
Fall 2018 Preliminary Exam – Problems and Solutions

Preliminary Examination, Part I

Thursday, May 2, 2019 9:30-12:00

This part of the examination consists of six problems. You should work all of the problems.
Show all of your work. Try to keep computations well-organized and proofs clear and
complete — and justify your assertions.

If a problem has multiple parts, earlier parts may be useful for later parts. Moreover, if you
skip some part, you may still use the result in a later part.

Be sure to write your name both on the exam and on any extra sheets you may submit.

All problems have equal weight of 10 points.

1. Let Pn the space of polynomials p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 of degree at
most n with real coefficients.

a) Give a basis for Pn.

Solution: Basis: 1, x, x2,. . . , xn so the dimension is n+ 1.

b) If x0, x1, . . . , xn ∈ R are distinct points, define the linear map L : Pn → Rn+1 by

Lp = (p(x0), p(x1), . . . , p(xn)).

Find the kernel (=nullspace) of L.

Solution: If Lp = 0 then p is zero at the n + 1 points xj , j = 0, 1, . . . , n. But a
polynomial of degree n has only n zeroes – unless it is the zero polynomial.

c) Use part b) to show that for any points y0, y1, . . . , yn ∈ R there is a unique p ∈ Pn
with the property that p(xj) = yj , j = 0, 1, . . . , n. [Note: You are not being
asked to find a formula for p.]

Solution: Note L : Pn → Rn+1 and dimPn = dimRn+1 = n+1. Since ker(L) = 0,
L is invertible.

Alternate: Newton’s approach gives a natural inductive proof:

For n = 0 this is obvious: p(x) = y0. Say for any y0, . . . , yn, there is a (unique))
p ∈ Pn with p(xj) = yj , j = 0, . . . , n. Then given y0, . . . , yn, yn+1 ∈ Rn+2 seek
p̂ ∈ Pn+1 in the form

p̂(x) = p(x) + C(x− x0)(x− x1) · · · (x− xn).

Clearly p̂(xj) = yj for j = 0, . . . , n. The constant C can now be chosen to satisfy
the additional condition p̂(xn+1) = yn+1.

One could also use the Lagrange basis of Pn for an explicit construction.
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2. Find all positive integers c such that there exists a solution in integers to the equation
33x+24y = c. For the smallest such c, find all integral solutions (x, y) to that equation.
Justify your assertions.

Solution: Since 33x+24y = 3(11x+8y), any such c must be a multiple of 3. Because
11 and 8 are relatively prime, the equation 11x+ 8y = 1 has a solution, x = 3, y = −4
so the smallest such c = 3.

If x̂ and ŷ is another solution of 11x̂+8ŷ = 1, then 11(x−x̂)+8(y−ŷ) = 0. Let u = x−x̂,
v = y − ŷ. Then 11u = −8v so u = 8k and v = −11k for any integer k. Consequently,
all solutions (x, y) of 33x+ 24y = 3 have the form x = 3 + 8k, y = −(4 + 11k).

3. Let g(x) be continuous for x ∈ R and periodic with period 1, so g(x+ 1) = g(x) for all
real x. Let ĝ =

∫ 1
0 g(x) dx.

Show that lim
λ→∞

∫ 1

0
g(λx) dx = ĝ.

[Suggestion: First consider
∫ 1
0 g(λx) dx where λ is an integer.]

Solution: Let t = λx. Then∫ 1

0
g(λx) dx =

1

λ

∫ λ

0
g(t) dt.

If λ = n is an integer, the result is obvious from the periodicity of g.

Say n ≤ λ < n+ 1. Let M = maxx∈R|g(x)|. Then

1

λ

∫ λ

0
g(t) dt =

1

λ

∫ n

0
g(t) dt+

1

λ

∫ λ

n
g(t) dt = A+B.

But A = nĝ
λ → ĝ as λ→∞, while |B| ≤ M

λ → 0.

4. a) Let q(z) = an−1z
n−1 + · · ·+a1z+a0 where an−1,. . . ,a0 are complex numbers. Find

a positive real number c (depending on the aj ’s) such that |q(z)| ≤ c|z|n−1 for all
|z| > 1.

Solution: If |z| > 1, then |zj | ≤ |z|n−1 for all 0 ≤ j ≤ n− 1 so

|q(z)| ≤|an−1||z|n−1 + |an−2||z|n−1 + · · ·+ |a1||z|n−1 + |a0||z|n−1

=
[
|an−1|+ |an−2|+ · · ·+ |a1|+ |a0|

]
|z|n−1

.

b) Let p(z) = zn + an−1z
n−1 + · · · + a1z + a0. Find a positive real R (depending on

the coefficients) such that all of the (possibly complex) roots of p are in the disk
|z| ≤ R.

[Hint: You need only find R for the roots with |z| > 1. Apply part a)].
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Solution: Say p(z) = 0 for some |z| > 1. Then by part a)

|zn| =|q(z)|

≤
[
|an−1|+ |an−2|+ · · ·+ |a1|+ |a0|

]
|z|n−1

.

Thus
|z| ≤ |an−1|+ |an−2|+ · · ·+ |a0|.

Since this assumed that |z| ≥ 1, we conclude that all the roots are in the disk
|z| ≤ R with

R = max(1, |an−1|+ |an−2|+ · · ·+ |a0|).

5. a) Compute

∫∫
R2

1

[1 + x2 + y2]2
dxdy.

Solution: In polar coordinates this is∫∫
R2

1

(1 + r2)2
rdrdθ = 2π

∫ ∞
0

rdr

(1 + r2)2
= 2π

1

2
= π

(we used the substitution u = 1 + r2).

b) Compute

∫∫
R2

1

[1 + (2x− y)2 + (x+ y)2]2
dxdy.

Solution: Making the change of variable u = 2x − y, v = x + y, since dudv =
det( 2 −1

1 1 ) dxdy = 3 dxdy, this integral becomes

1

3

∫∫
R2

1

(1 + u2 + v2)2
dudv =

π

3

where we used the result of part a).

6. Let f : R2 → R be an infinitely differentiable function.

a) If grad f = 0 in an open disk D ∈ R2, show that f = constant in D.

Solution: Version 1. Let p be the center of D and q another point of D. For
0 ≤ t ≤ 1 define ϕ(t) = f(p+ t(q − p)). Then by the chain rule

ϕ′(t) = grad f(p+ t(q − p)) · (q − p) = 0

for all 0 ≤ t ≤ 1. Thus by the mean value theorem ϕ(1) = ϕ(0), that is, f(q) = f(p)
for all q in the disk.

Version 2. Let P = (a, b) be the center of the disk and Q = (x, y) any other point
of D. Since grad f = (fx, fy) = 0, we know that fx = 0 and fy = 0. Thus by the
mean value theorem f is constant on both horizontal and vertical lines in D. Let
M = (x, b) and consider the line segments from P to M and M to Q. Since f is
constant on both of these segments, then f(Q) = f(M) = f(P ).
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b) Let Ω ⊂ R2 be a connected open set. If grad f = 0 in Ω, show that f = constant in
Ω.

Solution: Pick a point P ∈ Ω and let S = {Q ∈ Ω | f(Q) = f(P )}. By part a)
the set S is open. To show that S is closed, say Qj ∈ S converges to some Q̂ ∈ Ω.
Because f is continuous, f(P ) = f(Qj)→ f(Q̂). Thus x̂ ∈ S.

Since S ⊂ Ω is open, closed, and not empty, and Ω is connected, then S = Ω.
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Preliminary Examination, Part II

Thursday, May 2, 2019 1:30-4:00

This part of the examination consists of six problems. You should work all of the problems.
Show all of your work. Try to keep computations well-organized and proofs clear and
complete — and justify your assertions.

If a problem has multiple parts, earlier parts may be useful for later parts. Moreover, if you
skip some part, you may still use the result in a later part.

Please write your name on both the exam and any extra sheets you may submit.

All problems have equal weight.

7. Compute K :=

∮
C

(2xy + y)dx + 2x2dy, where C is the circle x2 + y2 = 1 traversed

counterclockwise.

Solution: Method 1. Use Stokes’ Theorem in a region D ⊂ R2 with oriented
boundary C: ∮

C
pdx+ qdy =

∫∫
D

(qx − py) dxdy.

to find

K =

∫∫
D

[4x− (2x+ 1)] dxdy =

∫∫
D

(2x− 1) dxdy = −π

(since x is an odd function, its integral over D is zero).

Method 2. In polar coordinates on C: x = cos t, y = sin t, so

(2xy + y) dx = (2 cos t sin t+ sin t)(− sin t dt) and 2x2 dy = 2 cos2 t cos t dt.

Thus

K =

∫ 2π

0
[(−2 cos t sin2 t− sin2 t) + 2 cos3 t] dt =

∫ 2π

0
− sin2 t dt = −π.

8. Let G be any group and let Z(G) be its center. If G/Z(G) is cyclic, prove that G is
abelian.

Solution: Since G/Z(G) is cyclic, denote the generator by xZ(G) for some x ∈ G.
Then

G =
⋃
k∈Z

xkZ(G).

For g1 = xk1h1 and g2 = xk2h2 with hi ∈ Z(G), we have

g1g2 = xk1h1x
k2h2 = xk1+k2h1h2 = g2g1.

So G is abelian.
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9. Let f(x) be a real-valued function with two continuous derivatives for all real x and
periodic with period 2π. Let

ck =
1

2π

∫ π

−π
f(t)e−ikt dt, k = 0,±1,±2, . . . .

a) Show there is a constant M (depending on f) so that |ck| ≤ M
k2

for all k. [Hint:
Integrate by parts.]

Solution: Integrate by parts twice. Because f and its derivatives are periodic,
the boundary terms cancel. Thus

ck =
−1

2πk2

∫ π

−π
f ′′(t)e−ikt dt.

Consequently

|ck| ≤
M

k2
, where M = max|t|≤π|f ′′(t)|.

b) Show that the series
∑∞
−∞ cke

ikx converges absolutely and uniformly.

Solution: Since
∑ 1

k2
converges, this is a consequence of the Weierstrass M test.

10. Let A =

0 1 0
0 0 1
0 c 0

, where c is a real number.

a) For which c ∈ R can you diagonalize A over the field of real numbers? Explain
your reasoning. [Note: all you are being asked is IF you can diagonalize A].

Solution: det(A− λI) = (−λ)(λ2 − c).

Case 1, c > 0: The eigenvalues are 0, ±
√
c which are real and distinct so there are

3 real distinct real eigenvectors. Thus A can be diagonalized over the real numbers.

Case 2, c = 0: A 6= 0 is nilpotent so it cannot be diagonalized.

More directly, all of the eigenvalues of A are 0 but kerA only has dimension 1.
Thus A cannot be diagonalized.

Case 3, c < 0: The roots of the characteristic polynomial are λ = 0 and the complex
roots λ = ±

√
−c i. Because there is only one real eigenvalue, the matrix cannot be

diagonalized over the real numbers.

b) For which c ∈ R can you diagonalize A over the field of complex numbers? Explain
your reasoning. [Note: all you are being asked is IF you can diagonalize A].

Solution: The cases c > 0 and c = 0 are the same as in part a).

If c < 0 the roots of the charachteristic polynomial are still λ = 0 and λ = ±
√
−c i.

These are distinct so now there are three distinct eigenvectors. Thus A can be
diagonalized over the complex numbers.
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11. a) Let f : R → R be an infinitely differentiable function with f(t) 6= 0 for all t near
t0. Use the definition of the derivative as the limit of a difference quotient to show
that 1/f(t) is differentiable at t0.

Solution: Write 1/f(t) as f−1(t). Then

f−1(t0 + h)− f−1(t0)
h

= f−1(t0 + h)

(
f(t0)− f(t0 + h)

h

)
f−1(t0),

so

lim
h→0

f−1(t0 + h)− f−1(t0)
h

= f−1(t0)
(
−f ′(t0)

)
f−1(t0) = − f

′(t0)

f2(t0)
.

b) Let A(t) be a square matrix whose elements are infinitely differentiable functions
of t ∈ R. Assume that A(t) is invertible for all t near t0. Use the definition of the
derivative as the limit of a difference quotient to show that A−1(t) is differentiable
at t0.

Solution: We follow part a) closely:

A−1(t0 + h)−A−1(t0)
h

= A−1(t0 + h)

(
A(t0)−A(t0 + h)

h

)
A−1(t0),

so

lim
h→0

A−1(t0 + h)−A−1(t0)
h

= A−1(t0)
(
−A′(t0)

)
A−1(t0) = −A−1(t0)A′(t0)A−1(t0).

12. Let A be a real anti-symmetric matrix (so AT = −A) and let 〈x, y〉 be the usual inner
product in Rn (often written x · y).

a) Show that 〈x, Ax〉 = 0 for all vectors x.

Solution: 〈x, Ax〉 = 〈ATx, x〉 = −〈Ax, x〉 = −〈x, Ax〉.

b) If the vector x(t) is a solution of
dx

dt
= Ax, show that ‖x(t)‖2 = constant.

[Hint: Use part a).]

Solution: By part a),

d‖x(t)‖2

dt
=
d〈x, x〉
dt

= 2〈x, x′〉 = 2〈x, Ax〉 = 0.
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