
Spring prelim answers

1.List all the finite fields (up to isomorphism) of order less than or equal to 10. Show

that the ones you list exist, and no others.

Solution: There is a unique finite field of each prime power order, so: 2,3,4,5,7,8,9.

We show: (1) the order must be a prime power q = pk; (2) a field of each prime power

cardinality q exists; and (3) it is unique.

(1) Let F be a finite field and 1 ∈ F the unit element. Since F is finite there is a positive

integer c such that c1 = 0 ∈ F . If c = ab then 0 = c1 = a1b1 so a1 = 0 or b1 = 0. So the

smallest such c must be a prime p, and F is then a vector space over the prime field Fp,

hence its cardinality is a power of p.

(2) Conversely, let F be an algebraic closure of Fp. If q = pk, the set

{x ∈ F |xq = x}

is closed under addition (since xq + yq = (x+ y)q), multiplication and inversion, so it is a

subfield Fq. Since the polynomial xq − x has no repeated roots, the cardinality of Fq is q.

(3) Since any filed of cardinality q is the set of elements in its algebraic closure satisfying

xq = x, the uniqueness of the algebraic closure implies uniqueness of Fq.

2. (a) In the polynomial ring Z[x], is the ideal generated by x4−1 and 2x3−2x principal?

(b) Same question in the polynomial ring Q[x].

(c) Same question in the polynomial rings Z[x, y] and Q[x, y].

Solution: (a) No: such a generator must be of the form (x2−1)f(x), and then f(x) must

generate the ideal I := (x2 + 1, 2x), in particular f(x) must divide x2 + 1 and 2x, so it

must be invertible, but I is non trivial, since it is contained in the kernel of the surjective

homomorphism Z[x] → Z/(2) sending x to 1. (b) Yes, in Q[x] we can take the above f(x)

to equal 1, since 1 = 1(x2 + 1) − (x
2
)2x) ∈ (x2 + 1, 2x). (c) No change. (The analogue of

(b) is trivial, and for (a) send y to 0.)

3. Use the ε-δ definition to prove that the first derivative of f(x) = x3 is f ′(x) = 3x2.
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Solution: We must show that for any given x0 and for all ε > 0, there exists δ > 0 such

that if 0 < |x− x0| < δ then
∣∣∣x3−x3

0

x−x0
− 3x2

0

∣∣∣ < ε. An easy computation shows that:∣∣∣∣x3 − x3
0

x− x0

− 3x2
0

∣∣∣∣ = ∣∣(x2 + x0x+ x2
0)− 3x2

0

∣∣ = ∣∣x2 − x2
0 + x0x− x2

0

∣∣ ≤
≤

∣∣x2 − x2
0

∣∣+ |x0||x− x0| ≤ |x− x0||x+ x0|+ |x0||x− x0| ≤

≤ |x− x0|(|x− x0|+ 2|x0|) + |x0||x− x0|, (1)

where the last inequality comes from |x + x0| ≤ |x| + |x0| ≤ (|x − x0| + |x0|) + |x0| =
|x− x0|+ 2|x0|, since ||x| − |x0|| ≤ |x− x0| by the triangle inequality. Thus, choosing any

0 < δ <
−3|x0|+

√
9|x0|2 + 4ε

2
,

it follows that δ(δ+2|x0|)+ |x0|δ = δ2+3|x0|δ < ε and hence by (1), the desired inequality∣∣∣x3−x3
0

x−x0
− 3x2

0

∣∣∣ < ε holds whenever 0 < |x− x0| < δ.

4. Prove that for all k ∈ N there exists εk > 0 such that all n × n matrices A with

∥A− Id∥ < εk have a kth root, that is, an n× n matrix k
√
A such that ( k

√
A)k = A.

Solution: Identify the vector space of n × n matrices with Rn2
, and consider the map

f(A) = Ak. The coordinates of this map are smooth functions (polynomial) and hence f

is smooth. The linearization of f at the identity matrix Id is given by

df(Id)X = kX, X ∈ Rn2

.

In particular, df(Id) is invertible, hence by the Inverse Function Theorem, f is locally

invertible near Id ∈ Rn2
. Thus, there exists εk > 0 such that if ∥A − Id∥ < εk, then

k
√
A := f−1(A) is a kth root of A.

5. . Let N be a positive integer. Prove that

1

2
+ logN <

N∑
k=1

1

k
≤ 1 + logN.

Solution: This is a standard problem which appears in many calculus books. A partial

sum of the harmonic series can be viewed geometrically as the sum of the areas of boxes of

width one and height 1, 1/2, 1/3, . . . , 1/N , which can be approximated by the area under

the curve y = ln x from 1 to N . The difference is the sum of the areas of a bunch of slivers

of width 1 above the graph of y = 1/x, together with the last box of height 1/N . If you

slide all these slivers left, they all fit in a box of width 1 and height 1, and the concavity

of the graph shows the sum of the areas of the slivers is larger than 1/2. See for example

the picture on p. 595 of Thomas’ Calculus, applied to the case f(x) = lnx.
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6. For n a positive integer, let ϕ(n) denote the number of integers k, 1 ≤ k < n, which

are relatively prime to n. Prove that

ϕ(n) = n
∏
p|n

(1− 1

p
),

where the product is over all distinct primes p dividing n.

Solution: We use a standard inclusion-exclusion argument. The number of integers

relatively prime to n and between 1 and n is the number of integers between 1 and n

(there are n of these), minus all multiples of p for each p dividing n (there are n/p of

these), plus all multiples of pq for all pairs of distinct primes p, q dividing n (there are

n/(pq) of these), etc., or

n−
∑
p|n

n/p+
∑
p<q
p,q|n

n/(pq)− . . . = n
∏
p|n

(1− 1/p).

7. Let

A =


1 1 2

1 −1 2

2 −3 1

0 1 3

 .

Find an orthonormal basis of the column space of A.

Solution: Let aj denote the j-th column vector of A. Let v1 = a1 and

v2 = a2 −
a2 · v1
∥v1∥

v1 = (2, 0,−1, 1)T .

Let

v3 = a3 −
a3 · v1
∥v1∥

v1 −
a3 · v2
∥v2∥

v2 = (−1, 1, 0, 2)T .

Then an orthonormal basis is

{ 1√
6
(1, 1, 2, 0)T ,

1√
6
(2, 0,−1, 1)T ,

1√
6
(−1, 1, 0, 2)T}

8. Let A be a n × n matrix. Let {S1, . . . Sk} be a collection of eigenvectors of A with

λ1, . . . λk as the corresponding eigenvalues. Prove that if λi ̸= λj for all 1 ≤ i < j ≤ k,

then {S1, . . . , Sk} is linearly independent.

Solution: Suppose there are constants {cj}1≤j≤k such that

k∑
j=1

cjSj = 0.
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For 1 ≤ l ≤ k, define

Bl =
∏

1≤j≤k,j ̸=l

(A− λjI).

Then

0 = Bl

k∑
j=1

cjSj = cl
∏

1≤j≤k,j ̸=l

(λl − λj)Sl

Since λi ̸= λj for all i ̸= j, cl = 0 for all 1 ≤ l ≤ k.

9. Let (X,d) be a compact metric space. Suppose that f : X → X satisfies d(f(x), f(y) <

d(x, y) for x ̸= y . Show that for any x ∈ X , the sequence defined by x0 = x and xn+1 =

f(xn) converges to a unique fixed point of f .

Solution: If there were two fixed points x and y , then d(x, y) < d(x, y) , so there is at

most one. The function d(f(x), x) is continuous and so achieves a minimum at some point

y . If the mimimum is not zero, then f(y) ̸= y ,, in which case d(f(y), f 2(y)) is smaller, a

contradiction. Therefore it is zero, i.e. f(y) = y .

The same thing applies to the closure A of the set of points {x1, ..., xn, ...} , as this closure
is also compact and invariant under f . So, from above, the restriction of f to A will have a

fixed point. Hence y ∈ A . THerefore, given ϵ > 0 , there exists N such that d(xN , y) < ϵ .

For m > N ,

d(xm, y) < d(xm−1, y) < ... < d(xN+1, y) < d(xN , y) < ϵ .

Thus the sequence converges to y .

10. A topological property is one that is invariant under homeomorphism, i.e. if two

spaces are homeomorphic and one has the property, so does the other. Explain with a

proof or counterexample which of the following properties of a metric space are or are not

topological invariants: a. Compactness, b. Connectedness, c. Boundedness d. Complete-

ness.

Solution. a. If f : X → Y is continuous and X is compact, so is f(Y ) . Namely, for

any collection A of open sets covering f(X) , the sets f−1(U) , U ∈ A cover X . Therefore,

a finite set of these, f−1U1, ..., f
−1Un also cover X ; therefore f(X) ⊂ U1 ∪ ... ∪ Un . So as

each of two homeomorphic spaces are the image of the other under a continuous map, if

one is compact so is the other.

b. Similarly, it suffices to show that if f : X → Y is continuous and X is connected, so

is f(X) . If f(X) is the disjoint union of two non-empty open sets, then the inverse images

will be two non-empty disjoint open sets whose union os all of X .
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c. Not a topological invariant. For example, (0, 1) and R with the usual metric are

homeomorphic. Alternatively, if (X, d) is a metric space, and d′(x, y) = d(x,y
1+d(x,y)

, then

(X, d) and (X.d′) have the same topology, i.e. the identity map is a homeomorphism, and

d′(x, y) ≤ 1 .

d. R is complete but (0, 1) is not.

11. Suppose f : [−1, 1] → R is continuous on the closed interval [−1, 1], and twice

differentiable on the open interval (−1, 1). Suppose also that f(−1) = 7, f(0) = 1 and

f(1) = 1. Prove that there exists c ∈ (−1, 1) such that f (2)(c) = 6 .

Solution: The (unique) polynomial of degree two that passes through those points is

p(x) = 3x2 − 3x+ 1.

It follows that the function f − p vanishes at −1, 0 and 1. Applying Rolle’s Theorem

twice, it follows that there exists a point c ∈ (−1, 1) such that the second derivative of

f − p vanishes at c. Since the second derivative of p is constant equal to 6, it follows that

f (2)(c) = 6.

12. Compute the following limit if it exists and justify your conclusion:

lim
n→∞

∫ 1

0

(n+ 1)xn(1− x5)
1
5 dx.

Solution: Remark that the function (1−x5)
1
5 is continuous on [0, 1] and equal to zero at

x = 1. It follows that for every ε > 0 there is a δ > 0 such that |(1−x5)
1
5 | = (1−x5)

1
5 < ε/2

for x ∈ [1−δ, 1]. On the other hand if x ∈ [0, 1−δ], then 0 ≤ (n+1)xn ≤ (n+1)(1−δ)n → 0

as n → ∞. It follows that there exists N ∈ N such that (n + 1)(1 − δ)n < ε/2, for every

n ≥ N . It follows that

0 ≤
∫ 1

0

(n+1)xn(1−x5)
1
5 dx =

∫ 1−δ

0

(n+1)xn(1−x5)
1
5 dx+

∫ 1

1−δ

(n+1)xn(1−x5)
1
5 dx ≤

≤ ε

2
+

ε

2

∫ 1

1−δ

(n+ 1)xn dx ≤ ε,

for every n ≥ N . So we proved that the limit is zero.


