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PRELIMINARY EXAMINATION, PART I

Thursday, April 28, 2016 9:30-12:00

This part of the examination consists of six problems. You should work
all of the problems. Show all of your work. Try to keep computations
well-organized and proofs clear and complete. Be sure to write your
name both on the exam and on any extra sheets you may submit.

All problems have equal weight.

Score
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1. Let {a,} be a sequence of real numbers such that lim a,, = 0. Prove
n—o0
o0

that the series Z apx" converges uniformly on the closed interval

n=0
—1/2 < <1/2. State any results you are using.



2. Find an orthogonal matrix R that diagonalizes the matrix

A= -

O ==
O =
N O O



3. Let f(z) be a C* real-valued function on R satisfying f”(x) > 0 for
all x € R.

a) Show that at any point = the graph of y = f(z) lies above its
tangent line.

b) If f is bounded above and below, show that f(z) = constant.



4. Let n be a positive integer.

a) Prove that every non-zero element of the ring Z/nZ is either a
unit or a zero-divisor.

b) For which values of n does Z/nZ have the property that every
non-zero element is either a unit or is nilpotent (i.e. some power
of the element equals zero)?



5. Let P, ..., P, be distinct points in R2.

a) Prove that there is a unique point Xy in R? at which the function
QX) =X = A"+ +]IX - P’

on R? achieves its minimum value.

b) Is there a point at which this function achieves its maximum
value?



6. Let X be a metric space and let {z,} be a convergent sequence of
points in X with limit L. Show that the set {x, | n € N} is compact
if and only if some x,, is equal to L.
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PRELIMINARY EXAMINATION, PART II

Thursday, April 28, 2016 1:30-4:00

This part of the examination consists of six problems. You should work
all of the problems. Show all of your work. Try to keep computations
well-organized and proofs clear and complete. Please write your name
on both the exam and any extra sheets you may submit.

All problems have equal weight.

Score
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Total 7-12




7. Evaluate the counterclockwise contour integral J := §I§ z*y? ds along

r
the unit circle I' centered at the origin. [The parameter ds is arc
length].



8. Let T : R?> — R? be a linear transformation. Suppose that there
exist v, w € R? such that T'(v) = v and T'(w) # w. Show that T is
diagonalizable if and only if it has an eigenvalue unequal to 1.

10



9. Let g : R — R be a differentiable function whose derivative satisfies
the inequality |¢'(x)] < M for all z in R.

Show that if € > 0 is small enough, then the function f : R — R
defined by f(x) = x + €g(x) is one-to-one and onto.

11



10. Let GG be a group of order 155.

a) Show that G must have a non-trivial proper normal subgroup.

b) Suppose that G (still of order 155) is abelian. Either prove that
(G is cyclic or give a counterexample.

12



11. Let Q be a connected open set in the plane R? and let f(z,y) be
a C™ real-valued function with the property that grad (f) = 0 at
every point of €). Prove that f is a constant.

13



12. Let Vy, Vi, V5 be subspaces of a real vector space V', with V| a proper
subspace of V; and of V5. Let S : Vi — Vyand T : Vi — V5 be linear
transformations.

a) If V is finite dimensional, show that T'o S : Vj — V4 is neither
injective nor surjective.

b) Does the same conclusion necessarily hold if V' is infinite dimen-
sional? Give either a proof or counterexample.

14



