Preliminary exam-Spring 2017, Part I

1. List all the finite fields (up to isomorphism) of order less than or equal to 10 . Show that the ones you list exist, and no others.
2. (a) In the polynomial ring $\mathbf{Z}[x]$, is the ideal generated by $x^{4}-1$ and $2 x^{3}-2 x$ principal?
(b) Same question in the polynomial ring $\mathbf{Q}[x]$.
(c) Same question in the polynomial rings $\mathbf{Z}[x, y]$ and $\mathbf{Q}[x, y]$.
3. Use the $\varepsilon-\delta$ definition to prove that the first derivative of $f(x)=x^{3}$ is $f^{\prime}(x)=3 x^{2}$.
4. Prove that for all $k \in \mathbb{N}$ there exists $\varepsilon_{k}>0$ such that all $n \times n$ matrices A with $\|A-\mathrm{Id}\|<\varepsilon_{k}$ have a $k^{\text {th }}$ root, that is, an $n \times n$ matrix $\sqrt[k]{A}$ such that $(\sqrt[k]{A})^{k}=A$.
5. Let N be a positive integer. Prove that

$$
\frac{1}{2}+\log N<\sum_{k=1}^{N} \frac{1}{k} \leq 1+\log N
$$

6. For n a positive integer, let $\phi(n)$ denote the number of integers $k, 1 \leq k<n$, which are relatively prime to n. Prove that

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right),
$$

where the product is over all distinct primes p dividing n.

Extra Page 1

Extra Page 2

Preliminary Exam-Spring 2017, Part II
7. Let

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & -1 & 2 \\
2 & -3 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

Find an orthonormal basis of the column space of A.
8. Let A be a $n \times n$ matrix. Let $\left\{S_{1}, \ldots S_{k}\right\}$ be a collection of eigenvectors of A with $\lambda_{1}, \ldots \lambda_{k}$ as the corresponding eigenvalues. Prove that if $\lambda_{i} \neq \lambda_{j}$ for all $1 \leq i<j \leq k$, then $\left\{S_{1}, \ldots, S_{k}\right\}$ is linearly independent.
9. Let (X, d) be a compact metric space. Suppose that $f: X \rightarrow X$ satisfies $d(f(x), f(y))<$ $d(x, y)$ for $x \neq y$. Show that for any $x \in X$, the sequence defined by $x_{0}=x$ and $x_{n+1}=f\left(x_{n}\right)$ converges to a unique fixed point of f.
10. A topological property is one that is invariant under homeomorphism, i.e. if two spaces are homeomorphic and one has the property, so does the other. Explain with a proof or counterexample which of the following properties of a metric space are or are not topological invariants: a. Compactness, b. Connectedness, c. Boundedness d. Completeness.
11. Suppose $f:[-1,1] \rightarrow \mathbb{R}$ is continuous on the closed interval $[-1,1]$, and twice differentiable on the open interval $(-1,1)$. Suppose also that $f(-1)=7, f(0)=1$ and $f(1)=1$. Prove that there exists $c \in(-1,1)$ such that $f^{(2)}(c)=6$.
12. Compute the following limit if it exists and justify your conclusion:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}(n+1) x^{n}\left(1-x^{5}\right)^{\frac{1}{5}} d x .
$$

Extra Page 1

Extra Page 2

