices of v_3 ; and so on. So the number of elements in S_k , i.e. the number of choices for (v_1, \ldots, v_k) , is $(q^n - 1)(q^n - q) \cdots (q^n - q^{k-1})$. If k > n, this number is 0, as expected, since any set of more than n vectors in an n-dimensional vector space is linearly dependent.

(b) By considering the columns (or rows), these matrices are in bijection with the elements of S_n . So the number of these matrices is $(q^n - 1)(q^n - q) \cdots (q^n - q^{n-1})$.

9. Let $I \subset \mathbb{R}$ be an open interval, and let $f : I \to \mathbb{R}$ be a twice differentiable function. Suppose that $a, b, c \in I$ are distinct, and that the three points

$$(a, f(a)), (b, f(b)), (c, f(c)) \in \mathbb{R}^2$$

lie on a line. Prove that f''(x) = 0 for some $x \in I$.

Solution:

Let *m* be the slope of this line. By the Mean Value Theorem, there exists $d \in [a, b] \subseteq I$ such that f'(d) = (f(b) - f(a))/(b - a) = m; and there exists $e \in [b, c] \subseteq I$ such that f'(e) = (f(c) - f(b))/(c - b) = m. By Rolle's Theorem applied to f', there exists $x \in [d, e] \subseteq I$ such that f''(x) = 0.

10. a) Consider the ideal $I = (2x^2 + 2x + 1)$ in $\mathbb{Z}[x]$. Determine whether I is a prime ideal, and whether it is maximal.

b) Is $R = \mathbb{Z}[x]/I$ an integral domain? If your answer is no, find a zero-divisor in R. If your answer is yes, find a complex number α such that the fraction field of R is isomorphic to $\mathbb{Q}[\alpha]$.

Solution:

(a) By the quadratic formula, the polynomial $2x^2 + 2x + 1$ has no roots in \mathbb{Q} . Since it has degree 2, it is irreducible over \mathbb{Q} , and hence also over \mathbb{Z} since it is primitive. Since $\mathbb{Z}[x]$ is a UFD and $2x^2 + 2x + 1$ is irreducible, the principal ideal I is a prime ideal. This ideal is not maximal, because it is strictly contained in $(2x^2 + 2x + 1, 3)$. (To see that the latter ideal is proper and maximal, note that $2x^2 + 2x + 1$ is irreducible in $\mathbb{F}_3[x]$, being of degree 3 and having no roots; and so $\mathbb{F}_3[x]/(2x^2 + 2x + 1) = \mathbb{Z}[x]/(2x^2 + 2x + 1, 3)$ is a field.)

(b) R is an integral domain because I is a prime ideal. Let $\alpha = (-1+i)/2 \in \mathbb{C}$, which is a root of $2x^2 + 2x + 1$. Then R is isomorphic to $\mathbb{Z}[\alpha]$, and so the fraction field of Ris isomorphic to $\mathbb{Q}[\alpha]$.

11. a) Show that in some open neighborhood of the origin in the (x, y)-plane \mathbb{R}^2 , there is a differentiable function z = f(x, y) satisfying

$$z^5 - z = x^2 + y^2.$$

- b) On a sufficiently small neighborhood of the origin, how many such implicit functions f are there?
- c) For each such implicit function f, determine whether the origin is a critical point. Solution:

(a) At (x, y) = (0, 0), the condition is that $z^5 = z$; i.e., $z \in \{0, 1, -1\}$. Let $F(x, y, z) = z^5 - z - x^2 - y^2$. Then $\partial F/\partial z = 5z^4 - 1$, which does not vanish at any of the above three values of z. So by the Implicit Function Theorem, for each of these three values, there is a differentiable function z = f(x, y) defined in a neighborhood of the origin, whose graph lies on the locus of $z^5 - z = x^2 + y^2$, and for which f(0, 0) is equal to that value of z.

(b) For each choice of $z \in \{0, 1, -1\}$ in part (a), and each sufficiently small neighborhood of the origin, the Implicit Function Theorem says that the function f is unique. So there are exactly three such implicit functions.

(c) For each such implicit function f, we may compute the partial derivatives implicitly: $5z^4\partial z/\partial x - \partial z/\partial x = 2x$ and $5z^4\partial z/\partial y - \partial z/\partial y = 2y$, so $\partial z/\partial x = 2x/(5z^4 - 1)$ and $\partial z/\partial y = 2y/(5z^4 - 1)$. At (x, y) = (0, 0), these are both equal to 0, and so the origin is a critical point for each of the three implicit functions.

- 12. Let M be the 4×4 real matrix each of whose entries is equal to 1.
 - a) Find the kernel, image, rank, nullity (dimension of the kernel), trace, and determinant of M.

- b) Find the characteristic polynomial of M, the eigenvalues of M, and the dimensions of the corresponding eigenspaces.
- c) Determine whether M is diagonalizable.

Solution:

(a) The kernel is $\{(x, y, x, w) \in \mathbb{R}^4 | x + y + z + w = 0\}$. So the nullity is 3 and the rank is 1. The image is $\{(x, y, x, w) \in \mathbb{R}^4 | x = y = z = w\}$. The trace is 4, being the sum of the diagonal elements. The determinant is 0 since the rank is less than 4.

(b) Since the nullity is 3, there is a 3-dimensional eigenspace with eigenvalue 0. Since the rank is 1, there is a one dimensional eigenspace with non-zero eigenvalue c. Since the sum of the eigenvalues is equal to the trace, c = 4. So the characteristic polynomial is $X^3(X-4)$.

(c) Since the sum of the dimensions of the eigenspaces is the dimension of the vector space \mathbb{R}^4 , there is a basis of eigenvectors; and so M is diagonalizable.