Fall 2018 Preliminary Exam – Problems and Solutions Preliminary Examination, Part I

Thursday, May 2, 2019

9:30-12:00

This part of the examination consists of six problems. You should work all of the problems. Show all of your work. Try to keep computations well-organized and proofs clear and complete — and justify your assertions.

If a problem has multiple parts, earlier parts may be useful for later parts. Moreover, if you skip some part, you may still use the result in a later part.

Be sure to write your name both on the exam and on any extra sheets you may submit.

All problems have equal weight of 10 points.

- 1. Let \mathcal{P}_n the space of polynomials $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ of degree at most n with real coefficients.
 - a) Give a basis for \mathcal{P}_n .

SOLUTION: Basis: 1, x, x^2, \ldots, x^n so the dimension is n + 1.

b) If $x_0, x_1, \ldots, x_n \in \mathbb{R}$ are distinct points, define the linear map $L: \mathcal{P}_n \to \mathbb{R}^{n+1}$ by

$$Lp = (p(x_0), p(x_1), \dots, p(x_n)).$$

Find the kernel (=nullspace) of L.

SOLUTION: If Lp = 0 then p is zero at the n + 1 points x_j , j = 0, 1, ..., n. But a polynomial of degree n has only n zeroes – unless it is the zero polynomial.

c) Use part b) to show that for any points $y_0, y_1, \ldots, y_n \in \mathbb{R}$ there is a unique $p \in \mathcal{P}_n$ with the property that $p(x_j) = y_j, j = 0, 1, \ldots, n$. [NOTE: You are not being asked to find a formula for p.]

SOLUTION: Note $L : \mathcal{P}_n \to \mathbb{R}^{n+1}$ and dim $\mathcal{P}_n = \dim \mathbb{R}^{n+1} = n+1$. Since ker(L) = 0, L is invertible.

ALTERNATE: Newton's approach gives a natural inductive proof:

For n = 0 this is obvious: $p(x) = y_0$. Say for any y_0, \ldots, y_n , there is a (unique)) $p \in \mathcal{P}_n$ with $p(x_j) = y_j$, $j = 0, \ldots, n$. Then given y_0, \ldots, y_n , $y_{n+1} \in \mathbb{R}^{n+2}$ seek $\hat{p} \in \mathcal{P}_{n+1}$ in the form

$$\hat{p}(x) = p(x) + C(x - x_0)(x - x_1) \cdots (x - x_n).$$

Clearly $\hat{p}(x_j) = y_j$ for j = 0, ..., n. The constant C can now be chosen to satisfy the additional condition $\hat{p}(x_{n+1}) = y_{n+1}$.

One could also use the Lagrange basis of \mathcal{P}_n for an explicit construction.

2. Find all positive integers c such that there exists a solution in integers to the equation 33x + 24y = c. For the smallest such c, find all integral solutions (x, y) to that equation. Justify your assertions.

SOLUTION: Since 33x + 24y = 3(11x + 8y), any such c must be a multiple of 3. Because 11 and 8 are relatively prime, the equation 11x + 8y = 1 has a solution, x = 3, y = -4 so the smallest such c = 3.

If \hat{x} and \hat{y} is another solution of $11\hat{x}+8\hat{y}=1$, then $11(x-\hat{x})+8(y-\hat{y})=0$. Let $u=x-\hat{x}$, $v=y-\hat{y}$. Then 11u=-8v so u=8k and v=-11k for any integer k. Consequently, all solutions (x,y) of 33x+24y=3 have the form x=3+8k, y=-(4+11k).

3. Let g(x) be continuous for $x \in \mathbb{R}$ and periodic with period 1, so g(x+1) = g(x) for all real x. Let $\hat{g} = \int_0^1 g(x) \, dx$.

Show that $\lim_{\lambda \to \infty} \int_0^1 g(\lambda x) \, dx = \hat{g}.$

[SUGGESTION: First consider $\int_0^1 g(\lambda x) dx$ where λ is an integer.]

Solution: Let $t = \lambda x$. Then

$$\int_0^1 g(\lambda x) \, dx = \frac{1}{\lambda} \int_0^\lambda g(t) \, dt.$$

If $\lambda = n$ is an integer, the result is obvious from the periodicity of g. Say $n \leq \lambda < n + 1$. Let $M = \max_{x \in \mathbb{R}} |g(x)|$. Then

$$\frac{1}{\lambda} \int_0^\lambda g(t) \, dt = \frac{1}{\lambda} \int_0^n g(t) \, dt + \frac{1}{\lambda} \int_n^\lambda g(t) \, dt = A + B.$$

But $A = \frac{n\hat{g}}{\lambda} \to \hat{g}$ as $\lambda \to \infty$, while $|B| \le \frac{M}{\lambda} \to 0$.

4. a) Let $q(z) = a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ where a_{n-1}, \ldots, a_0 are complex numbers. Find a positive real number c (depending on the a_j 's) such that $|q(z)| \le c|z|^{n-1}$ for all |z| > 1.

SOLUTION: If |z| > 1, then $|z^j| \le |z|^{n-1}$ for all $0 \le j \le n-1$ so

$$|q(z)| \le |a_{n-1}||z|^{n-1} + |a_{n-2}||z|^{n-1} + \dots + |a_1||z|^{n-1} + |a_0||z|^{n-1}$$
$$= \left[|a_{n-1}| + |a_{n-2}| + \dots + |a_1| + |a_0|\right] |z|^{n-1}$$

b) Let $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$. Find a positive real R (depending on the coefficients) such that all of the (possibly complex) roots of p are in the disk $|z| \leq R$.

[HINT: You need only find R for the roots with |z| > 1. Apply part a)].

Solution: Say p(z) = 0 for some |z| > 1. Then by part a)

$$z^{n}| = |q(z)|$$

$$\leq \left[|a_{n-1}| + |a_{n-2}| + \dots + |a_{1}| + |a_{0}| \right] |z|^{n-1}.$$

Thus

$$|z| \le |a_{n-1}| + |a_{n-2}| + \dots + |a_0|.$$

Since this assumed that $|z| \ge 1$, we conclude that all the roots are in the disk $|z| \le R$ with

 $R = \max(1, |a_{n-1}| + |a_{n-2}| + \dots + |a_0|).$

5. a) Compute $\iint_{\mathbb{R}^2} \frac{1}{[1+x^2+y^2]^2} dx dy$. SOLUTION: In polar coordinates this is

$$\iint_{\mathbb{R}^2} \frac{1}{(1+r^2)^2} r dr d\theta = 2\pi \int_0^\infty \frac{r dr}{(1+r^2)^2} = 2\pi \frac{1}{2} = \pi$$

(we used the substitution $u = 1 + r^2$).

b) Compute $\iint_{\mathbb{R}^2} \frac{1}{[1 + (2x - y)^2 + (x + y)^2]^2} dx dy.$

SOLUTION: Making the change of variable u = 2x - y, v = x + y, since $dudv = det \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} dxdy = 3 dxdy$, this integral becomes

$$\frac{1}{3} \iint_{\mathbb{R}^2} \frac{1}{(1+u^2+v^2)^2} \, du dv = \frac{\pi}{3}$$

where we used the result of part a).

- 6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be an infinitely differentiable function.
 - a) If grad f = 0 in an open disk $D \in \mathbb{R}^2$, show that f = constant in D.

SOLUTION: Version 1. Let p be the center of D and q another point of D. For $0 \le t \le 1$ define $\varphi(t) = f(p + t(q - p))$. Then by the chain rule

$$\varphi'(t) = \operatorname{grad} f(p + t(q - p)) \cdot (q - p) = 0$$

for all $0 \le t \le 1$. Thus by the mean value theorem $\varphi(1) = \varphi(0)$, that is, f(q) = f(p) for all q in the disk.

Version 2. Let P = (a, b) be the center of the disk and Q = (x, y) any other point of D. Since grad $f = (f_x, f_y) = 0$, we know that $f_x = 0$ and $f_y = 0$. Thus by the mean value theorem f is constant on both horizontal and vertical lines in D. Let M = (x, b) and consider the line segments from P to M and M to Q. Since f is constant on both of these segments, then f(Q) = f(M) = f(P). b) Let $\Omega \subset \mathbb{R}^2$ be a connected open set. If grad f = 0 in Ω , show that f = constant in Ω .

SOLUTION: Pick a point $P \in \Omega$ and let $S = \{Q \in \Omega \mid f(Q) = f(P)\}$. By part a) the set S is open. To show that S is closed, say $Q_j \in S$ converges to some $\hat{Q} \in \Omega$. Because f is continuous, $f(P) = f(Q_j) \to f(\hat{Q})$. Thus $\hat{x} \in S$.

Since $S \subset \Omega$ is open, closed, and not empty, and Ω is connected, then $S = \Omega$.

Thursday, May 2, 2019

This part of the examination consists of six problems. You should work all of the problems. Show all of your work. Try to keep computations well-organized and proofs clear and complete — and justify your assertions.

If a problem has multiple parts, earlier parts may be useful for later parts. Moreover, if you skip some part, you may still use the result in a later part.

Please write your name on both the exam and any extra sheets you may submit.

All problems have equal weight.

7. Compute $K := \oint_C (2xy + y)dx + 2x^2dy$, where C is the circle $x^2 + y^2 = 1$ traversed counterclockwise.

SOLUTION: Method 1. Use Stokes' Theorem in a region $D \subset \mathbb{R}^2$ with oriented boundary C:

$$\oint_C pdx + qdy = \iint_D (q_x - p_y) \, dxdy.$$

to find

$$K = \iint_{D} [4x - (2x + 1)] \, dx \, dy = \iint_{D} (2x - 1) \, dx \, dy = -\pi$$

(since x is an odd function, its integral over D is zero).

Method 2. In polar coordinates on C: $x = \cos t$, $y = \sin t$, so

 $(2xy + y) dx = (2\cos t \sin t + \sin t)(-\sin t dt)$ and $2x^2 dy = 2\cos^2 t \cos t dt$.

Thus

$$K = \int_0^{2\pi} \left[\left(-2\cos t \sin^2 t - \sin^2 t \right) + 2\cos^3 t \right] dt = \int_0^{2\pi} -\sin^2 t \, dt = -\pi.$$

8. Let G be any group and let Z(G) be its center. If G/Z(G) is cyclic, prove that G is abelian.

SOLUTION: Since G/Z(G) is cyclic, denote the generator by xZ(G) for some $x \in G$. Then

$$G = \bigcup_{k \in \mathbb{Z}} x^k Z(G).$$

For $g_1 = x^{k_1}h_1$ and $g_2 = x^{k_2}h_2$ with $h_i \in Z(G)$, we have

$$g_1g_2 = x^{k_1}h_1x^{k_2}h_2 = x^{k_1+k_2}h_1h_2 = g_2g_1.$$

So G is abelian.

.

9. Let f(x) be a real-valued function with two continuous derivatives for all real x and periodic with period 2π . Let

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt, \qquad k = 0, \pm 1, \pm 2, \dots$$

a) Show there is a constant M (depending on f) so that $|c_k| \leq \frac{M}{k^2}$ for all k. [HINT: Integrate by parts.]

SOLUTION: Integrate by parts twice. Because
$$f$$
 and its derivatives are periodic, the boundary terms cancel. Thus

$$c_k = \frac{-1}{2\pi k^2} \int_{-\pi}^{\pi} f''(t) e^{-ikt} dt$$

Consequently

$$|c_k| \le \frac{M}{k^2}$$
, where $M = \max_{|t| \le \pi} |f''(t)|$.

b) Show that the series $\sum_{-\infty}^{\infty} c_k e^{ikx}$ converges absolutely and uniformly. SOLUTION: Since $\sum \frac{1}{k^2}$ converges, this is a consequence of the Weierstrass M test.

10. Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & c & 0 \end{pmatrix}$$
, where c is a real number.

a) For which $c \in \mathbb{R}$ can you diagonalize A over the field of real numbers? Explain your reasoning. [Note: all you are being asked is IF you can diagonalize A]. SOLUTION: $det(A - \lambda I) = (-\lambda)(\lambda^2 - c)$.

Case 1, c > 0: The eigenvalues are $0, \pm \sqrt{c}$ which are real and distinct so there are 3 real distinct real eigenvectors. Thus A can be diagonalized over the real numbers.

Case 2, c = 0: $A \neq 0$ is nilpotent so it cannot be diagonalized. More directly, all of the eigenvalues of A are 0 but ker A only has dimension 1. Thus A cannot be diagonalized.

Case 3, c < 0: The roots of the characteristic polynomial are $\lambda = 0$ and the complex roots $\lambda = \pm \sqrt{-c} i$. Because there is only one real eigenvalue, the matrix cannot be diagonalized over the real numbers.

b) For which $c \in \mathbb{R}$ can you diagonalize A over the field of complex numbers? Explain your reasoning. [Note: all you are being asked is IF you can diagonalize A].

SOLUTION: The cases c > 0 and c = 0 are the same as in part a).

If c < 0 the roots of the charachteristic polynomial are still $\lambda = 0$ and $\lambda = \pm \sqrt{-c} i$. These are distinct so now there are three distinct eigenvectors. Thus A can be diagonalized over the complex numbers. 11. a) Let $f : \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function with $f(t) \neq 0$ for all t near t_0 . Use the definition of the derivative as the limit of a difference quotient to show that 1/f(t) is differentiable at t_0 .

SOLUTION: Write 1/f(t) as $f^{-1}(t)$. Then

$$\frac{f^{-1}(t_0+h) - f^{-1}(t_0)}{h} = f^{-1}(t_0+h) \left(\frac{f(t_0) - f(t_0+h)}{h}\right) f^{-1}(t_0)$$

 \mathbf{SO}

$$\lim_{h \to 0} \frac{f^{-1}(t_0 + h) - f^{-1}(t_0)}{h} = f^{-1}(t_0) \Big(-f'(t_0) \Big) f^{-1}(t_0) = -\frac{f'(t_0)}{f^2(t_0)}.$$

b) Let A(t) be a square matrix whose elements are infinitely differentiable functions of $t \in \mathbb{R}$. Assume that A(t) is invertible for all t near t_0 . Use the definition of the derivative as the limit of a difference quotient to show that $A^{-1}(t)$ is differentiable at t_0 .

SOLUTION: We follow part a) *closely*:

$$\frac{A^{-1}(t_0+h) - A^{-1}(t_0)}{h} = A^{-1}(t_0+h) \left(\frac{A(t_0) - A(t_0+h)}{h}\right) A^{-1}(t_0)$$

 \mathbf{SO}

$$\lim_{h \to 0} \frac{A^{-1}(t_0 + h) - A^{-1}(t_0)}{h} = A^{-1}(t_0) \Big(-A'(t_0) \Big) A^{-1}(t_0) = -A^{-1}(t_0) A'(t_0) A^{-1}(t_0).$$

- 12. Let A be a real anti-symmetric matrix (so $A^T = -A$) and let $\langle x, y \rangle$ be the usual inner product in \mathbb{R}^n (often written $x \cdot y$).
 - a) Show that $\langle x, Ax \rangle = 0$ for all vectors x. SOLUTION: $\langle x, Ax \rangle = \langle A^T x, x \rangle = -\langle Ax, x \rangle = -\langle x, Ax \rangle$.
 - b) If the vector x(t) is a solution of $\frac{dx}{dt} = Ax$, show that $||x(t)||^2 = \text{constant}$. [HINT: Use part a).]

SOLUTION: By part a),

$$\frac{d\|x(t)\|^2}{dt} = \frac{d\langle x, x\rangle}{dt} = 2\langle x, x'\rangle = 2\langle x, Ax\rangle = 0.$$