
Spring 2015 Preliminary Exam Solutions

1. (a) By the Fundamental Theorem of Finitely Generated Abelian Groups, we must have that

this group is the product of cyclic groups. Moreover, by noting that Z/nZ × Z/mZ '
Z/nmZ if and only if gcd(n,m) = 1, we may enumerate all possibilities:

• Z/3Z× Z/32Z
• Z/3Z× Z/16Z× Z/2Z
• Z/3Z× Z/8Z× Z/4Z
• Z/3Z× Z/8Z× (Z/2Z)2

• Z/3Z× (Z/4Z)2 × Z/2Z
• Z/3Z× Z/4Z× (Z/2Z)3

• Z/3Z× (Z/2Z)5

There are thus 7 such groups.

(b) Yes , the group S3 × Z/16Z is non-abelian since S3 is non-abelian. To see that S3 is

non-abelian, note that

(1 2)(2 3) = (1 2 3) 6= (1 3 2) = (2 3)(1 2) .

2. This is a first order differential equation, so we must find an integrating factor. We set

ψ(x) = exp

(∫
1

x
dx

)
= x.

Multiplying both sides by ψ(x) we see that the first equation is the same as

d

dx
(xg) = x sinx.

Taking the indefinite integral of both sides gives

xg(x) = sinx− x cos(x) + C

implying

g(x) =
sinx

x
− cos(x) +

C

x
.

Plugging in initial condition of g(π) = 0 gives C = −π, implying

g(x) =
sinx

x
− cos(x)− π

x
.

3. Let n := dim(V ). Since dim(R) = 1 and dim Im(f) 6= 0, this implies that rank(f) =

dim Im(f) = 1. By rank-nullity, this implies that the kernel B is of dimension n−1. Therefore,

to see that B ∪ {v} is a basis of V , it is sufficient to show that it is linearly independent. Let

b1, . . . , bn−1 enumerate B and consider a linear combination

c1b1 + · · ·+ cn−1bn−1 + cnv = 0 .

Then applying f gives cn = 0, and linear indepenence of B gives all other ci = 0.
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4. Yes, F must be a constant function . Fix x ∈ R. Then note that

|F ′(x)| = lim
h→0

|F (x+ h)− F (x)|
|h|

≤ lim
h→0

6|h3| = 0 .

This means that F ′ ≡ 0. By the mean value theorem, this implies that F is a constant function.

5. (a) The matrix

[
0 1

1 0

]
has eigenvalues ±i, and therefore is not diagonalizable over Q. How-

ever, since it has distinct eigenvalues, it is diagonalizable over C.

(b) The matrix

[
0 1

0 0

]
has only the eigenvalue 0, and the eigenspace corresponding to 0 is

of dimension 1, implying there does not exist a basis of eigenvectors over C and thus is

not diagonalizable.

6. (a) This statement is true . Recall that for a set S we have

S =
⋂

C⊃S:C is closed

C.

Since A ∪B is closed and contains A ∪B, we have that A ∪B ⊂ A ∪B. Moreover, since

A ⊂ A∪B, we have A ⊂ A ∪B and similarly have B ⊂ A ∪B. This gives A∪B ⊂ A ∪B.

(b) This statement is not true . Take A = Q and B = R \ Q. Then A ∩ B = ∅, but

A = B = R implying

A ∩B = R 6= ∅ = A ∩B .

7. (a) By Green’s Theorem, we have∫
C

1

2
(x dy − y dx) =

∫
D

1

2
(1 + 1) dA = Area(D) .

(b) Parameterize the ellipse by

r(t) = a cos(t)i + b sin(t)j

for t ∈ [0, 2π). Then by the previous part, we have

Area =

∫
C

1

2
(x dy − y dx)

=
1

2

∫ 2

0

π (a cos(t)b cos(t)− b sin(t)(−a sin(t))) dt

=
1

2

∫ 2π

0

(ab cos(t)2 + ab sin(t)2) dt

=
1

2
· 2π · ab

= abπ .
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8. We use the method of Lagrange multipliers, and define the function

Λ(x, y, λ) = x2 + y2 − λ(xy − 2)

and solve the equation ∇Λ = 0. This gives three equations

2x = λy

2y = λx

xy = 2.

Dividing the first two equations gives x2 = y2, i.e. |x| = |y|. Plugging this into the final

equation gives x = y = ±
√

2. Plugging this to the function x2 + y2 gives the value of 4. This

must be a minimum, as the function x2 + y2 is unbounded on the curve xy = 2. Therefore, the

minimum of f on xy = 2 is 4 .

9. (a) Since Q is a field, Q[x] is a Euclidean domain, and therefore is a PID .

(b) This is not a PID ; we claim that the ideal (x, y) is not principal. Seeking a contradic-

tion, suppose that (x, y) = (f). Then this implies that f |x and f |y. But since x and y

are coprime and irreducible, this would imply that f is a unit. However, this would imply

that (x, y) = (f) = Q[x, y] which is not true, since 1 /∈ (x, y).

(c) This is not a PID since it is not an integral domain, as can be seen by

(1, 0) · (0, 1) = (0, 0) .

10. Fix ε > 0. Set δ := ε. Then for all x so that |x− 1| < δ = ε, we have

|
√
x− 1| = |x− 1|

|
√
x+ 1|

≤ |x− 1| < ε

where the first inequality is by factoring the difference of squares and the second is by noting

that |
√
x+ 1| > 1.

11. (a) Note that

2(2, 1, 1)− (1, 2, 3) = (3, 0,−1)

implying that these three vectors span a two-dimensional subspace. We then note that

the vectors (1, 2, 3) and (3, 0,−1) are linearly independent and orthogonal, implying that

setting

v1 := (1, 2, 3)

v2 := (3, 0,−1)

gives an orthogonal basis B = {(1, 2, 3), (3, 0,−1)} .
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(b) We need to add another basis element, so we apply Gram-Schmidt to the above two

vectors and the vector (0, 1, 0) to get

v3 := (0, 1, 0)− (1, 2, 3) · (0, 1, 0)

(1, 2, 3) · (1, 2, 3)
(1, 2, 3)− (3, 0,−1) · (0, 1, 0)

(3, 0,−1) · (3, 0,−1)
(3, 0,−1)

=

(
−1

7
,

5

7
,−3

7

)
.

The collection {(1, 2, 3), (3, 0,−1), (−1, 5,−3)} is an orthogonal basis for R3 that con-

tains B.

12. We must have that A ≥ 0. Seeking a contradiction, suppose that A < 0. Then there exists

and N so that for all n ≥ N ,

|an −A| < |A|/2 .

By triangle inequality, this would then imply that an < A/2 < 0 which is a contradiction.
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