Preliminary Examination Solutions

Thursday, April 28, 2016

1. Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$. Prove that the series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges uniformly on the closed interval $-1 / 2 \leq x \leq 1 / 2$. State any results you are using.

Solution: Since $a_{n} \rightarrow 0$, the sequence is bounded, so for some M we have $\left|a_{n}\right| \leq M$ for all $n=0,1,2, \ldots$. Thus if $|x| \leq 1 / 2$ we know that $\left|a_{n} x^{n}\right| \leq M / 2^{n}$. Since the geometric series $\sum M / 2^{n}$ converges, by the comparison test this series converges absolutely. Moreover, by the Weierstrass M-test the series $\sum a_{n} x^{n}$ converges uniformly for $|x| \leq 1 / 2$.

More directly (without using the Weierstrass test), let $c=1 / 2$. If $|x| \leq c$ then for any integer k

$$
\left|\sum_{j=k+1}^{\infty} a_{j} x^{j}\right| \leq \sum_{j=k+1}^{\infty}\left|a_{j}\right| c^{j} \leq M \sum_{j=k+1}^{\infty} c^{j}=M \frac{c^{k+1}}{1-c}
$$

which can be made as small as you wish by choosing k large independently of x. Thus the series converges uniformly.
2. Find an orthogonal matrix R that diagonalizes the matrix

$$
A=\left(\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Solution: We solve for R such that $R^{-1} A R$ is diagonal. That is to find orthonormal eigenvectors.

$$
\operatorname{det}(\lambda I-A)=\left|\begin{array}{ccc}
\lambda-1 & 1 & 0 \\
1 & \lambda-1 & 0 \\
0 & 0 & \lambda-2
\end{array}\right|=(\lambda-2)^{2} \lambda
$$

When $\lambda=2$,

$$
(A-2)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
-1 & -1 & 0 \\
-1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0
$$

Two linearly independent eigenvectors are $(1,-1,0)$ and $(0,0,1)$.
When $\lambda=0$,

$$
A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 .
$$

An eigenvector is $(1,1,0)$. Making the basis orthonormal, we get

$$
R=\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

3. Let $f(x)$ be a C^{∞} real-valued function on \mathbb{R} satisfying $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}$.
a) Show that at any point x the graph of $y=f(x)$ lies above its tangent line.

Solution 1: Let $A=(a, f(a))$ and $B=(b, f(b))$ be two different points in the graph, assume $b>a$. We will prove B is lying above the tangent line at A. The other direction can be proved similarly. To do so, we only need to prove that the slope of $A B$ is greater or equal than the slope of the tangent line at A. Indeed, slope of $A B$ is equal to $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$ for some $c \in[a, b]$ by the mean value theorem. Notice that $f^{\prime}(c) \geq f^{\prime}(a)$ due to the fact that f^{\prime} is monotonically increasing (for $f^{\prime \prime} \geq 0$).
Solution 2: Pick any point x_{0} and any x. Then by Taylor's Theorem with two terms, there is some c between x_{0} and x so that

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}(c)\left(x-x_{0}\right)^{2} \\
& \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
\end{aligned}
$$

b) If f is bounded above and below, show that $f(x)=$ constant.

Solution 1: If not, then there is a point a such that $f^{\prime}(a) \neq 0$. WLOG, assume $f^{\prime}(a)>0$. We claim that f is not bounded above, which is a contradiction. Indeed, by the mean value theorem, for each $x>a$ there is constant $c \in[a, x]$ such that $f(x)-f(a)=(x-a) f^{\prime}(c) \geq(x-a) f^{\prime}(a) \rightarrow \infty$ as $x \rightarrow \infty$

Solution 2: By contradiction, say at some point a $f^{\prime}(a) \neq 0$. Say $f^{\prime}(a)>0$. Since the graph lies above its tangent line at $x=a$, in this case $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
If $f^{\prime}(a)<0$, then $\lim _{x \rightarrow-\infty} f(x)=+\infty$.
Either of these contradict the boundedness of f.
4. Let n be a positive integer.
a) Prove that every non-zero element of the ring $\mathbb{Z} / n \mathbb{Z}$ is either a unit or a zero-divisor.
Solution 1: If $a \in \mathbb{Z}$ is relatively prime to n, there exist $x, y \in \mathbb{Z}$ such that $a x+n y=1$. Thus $a x-1$ is divisible by n, so the class \bar{x} of x in $\mathbb{Z} / n \mathbb{Z}$ is an inverse of \bar{a} in $\mathbb{Z} / n \mathbb{Z}$.
Otherwise, the gcd d of a, n is >1, and we may write $a=d a^{\prime}$ and $n=d n^{\prime}$. Then $\bar{a} \cdot \overline{n^{\prime}}=\overline{a^{\prime} n}=\overline{0}$ with $\overline{n^{\prime}} \neq \overline{0}$ and so \bar{a} is a zero-divisor.

Solution 2: For any nonzero element $a \in \mathbb{Z} / n \mathbb{Z}$, consider the group homomorphism from $(\mathbb{Z} / n \mathbb{Z},+)$ to $(\mathbb{Z} / n \mathbb{Z},+)$ given by

$$
f_{a}: x \mapsto a x .
$$

If 1 is in the image, then there is $b \in \mathbb{Z} / n \mathbb{Z}$ such that $a b=1$, so a is a unit. Otherwise 1 is not in the image, in which case $f_{a}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is not surjective. Since $\mathbb{Z} / n \mathbb{Z}$ is finite, f_{a} has a nontrivial kernel. So $a c=0$ for any $0 \neq c \in \operatorname{ker} f_{a}$, and a is thus a zero-divisor.
b) For which values of n does $\mathbb{Z} / n \mathbb{Z}$ have the property that every non-zero element is either a unit or is nilpotent (i.e. some power of the element equals zero)?

Solution: This holds iff n is a power of a prime number.
For the forward direction, suppose $n=p^{k}$ with p a prime and k a positive integer, and let $a \in \mathbb{Z}$ with $\bar{a} \neq 0 \in \mathbb{Z} / n \mathbb{Z}$. If $p \nmid a$, then p^{k} and a are coprime, so there exist $x, y \in \mathbb{Z}$ with $a x+p^{k} y=1$, and \bar{a} is unit in $\mathbb{Z} / n \mathbb{Z}$. If instead $p \mid a$, then $p^{k} \mid a^{k}$, and so $\bar{a}^{k}=0$ in $\mathbb{Z} / n \mathbb{Z}$; i.e. \bar{a} is nilpotent.
Conversely, if n has at least two distinct prime factors, then there are integers $a, b>1$ with $n=a b$ and $(a, b)=1$. The nonzero cosets $\bar{a}, \bar{b} \in \mathbb{Z} / n \mathbb{Z}$ satisfy $\bar{a} \bar{b}=0$, so \bar{a} is not a unit. Since $b \nmid a^{k}$ for any k, \bar{a} is not nilpotent either. So the property fails.
5. Let P_{1}, \ldots, P_{k} be distinct points in \mathbb{R}^{2}.
a) Prove that there is a unique point X_{0} in \mathbb{R}^{2} at which the function

$$
Q(X)=\left\|X-P_{1}\right\|^{2}+\cdots+\left\|X-P_{k}\right\|^{2}
$$

on \mathbb{R}^{2} achieves its minimum value.
Solution 1: We complete the square

$$
\begin{aligned}
Q(X) & =k X \cdot X-\sum_{n=1}^{k} 2 P_{n} \cdot X+\sum_{n=1}^{k} P_{n} \cdot P_{n} \\
& =k\left\|X-\frac{1}{k} \sum_{n=1}^{k} P_{n}\right\|^{2}+\sum_{n=1}^{k} P_{n} \cdot P_{n}-\frac{1}{k}\left\|\sum_{n=1}^{k} P_{n}\right\|^{2}
\end{aligned}
$$

Thus there is a unique point $X_{0}=\frac{1}{k} \sum_{n=1}^{k} P_{n}$ in \mathbb{R}^{2} at which the function achieves its minimum.
Solution 2: We find the critical points of Q which are where the first derivative (gradient) of Q is zero.
Write $X=(x, y)$ and $P=(p, q)$. For the function

$$
f(x, y)=\|X-P\|^{2}=(x-p)^{2}+(y-q)^{2}=x^{2}-2 x p+p^{2}+y^{2}-2 y q+q^{2}
$$

we have

$$
\nabla f=\left(f_{x}, f_{y}\right)=(2 x-2 p, 2 y-2 q)
$$

Writing $P_{j}=\left(p_{j}, q_{j}\right)$ this gives

$$
\nabla Q=2\left(\sum_{1}^{k}\left(x-p_{j}\right), \sum_{1}^{k}\left(y-q_{j}\right)\right)=2\left(k x-\sum_{1}^{k} p_{j}, k y-\sum_{1}^{k} q_{j}\right)
$$

Thus $\nabla Q=0$ at only one point: where $x=\frac{1}{k} \sum_{1}^{k} p_{j}, y=\frac{1}{k} \sum_{1}^{k} q_{j}$. That is, $X_{0}=\frac{1}{k} \sum_{1}^{k} P_{j}$.
We need to show that this point X_{0} is the global minimum of Q. Since $\lim _{\|X\| \rightarrow \infty} Q(X)=\infty$, there is some radius R so that if $\|X\|>R$ then $Q(X)>Q(0)$. Since at the point X_{0} where Q attains its global minimum $Q\left(X_{0}\right) \leq Q(0)$, this global minimum of Q must lie inside the disk $\{\|X\| \leq R\}$, which is a compact set. At any local minimum point, $\nabla Q=0$. But we found only one such point X_{0} so it must be where Q has its global minimum value.
b) Is there a point at which this function achieves its maximum value?

Solution: No! $Q(X) \rightarrow \infty$ as $\|X\| \rightarrow \infty$
6. Let X be a metric space and let $\left\{x_{n}\right\}$ be a convergent sequence of points in X with limit L. Show that the set $\left\{x_{n} \mid n \in \mathbb{N}\right\}$ is compact if and only if some x_{n} is equal to L.

Solution: Suppose that $L=x_{n_{0}}$ for some $n_{0} \in \mathbb{N}$, and let $\left\{U_{i}\right\}_{i \in I}$ be an open cover of $x_{n} \mid n \in \mathbb{N}$. Then there is $i_{0} \in I$ such that $L \in U_{i_{0}}$. Since $U_{i_{0}}$ is open, there exists $N \in \mathbb{N}$ such that $n \geq N$ implies that $x_{n} \in U_{i_{0}}$. For each $1 \leq m<N$ find $U_{i_{m}}$ that contains the element x_{m}. Then $\left\{U_{i_{n}} \mid 0 \leq n \leq N\right\}$ is an open subcover of $\left\{U_{i}\right\}_{i \in I}$.

Conversely suppose that L does not belong to the sequence. Then $U_{n}=\{x \in$ $\left.X \left\lvert\, d(x, L)>\frac{1}{n}\right.\right\}$ is an open cover of the set (it is an open cover of $X \backslash\{L\}$), that does not have any finite subcover. For otherwise the sequence would be contained in one of the $U_{n}^{\prime} \mathrm{s}$ and could not converge to L. It follows that the set is not compact.
7. Evaluate the counterclockwise contour integral $J:=\oint_{\Gamma} x^{2} y^{2} d s$ along the unit circle Γ centered at the origin. [The parameter $d s$ is arc length].

Solution: On the unit circle we use the polar coordinate parameterization $x=\cos \theta, y=\sin \theta$. Then

$$
x^{2} y^{2}=\cos ^{2} \theta \sin ^{2} \theta \quad \text { and } \quad d s=\sqrt{x^{\prime 2}+y^{\prime 2}} d \theta=d \theta
$$

The integral is thus $J=\int_{0}^{2 \pi} \cos ^{2} \theta \sin ^{2} \theta d \theta$.
The identity $\sin 2 \theta=2 \sin \theta \cos \theta$ followed by the substitution $\phi=2 \theta$ gives

$$
J=\int_{0}^{2 \pi}\left(\frac{\sin 2 \theta}{2}\right)^{2} d \theta=\frac{1}{8} \int_{0}^{4 \pi} \sin ^{2} \phi d \phi=\frac{1}{4} \int_{0}^{2 \pi} \sin ^{2} \phi d \phi
$$

But

$$
\int_{0}^{2 \pi} \sin ^{2} \phi d \phi=\int_{0}^{2 \pi} \frac{1-\cos 2 \phi}{2} d \phi=\left[\frac{\phi}{2}-\frac{\sin 2 \phi}{4}\right]_{0}^{2 \pi}=\pi
$$

so

$$
J=\frac{\pi}{4}
$$

8. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation. Suppose that there exist $v, w \in \mathbb{R}^{2}$ such that $T(v)=v$ and $T(w) \neq w$. Show that T is diagonalizable if and only if it has an eigenvalue unequal to 1 .

Solution: $\quad \Rightarrow$: Suppose for a contradiction that T has all eigenvalues equal to one. Since T is diagonalizable, this implies that T is the identity. But this contradicts the assumption that $T(w) \neq w$.
\Leftarrow : As $T(v)=v$ and v is not zero, one is an eigenvalue of T. So if T also has an eigenvalue not equal to one, T is diagonalizable, since any 2×2 matrix with two distinct eigenvalues is diagonalizable.
9. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function whose derivative satisfies the inequality $\left|g^{\prime}(x)\right| \leq M$ for all x in \mathbb{R}.
Show that if $\varepsilon>0$ is small enough, then the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x+\varepsilon g(x)$ is one-to-one and onto.

Solution: We may and shall assume that $M \geq 1$, and choose $\varepsilon \leq \frac{1}{2 M}$. It follows that

$$
f^{\prime}(x)=1+\varepsilon g^{\prime}(x) \geq 1-\varepsilon M \geq \frac{1}{2}
$$

for every $x \in \mathbb{R}$. The Mean Value Theorem then implies that

$$
|f(x)-f(y)|=\left|f^{\prime}(\xi)\right||x-y| \geq \frac{1}{2}|x-y|
$$

This proves injectivity.
Applying the Mean Value Theorem one more time we get

$$
f(x)-f(0)=f^{\prime}(\xi) x
$$

This last quantity is $\geq \frac{x}{2}$, for $x \geq 0$, and $\leq \frac{x}{2}$ for $x \leq 0$. In any case it follows that

$$
\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty
$$

and the intermediate value theorem proves that f is onto.
10. Let G be a group of order 155 .
a) Show that G must have a non-trivial proper normal subgroup.

Solution: The prime factorization of 155 is $5 \cdot 31$. By the Sylow theorem, the number of Sylow 31-groups divides 5 and is congruent to $1 \bmod 31$, so it must be 1 . That is, there is a unique subgroup of order 31 , so it is normal.
b) Suppose that G (still of order 155) is abelian. Either prove that G is cyclic or give a counterexample.

Solution: By the Fundamental Theorem of Finite Abelian Groups, a finite abelian group is a product of cyclic groups of prime power order. So a group of order $5 \cdot 31$ is isomorphic to $\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 31 \mathbb{Z}$. By the Chinese Remainder Theorem, this group is isomorphic to $\mathbb{Z} /(5 \cdot 31) \mathbb{Z}$ and so is cyclic.
11. Let Ω be a connected open set in the plane \mathbb{R}^{2} and let $f(x, y)$ be a C^{∞} real-valued function with the property that $\operatorname{grad}(f)=0$ at every point of Ω. Prove that f is a constant.

Solution: The Mean Value Theorem implies right away that if $x \in \Omega$, then there is an open ball B_{r} centered at x, lying entirely in Ω, such that $f(y)=f(x)$ for every $y \in B_{r}$. This shows that if we fix $x_{0} \in \Omega$, then the set $\left\{y \in \Omega \mid f(y)=f\left(x_{0}\right)\right\}$ is open. Since it is obviously closed (in Ω, being the preimage of a closed set), and nonempty it has to be all of Ω.
12. Let V_{0}, V_{1}, V_{2} be subspaces of a real vector space V, with V_{0} a proper subspace of V_{1} and of V_{2}. Let $S: V_{1} \rightarrow V_{0}$ and $T: V_{0} \rightarrow V_{2}$ be linear transformations.
a) If V is finite dimensional, show that $T \circ S: V_{1} \rightarrow V_{2}$ is neither injective nor surjective.
Solution1: The rank of $T \circ S$ is less than or equal to the rank of T, which is less than or equal to the dimension of V_{0}, which is less than the dimension of V_{1} and is also less than the dimension of V_{2}. Therefore $T \circ S$ is neither injective nor surjective.

Solution 2: If V is finite dimensional, also V_{0}, V_{1}, V_{2} are finite dimensional. As V_{0} is properly contained in V_{1} and V_{2} we have $\operatorname{dim}\left(V_{0}\right)<\operatorname{dim}\left(V_{1}\right)$ and $\operatorname{dim}\left(V_{0}\right)<\operatorname{dim}\left(V_{2}\right)$. Therefore $S: V_{1} \rightarrow V_{0}$ cannot be injective and $T: V_{0} \rightarrow$ V_{2} cannot be surjective. Thus the composition $T \circ S$ can neither be injective nor surjective.
b) Does the same conclusion necessarily hold if V is infinite dimensional? Give either a proof or counterexample.
Solution 1: Counterexample: Let $V_{1}=V_{2}=V$ be a vector space spanned by a countable basis $e_{0}, e_{1}, e_{2}, \ldots ; V_{0}$ the proper subspace spanned by e_{1}, e_{2}, \ldots; $S\left(e_{i}\right):=e_{i+1}, i=0,1, \ldots$ (right shift); and $T\left(e_{i}\right):=e_{i-1}, i=1,2, \ldots$ (left shift). Then S, T are isomorphisms, as is $T \circ S$.

Solution 2: Consider the following counterexample:
Let $V=\mathbb{R}^{\mathbb{N}}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}\right\}$ be the vector space of all sequences (with componentwise addition and scalar multiplication). Let $V_{1}=V$ and

$$
\begin{gathered}
V_{2}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \mid a_{0}=0\right\}, \\
V_{0}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \mid a_{0}=0, a_{1}=0\right\} .
\end{gathered}
$$

Define $S: V_{1} \rightarrow V_{0}$ by $S\left(\left(a_{0}, a_{1}, \ldots\right)\right)=\left(0,0, a_{0}, a_{1}, \ldots\right)$ and $T: V_{0} \rightarrow V_{2}$ by $T\left(\left(0,0, a_{2}, a_{3}, \ldots\right)\right)=\left(0, a_{2}, a_{3}, \ldots\right)$. Then S and T are bijective and therefore also $T \circ S$ is bijective.

