Spring prelim answers

1.List all the finite fields (up to isomorphism) of order less than or equal to 10 . Show that the ones you list exist, and no others.

Solution: There is a unique finite field of each prime power order, so: 2,3,4,5,7,8,9. We show: (1) the order must be a prime power $q=p^{k}$; (2) a field of each prime power cardinality q exists; and (3) it is unique.
(1) Let F be a finite field and $\mathbf{1} \in F$ the unit element. Since F is finite there is a positive integer c such that $c \mathbf{1}=0 \in F$. If $c=a b$ then $0=c \mathbf{1}=a \mathbf{1} b \mathbf{1}$ so $a \mathbf{1}=0$ or $b \mathbf{1}=0$. So the smallest such c must be a prime p, and F is then a vector space over the prime field F_{p}, hence its cardinality is a power of p.
(2) Conversely, let \bar{F} be an algebraic closure of F_{p}. If $q=p^{k}$, the set

$$
\left\{x \in \bar{F} \mid x^{q}=x\right\}
$$

is closed under addition (since $x^{q}+y^{q}=(x+y)^{q}$), multiplication and inversion, so it is a subfield F_{q}. Since the polynomial $x^{q}-x$ has no repeated roots, the cardinality of F_{q} is q.
(3) Since any filed of cardinality q is the set of elements in its algebraic closure satisfying $x^{q}=x$, the uniqueness of the algebraic closure implies uniqueness of F_{q}.
2. (a) In the polynomial ring $\mathbf{Z}[x]$, is the ideal generated by $x^{4}-1$ and $2 x^{3}-2 x$ principal?
(b) Same question in the polynomial ring $\mathbf{Q}[x]$.
(c) Same question in the polynomial rings $\mathbf{Z}[x, y]$ and $\mathbf{Q}[x, y]$.

Solution: (a) No: such a generator must be of the form $\left(x^{2}-1\right) f(x)$, and then $f(x)$ must generate the ideal $I:=\left(x^{2}+1,2 x\right)$, in particular $f(x)$ must divide $x^{2}+1$ and $2 x$, so it must be invertible, but I is non trivial, since it is contained in the kernel of the surjective homomorphism $\mathbf{Z}[x] \rightarrow \mathbf{Z} /(2)$ sending x to 1 . (b) Yes, in $\mathbf{Q}[x]$ we can take the above $f(x)$ to equal 1, since $\left.1=1\left(x^{2}+1\right)-\left(\frac{x}{2}\right) 2 x\right) \in\left(x^{2}+1,2 x\right)$. (c) No change. (The analogue of (b) is trivial, and for (a) send y to 0 .)
3. Use the $\varepsilon-\delta$ definition to prove that the first derivative of $f(x)=x^{3}$ is $f^{\prime}(x)=3 x^{2}$.

Solution: We must show that for any given x_{0} and for all $\varepsilon>0$, there exists $\delta>0$ such that if $0<\left|x-x_{0}\right|<\delta$ then $\left|\frac{x^{3}-x_{0}^{3}}{x-x_{0}}-3 x_{0}^{2}\right|<\varepsilon$. An easy computation shows that:

$$
\begin{align*}
\left|\frac{x^{3}-x_{0}^{3}}{x-x_{0}}-3 x_{0}^{2}\right|=\left|\left(x^{2}+x_{0} x+x_{0}^{2}\right)-3 x_{0}^{2}\right| & =\left|x^{2}-x_{0}^{2}+x_{0} x-x_{0}^{2}\right| \leq \\
\leq\left|x^{2}-x_{0}^{2}\right|+\left|x_{0}\right|\left|x-x_{0}\right| & \leq\left|x-x_{0}\right|\left|x+x_{0}\right|+\left|x_{0}\right|\left|x-x_{0}\right| \leq \\
& \leq\left|x-x_{0}\right|\left(\left|x-x_{0}\right|+2\left|x_{0}\right|\right)+\left|x_{0}\right|\left|x-x_{0}\right| \tag{1}
\end{align*}
$$

where the last inequality comes from $\left|x+x_{0}\right| \leq|x|+\left|x_{0}\right| \leq\left(\left|x-x_{0}\right|+\left|x_{0}\right|\right)+\left|x_{0}\right|=$ $\left|x-x_{0}\right|+2\left|x_{0}\right|$, since $\| x\left|-\left|x_{0}\right|\right| \leq\left|x-x_{0}\right|$ by the triangle inequality. Thus, choosing any

$$
0<\delta<\frac{-3\left|x_{0}\right|+\sqrt{9\left|x_{0}\right|^{2}+4 \varepsilon}}{2}
$$

it follows that $\delta\left(\delta+2\left|x_{0}\right|\right)+\left|x_{0}\right| \delta=\delta^{2}+3\left|x_{0}\right| \delta<\varepsilon$ and hence by (1), the desired inequality $\left|\frac{x^{3}-x_{0}^{3}}{x-x_{0}}-3 x_{0}^{2}\right|<\varepsilon$ holds whenever $0<\left|x-x_{0}\right|<\delta$.
4. Prove that for all $k \in \mathbb{N}$ there exists $\varepsilon_{k}>0$ such that all $n \times n$ matrices A with $\|A-\mathrm{Id}\|<\varepsilon_{k}$ have a $k^{\text {th }}$ root, that is, an $n \times n$ matrix $\sqrt[k]{A}$ such that $(\sqrt[k]{A})^{k}=A$.

Solution: Identify the vector space of $n \times n$ matrices with $\mathbb{R}^{n^{2}}$, and consider the map $f(A)=A^{k}$. The coordinates of this map are smooth functions (polynomial) and hence f is smooth. The linearization of f at the identity matrix Id is given by

$$
\mathrm{d} f(\mathrm{Id}) X=k X, \quad X \in \mathbb{R}^{n^{2}}
$$

In particular, $\mathrm{d} f(\mathrm{Id})$ is invertible, hence by the Inverse Function Theorem, f is locally invertible near Id $\in \mathbb{R}^{n^{2}}$. Thus, there exists $\varepsilon_{k}>0$ such that if $\|A-\mathrm{Id}\|<\varepsilon_{k}$, then $\sqrt[k]{A}:=f^{-1}(A)$ is a $k^{\text {th }}$ root of A.
5. . Let N be a positive integer. Prove that

$$
\frac{1}{2}+\log N<\sum_{k=1}^{N} \frac{1}{k} \leq 1+\log N
$$

Solution: This is a standard problem which appears in many calculus books. A partial sum of the harmonic series can be viewed geometrically as the sum of the areas of boxes of width one and height $1,1 / 2,1 / 3, \ldots, 1 / N$, which can be approximated by the area under the curve $y=\ln x$ from 1 to N. The difference is the sum of the areas of a bunch of slivers of width 1 above the graph of $y=1 / x$, together with the last box of height $1 / N$. If you slide all these slivers left, they all fit in a box of width 1 and height 1 , and the concavity of the graph shows the sum of the areas of the slivers is larger than $1 / 2$. See for example the picture on p. 595 of Thomas' Calculus, applied to the case $f(x)=\ln x$.
6. For n a positive integer, let $\phi(n)$ denote the number of integers $k, 1 \leq k<n$, which are relatively prime to n. Prove that

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

where the product is over all distinct primes p dividing n.
Solution: We use a standard inclusion-exclusion argument. The number of integers relatively prime to n and between 1 and n is the number of integers between 1 and n (there are n of these), minus all multiples of p for each p dividing n (there are n / p of these), plus all multiples of $p q$ for all pairs of distinct primes p, q dividing n (there are $n /(p q)$ of these), etc., or

$$
n-\sum_{p \mid n} n / p+\sum_{\substack{p<q \\ p, q \mid n}} n /(p q)-\ldots=n \prod_{p \mid n}(1-1 / p) .
$$

7. Let

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & -1 & 2 \\
2 & -3 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

Find an orthonormal basis of the column space of A.
Solution: Let a_{j} denote the j-th column vector of A. Let $v_{1}=a_{1}$ and

$$
v_{2}=a_{2}-\frac{a_{2} \cdot v_{1}}{\left\|v_{1}\right\|} v_{1}=(2,0,-1,1)^{T} .
$$

Let

$$
v_{3}=a_{3}-\frac{a_{3} \cdot v_{1}}{\left\|v_{1}\right\|} v_{1}-\frac{a_{3} \cdot v_{2}}{\left\|v_{2}\right\|} v_{2}=(-1,1,0,2)^{T} .
$$

Then an orthonormal basis is

$$
\left\{\frac{1}{\sqrt{6}}(1,1,2,0)^{T}, \frac{1}{\sqrt{6}}(2,0,-1,1)^{T}, \frac{1}{\sqrt{6}}(-1,1,0,2)^{T}\right\}
$$

8. Let A be a $n \times n$ matrix. Let $\left\{S_{1}, \ldots S_{k}\right\}$ be a collection of eigenvectors of A with $\lambda_{1}, \ldots \lambda_{k}$ as the corresponding eigenvalues. Prove that if $\lambda_{i} \neq \lambda_{j}$ for all $1 \leq i<j \leq k$, then $\left\{S_{1}, \ldots, S_{k}\right\}$ is linearly independent.

Solution: Suppose there are constants $\left\{c_{j}\right\}_{1 \leq j \leq k}$ such that

$$
\sum_{j=1}^{k} c_{j} S_{j}=0
$$

For $1 \leq l \leq k$, define

$$
B_{l}=\prod_{1 \leq j \leq k, j \neq l}\left(A-\lambda_{j} I\right) .
$$

Then

$$
0=B_{l} \sum_{j=1}^{k} c_{j} S_{j}=c_{l} \prod_{1 \leq j \leq k, j \neq l}\left(\lambda_{l}-\lambda_{j}\right) S_{l}
$$

Since $\lambda_{i} \neq \lambda_{j}$ for all $i \neq j, c_{l}=0$ for all $1 \leq l \leq k$.
9. Let (X,d) be a compact metric space. Suppose that $f: X \rightarrow X$ satisfies $d(f(x), f(y)<$ $d(x, y)$ for $x \neq y$. Show that for any $x \in X$, the sequence defined by $x_{0}=x$ and $x_{n+1}=$ $f\left(x_{n}\right)$ converges to a unique fixed point of f.

Solution: If there were two fixed points x and y, then $d(x, y)<d(x, y)$, so there is at most one. The function $d(f(x), x)$ is continuous and so achieves a minimum at some point y. If the mimimum is not zero, then $f(y) \neq y$,, in which case $d\left(f(y), f^{2}(y)\right)$ is smaller, a contradiction. Therefore it is zero, i.e. $f(y)=y$.

The same thing applies to the closure A of the set of points $\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$, as this closure is also compact and invariant under f. So, from above, the restriction of f to A will have a fixed point. Hence $y \in A$. THerefore, given $\epsilon>0$, there exists N such that $d\left(x_{N}, y\right)<\epsilon$. For $m>N$,

$$
d\left(x_{m}, y\right)<d\left(x_{m-1}, y\right)<\ldots<d\left(x_{N+1}, y\right)<d\left(x_{N}, y\right)<\epsilon
$$

Thus the sequence converges to y.
10. A topological property is one that is invariant under homeomorphism, i.e. if two spaces are homeomorphic and one has the property, so does the other. Explain with a proof or counterexample which of the following properties of a metric space are or are not topological invariants: a. Compactness, b. Connectedness, c. Boundedness d. Completeness.

Solution. a. If $f: X \rightarrow Y$ is continuous and X is compact, so is $f(Y)$. Namely, for any collection \mathfrak{A} of open sets covering $f(X)$, the sets $f^{-1}(U), U \in \mathfrak{A}$ cover X. Therefore, a finite set of these, $f^{-1} U_{1}, \ldots, f^{-1} U_{n}$ also cover X; therefore $f(X) \subset U_{1} \cup \ldots \cup U_{n}$. So as each of two homeomorphic spaces are the image of the other under a continuous map, if one is compact so is the other.
b. Similarly, it suffices to show that if $f: X \rightarrow Y$ is continuous and X is connected, so is $f(X)$. If $f(X)$ is the disjoint union of two non-empty open sets, then the inverse images will be two non-empty disjoint open sets whose union os all of X.
c. Not a topological invariant. For example, $(0,1)$ and \mathbb{R} with the usual metric are homeomorphic. Alternatively, if (X, d) is a metric space, and $d^{\prime}(x, y)=\frac{d(x, y}{1+d(x, y)}$, then (X, d) and $\left(X . d^{\prime}\right)$ have the same topology, i.e. the identity map is a homeomorphism, and $d^{\prime}(x, y) \leq 1$.
d. \mathbb{R} is complete but $(0,1)$ is not.
11. Suppose $f:[-1,1] \rightarrow \mathbb{R}$ is continuous on the closed interval $[-1,1]$, and twice differentiable on the open interval $(-1,1)$. Suppose also that $f(-1)=7, f(0)=1$ and $f(1)=1$. Prove that there exists $c \in(-1,1)$ such that $f^{(2)}(c)=6$.

Solution: The (unique) polynomial of degree two that passes through those points is

$$
p(x)=3 x^{2}-3 x+1
$$

It follows that the function $f-p$ vanishes at $-1,0$ and 1 . Applying Rolle's Theorem twice, it follows that there exists a point $c \in(-1,1)$ such that the second derivative of $f-p$ vanishes at c. Since the second derivative of p is constant equal to 6 , it follows that $f^{(2)}(c)=6$.
12. Compute the following limit if it exists and justify your conclusion:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}(n+1) x^{n}\left(1-x^{5}\right)^{\frac{1}{5}} d x
$$

Solution: Remark that the function $\left(1-x^{5}\right)^{\frac{1}{5}}$ is continuous on $[0,1]$ and equal to zero at $x=1$. It follows that for every $\varepsilon>0$ there is a $\delta>0$ such that $\left|\left(1-x^{5}\right)^{\frac{1}{5}}\right|=\left(1-x^{5}\right)^{\frac{1}{5}}<\varepsilon / 2$ for $x \in[1-\delta, 1]$. On the other hand if $x \in[0,1-\delta]$, then $0 \leq(n+1) x^{n} \leq(n+1)(1-\delta)^{n} \rightarrow 0$ as $n \rightarrow \infty$. It follows that there exists $N \in \mathbb{N}$ such that $(n+1)(1-\delta)^{n}<\varepsilon / 2$, for every $n \geq N$. It follows that

$$
\begin{array}{r}
0 \leq \int_{0}^{1}(n+1) x^{n}\left(1-x^{5}\right)^{\frac{1}{5}} d x=\int_{0}^{1-\delta}(n+1) x^{n}\left(1-x^{5}\right)^{\frac{1}{5}} d x+\int_{1-\delta}^{1}(n+1) x^{n}\left(1-x^{5}\right)^{\frac{1}{5}} d x \leq \\
\leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \int_{1-\delta}^{1}(n+1) x^{n} d x \leq \varepsilon
\end{array}
$$

for every $n \geq N$. So we proved that the limit is zero.

