Preliminary Examination, Part I

Thursday, May 2, 2019

This part of the examination consists of six problems. You should work all of the problems. Show all of your work. Try to keep computations well-organized and proofs clear and complete - and justify your assertions.

If a problem has multiple parts, earlier parts may be useful for later parts. Moreover, if you skip some part, you may still use the result in a later part.

Be sure to write your name both on the exam and on any extra sheets you may submit.
All problems have equal weight of 10 points.

Score	
1	
2	
3	
4	
5	
6	
GRADER	

1. Let \mathcal{P}_{n} the space of polynomials $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ of degree at most n with real coefficients.
a) Give a basis for \mathcal{P}_{n}.
b) If $x_{0}, x_{1}, \ldots, x_{n} \in \mathbb{R}$ are distinct points, define the linear map $L: \mathcal{P}_{n} \rightarrow \mathbb{R}^{n+1}$ by

$$
L p=\left(p\left(x_{0}\right), p\left(x_{1}\right), \ldots, p\left(x_{n}\right)\right)
$$

Find the kernel (=nullspace) of L.
c) Use part b) to show that for any points $y_{0}, y_{1}, \ldots, y_{n} \in \mathbb{R}$ there is a unique $p \in \mathcal{P}_{n}$ with the property that $p\left(x_{j}\right)=y_{j}, j=0,1, \ldots, n$. [Note: You are not being asked to find a formula for p.]
2. Find all positive integers c such that there exists a solution in integers to the equation $33 x+24 y=c$. For the smallest such c, find all integral solutions (x, y) to that equation. Justify your assertions.
3. Let $g(x)$ be continuous for $x \in \mathbb{R}$ and periodic with period 1 , so $g(x+1)=g(x)$ for all real x. Let $\hat{g}=\int_{0}^{1} g(x) d x$.
Show that $\lim _{\lambda \rightarrow \infty} \int_{0}^{1} g(\lambda x) d x=\hat{g}$.
[Suggestion: First consider $\int_{0}^{1} g(\lambda x) d x$ where λ is an integer.]
4. a) Let $q(z)=a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ where a_{n-1}, \ldots, a_{0} are complex numbers. Find a positive real number c (depending on the a_{j} 's) such that $|q(z)| \leq c|z|^{n-1}$ for all $|z|>1$.
b) Let $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$. Find a positive real R (depending on the coefficients) such that all of the (possibly complex) roots of p are in the disk $|z| \leq R$.
[Hint: You need only find R for the roots with $|z|>1$. Apply part a)].
5. a) Compute $\iint_{\mathbb{R}^{2}} \frac{1}{\left[1+x^{2}+y^{2}\right]^{2}} d x d y$.
b) Compute $\iint_{\mathbb{R}^{2}} \frac{1}{\left[1+(2 x-y)^{2}+(x+y)^{2}\right]^{2}} d x d y$.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be an infinitely differentiable function.
a) If grad $f=0$ in an open disk $D \in \mathbb{R}^{2}$, show that $f=$ constant in D.
b) Let $\Omega \subset \mathbb{R}^{2}$ be a connected open set. If $\operatorname{grad} f=0$ in Ω, show that $f=$ constant in Ω.
[EXTRA PAGE FOR WORK]

Preliminary Examination, Part II

This part of the examination consists of six problems. You should work all of the problems. Show all of your work. Try to keep computations well-organized and proofs clear and complete - and justify your assertions.

If a problem has multiple parts, earlier parts may be useful for later parts. Moreover, if you skip some part, you may still use the result in a later part.

Please write your name on both the exam and any extra sheets you may submit.
All problems have equal weight of 10 points.

Score	
7	
8	
9	
10	
11	
12	
GRADER	

7. Compute $K:=\oint_{C}(2 x y+y) d x+2 x^{2} d y$, where C is the circle $x^{2}+y^{2}=1$ traversed counterclockwise.
8. Let G be any group and let $Z(G)$ be its center. If $G / Z(G)$ is cyclic, prove that G is abelian.
9. Let $f(x)$ be a real-valued function with two continuous derivatives for all real x and periodic with period 2π. Let

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i k t} d t, \quad k=0, \pm 1, \pm 2, \ldots
$$

a) Show there is a constant M (depending on f) so that $\left|c_{k}\right| \leq \frac{M}{k^{2}}$ for all k. [Hint: Integrate by parts.]
b) Show that the series $\sum_{-\infty}^{\infty} c_{k} e^{i k x}$ converges absolutely and uniformly.
10. Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & c & 0\end{array}\right)$, where c is a real number.
a) For which $c \in \mathbb{R}$ can you diagonalize A over the field of real numbers? Explain your reasoning. [Note: all you are being asked is IF you can diagonalize A].
b) For which $c \in \mathbb{R}$ can you diagonalize A over the field of complex numbers? Explain your reasoning. [Note: all you are being asked is IF you can diagonalize A].
11. a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function with $f(t) \neq 0$ for all t near t_{0}. Use the definition of the derivative as the limit of a difference quotient to show that $1 / f(t)$ is differentiable at t_{0}.
b) Let $A(t)$ be a square matrix whose elements are infinitely differentiable functions of $t \in \mathbb{R}$. Assume that $A(t)$ is invertible for all t near t_{0}. Use the definition of the derivative as the limit of a difference quotient to show that $A^{-1}(t)$ is differentiable at t_{0}.
12. Let A be a real anti-symmetric matrix (so $A^{T}=-A$) and let $\langle x, y\rangle$ be the usual inner product in \mathbb{R}^{n} (often written $x \cdot y$).
a) Show that $\langle x, A x\rangle=0$ for all vectors x.
b) If the vector $x(t)$ is a solution of $\frac{d x}{d t}=A x$, show that $\|x(t)\|^{2}=$ constant. [Hint: Use part a).]
[EXTRA PAGE FOR WORK]

