Spring prelim answers

1.List all the finite fields (up to isomorphism) of order less than or equal to 10. Show
that the ones you list exist, and no others.

Solution: There is a unique finite field of each prime power order, so: 2,3,4,5,7,8.9.
We show: (1) the order must be a prime power g = p*; (2) a field of each prime power
cardinality ¢ exists; and (3) it is unique.

(1) Let F be a finite field and 1 € F' the unit element. Since F' is finite there is a positive
integer ¢ such that ¢c1 =0 € F. If ¢ = ab then 0 = ¢1 = a1b1 so al =0 or b1 = 0. So the
smallest such ¢ must be a prime p, and F' is then a vector space over the prime field F),

hence its cardinality is a power of p.

(2) Conversely, let F be an algebraic closure of F,,. If ¢ = p*, the set

{r € Flo? = x}

is closed under addition (since 2?7 + y? = (x + y)9), multiplication and inversion, so it is a
subfield Fj,. Since the polynomial 27 — x has no repeated roots, the cardinality of Fj is q.

(3) Since any filed of cardinality ¢ is the set of elements in its algebraic closure satisfying
x? = x, the uniqueness of the algebraic closure implies uniqueness of Fj,.

2. (a) In the polynomial ring Z[x], is the ideal generated by z* —1 and 2x3 — 2z principal?

(b) Same question in the polynomial ring Q|x].

(c) Same question in the polynomial rings Z[z, y] and Qlz, y].

Solution: (a) No: such a generator must be of the form (z? —1) f(x), and then f(z) must
generate the ideal I := (22 + 1,2x), in particular f(x) must divide 2 + 1 and 2z, so it
must be invertible, but [ is non trivial, since it is contained in the kernel of the surjective
homomorphism Z[z] — Z/(2) sending = to 1. (b) Yes, in Q[z] we can take the above f(z)
to equal 1, since 1 = 1(z* + 1) — (%)2z) € (2> + 1,2x). (c) No change. (The analogue of
(b) is trivial, and for (a) send y to 0.)

3. Use the e-0 definition to prove that the first derivative of f(z) = 23 is f'(z) = 322
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Solution: We must show that for any given xy and for all € > 0, there exists § > 0 such

3.3
that if 0 < |z — xo| < d then 3;_;00 — 3x3| < e. An easy computation shows that:
x® — 2 2 2 2 2 2 2
pra—— — 35| = |(2® + wox + 3) — 3aj| = |2° — 2 + wow — x| <

< |.r2 — :vg‘ + |zol|x — zo| < |z — x0||T + 20| + |20 |7 — 20| <
< |z — zo|(|z — o] + 2|wo|) + |mol|z — w0|, (1)

where the last inequality comes from |z + xo| < |z| 4 |zo] < (Jz — x| + |20]) + |z0| =
|z — xo| + 2|z0], since ||z| — |zo|| < |z — xo| by the triangle inequality. Thus, choosing any

—3|zo| + /9| zo|? + 4e
0<d< 5 ,

it follows that 6(d+ 2|zo|) + |xe|d = 62+ 3|z0|d < € and hence by (1), the desired inequality
i 31'(2)) < ¢ holds whenever 0 < |z — xo| < 0.

xT 710

r—xo
4. Prove that for all k& € N there exists ¢, > 0 such that all n x n matrices A with
|A — Id| < &) have a k** root, that is, an n x n matrix V/A such that (VA)* = A.

Solution: Identify the vector space of n x n matrices with R”, and consider the map
f(A) = A*. The coordinates of this map are smooth functions (polynomial) and hence f
is smooth. The linearization of f at the identity matrix Id is given by

df1d)X = kX, X eR".

In particular, df(Id) is invertible, hence by the Inverse Function Theorem, f is locally
invertible near Id € R". Thus, there exists ; > 0 such that if |A — Id|| < &, then
VA= f71(A) is a k™ root of A.

5. . Let N be a positive integer. Prove that

N
%—l—logN< Z% <1+logN.
k=1

Solution: This is a standard problem which appears in many calculus books. A partial
sum of the harmonic series can be viewed geometrically as the sum of the areas of boxes of
width one and height 1,1/2,1/3,...,1/N, which can be approximated by the area under
the curve y = Inx from 1 to N. The difference is the sum of the areas of a bunch of slivers
of width 1 above the graph of y = 1/, together with the last box of height 1/N. If you
slide all these slivers left, they all fit in a box of width 1 and height 1, and the concavity
of the graph shows the sum of the areas of the slivers is larger than 1/2. See for example
the picture on p. 595 of Thomas’ Calculus, applied to the case f(x) = Inz.
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6. For n a positive integer, let ¢(n) denote the number of integers k, 1 < k < n, which
are relatively prime to n. Prove that

1

pln
where the product is over all distinct primes p dividing n.

Solution: We use a standard inclusion-exclusion argument. The number of integers
relatively prime to n and between 1 and n is the number of integers between 1 and n
(there are n of these), minus all multiples of p for each p dividing n (there are n/p of
these), plus all multiples of pg for all pairs of distinct primes p,q dividing n (there are
n/(pq) of these), etc., or

n—=> n/p+ Y n/lpg)—...=n]J(1-1/p).
pln

pln p<a

p,q|n
7. Let
1 1 2
1 -1 2
A=
2 =31
0 1 3

Find an orthonormal basis of the column space of A.

Solution: Let a; denote the j-th column vector of A. Let v; = a; and

vy = as — 2y = (2,0,—1,1)7.
o]

Let
as - v as - V2

- U1 — V2
o] [[va

=(-1,1,0,2)".

U3 = as
Then an orthonormal basis is

1 r 1 o T L o T
{%(1,1,2,0) ,%(2,0, 1,1) ’Jé( 1,1,0,2)"}

8. Let A be a n x n matrix. Let {S1,...S5} be a collection of eigenvectors of A with

A1, ... A, as the corresponding eigenvalues. Prove that if \; # A; forall 1 <7 < j <k,
then {Si,..., Sk} is linearly independent.

Solution: Suppose there are constants {c;}1<;j<x such that

k
Z Cij =0.
j=1
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For 1 <[ <k, define
B= [ (A-xD).

1<j<k,j#l

Then

k
0= Bl Z Cij = (] H (>\l - )\j)Sl
j=1

1<j<k,j#l
Since A\; # Aj forall i # j, ¢ =0forall 1 <[ < k.

9. Let (X,d) be a compact metric space. Suppose that f : X — X satisfies d(f(x), f(y) <
d(z,y) for = # y. Show that for any x € X, the sequence defined by zy = x and z,.; =
f(z,) converges to a unique fixed point of f .

Solution: If there were two fixed points = and y, then d(x,y) < d(z,y), so there is at
most one. The function d(f(x),x) is continuous and so achieves a minimum at some point
y. If the mimimum is not zero, then f(y) # vy ,, in which case d(f(y), f*(y)) is smaller, a

contradiction. Therefore it is zero, i.e. f(y) =vy.

The same thing applies to the closure A of the set of points {z1, ..., z,, ...} , as this closure
is also compact and invariant under f. So, from above, the restriction of f to A will have a
fixed point. Hence y € A. THerefore, given € > 0, there exists N such that d(xy,y) < €.
For m > N,

AT, y) < d(Tm-1,y) < ... <d(@Ng1,Yy) < d(zN,y) <€.

Thus the sequence converges to y .

10. A topological property is one that is invariant under homeomorphism, i.e. if two
spaces are homeomorphic and one has the property, so does the other. Explain with a
proof or counterexample which of the following properties of a metric space are or are not
topological invariants: a. Compactness, b. Connectedness, ¢c. Boundedness d. Complete-

ness.

Solution. a. If f : X — Y is continuous and X is compact, so is f(Y). Namely, for
any collection 2 of open sets covering f(X), the sets f~1(U) ,U € 2A cover X . Therefore,
a finite set of these, f~1Uy, ..., f~'U, also cover X ; therefore f(X) C Uy U...UU,. So as
each of two homeomorphic spaces are the image of the other under a continuous map, if
one is compact so is the other.

b. Similarly, it suffices to show that if f : X — Y is continuous and X is connected, so
is f(X). If f(X) is the disjoint union of two non-empty open sets, then the inverse images
will be two non-empty disjoint open sets whose union os all of X .
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c. Not a topological invariant. For example, (0,1) and R with the usual metric are

d(z,
Hd—(x?{y) s then
(X,d) and (X.d’) have the same topology, i.e. the identity map is a homeomorphism, and
d(z,y) <1.

d. R is complete but (0,1) is not.

homeomorphic. Alternatively, if (X, d) is a metric space, and d'(z,y) =

11. Suppose f : [-1,1] — R is continuous on the closed interval [—1,1], and twice
differentiable on the open interval (—1,1). Suppose also that f(—1) = 7, f(0) = 1 and
f(1) = 1. Prove that there exists ¢ € (—1,1) such that f®(c) =6.

Solution: The (unique) polynomial of degree two that passes through those points is
p(z) = 32 — 32 + 1.

It follows that the function f — p vanishes at —1,0 and 1. Applying Rolle’s Theorem
twice, it follows that there exists a point ¢ € (—1,1) such that the second derivative of
f — p vanishes at c¢. Since the second derivative of p is constant equal to 6, it follows that
fP(c) =6.

12. Compute the following limit if it exists and justify your conclusion:

1
lim [ (n+1)2"(1 — 255 dx.
n—oo 0
Solution: Remark that the function (1 — )5 is continuous on [0, 1] and equal to zero at
z = 1. It follows that for every ¢ > 0 there is a § > 0 such that |(1—2°)5| = (1—2°)5 < /2
for x € [1—0, 1]. On the other hand if x € [0,1—¢], then 0 < (n+1)2" < (n+1)(1—9)" — 0
as n — oo. It follows that there exists N € N such that (n + 1)(1 —9)" < /2, for every
n > N. It follows that

1

1 1-6
OS/ (n—i—l)x”(l—f)édx:/ (n+1)x"(1—x5)éd1‘+/ (n+1)az"(1—2%)5 da <
0 0 1-6

1
< _|_f/ (n+1)z"dx < e,
2 )i

DO ™

for every n > N. So we proved that the limit is zero.



