Premiliminary Examination, Sample Exam

Dept. of Mathematics
University of Pennsylvania

Problem 1. (a) Find all solutions in integers to the equaiton $129 x+291 y=1$
(b) Do the same for the equation $129 x+291 y=3$

Justify your assertions.
Solution. (a) There are no solutions. Indeed, since $3 \mid 129$ and $3 \mid 291$ we have that $3 \mid 129 x+$ $291 y$, however $3 \nmid 1$.
(b) Suppose we have a solution, i.e. a pair $\left(x_{0}, y_{0}\right)$ that satisfies $43 x_{0}+97 y_{0}=1$. Then any other solutions is of the form $x=x_{0}+97 m, y=y_{0}-43 m$ for $m \in \mathbb{Z}$. Indeed, suppose $\left(x_{1}, y_{1}\right)$ is another solution then subtracting the two equations we obtain

$$
\begin{equation*}
43\left(x_{1}-x_{0}\right)+97\left(y_{1}-y_{0}\right)=0 \tag{1}
\end{equation*}
$$

Since $\operatorname{gcd}(43,97)=1$, taking equation (1) modulo 97 and 43 we find that $x_{1}-x_{0}=97 m_{1}$ and $y_{1}-y_{0}=43 m_{2}$. Plugging these two expressions into (1), we get $43 \cdot 97 m_{1}+43 \cdot 97 m_{2}=0$, hence $m_{2}=-m_{1}$.

Finally we need to determine a special solution. By a variation of the Euclid's algorithm we find that $(-9,4)$ is a special solution. Therefore, the general solution is given by $s_{m}=$ $(-9+97 m, 4-43 m)$.

Problem 2. Show that $f(x)=x^{2}$ is not uniformly continuous as a function on the whole real line (i.e. show for some $\epsilon>0$ there is no $\delta>0$ so that $|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta)$.

Solution. Fix $\epsilon>0$ and $\delta>0$. It suffices to show that there are x, y such that $|x-y|<\delta$ and $|f(x)-f(y)|>\epsilon$. To that end, let $x=\frac{1}{\delta} \epsilon+\frac{\delta}{2}$ and $y=\frac{1}{\delta} \epsilon$. So,

$$
\begin{aligned}
|f(x)-f(y)| & =\frac{\delta}{2}\left(\frac{2}{\delta} \epsilon+\frac{\delta}{2}\right) \\
& >\frac{\delta}{2} \cdot \frac{2}{\delta} \epsilon \\
& =\epsilon
\end{aligned}
$$

Problem 3. For each of the following, either give an example or explain why none exists.
(a) A non-abelian group of order 20.
(b) Two non-isomorphic abelian groups of order 30.
(c) A finite field whose non-zero elements form a cyclic group of order 17 under multiplication.
(d) A non-trivial automorphism of a finite field.

Solution. (a) There are non-abelian groups of order 20; one example is the dihedral group of 20 elements. This is the group of symmetries of a regular 10-agon, and, it is usually, depending on the context, denoted by D_{10} or D_{20}.
(b) This is impossible. Since from the fundamental theorem of finitely generated abelian groups, a group with 30 elements is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$.
(c) There is no such field. All finite fields have cardinality p^{n} where p is a prime. The multiplicative group of a field is cyclic, and has cardinality $p^{n}-1$. Therefore, such a field must satisfy $p^{n}-1=17$, or $p^{n}=18$, which is impossible.
(d) There are groups with non trivial automorphisms. Take a field F of characteristic p, with p^{n} number of elements, where $n>1$. Take $\phi: F \rightarrow F$ given by $a \mapsto a^{p}$. We show that ϕ is an automorphism. First, using the binomial expansion we see that $\phi(a+b)=\phi(a)+\phi(b)$, and of course $\phi(a b)=\phi(a) \phi(b)$, hence ϕ is a homomorphism. As ker $\phi=\{0\}$, and F is finite, ϕ is an isomorphism. We claim that ϕ is not trivial. Indeed the multiplicative group of a field is cyclic, with order $p^{n}-1$. Hence, there is an $a \in F$ such that $a^{p} \neq a$.

Problem 4. Lef f be a real-valued continuous function defined for all $0 \leq x \leq 1$, such that $f(0)=1, f(1 / 2)=2$ ad $f(1)=3$. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(x^{n}\right) \mathrm{d} x
$$

exists and compute this limit. Justify your assertions.
Solution. The limit is equal to $\int_{0}^{1} f(0) \mathrm{d} x=1$. Let $\epsilon>0$. We find $\delta>0$ such that $\mid f(x)-$ $f(0) \left\lvert\,<\frac{\epsilon}{2}\right.$ for all $x \in[0, \delta)$. Now, pick $\delta_{1}>0$ and N such that $\int_{1-\delta_{1}}^{1} \max _{x \in[0,1]}|f(x)-1| \mathrm{d} x<\frac{\epsilon}{2}$ and $\left(1-\delta_{1}\right)^{n}<\delta$ for all $n \geq N$.

Then for $n \geq N$ we get the following

$$
\begin{aligned}
\int_{0}^{1}\left|f\left(x^{n}\right)-1\right| \mathrm{d} x & =\int_{0}^{1-\delta_{1}}\left|f\left(x^{n}\right)-1\right| \mathrm{d} x+\int_{1-\delta_{1}}^{1}\left|f\left(x^{n}\right)-1\right| \mathrm{d} x \\
& \leq \int_{0}^{1-\delta_{1}} \frac{\epsilon}{2} \mathrm{~d} x+\int_{1-\delta_{1}}^{1} \max _{x \in[0,1]}|f(x)-1| \\
& =\left(1-\delta_{1}\right) \frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& <\epsilon
\end{aligned}
$$

And since $\left|\int_{0}^{1} f\left(x^{n}\right) \mathrm{d} x-1\right|=\left|\int_{0}^{1}\left(f\left(x^{n}\right)-1\right) \mathrm{d} x\right| \leq \int_{0}^{1}\left|f\left(x^{n}\right)-1\right| \mathrm{d} x$ we conclude.

Problem 5. Let V be the real vector space consisting of polynomials $f(x) \in \mathbb{R}[x]$ having degree at most 5 (including the 0 polynomial).
(a) Find a basis for V, and determine the dimension of V.
(b) Define $T: V \rightarrow \mathbb{R}^{6}$ by $T(f)=(f(0), f(1), f(2), f(3), f(4), f(5))$. Show that T is a linear transformation and find its kernel.
(c) Deduce that for every choice of $a_{0}, a_{1}, \ldots, a_{5} \in \mathbb{R}$ there is a unique polynomial $f(x) \in$ $\mathbb{R}[x]$ of degree at most 5 such that $f(j)=a_{j}$ for $j=0,1, \ldots, 5$.

Solution. (a) We have the following description for $V=\left\{a_{6} x^{n}+a_{5} x^{5}+\cdots+a_{1} x+a_{0} \mid a_{i} \in\right.$ \mathbb{R}, for $1 \leq i \leq 6\}$, the canonical basis is $e_{i}=x^{i}$. From the definition of V we gave, $V=<e_{1}, e_{2}, \ldots, e_{6}>$. To see why e_{i} are linearly independent take λ_{i} for $1 \leq i \leq 6$ such that

$$
\begin{equation*}
\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{6} e_{6}=0 \tag{2}
\end{equation*}
$$

The polynomial $p(x)$ defined at the LSH of equation (2), must be the zero polynomial since only the zero polynomial has infinite many roots. The coefficients of $p(x)$ are exactly the scalars λ_{i}, therefore $\lambda_{i}=0$ for all i, which in turns establishes that e_{i} are linearly independent.
(b) The operator T is linear, indeed,

$$
\begin{aligned}
T(\lambda f+\mu g) & =((\lambda f+\mu g)(0),(\lambda f+\mu g)(1), \ldots,(\lambda f+\mu g)(5)) \\
& =(\lambda f(0)+\mu g(0), \lambda f(1)+\mu g(1), \ldots, \lambda f(5)+\mu g(5)) \\
& =\lambda(f(0), f(1), \ldots, f(5))+\mu(g(0), g(1), \ldots, g(5)) \\
& =\lambda T(f)+\mu T(g)
\end{aligned}
$$

The kernel of T is trivial. Indeed, suppose $T(f)=0$ then $f=0$ as any non-constant polynomial of degree at most 5 has at most 5 roots.
(c) Suppose f, g are two polynomials in V such that $f(j)=g(j)=a_{j}$ for all $j=$ $1,2, \cdots, 5$. We can express the previous statement via the operator T as $T(f)=T(g)$ which in turn implies $T(f-g)=0$, therefore $f=g$.

Problem 6. (a) Is there a metric space strucuture on the set \mathbb{Z} such that the open sets are precisely the subsets $S \subset \mathbb{Z}$ such that $\mathbb{Z}-S$ is finite, and also the empty set?
(b) Is there a metric space structure on the set \mathbb{Z} such that every subset is open?

Justify your assertions.
Solution. (a) No. All metric structures are Hausdorff, however the topology at hand is not. A topology is Hausdorf if for every two points x, y there are open sets V_{x}, V_{y} such that $x \in V_{x}, y \in V_{y}$ and $V_{x} \cap V_{y}=\emptyset$. To see why the topology is not Hausdorff, notice that for V a non-trivial open set there is a $M \in \mathbb{Z}$ such that $\{M, M+1, \cdots, M+n, \cdots\} \subset V$, hence any two open sets (non-empty) V, U intersect non-trivially.
(b) Yes. The discrete metric d, defined by $\mathrm{d}(x, y)=1$ if $x \neq y$ and zero otherwise, induces a topology such that every subset is open. To see this note that the singletons are open, and recall that union of open sets is open.

Problem 7. Let \vec{F} be a vector field defined in \mathbb{R}^{3} minus the origin defined by

$$
\vec{F}(\vec{r})=\frac{\vec{r}}{\|\vec{r}\|^{3}}=\frac{x \vec{i}+y \vec{j}+z \vec{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

for $\vec{r} \neq 0$.
(a) Compute $\operatorname{div} \vec{F}$.
(b) Let S be the sphere of radius 1 centered at $(x, y, z)=(2,0,0)$. Compute

$$
\oiint_{S} \vec{F} \cdot \vec{n} d S
$$

Solution. (a) By definition of the divergence operator we have

$$
\begin{aligned}
\operatorname{div} \vec{F} & =\frac{\partial\left(x /\|\vec{r}\|^{3}\right)}{\partial x}+\frac{\partial\left(y /\|\vec{r}\|^{3}\right)}{\partial y}+\frac{\partial\left(z /\|\vec{r}\|^{3}\right)}{\partial z} \\
& =3\left(\|\vec{r}\|^{-3}-\frac{x^{2}}{\|\vec{r}\|^{5}}-\frac{y^{2}}{\|\vec{r}\|^{5}}-\frac{z^{2}}{\|\vec{r}\|^{5}}\right) \\
& =0
\end{aligned}
$$

(b) Since the singular point of the vector field is not inside $\operatorname{Conv}(S)$ the convex hull of S, we can apply the divergence theorem.

$$
\begin{aligned}
\oiint_{S} \vec{F} \cdot \vec{n} \mathrm{~d} S & =\iiint_{\operatorname{Conv}(S)} \operatorname{div} \vec{F} \mathrm{~d} V \\
& =\iiint_{\operatorname{Conv}(S)} 0 \mathrm{~d} V \\
& =0
\end{aligned}
$$

Problem 8. Let $\left\{a_{n}\right\}$ be a bounded sequence of real numbers. Consider the infinite series

$$
f(x)=\sum_{n=1}^{\infty} \frac{a_{n}}{x^{n}}
$$

where x is a real number. Prove that for any $c>1$ this series converges uniformly on $\{x \in \mathbb{R} \mid x \geq c\}$.

Solution. Define the power series $p(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$. To find R, its radius of convergence, we calculate $\lim \sup \sqrt[n]{\left|a_{n}\right|}$. The sequence a_{n} is bounded; so there is $M>0$ such that $\left|a_{n}\right|<M$, and, since $\sqrt[n]{M} \longrightarrow 1$, we conclude that $\lim \sup \sqrt[n]{\left|a_{n}\right|} \leq 1$. So, $R=\frac{1}{\lim \sup \sqrt[n]{\left|a_{n}\right|}} \geq 1$.

For every $\delta>0$, a power series with radius of convergence R convergences uniformly on ($R-\delta, R+\delta$). Therefore, for any c such that $0<\frac{1}{c}<1, p(x)$ converges uniformly on $A=\left(0, \frac{1}{c}\right]$. Since $f(1 / x)=p(x), f$ converges uniformly on $\frac{1}{x}\left(\left(0, \frac{1}{c}\right]\right)=[c, \infty)$ as desired.

Problem 9. Let A be the ring of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$, under (pointwise) addition and multiplication.
(a) Determine whether A is an integral domain.
(b) Let $I \subset A$ be the subset consisting of functions f such that $f(0)=0$. Is I an ideal? What is A / I ?

Solution. (a) The ring A is not an integral domain. Indeed, take $f^{+}(x)=x \cdot 1_{[0, \infty)}(x)$ and $f^{-}(x)=x \cdot 1_{(-\infty, 0]}(x)$, then $f^{+} \cdot f^{-}=0$.
(b) Yes, as the I has additive subgroup structure, since $(f-g)(0)=0$ for all $f, g \in I$; and the multiplication is absorbing, i.e. $(r f)(0)=r(0) \cdot 0=0$ for all continuous functions r. The ring A / I is isomorphic to \mathbb{R}, to see this define $\phi: A / I \rightarrow \mathbb{R}$ where $\phi([f])=f(0)$. First, the map ϕ is well-defined since $[f]=[g] \Longleftrightarrow f(0)=g(0)$. Furthermore, ϕ is a ring homomorphism since $\phi([f g])=f(0) g(0)=\phi([f]) \phi([g])$, and $\phi([f+g])=f(0)+g(0)=$ $\phi([f])+\phi([g])$.

We show that ϕ is a bijection. For surjectivity notice that any constant map c is continuous. Now, to prove that ϕ is injective we calculate its kernel: $\phi([f])=0 \Longleftrightarrow f(0)=$ $0 \Longleftrightarrow f \in I$, therefore $\operatorname{ker} \phi=\{[0]\}$. Hence, indeed, ϕ is a ring isomorphism.
Problem 10. Suppose $\left\{a_{n}: n=1, n=2, \ldots\right\}$ is a sequence of real numbers so that

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|=1
$$

Let $f(x)$ be given by the cos series

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \cos (n x) .
$$

Prove that the series for f converges and that f is continuous.
Solution. Define $S_{m}=\sum_{n=1}^{m-1} a_{n} \cos (n x)$. Firstly, notice that f exists since the series $\sum_{n=1}^{\infty} a_{n} \cos (n x)$ is absolutely convergent. To show that f is continuous, it suffices to show that S_{m} converges uniformly to f, since uniform convergence preserves continuity. Let $\epsilon>0$, and choose N such that $\sum_{n=N}^{\infty}\left|a_{n}\right|<\epsilon$. Then, for all $m \geq N$

$$
\begin{aligned}
\left|f(x)-S_{m}(x)\right| & =\left|\sum_{n=m}^{\infty} a_{n} \cos (n x)\right| \\
& \leq \sum_{n=m}^{\infty}\left|a_{n}\right||\cos (n x)| \\
& =\sum_{n=m}^{\infty}\left|a_{n}\right| \\
& \leq \sum_{n=N}^{\infty}\left|a_{n}\right|<\epsilon
\end{aligned}
$$

Taking sup over all x establishes the uniform convergence.
Problem 11. Let

$$
M=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

(a) Find the minimal and characteristic polynomial of M.
(b) Is M similar to a diagonal matrix D over \mathbb{R} ? If so, find such a D.
(c) Repeat part (b) with \mathbb{R} replaced by \mathbb{C} and also by the field $\mathbb{Z} / 5 \mathbb{Z}$

Solution. We calculate the characteristic polynomial $\chi_{M}(x)$ of M by using the Laplace expansion,

$$
\begin{aligned}
\left|\begin{array}{cccc}
-\lambda & 0 & 0 & 1 \\
1 & -\lambda & 0 & 0 \\
0 & 1 & -\lambda & 0 \\
0 & 0 & 1 & -\lambda
\end{array}\right| & =-1 \cdot\left|\begin{array}{ccc}
1 & -\lambda & 0 \\
0 & 1 & -\lambda \\
0 & 0 & 1
\end{array}\right|-\lambda \cdot\left|\begin{array}{ccc}
-\lambda & 0 & 0 \\
1 & -\lambda & 0 \\
0 & 1 & -\lambda
\end{array}\right| \\
& =\lambda^{4}-1
\end{aligned}
$$

So, $\chi_{M}(\lambda)=\lambda^{4}-1$. To find the μ_{M} the minimal polynomial of M we distinguish two cases. First assume that the underlying field is not of characteristic 2 . In this case $\operatorname{gcd}\left(X_{M}^{\prime}, X_{M}\right)=1$ which shows that X_{M} does not have double roots, therefore $\mu_{M}=\chi_{M}$. If the characteristic is 2 , then $\chi_{M}(\lambda)=(\lambda-1)^{4}$. Since, $(M-I)^{3} \neq 0$ we conclude, again, that $\chi_{M}=\mu_{M}$.
(b) A matrix over a field F is diagonalizable if and only its minimimal polynomial in F splits in F and has distinct roots. Here, $\mu_{M}(\lambda)$, since it has complex roots, does not split in \mathbb{R}, hence M is not diagonalizable.
(c) In part (a) we established that μ_{M} has distinct roots over both \mathbb{C} and $\mathbb{Z} / 5 \mathbb{Z}$. So in order to determine whether M is diagonalizable we need to determine whether μ_{M} splits. In \mathbb{C} every polynomial splits, so M is diagonalizable. Finding the roots of μ_{M} yields

$$
D_{\mathbb{C}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & i & 0 \\
0 & 0 & 0 & -i
\end{array}\right]
$$

Suppose $F=\mathbb{Z} / 5 \mathbb{Z}$, since U_{5}, F^{\prime} 's multiplicative group, has order 4 we obtain that $\mu_{M}(\lambda)=$ $(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)$. Therefore,

$$
D_{F}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

Problem 12. Let V be the vector space of C^{∞} real-valued functions on \mathbb{R}. Consider the following maps $T_{i}: V \rightarrow V$.

$$
\begin{aligned}
& T_{1}(f)=f^{\prime \prime}-6 f^{\prime}+9 f \\
& T_{2}(f)=f^{\prime}-x f \\
& T_{3}(f)=f f^{\prime}
\end{aligned}
$$

(a) Which of the maps T_{i} are linear transformations?
(b) For each one that is, find a basis for the kernel.

Solution. (a) First note, that $D: C^{\infty} \rightarrow C^{\infty}$, defined by $D(f)=f^{\prime}$ is linear. Therefore, the operators T_{1} and T_{2} are linear as a linear sum of linear operators.

The operator T_{3} is not a linear operator. Indeed, take $f=x$. Then, $T_{3}(2 f)=4 x$ and $2 T_{3}(f)=2 x$, hence $T_{3}(2 f) \neq 2 T_{3}(f)$.
(b) To find the kernel for T_{1} we need to solve the homogeneous ODE

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

The characteristic polynomial is $r^{2}-6 r+9=(r-3)^{2}$. Therefore, a basis for the kernel is $e^{3 x}, x e^{3 x}$.

For T_{2} we have the ODE

$$
y^{\prime}-x y=0 .
$$

The integrating factor is $M(x)=e^{-\frac{x^{2}}{2}}$, therefore the general solution is given by $y=c e^{\frac{x^{2}}{2}}$. So, we can pick $v=e^{\frac{x^{2}}{2}}$ as the basis vector.

