
Problems and Solutions

Preliminary Examination, Part I

Monday, August 26, 2019 9:30-12:00

This part of the examination consists of six problems. You should work all of the problems.
Show all of your work. Try to keep computations well-organized and proofs clear and
complete — and justify your assertions.

If a problem has multiple parts, earlier parts may be useful for later parts. Moreover, if

you skip some part, you may still use the result in a later part.

Be sure to write your name both on the exam and on any extra sheets you may submit.

All problems have equal weight of 10 points.

1. a) Show that there is no real polynomial p(x) so that cosx = p(x) for all real x.

Solution: Some properties of u(x) := cosx:5 points

i). cosx is periodic but not a constant
ii). infinitely many zeros
iii). |cosx| ≤ 1
iv). u′′ = −u

The only polynomial that satisfies ii). is p(x) ≡ 0.
p(x) is unbounded unless p(x) ≡ constant
The derivative of a polynomial has a lower degree - which violates iv). This also
shows that cosx is not a polynomial on a small interval.

b) Show that cosx is not a rational function, that is, there are no polynomials p(x)

and q(x) so that cosx = p(x)
q(x) for all real x.

Solution: If cosx = p(x)
q(x) , then:5 points

p(x) has infinitely many zeros.

If degree (p) > degree (q), then cosx would be unbounded, while if degree (p) ≤
degree (q), then cosx would converge to a constant as x → ±∞, contradicting the
periodicity.

Write r(x) = p(x)/q(x) and let DEG (r) := degree (p) − degree (q). If q(x) is not
a constant, then DEG (r′) < DEG(r) so r(x) could not satisfy property iv). This
also shows that cosx is not a rational function on a small interval.

2. Classify finite groups of order 45 (up to isomorphism).

Solution: Let G be a group of order 45. From Sylow’s theorem, the Sylow 3-group10 points
and 5 group are unique. Denote them by H and K, which are both normal subgroups
of G and H ∩K = {1}. So HK ∼= H ×K and G = HK.

Since |H| = 9, so H ∼= Z/9Z or Z/3Z× Z/3Z.

Thus G ∼= Z/9Z× Z/5Z or Z/3Z× Z/3Z× Z/5Z.
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3. Let f : R → R be a continuous function with the property that limt→∞ f(t) = 0. Show
that

lim
T→∞

1

T

∫ T

0
f(t) dt = 0.

Solution: Pick T0 so that if t > T0 then |f(t)| < ǫ. Say T > T0. Then10 points

∣

∣

∣

∣

1

T

∫ T

0
f(t) dt

∣

∣

∣

∣

≤ 1

T

∫ T

0
|f(t)| dt

=
1

T

∫ T0

0
|f(t)| dt+ 1

T

∫ T

T0

|f(t)| dt

<
1

T

∫ T0

0
|f(t)| dt+ T − T0

T
ǫ = A+B

Clearly B < ǫ. To show that A < ǫ for T large, let M := max0≤t≤T0
|f(t)|. Then for

sufficiently large T

A ≤ MT0

T
< ǫ.

Alternate: Strange – but short. Let g(t) := f(t) + 1 so limt→∞ g(t) = 1. Then

1

T

∫ T

0
g(t) dt = 1 +

1

T

∫ T

0
f(t) dt

But by l’Hôpital,
1

T

∫ T

0
g(t) dt → 1. Thus

1

T

∫ T

0
f(t) dt → 0.

4. Let Pn be the linear space of polynomials p(x) ∈ R[x] of degree at most n and let
L : Pn → Pn be the linear map defined by Lu := u′′ + bu′ + cu, where b and c are
constants. Assume c 6= 0.

a) Find all p ∈ Pn that satisfy Lp = 0.

Solution: Claim: p = 0. Say p(x) = axk + lower order and where a 6= 0. Then5 points
Lp = acxk + lower order. Since c 6= 0, Lp = 0 implies that a = 0, a contradiction.

b) Show that for every polynomial q(x) ∈ Pn there is one (and only one) solution
p(x) ∈ Pn of Lp = q. In other words, for c 6= 0, the map L : Pn → Pn is invertible.
[Note: You are not being asked to find a formula for p.]

Solution: Method 1. By part a), LPn → Pn, has kerL = 0. Therefore L is5 points
invertible.

Method 2. Use induction on n. If n = 0, since c 6= 0, the constant p = a/c
satisfies Lp = a. Say for any q ∈ Pk there is a solution p ∈ Pk of Lp = q. Let
q̂ = axk+1 + lower order and seek a solution p̂ = (a/c)xk+1 + lower order. Then
Lp̂ = axk+1 + lower order so by the induction hypothesis there is a solution.
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Method 3. Rewrite the equation p′′ + bp′ + cp = q as

p+ (1/c)[p′′ + bp′] = (1/c)q

and let Mu := (1/c)[u′′ + bu′]. Then our equation is (I + M)p = (1/c)q. But
acting on polynomials, M : Pk → Pk−1 is nilpotent. Thus I + M is invertible so
p = (I +M)−1q.

5. a) Let f be a continuous function on the interval {x | 1 ≤ x ≤ 3}. Compute

lim
n→∞

∫ 3

1
f(x)e−nx dx.

[Justify your assertions.]

Solution: Since f ∈ C([1, 3]), it is bounded, so say |f(x)| ≤ M in [1, 3]. Then5 points

∣

∣

∣

∣

∫ 3

1
f(x)e−nx dx

∣

∣

∣

∣

≤ M

∫ 3

1
e−nx dx ≤ 2Me−n → 0.

Alternate: Observe that the sequence lim
n→∞

f(x)e−nx = 0 uniformly on the

bounded interval [1, 3] so we can interchange limit and integral.

b) Give an example of a sequence of continuous real-valued functions fn(x) ≥ 0 with
the property fn(x) → 0 for all x ∈ [0, 1] but

∫ 1

0
fn(x) dx ≥ 1 for all n = 1, 2, . . .

If you prefer, a clear sketch of a graph will be adequate.

Solution Let fn(x) be the “bump” function in the figure.5 points

x
2/n 1

−n
f (x)
n

More General: Let g ∈ C([0, 1]) have the properties 1). g(0) = 0, 2). g(x) ≥ 0
for 0 < x < 1, 3). g(x) = 0 for x ≥ 1, and 4).

∫ 1
0 g(x) dx = 1. Then fn(x) :=

ng(nx) is an example.

6. a) Let M be a complete metric space. Suppose K ⊂ M is a compact subset and P is
a point in M with P 6∈ K. Show there is a point Q ∈ K that is closest to P , that
is,

d(P,Q) = inf
x∈K

d(P, x).
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Solution: Let h(x) := d(P, x). Because d(P, x) ≤ d(P, y) + d(x, y), then |h(x) −5 points
h(y)| ≤ d(x, y) so h(x) is a continuous function of x ∈ M , Since K is compact,
there is a point q ∈ K where h has its minimum value on K.

b) Consider the metric space ℓ2 of real sequences {x = (x1, x2, . . .) |xj ∈ R} with norm
|x|2 = ∑

j x
2
j < ∞, inner product 〈x, y〉 = x1y1+x2y2+ · · · , and with metric given

by d(x, y) := |x− y|.
Let Q ⊂ ℓ2 be the (standard) set of unit orthonormal vectors {ej , j = 1, 2, 3, . . .},
where e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 = (0, 0, 1, 0, . . .), . . . , ek =
(0, . . . , 0, 1, 0, . . .) with 1 in the kth slot.

Is the set Q closed in ℓ2?, Is it bounded? Is it compact? Justify your assertions.

Solution: Q is closed: (i). The complement of Q ia open, (ii). Q has no limitclosed 1 pt
points since |ei − ej | =

√
2 for i 6= j.

bndd 1 pt
Q is bounded since |ej | = 1 for j = 1, 2, . . ..

However, Q is not compact. Several proofs:compct 3 pt

Proof 1. The balls Bj = {x ∈ ℓ2 : |x− ej | < 1}, j = 1, 2, . . . are an open cover of
Q. Since each of the Bj ’a contains only one point of Q, there is no finite sub-cover.

Proof 2. Since |ei − ej | =
√
2 for i 6= j, the sequence ej , j = 1, 2, . . . has no

convergent subsequence.

Proof 3. Since the continuous function f : Q → R defined by f(ek) = k for
k = 1, 2, . . . is unbounded, Q could not be compact.

Similarly, we construct a continuous function g : Q → R that does not take on its
upper bound. Let g(ek) = 1− 1

k
, k = 1, 2, . . .. Since |ei− ej | =

√
2 for all i 6= j, g is

continuous on Q. Clearly supx∈Q g(x) = 1 but there is no p ∈ Q where g(p) = 1.

Remark: Generalizing Proof 2, F. Riesz showed that the closed unit ball in any
normed linear space is compact if and only if the space is finite dimensional.
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Preliminary Examination, Part II

Monday, August 26, 2019 1:30-4:00

This part of the examination consists of six problems. You should work all of the problems.
Show all of your work. Try to keep computations well-organized and proofs clear and
complete — and justify your assertions.

If a problem has multiple parts, earlier parts may be useful for later parts. Moreover, if

you skip some part, you may still use the result in a later part.

Please write your name on both the exam and any extra sheets you may submit.

All problems have equal weight of 10 points.

7. Let Ω ⊂ R3 be a connected bounded open set with smooth boundary ∂Ω. Suppose F(x)
is an infinitely differentiable vector field defined for x ∈ R3, and u(x) is an infinitely
differentiable real-valued function defined for x ∈ R3.

NOTATION: ∇u is the gradient of u and ∇·F is the divergence of F.

a) Verify the formula for the derivative of the product

∇·

(

u(x)F(x)
)

= ∇u·F+ u∇·F. (1)

Solution: To verify this write x = (x1, x2, x3) and F = (F1, F2, F3). Then uF =2 points
(uF1, uF2, uF3) so

∇·

(

u(x)F(x)
)

=
∂(uF1)

∂x1
+

∂(uF2)

∂x2
+

∂(uF3)

∂x3

=
∂u

∂x1
F1 + u

∂F1

∂x1
+

∂u

∂x2
F2 + u

∂F2

∂x2
+

∂u

∂x3
F3 + u

∂F3

∂x3
=∇u·F+ u∇·F

b) Use Part a) to obtain the generalization of integration by parts:

∫∫∫

Ω
u∇·F dV =

∫∫

∂Ω
uF·n dA−

∫∫∫

Ω
∇u·F dV, (2)

where dV is the element of volume on Ω, dA the element of area on ∂Ω, and n a
unit outer normal vector field on ∂Ω. [Hint: Use the divergence theorem].

Solution: The divergence theorem applied to the vector field uF gives:4 points

∫∫∫

Ω
∇·

(

uF
)

dV =

∫∫

∂Ω
uF·n dA.
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Now use (1) in the integral on the left to obtain

∫∫∫

Ω
u∇·F dV +

∫∫∫

Ω
∇u·F dV =

∫∫

∂Ω
uF·n dA (3)

which is just (2).

c) In the special case of F = ∇u, the equation (2) is the identity

∫∫∫

Ω
u∇·∇u dV =

∫∫

∂Ω
u∇u·n dA−

∫∫∫

Ω
|∇u|2 dV. (4)

Use this to show that if ∇·∇u = 0 in Ω and u = 0 on ∂Ω, then u = 0 in all of Ω.

[Remark: ∇·∇u = ux1x1
+ ux2x2

+ ux3x3
, the Laplacian, is often written as ∆u.]

Solution: If∇·∇u = 0 in Ω and u = 0 on ∂Ω, then (4) inplies that
∫∫∫

Ω|∇u|2 dV =4 points
0. Hence ∇u = 0 in Ω. Consequently u = constant. But since u = 0 on ∂Ω, then
u(x) ≡ 0 in Ω.

8. Let ~x, ~y ∈ Rn with the usual inner product which we write as 〈x, y〉 (the notation ~x·~y
is also often used). Also, we write the norm as |~x| =

√

〈~x, ~x〉 .
Let A be a real symmetric n × n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Show
that

〈~x, A~x〉 ≥ λ1|~x|2 for all ~x.

Solution: Version 1. Since A is a real symmetric matrix, then Rn has an orthonormal10 points
basis of eigenvectors ~v1, . . . , ~vn of A, so A~vj = λj~vj , j = 1, . . . n.

Write ~x ∈ Rn in this basis:

~x = c1~v1 + c2~v2 + · · ·+ cn~vn.

Using the orthonormality of the ~vj :

|~x|2 = c21 + c22 + · · ·+ c2n.

Also,
A~x = c1λ1~v1 + c2λ2~v2 + · · ·+ cnλn~vn

so, again using the orthonormality of the ~vj ,

〈~x, A~x〉 =λ1c
2
1 + λ2c

2
2 + · · ·+ λnc

2
n

≥λ1(c
2
1 + c22 + · · ·+ c2n)

=λ1|~x|2.
.

Version 2. This direct proof does not use the characteristic polynomial. Historically,
since it concerns the geometric principal axes of the conic 〈~x, A~x〉 = 1, it probably
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predates Version 1, particularly for positive definite matrices. [It also generalizes to
give the eigenvalues of the Laplacian.]

The quadratic ϕ(~x) := 〈~x, A~x〉 is a continuous function on the unit sphere S = {~x ∈
Rn | |~x| = 1}. Since S is compact, there is a point ~v ∈ S where ϕ(x) has its minimum:

µ := 〈~v, A~v〉 = min
~x6=0

〈~x, A~x〉
|~x|2 .

We first show that A~v = µ~v so µ is an eigenvalue of A. Let ~z ∈ Rn and ~x = ~v + t~z for
small t ∈ R (so ~x 6= 0). Let

h(t) := ϕ(~x) =
〈~v + t~z, A(~v + t~z)〉

|~v + t~z|2 .

Then by definition of ~v, h(t) has its minimum at t = 0 so h(t) ≥ h(0) = µ. Thus
h′(0) = 0 for all possible choices of ~z. We compute h′(0) by routine calculus:

h′(0) =
〈~z, A~v〉+ 〈~v, A~z〉

|~v|2 − 〈~v, A~v〉2〈~v, ~z〉
|~v|4

=2〈A~v, ~z〉 − 2µ〈~v, ~z〉
=2〈A~v − µ~v, ~z〉

.

Since h′(0) = 0, then 〈A~v− µ~v, ~z〉 = 0 for all vectors ~z ∈ Rn. Consequently A~v− µ~v =
0 so ~v is an eigenvector with eigenvalue µ. Note that any eigenvector ~u of A with
eigenvalue λ satisfies 〈~u, A~u〉 = λ|~u|2 ≥ µ|~u|2 so µ is the smallest eigenvalue.

[In Version 2 to show that ~v is an eigenvector of A we could also have used Lagrange
multipliers.]

9. Let f : R → R be an infinitely differentiable function with the properties f(0) = 3,
f(1) = 1, and f(3) = 5. Find an explicit positive real number A such that there exists
a real number c with 0 < c < 3 such that f ′′(c) ≥ A.

Solution: By the mean value theorem there are points 0 < c1 < 1 and 1 < c2 < 310 points
where

f ′(c1) =
1− 3

1− 0
= −2 and f ′(c2) =

5− 1

3− 1
= 2.

Applying the mean value theorem to the interval [c1, c2] there is a point c1 < c < c2
where

f ′′(c) =
f ′(c2)− f ′(c1)

c2 − c1
=

2− (−2)

c2 − c1
>

4

3
.

We can therefore take A = 4/3 (or any smaller positive value).

[Remark: For the optimal value of A let p(x) = αx2 + βx+ γ be the unique quadratic
polynomial passing through these three points. Then Aoptimal = 2α.]
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10. Let R denote the ring
Z[x]

(2x2 + 2x+ 1)
. Prove that R is an integral domain.

Solution: To show that R is a domain, we need to show that the ideal10 points

(2x2 + 2x+ 1)

is prime. Since Z is a UFD, Gauss’s lemma tells us that Z[x] is a UFD. As a result, it
suffices to show that 2x2 + 2x + 1 is irreducible in Z[x]. Since Z[x] ⊂ Q[x], it suffices
to show 2x2 + 2x + 1 is irreducible in Q[x]. Since 2x2 + 2x + 1 is of degree 2, this is
tantamount to asking whether 2x2 + 2x+ 1 has a linear factor in Q[x], that is whether
2x2 + 2x + 1 has any root in Q. Since the discriminant of the polynomial equals −4,
the quadratic polynomial 2x2 + 2x+ 1 has no roots in Q. This completes the proof.

11. Find an integer N so that 1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

N
> 100.

Solution: Use the geometric idea of the integral test:10 points

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

N
>

∫ N+1

1

1

x
dx = ln(N + 1).

Thus pick ln(N + 1) > 100, that is, N + 1 > e100; we may take N to be the greatest
integer in e100.

Alternate A direct grouping of terms. Let N = 2k. Then

SN :=1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

N

=1 +
1

2
+

(

1

3
+

1

4

)

+

(

1

5
+ · · ·+ 1

8

)

+ · · ·+
(

1

2k−1 + 1
+ · · ·+ 1

2k

)

>1 +
1

2
+

(

1

4
+

1

4

)

+

(

1

8
+ · · ·+ 1

8

)

+ · · ·+
(

1

2k
+ · · ·+ 1

2k

)

=1 +
1

2
+

1

2
+

1

2
+ · · ·+ 1

2

=1 + k
1

2
.

Pick k so that 1 + (k/2) = 100, that is, k = 198. Then S2198 > 100.

12. Let A be an n× n real or complex matrix.

a) Show that kerAj ⊂ kerAj+1. If kerAk = kerAk+1 for some k, show that kerAj =
kerAk for all j ≥ k.

Solution: If Ajx = 0 then Aj+1x = A(Ajx) = 0.5 points

For the second part, by induction, say x ∈ kerAk+2. Then 0 = Ak+2x = Ak+1(Ax)
so Ax ∈ kerAk+1. But then Ax ∈ kerAk, that is, Ak+1x = 0.
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b) Say A is a nilpotent 5×5 matrix. Is it true that A5 = 0? Proof or counterexample.

Solution (not using part a). Since A is nilpotent, it satisfies Ak = 0 for some k.5 points
The characteristic polynomial, λ5, is divisible by the minimal polynomial, p(λ) =
λm, of A. Thus m ≤ 5, and A satisfies A5 = 0.

Alternate (this approach uses part a). Note that dimkerAj is strictly increasing
until it remains constant. Since dimkerA ≤ 5 and dimkerA ≥ 1, it can only
increase 4 times so A5 = 0.
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