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Problem 1. (a) Find all solutions in integers to the equaiton 129x+ 291y = 1
(b) Do the same for the equation 129x+ 291y = 3

Justify your assertions.

Solution. (a) There are no solutions. Indeed, since 3 | 129 and 3 | 291 we have that 3 | 129x+
291y, however 3 - 1.

(b) Suppose we have a solution, i.e. a pair (x0, y0) that satisfies 43x0 + 97y0 = 1. Then
any other solutions is of the form x = x0 + 97m, y = y0 − 43m for m ∈ Z. Indeed, suppose
(x1, y1) is another solution then subtracting the two equations we obtain

43(x1 − x0) + 97(y1 − y0) = 0 (1)

Since gcd(43, 97) = 1, taking equation (1) modulo 97 and 43 we find that x1 − x0 = 97m1

and y1−y0 = 43m2. Plugging these two expressions into (1), we get 43 ·97m1+43 ·97m2 = 0,
hence m2 = −m1.

Finally we need to determine a special solution. By a variation of the Euclid’s algorithm
we find that (−9, 4) is a special solution. Therefore, the general solution is given by sm =
(−9 + 97m, 4− 43m). �

Problem 2. Show that f(x) = x2 is not uniformly continuous as a function on the whole
real line (i.e. show for some ε > 0 there is no δ > 0 so that |f(x) − f(y)| < ε whenever
|x− y| < δ).

Solution. Fix ε > 0 and δ > 0. It suffices to show that there are x, y such that |x − y| < δ
and |f(x)− f(y)| > ε. To that end, let x = 1

δ
ε+ δ

2
and y = 1

δ
ε. So,

|f(x)− f(y)| = δ
2
(2
δ
ε+ δ

2
)

> δ
2
· 2
δ
ε

= ε

�

Problem 3. For each of the following, either give an example or explain why none exists.

(a) A non-abelian group of order 20.
(b) Two non-isomorphic abelian groups of order 30.
(c) A finite field whose non-zero elements form a cyclic group of order 17 under multipli-

cation.
(d) A non-trivial automorphism of a finite field.
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Solution. (a) There are non-abelian groups of order 20; one example is the dihedral group
of 20 elements. This is the group of symmetries of a regular 10-agon, and, it is usually,
depending on the context, denoted by D10 or D20.

(b) This is impossible. Since from the fundamental theorem of finitely generated abelian
groups, a group with 30 elements is isomorphic to Z2 × Z3 × Z5.

(c) There is no such field. All finite fields have cardinality pn where p is a prime. The
multiplicative group of a field is cyclic, and has cardinality pn − 1. Therefore, such a field
must satisfy pn − 1 = 17, or pn = 18, which is impossible.

(d) There are groups with non trivial automorphisms. Take a field F of characteristic p,
with pn number of elements, where n > 1. Take φ : F → F given by a 7→ ap. We show that φ
is an automorphism. First, using the binomial expansion we see that φ(a+ b) = φ(a) +φ(b),
and of course φ(ab) = φ(a)φ(b), hence φ is a homomorphism. As kerφ = {0}, and F is finite,
φ is an isomorphism. We claim that φ is not trivial. Indeed the multiplicative group of a
field is cyclic, with order pn − 1. Hence, there is an a ∈ F such that ap 6= a. �

Problem 4. Lef f be a real-valued continuous function defined for all 0 ≤ x ≤ 1, such that
f(0) = 1, f(1/2) = 2 ad f(1) = 3. Show that

lim
n→∞

ˆ 1

0

f(xn) dx

exists and compute this limit. Justify your assertions.

Solution. The limit is equal to
´ 1

0
f(0) dx = 1. Let ε > 0. We find δ > 0 such that |f(x) −

f(0)| < ε
2

for all x ∈ [0, δ). Now, pick δ1 > 0 and N such that
´ 1

1−δ1 maxx∈[0,1] |f(x)−1| dx < ε
2

and (1− δ1)n < δ for all n ≥ N .
Then for n ≥ N we get the following

ˆ 1

0

|f(xn)− 1| dx =

ˆ 1−δ1

0

|f(xn)− 1| dx+

ˆ 1

1−δ1
|f(xn)− 1| dx

≤
ˆ 1−δ1

0

ε

2
dx+

ˆ 1

1−δ1
max
x∈[0,1]

|f(x)− 1|

= (1− δ1)
ε

2
+
ε

2
< ε

And since
∣∣∣´ 10 f(xn) dx−1

∣∣∣ =
∣∣∣´ 1

0
(f(xn)− 1) dx

∣∣∣ ≤ ´ 1

0
|f(xn)− 1| dx we conclude.

�

Problem 5. Let V be the real vector space consisting of polynomials f(x) ∈ R[x] having
degree at most 5 (including the 0 polynomial).

(a) Find a basis for V , and determine the dimension of V .
(b) Define T : V → R6 by T (f) = (f(0), f(1), f(2), f(3), f(4), f(5)). Show that T is a

linear transformation and find its kernel.
(c) Deduce that for every choice of a0, a1, . . . , a5 ∈ R there is a unique polynomial f(x) ∈

R[x] of degree at most 5 such that f(j) = aj for j = 0, 1, . . . , 5.
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Solution. (a) We have the following description for V = {a6xn + a5x
5 + · · · + a1x + a0|ai ∈

R, for 1 ≤ i ≤ 6}, the canonical basis is ei = xi. From the definition of V we gave,
V =< e1, e2, . . . , e6 >. To see why ei are linearly independent take λi for 1 ≤ i ≤ 6 such
that

λ1e1 + λ2e2 + · · ·+ λ6e6 = 0. (2)

The polynomial p(x) defined at the LSH of equation (2), must be the zero polynomial since
only the zero polynomial has infinite many roots. The coefficients of p(x) are exactly the
scalars λi, therefore λi = 0 for all i, which in turns establishes that ei are linearly independent.

(b) The operator T is linear, indeed,

T (λf + µg) = ((λf + µg)(0), (λf + µg)(1), . . . , (λf + µg)(5))

= (λf(0) + µg(0), λf(1) + µg(1), . . . , λf(5) + µg(5))

= λ(f(0), f(1), . . . , f(5)) + µ(g(0), g(1), . . . , g(5))

= λT (f) + µT (g)

The kernel of T is trivial. Indeed, suppose T (f) = 0 then f = 0 as any non-constant
polynomial of degree at most 5 has at most 5 roots.

(c) Suppose f, g are two polynomials in V such that f(j) = g(j) = aj for all j =
1, 2, · · · , 5. We can express the previous statement via the operator T as T (f) = T (g) which
in turn implies T (f − g) = 0, therefore f = g. �

Problem 6. (a) Is there a metric space strucuture on the set Z such that the open sets
are precisely the subsets S ⊂ Z such that Z− S is finite, and also the empty set?

(b) Is there a metric space structure on the set Z such that every subset is open?
Justify your assertions.

Solution. (a) No. All metric structures are Hausdorff, however the topology at hand is not.
A topology is Hausdorf if for every two points x, y there are open sets Vx, Vy such that
x ∈ Vx, y ∈ Vy and Vx ∩ Vy = ∅. To see why the topology is not Hausdorff, notice that for V
a non-trivial open set there is a M ∈ Z such that {M,M + 1, · · · ,M + n, · · · } ⊂ V , hence
any two open sets (non-empty) V, U intersect non-trivially.

(b) Yes. The discrete metric d, defined by d(x, y) = 1 if x 6= y and zero otherwise, induces
a topology such that every subset is open. To see this note that the singletons are open, and
recall that union of open sets is open. �

Problem 7. Let ~F be a vector field defined in R3 minus the origin defined by

~F (~r) =
~r

||~r||3
=

x~i+ y~j + z~k

(x2 + y2 + z2)3/2

for ~r 6= 0.

(a) Compute div ~F .
(b) Let S be the sphere of radius 1 centered at (x, y, z) = (2, 0, 0). Compute

‹
S

~F · ~n dS .
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Solution. (a) By definition of the divergence operator we have

div ~F =
∂(x/||~r||3)

∂x
+
∂(y/||~r||3)

∂y
+
∂(z/||~r||3)

∂z

= 3

(
||~r||−3 − x2

||~r||5
− y2

||~r||5
− z2

||~r||5

)
= 0

(b) Since the singular point of the vector field is not inside Conv(S) the convex hull of
S, we can apply the divergence theorem.

‹
S

~F · ~n dS =

˚
Conv(S)

div ~F dV

=

˚
Conv(S)

0 dV

= 0

�

Problem 8. Let {an} be a bounded sequence of real numbers. Consider the infinite series

f(x) =
∞∑
n=1

an
xn

where x is a real number. Prove that for any c > 1 this series converges uniformly on
{x ∈ R|x ≥ c}.

Solution. Define the power series p(x) =
∑∞

n=1 anx
n. To find R, its radius of convergence, we

calculate lim sup n
√
|an|. The sequence an is bounded; so there is M > 0 such that |an| < M ,

and, since n
√
M −→ 1, we conclude that lim sup n

√
|an| ≤ 1. So, R = 1

lim sup n
√
|an|
≥ 1.

For every δ > 0, a power series with radius of convergence R convergences uniformly
on (R − δ, R + δ). Therefore, for any c such that 0 < 1

c
< 1, p(x) converges uniformly on

A = (0, 1
c
]. Since f(1/x) = p(x), f converges uniformly on 1

x
((0, 1

c
]) = [c,∞) as desired. �

Problem 9. Let A be the ring of continuous functions f : R→ R, under (pointwise) addition
and multiplication.

(a) Determine whether A is an integral domain.
(b) Let I ⊂ A be the subset consisting of functions f such that f(0) = 0. Is I an ideal?

What is A/I?

Solution. (a) The ring A is not an integral domain. Indeed, take f+(x) = x · 1[0,∞)(x) and
f−(x) = x · 1(−∞,0](x), then f+ · f− = 0.

(b) Yes, as the I has additive subgroup structure, since (f − g)(0) = 0 for all f, g ∈ I;
and the multiplication is absorbing, i.e. (rf)(0) = r(0) · 0 = 0 for all continuous functions
r. The ring A/I is isomorphic to R, to see this define φ : A/I → R where φ([f ]) = f(0).
First, the map φ is well-defined since [f ] = [g] ⇐⇒ f(0) = g(0). Furthermore, φ is a
ring homomorphism since φ([fg]) = f(0)g(0) = φ([f ])φ([g]), and φ([f + g]) = f(0) + g(0) =
φ([f ]) + φ([g]).
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We show that φ is a bijection. For surjectivity notice that any constant map c is con-
tinuous. Now, to prove that φ is injective we calculate its kernel: φ([f ]) = 0 ⇐⇒ f(0) =
0 ⇐⇒ f ∈ I, therefore kerφ = {[0]}. Hence, indeed, φ is a ring isomorphism. �

Problem 10. Suppose {an : n = 1, n = 2, . . .} is a sequence of real numbers so that

∞∑
n=1

|an| = 1.

Let f(x) be given by the cos series

f(x) =
∞∑
n=1

an cos(nx).

Prove that the series for f converges and that f is continuous.

Solution. Define Sm =
∑m−1

n=1 an cos(nx). Firstly, notice that f exists since the series∑∞
n=1 an cos(nx) is absolutely convergent. To show that f is continuous, it suffices to show

that Sm converges uniformly to f , since uniform convergence preserves continuity. Let ε > 0,
and choose N such that

∑∞
n=N |an| < ε. Then, for all m ≥ N

|f(x)− Sm(x)| =

∣∣∣∣∣
∞∑
n=m

an cos(nx)

∣∣∣∣∣
≤

∞∑
n=m

|an|| cos(nx)|

=
∞∑
n=m

|an|

≤
∞∑
n=N

|an| < ε

Taking sup over all x establishes the uniform convergence. �

Problem 11. Let

M =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


(a) Find the minimal and characteristic polynomial of M .
(b) Is M similar to a diagonal matrix D over R? If so, find such a D.
(c) Repeat part (b) with R replaced by C and also by the field Z/5Z

Solution. We calculate the characteristic polynomial χM(x) of M by using the Laplace ex-
pansion, ∣∣∣∣∣∣∣∣

−λ 0 0 1
1 −λ 0 0
0 1 −λ 0
0 0 1 −λ

∣∣∣∣∣∣∣∣ = −1 ·

∣∣∣∣∣∣
1 −λ 0
0 1 −λ
0 0 1

∣∣∣∣∣∣− λ ·
∣∣∣∣∣∣
−λ 0 0
1 −λ 0
0 1 −λ

∣∣∣∣∣∣
= λ4 − 1
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So, χM(λ) = λ4− 1. To find the µM the minimal polynomial of M we distinguish two cases.
First assume that the underlying field is not of characteristic 2. In this case gcd(X ′M , XM) = 1
which shows that XM does not have double roots, therefore µM = χM . If the characteristic
is 2, then χM(λ) = (λ− 1)4. Since, (M − I)3 6= 0 we conclude, again, that χM = µM .

(b) A matrix over a field F is diagonalizable if and only its minimimal polynomial in F
splits in F and has distinct roots. Here, µM(λ), since it has complex roots, does not split in
R, hence M is not diagonalizable.

(c) In part (a) we established that µM has distinct roots over both C and Z/5Z. So in
order to determine whether M is diagonalizable we need to determine whether µM splits. In
C every polynomial splits, so M is diagonalizable. Finding the roots of µM yields

DC =


1 0 0 0
0 −1 0 0
0 0 i 0
0 0 0 −i

 .
Suppose F = Z/5Z, since U5, F ’s multiplicative group, has order 4 we obtain that µM(λ) =
(λ− 1)(λ− 2)(λ− 3)(λ− 4). Therefore,

DF =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4


�

Problem 12. Let V be the vector space of C∞ real-valued functions on R. Consider the
following maps Ti : V → V.

T1(f) = f ′′ − 6f ′ + 9f

T2(f) = f ′ − xf
T3(f) = ff ′

(a) Which of the maps Ti are linear transformations?
(b) For each one that is, find a basis for the kernel.

Solution. (a) First note, that D : C∞ → C∞, defined by D(f) = f ′ is linear. Therefore, the
operators T1 and T2 are linear as a linear sum of linear operators.

The operator T3 is not a linear operator. Indeed, take f = x. Then, T3(2f) = 4x and
2T3(f) = 2x, hence T3(2f) 6= 2T3(f).

(b) To find the kernel for T1 we need to solve the homogeneous ODE

y′′ − 6y′ + 9y = 0.

The characteristic polynomial is r2 − 6r + 9 = (r − 3)2. Therefore, a basis for the kernel is
e3x, xe3x.

For T2 we have the ODE
y′ − xy = 0.
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The integrating factor is M(x) = e−
x2

2 , therefore the general solution is given by y = ce
x2

2 .

So, we can pick v = e
x2

2 as the basis vector.
�
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