Preliminary exam–Spring 2017, Part I

1. List all the finite fields (up to isomorphism) of order less than or equal to 10. Show that the ones you list exist, and no others.

- 2. (a) In the polynomial ring $\mathbf{Z}[x]$, is the ideal generated by $x^4 1$ and $2x^3 2x$ principal?
- (b) Same question in the polynomial ring $\mathbf{Q}[x]$.
- (c) Same question in the polynomial rings $\mathbf{Z}[x, y]$ and $\mathbf{Q}[x, y]$.

3. Use the ε - δ definition to prove that the first derivative of $f(x) = x^3$ is $f'(x) = 3x^2$.

4. Prove that for all $k \in \mathbb{N}$ there exists $\varepsilon_k > 0$ such that all $n \times n$ matrices A with $||A - \mathrm{Id}|| < \varepsilon_k$ have a k^{th} root, that is, an $n \times n$ matrix $\sqrt[k]{A}$ such that $(\sqrt[k]{A})^k = A$.

5. Let ${\cal N}$ be a positive integer. Prove that

$$\frac{1}{2} + \log N < \sum_{k=1}^{N} \frac{1}{k} \le 1 + \log N.$$

6. For n a positive integer, let $\phi(n)$ denote the number of integers $k, 1 \leq k < n$, which are relatively prime to n. Prove that

$$\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}),$$

where the product is over all distinct primes p dividing n.

7. Let

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 2 \\ 2 & -3 & 1 \\ 0 & 1 & 3 \end{bmatrix}.$$

Find an orthonormal basis of the column space of A.

8. Let A be a $n \times n$ matrix. Let $\{S_1, \ldots, S_k\}$ be a collection of eigenvectors of A with $\lambda_1, \ldots, \lambda_k$ as the corresponding eigenvalues. Prove that if $\lambda_i \neq \lambda_j$ for all $1 \leq i < j \leq k$, then $\{S_1, \ldots, S_k\}$ is linearly independent.

9. Let (X, d) be a compact metric space. Suppose that $f : X \to X$ satisfies d(f(x), f(y)) < d(x, y) for $x \neq y$. Show that for any $x \in X$, the sequence defined by $x_0 = x$ and $x_{n+1} = f(x_n)$ converges to a unique fixed point of f.

10. A topological property is one that is invariant under homeomorphism, i.e. if two spaces are homeomorphic and one has the property, so does the other. Explain with a proof or counterexample which of the following properties of a metric space are or are not topological invariants: a. Compactness, b. Connectedness, c. Boundedness d. Completeness.

11. Suppose $f : [-1,1] \to \mathbb{R}$ is continuous on the closed interval [-1,1], and twice differentiable on the open interval (-1,1). Suppose also that f(-1) = 7, f(0) = 1 and f(1) = 1. Prove that there exists $c \in (-1,1)$ such that $f^{(2)}(c) = 6$.

12. Compute the following limit if it exists and justify your conclusion:

$$\lim_{n \to \infty} \int_0^1 (n+1) x^n (1-x^5)^{\frac{1}{5}} \, dx.$$