
Preliminary Examination Solutions

Thursday, April 28, 2016 9:30-12:00

1. Let {an} be a sequence of real numbers such that lim
n→∞

an = 0. Prove that the

series
∞
∑

n=0

anx
n converges uniformly on the closed interval −1/2 ≤ x ≤ 1/2. State

any results you are using.

Solution: Since an → 0, the sequence is bounded, so for some M we have
|an| ≤ M for all n = 0, 1, 2, . . .. Thus if |x| ≤ 1/2 we know that |anxn| ≤ M/2n.
Since the geometric series

∑

M/2n converges, by the comparison test this series
converges absolutely. Moreover, by the Weierstrass M-test the series

∑

anx
n

converges uniformly for |x| ≤ 1/2.

More directly (without using the Weierstrass test), let c = 1/2. If |x| ≤ c then
for any integer k

∣

∣

∣

∣

∞
∑

j=k+1

ajx
j

∣

∣

∣

∣

≤
∞
∑

j=k+1

|aj|cj ≤ M
∞
∑

j=k+1

cj = M
ck+1

1− c

which can be made as small as you wish by choosing k large independently of x.
Thus the series converges uniformly.
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2. Find an orthogonal matrix R that diagonalizes the matrix

A =





1 −1 0
−1 1 0
0 0 2



 .

Solution: We solve for R such that R−1AR is diagonal. That is to find or-
thonormal eigenvectors.

det(λI − A) =

∣

∣

∣

∣

∣

∣

λ− 1 1 0
1 λ− 1 0
0 0 λ− 2

∣

∣

∣

∣

∣

∣

= (λ− 2)2λ

When λ = 2,

(A− 2)





x
y
z



 =





−1 −1 0
−1 −1 0
0 0 0









x
y
z



 = 0.

Two linearly independent eigenvectors are (1,−1, 0) and (0, 0, 1).

When λ = 0,

A





x
y
z



 =





1 −1 0
−1 1 0
0 0 2









x
y
z



 = 0.

An eigenvector is (1, 1, 0). Making the basis orthonormal, we get

R =





1/
√
2 1/

√
2 0

1/
√
2 −1/

√
2 0

0 0 1



 .
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3. Let f(x) be a C∞ real-valued function on R satisfying f ′′(x) ≥ 0 for all x ∈ R.

a) Show that at any point x the graph of y = f(x) lies above its tangent line.

Solution 1: Let A = (a, f(a)) and B = (b, f(b)) be two different points in
the graph, assume b > a. We will prove B is lying above the tangent line at
A. The other direction can be proved similarly. To do so, we only need to
prove that the slope of AB is greater or equal than the slope of the tangent
line at A. Indeed, slope of AB is equal to f(b)−f(a)

b−a
= f ′(c) for some c ∈ [a, b]

by the mean value theorem. Notice that f ′(c) ≥ f ′(a) due to the fact that f ′

is monotonically increasing (for f ′′ ≥ 0).

Solution 2: Pick any point x0 and any x. Then by Taylor’s Theorem with
two terms, there is some c between x0 and x so that

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(c)(x− x0)

2

≥ f(x0) + f ′(x0)(x− x0)
.

b) If f is bounded above and below, show that f(x) = constant.

Solution 1: If not, then there is a point a such that f ′(a) 6= 0. WLOG,
assume f ′(a) > 0. We claim that f is not bounded above, which is a contra-
diction. Indeed, by the mean value theorem, for each x > a there is constant
c ∈ [a, x] such that f(x)− f(a) = (x−a)f ′(c) ≥ (x−a)f ′(a) → ∞ as x → ∞

Solution 2: By contradiction, say at some point a f ′(a) 6= 0. Say
f ′(a) > 0. Since the graph lies above its tangent line at x = a, in this
case limx→+∞ f(x) = +∞.

If f ′(a) < 0, then limx→−∞ f(x) = +∞.

Either of these contradict the boundedness of f .
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4. Let n be a positive integer.

a) Prove that every non-zero element of the ring Z/nZ is either a unit or a
zero-divisor.

Solution 1: If a ∈ Z is relatively prime to n, there exist x, y ∈ Z such that
ax+ ny = 1. Thus ax− 1 is divisible by n, so the class x of x in Z/nZ is an
inverse of a in Z/nZ.

Otherwise, the gcd d of a, n is > 1, and we may write a = da′ and n = dn′.
Then a · n′ = a′n = 0 with n′ 6= 0 and so a is a zero-divisor.

Solution 2: For any nonzero element a ∈ Z/nZ, consider the group homo-
morphism from (Z/nZ,+) to (Z/nZ,+) given by

fa : x 7→ ax.

If 1 is in the image, then there is b ∈ Z/nZ such that ab = 1, so a is a unit.
Otherwise 1 is not in the image, in which case fa : Z/nZ → Z/nZ is not
surjective. Since Z/nZ is finite, fa has a nontrivial kernel. So ac = 0 for any
0 6= c ∈ kerfa, and a is thus a zero-divisor.

b) For which values of n does Z/nZ have the property that every non-zero el-
ement is either a unit or is nilpotent (i.e. some power of the element equals
zero)?

Solution: This holds iff n is a power of a prime number.

For the forward direction, suppose n = pk with p a prime and k a positive
integer, and let a ∈ Z with ā 6= 0 ∈ Z/nZ. If p ∤ a, then pk and a are coprime,
so there exist x, y ∈ Z with ax + pky = 1, and ā is unit in Z/nZ. If instead
p|a, then pk|ak, and so āk = 0 in Z/nZ; i.e. ā is nilpotent.

Conversely, if n has at least two distinct prime factors, then there are integers
a, b > 1 with n = ab and (a, b) = 1. The nonzero cosets ā, b̄ ∈ Z/nZ satisfy
āb̄ = 0, so ā is not a unit. Since b ∤ ak for any k, ā is not nilpotent either. So
the property fails.
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5. Let P1, . . . , Pk be distinct points in R2.

a) Prove that there is a unique point X0 in R2 at which the function

Q(X) = ‖X − P1‖2 + · · ·+ ‖X − Pk‖2

on R2 achieves its minimum value.

Solution 1: We complete the square

Q(X) = kX ·X −
k

∑

n=1

2Pn ·X +
k

∑

n=1

Pn · Pn

= k

∥

∥

∥

∥

X − 1

k

k
∑

n=1

Pn

∥

∥

∥

∥

2

+
k

∑

n=1

Pn · Pn −
1

k
‖

k
∑

n=1

Pn‖2

Thus there is a unique point X0 = 1
k

∑k

n=1 Pn in R2 at which the function
achieves its minimum.

Solution 2: We find the critical points of Q which are where the first
derivative (gradient) of Q is zero.

Write X = (x, y) and P = (p, q). For the function

f(x, y) = ‖X − P‖2 = (x− p)2 + (y − q)2 = x2 − 2xp+ p2 + y2 − 2yq + q2

we have
∇f = (fx, fy) = (2x− 2p, 2y − 2q).

Writing Pj = (pj, qj) this gives

∇Q = 2
(

∑k

1(x− pj),
∑k

1(y − qj)
)

= 2(kx−∑k

1 pj, ky −∑k

1 qj).

Thus ∇Q = 0 at only one point: where x = 1
k

∑k

1 pj, y = 1
k

∑k

1 qj. That is,

X0 =
1
k

∑k

1 Pj.

We need to show that this point X0 is the global minimum of Q. Since
lim‖X‖→∞ Q(X) = ∞, there is some radius R so that if ‖X‖ > R then
Q(X) > Q(0). Since at the point X0 where Q attains its global minimum
Q(X0) ≤ Q(0), this global minimum of Q must lie inside the disk {‖X‖ ≤ R},
which is a compact set. At any local minimum point, ∇Q = 0. But we found
only one such point X0 so it must be where Q has its global minimum value.

b) Is there a point at which this function achieves its maximum value?

Solution: No! Q(X) → ∞ as ‖X‖ → ∞
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6. Let X be a metric space and let {xn} be a convergent sequence of points in X
with limit L. Show that the set {xn |n ∈ N} is compact if and only if some xn is
equal to L.

Solution: Suppose that L = xn0
for some n0 ∈ N, and let {Ui}i∈I be an open

cover of xn |n ∈ N . Then there is i0 ∈ I such that L ∈ Ui0 . Since Ui0 is open,
there exists N ∈ N such that n ≥ N implies that xn ∈ Ui0 . For each 1 ≤ m < N
find Uim that contains the element xm. Then {Uin | 0 ≤ n ≤ N} is an open
subcover of {Ui}i∈I .

Conversely suppose that L does not belong to the sequence. Then Un = {x ∈
X | d(x, L) > 1

n
} is an open cover of the set (it is an open cover of X \ {L}),

that does not have any finite subcover. For otherwise the sequence would be
contained in one of the U ′

ns and could not converge to L. It follows that the set
is not compact.
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7. Evaluate the counterclockwise contour integral J :=

∮

Γ

x2y2 ds along the unit

circle Γ centered at the origin. [The parameter ds is arc length].

Solution: On the unit circle we use the polar coordinate parameterization
x = cos θ, y = sin θ. Then

x2y2 = cos2 θ sin2 θ and ds =
√

x′2 + y′2 dθ = dθ.

The integral is thus J =
∫ 2π

0
cos2 θ sin2 θ dθ.

The identity sin 2θ = 2 sin θ cos θ followed by the substitution φ = 2θ gives

J =

∫ 2π

0

(

sin 2θ

2

)2

dθ =
1

8

∫ 4π

0

sin2 φ dφ =
1

4

∫ 2π

0

sin2 φ dφ.

But
∫ 2π

0

sin2 φ dφ =

∫ 2π

0

1− cos 2φ

2
dφ =

[

φ

2
− sin 2φ

4

]2π

0

= π

so
J =

π

4
.
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8. Let T : R2 → R2 be a linear transformation. Suppose that there exist v, w ∈ R2

such that T (v) = v and T (w) 6= w. Show that T is diagonalizable if and only if
it has an eigenvalue unequal to 1.

Solution: ⇒: Suppose for a contradiction that T has all eigenvalues equal
to one. Since T is diagonalizable, this implies that T is the identity. But this
contradicts the assumption that T (w) 6= w.

⇐: As T (v) = v and v is not zero, one is an eigenvalue of T . So if T also has an
eigenvalue not equal to one, T is diagonalizable, since any 2× 2 matrix with two
distinct eigenvalues is diagonalizable.

8



9. Let g : R → R be a differentiable function whose derivative satisfies the inequality
|g′(x)| ≤ M for all x in R.

Show that if ε > 0 is small enough, then the function f : R → R defined by
f(x) = x+ εg(x) is one-to-one and onto.

Solution: We may and shall assume that M ≥ 1, and choose ε ≤ 1
2M

. It follows
that

f ′(x) = 1 + εg′(x) ≥ 1− εM ≥ 1

2
,

for every x ∈ R. The Mean Value Theorem then implies that

|f(x)− f(y)| = |f ′(ξ)||x− y| ≥ 1

2
|x− y|.

This proves injectivity.

Applying the Mean Value Theorem one more time we get

f(x)− f(0) = f ′(ξ)x.

This last quantity is ≥ x
2
, for x ≥ 0, and ≤ x

2
for x ≤ 0. In any case it follows

that
lim

x→±∞
f(x) = ±∞,

and the intermediate value theorem proves that f is onto.
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10. Let G be a group of order 155.

a) Show that G must have a non-trivial proper normal subgroup.

Solution: The prime factorization of 155 is 5 · 31. By the Sylow theorem,
the number of Sylow 31-groups divides 5 and is congruent to 1 mod 31, so it
must be 1. That is, there is a unique subgroup of order 31, so it is normal.

b) Suppose that G (still of order 155) is abelian. Either prove that G is cyclic
or give a counterexample.

Solution: By the Fundamental Theorem of Finite Abelian Groups, a finite
abelian group is a product of cyclic groups of prime power order. So a group
of order 5 · 31 is isomorphic to Z/5Z × Z/31Z. By the Chinese Remainder
Theorem, this group is isomorphic to Z/(5 · 31)Z and so is cyclic.
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11. Let Ω be a connected open set in the plane R2 and let f(x, y) be a C∞ real-valued
function with the property that grad (f) = 0 at every point of Ω. Prove that f is
a constant.

Solution: The Mean Value Theorem implies right away that if x ∈ Ω, then there
is an open ball Br centered at x, lying entirely in Ω, such that f(y) = f(x) for
every y ∈ Br. This shows that if we fix x0 ∈ Ω, then the set {y ∈ Ω | f(y) = f(x0)}
is open. Since it is obviously closed (in Ω, being the preimage of a closed set),
and nonempty it has to be all of Ω.
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12. Let V0, V1, V2 be subspaces of a real vector space V , with V0 a proper subspace of
V1 and of V2. Let S : V1 → V0 and T : V0 → V2 be linear transformations.

a) If V is finite dimensional, show that T ◦ S : V1 → V2 is neither injective nor
surjective.

Solution1: The rank of T ◦ S is less than or equal to the rank of T , which
is less than or equal to the dimension of V0, which is less than the dimension
of V1 and is also less than the dimension of V2. Therefore T ◦ S is neither
injective nor surjective.

Solution 2: If V is finite dimensional, also V0, V1, V2 are finite dimensional.
As V0 is properly contained in V1 and V2 we have dim(V0) < dim(V1) and
dim(V0) < dim(V2). Therefore S : V1 → V0 cannot be injective and T : V0 →
V2 cannot be surjective. Thus the composition T ◦ S can neither be injective
nor surjective.

b) Does the same conclusion necessarily hold if V is infinite dimensional? Give
either a proof or counterexample.

Solution 1: Counterexample: Let V1 = V2 = V be a vector space spanned
by a countable basis e0, e1, e2, . . . ; V0 the proper subspace spanned by e1, e2, . . . ;
S(ei) := ei+1, i = 0, 1, . . . (right shift); and T (ei) := ei−1, i = 1, 2, . . . (left
shift). Then S, T are isomorphisms, as is T ◦ S.
Solution 2: Consider the following counterexample:

Let V = RN = {(an)n∈N} be the vector space of all sequences (with compo-
nentwise addition and scalar multiplication). Let V1 = V and

V2 = {(an)n∈N| a0 = 0},

V0 = {(an)n∈N| a0 = 0, a1 = 0}.
Define S : V1 → V0 by S((a0, a1, . . .)) = (0, 0, a0, a1, . . .) and T : V0 → V2 by
T ((0, 0, a2, a3, . . .)) = (0, a2, a3, . . .). Then S and T are bijective and therefore
also T ◦ S is bijective.
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