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ABSTRACT

CERTAIN SYSTEMS ARISING IN STOCHASTIC GRADIENT DESCENT

Konstantinos Karatapanis

Robin Pemantle

Stochastic approximations is a rich branch of probability theory and has a wide

range of application. Here we study stochastic approximations from the perspective

of gradient descent. An important question is what is the asymptotic limit of a

stochastic approximation. In that spirit we will provide a detailed description for

the limiting behavior of certain one dimensional stochastic approximations.
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Chapter 1

Introduction

1.1 Introduction

Let F : Rd → Rd, d ≥ 1 be a vector field. For much of what follows, F arises as

the gradient of a potential function V , namely V : Rd → R, and F = −∇V . Now,

we define a system driven by

Xn+1 = Xn + an (F (Xn) + ξn+1) . (1.1.1)

To elaborate on the parameters, let Fn be a filtration, then an, ξn are adapted,

and ξn constitute martingale differences, i.e., E(ξn+1|Fn) = 0. The sequence an

can be deterministic or stochastic, and the sequence is assumed to be positive al-

most surely and is either converging to zero or staying constant, for a discussion

on the different possibilities, see section 1.2. Also, when the dynamics of F are
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complicated, we usually require some additional assumptions on the the noise; one

is a boundedness restraint in that we assume the existence of a constant M , such

that |ξn| ≤M a.s.; and secondly, we want ξn to be quasi-isotropic (see [DKLH18]),

i.e., P((θ · ξn)+ > δ) > δ for any unit direction θ ∈ Rd . This condition makes

sure that the process gets jiggled in every direction. However, in many instances

more relaxed conditions on ξn are enough. This versatile system is well-studied,

and it arises naturally in many different areas. In machine learning and statistics,

(1.1.1) can be a powerful tool used for quick optimization and statistical inference

(see [AAZB+17], [LLKC18], [CdlTTZ16]), among other uses. Furthermore, many

urn models are represented by (1.1.1). These processes play a central role in prob-

ability theory due to their wide applicability in physics, biology and social sciences;

for a comprehensive exposition on the subject see [Pem07].

Processes satisfying (1.1.1), when an goes to zero, are known as stochastic ap-

proximations, first introduced in [RM51]. These processes have been extensively

studied since [KY03]. An important feature is that the step size an satisfies

∑
n≥1

an =∞ and
∑
n≥1

a2n <∞.

This property balances the effects of the noise in the system, so that there is an

implicit averaging that eventually, eliminates the effects of the noise. The pre-

viously described system hence behaves similarly to the mean flow: the ODE

whose right-hand side corresponds to the expectation of the driving term (F (Xt)).
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The previous heuristic can help us identify the support S of the limiting process

X∞ := limn→∞Xn in terms of the topological properties of the dynamical system

dXt
dt

= F (Xt) (see [KY03] chapter 5). More specifically, in most instances, one can

argue that attractors are in S, whereas repellers or “strict” saddle points are not

(see [KY03] chapter 5.8). However, there has not been a systematic approach find-

ing when a degenerate saddle point, i.e., a point that is neither an attractor nor a

repeller, belongs in S.

Stochastic approximations arise naturally in many different contexts. Some

early results were published by [Rup88] and [PJ92]. There, they dealt with averaged

stochastic gradient descent (ASGD) arising from a strongly convex potential V with

step size n−γ, γ ∈ (1/2, 1]. In their work they proved that one can build, with proper

scaling, consistent estimators x̃n (for the arg min(V )) whose limiting distribution

is Gaussian. In learning problems, a modified version of ASGD [RSS12] provides

convergence rates to global minima of order n−1. Additionally, many classical urn

processes can be described via (1.1.1), where an is of the order of n−1. Focused

effort is being placed in understanding the support of the limiting process X∞. In

specific instances, the underlying problem boils down to understanding an SGD

problem: characterizing the support of X∞ in terms of the set of critical points of

the corresponding potential V . For a comprehensive exposition on urn processes,

see [Pem07].
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1.2 Step sizes

In the literature of stochastic approximations, there is are ample choices for the

behavior of the step sizes depending on the application at hand. Also, in different

contexts, the sequence an as in recursion (1.1.1) can appear with different names.

For example it is known as learning rate (machine learning), smoothing constant

(forecasting) or gain (signal processing).

1. In [EDM04] they study the rate of convergence for polynomial step sizes, i.e.,

an = n−γ where γ ∈ (1/2, 1) in the context of Q-learning for Markov decision

processes, and they experimentally demonstrate that for γ, approximately 17
20

the rate of convergence is optimal.

2. Kesten algorithm [Kes58] introduced a stochastic approximation process in

hopes of accelerating the convergence of the Robbins-Monro algorithm [RM51].

The idea here is: when we are confident that the process is close to the value

θ we wish to estimate, we decrease the step size in order to stabilize the con-

vergence. And whenever we suspect we are far away from θ, we keep the step

size large in order to allow faster exploration. In order to determine when it

is warranted to decrease the step size, they followed the heuristic that when

the process is close to θ then the sign of Xn − Xn−1 should fluctuate more

intensely, as the process will keep overshooting. More formally, suppose that

we have a sequence an ≥ 0 such that
∑

n=1 an =∞ and
∑

n=1 a
2
n <∞. Then
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we define a stochastic approximation whose step size is b1 = a1, b2 = a2 and

bn = akn

kn+1 =


kn if (Xn −Xn−1)(Xn−1 −Xn−2) > 0

kn + 1 if (Xn −Xn−1)(Xn−1 −Xn−2) ≤ 0

3. In Gaivoronski [EW88], we see another variation of the Robbins-Monro al-

gorithm where the step size is decreasing when |Xn−Xn−k|∑n−1
i=n−k |Xi+1−Xi|

≤ γ̃ for some

threshold value γ̃, and otherwise it stays the same. The intuition on why this

works is that the quantity |Xn−Xn−k|∑n−1
i=n−k |Xi+1−Xi|

≤ γ̃ is small when the iterates are

fluctuating, and this is likely to happen when you are in the proximity of the

minimum. Conversely, when the quantity |Xn−Xn−k|∑n−1
i=n−k |Xi+1−Xi|

is big, the process

is likely to be far away from the minimum.

4. In [SR96], they study the adaptive behavior of a lizard. In this model, the

lizard wants to maximize the reward per unit of time in the long run. The

lizard is at its home, unless it is hunting, and at some random time τn an ant

appears whose weight is wn. If the lizard is at home and an ant appears, it

decides whether to go after the ant or not. If the lizard goes after the ant, it

will catch it with some probability and it will take the lizard rn to return to

its home, regardless of whether he has successfully captured its prey or not.

More formally, the lizard decides, based on past observations, to chase after

the ant having in mind to maximize Tn/Wn the ratio of the total time it has
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taken him to successfully have caught ants whose total weight amounts to Wn.

This problem can be formulated as a stochastic approximation, whose step

size is W−1
n . The purpose of this research is to compare whether the strategy

utilized by the lizard in this learning problem, will match the strategy that

would arise via different optimization techniques; for example via the “return

for effort” principle.

5. In [PJ92] and [Rup19] the step sizes are of polynomial order an = n−γ. Here,

they focus on studying an average of the iterates Sn =
∑n
i=1Xi
an

properly scaled

so that Sn converges in distribution to a normal. The optimal choice for γ is

shown be less than 1, indicating that if you allow more fluctuations then by

averaging you obtain a better estimate for the true value of the parameter.

The point estimation for Robbins-Monro can be shown to be optimal for step

size an = 1
n

in terms of minimizing the square mean error at comparable rates

to the averaging scheme. Even though we do not improve the performance

in the long run, the averaging scheme is preferable since the larger step sizes

increase robustness because in the early stages it is favorable to increase the

rate of exploration.
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1.3 Stochastic gradient descent

In machine learning, processes satisfying (1.1.1) appear in stochastic gradient de-

scent (SGD). First, to provide context, let us briefly introduce the gradient descent

method (GD) and then see why SGD arises naturally from it. The GD is an op-

timization technique which finds local minima for a potential function V via the

iteration

xn+1 − xn = −ηn∇V (xn), (1.3.1)

where in many applications we take ηn to be a positive and constant. Notice that

(1.3.1) is a specialization of (1.1.1), when F = −∇V , ξn+1 ≡ 0 and an = ηn. The

previous method when applied to non-convex functions has the shortcoming that

it may get stuck near saddle points, i.e., points where the gradient vanishes, that

are neither local minima nor local maxima, or locate local minima instead of global

ones. The former issue can be resolved by adding noise into the system, which,

consequently, helps in pushing the particle downhill and eventually escaping saddle

points (see [Pem90] and [KY03] chapter 5.8). For the latter, in general, avoiding

local minima is a difficult problem ([GM91] and [RRT17]), however, fortunately,

in many instances finding local minima is satisfactory. Recently, there have been

several problems of interest where this is indeed the case, either because all local

minima are global minima ([GHJY15] and [SQW17]), or because in other cases local

minima provide equally good results as global minima [CHM+15]. Furthermore, in
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certain applications saddle points lead to highly sub-optimal results ([JJKN15] and

[SL16]), which highlights the importance of escaping saddle points.

An important variant of GD/SGD is the momentum GD/SGD, firstly intro-

duced by Polyak in [Pol64]. This algorithm diminishes the effects of the gradient in

directions where the iterates are fluctuating, and it increases the movement along

stable directions by accumulating momentum. In the literature the momentum

algorithm appears in two popular formats,

vt = bvt−1 + η∇V (xt)

xt = xt−1 − vt−1

and

vt = bvt−1 + (1− β)∇V (xt)

xt = xt−1 − ηvt−1

The parameter β ∈ (0, 1), plays an important role in the performance. In practice,

usually β is chosen around 0.9, but there is no fast and hard rule. SGD has difficulty

navigating along ravines, and in such instances adding momentum can significantly

improve performance.

A small variation of the previous algorithm, but which significantly improves

performance is the accelerated gradient descent, or the look-ahead momentum gra-
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dient descent [NES83].

vt = bvt−1 + η∇V (xt − bvt−1)

xt = xt−1 − vt−1

Here, in order to make the transition from xt−1 to xt, we incorporate into the

gradient the quantity −bvt−1 which is a good predictor on where the xt−1 will land,

hence further improving the performance and giving a convergence rate of O(1/t2)

after t iterations.

One shortcoming of the momentum algorithms already described is that we have

to guess the value of the parameter b as the these algorithms do not have a way to

auto-tune. Some variations of SGD that try to ameliorate this are Adagard [DHS11],

and Adadelta [DZ12]. For an overview for SGD algorithms with a neural network

perspective, see [Rud16].

1.4 Stochastic approximations

1.4.1 Historic development

In 1951, R. Monro gave birth to stochastic approximation with his work [RM51].

Time proved that his ideas were very fruitful, and since then the theory has flour-

ished. Suppose we perform an experiment at level xn ∈ [0, 1] giving rise to a random
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variable ξ(ω, xn), whose distribution is unknown depending on xn, measuring the

response of the experiment. Here, E(ξ(ω, xn)) is again unknown, however we know

it is increasing in its second coordinate. We wish to find the level x̃ such that

E(ξ(ω, x̃)) = a, where a is a given constant. This should be done by establishing

a recursive rule on how, given the past observations, we can determine the next

level xn+1 for the experiment so that xn → θ in some sense. This can be accom-

plished by the recursion xn+1 − xn = 1
n
(a − ξ(ω, xn)) . To make the connection to

(1.1.1), an = 1
n
, F (xn) = a−E(ξ(ω, xn)) and ξn+1 = E(ξ(ω, xn))−ξ(ω, xn). One of

the main theorems is that when E(ξ(ω, x)) is differentiable such that ∂E(ξ(ω,x̃))
∂x

> 0

then xn → θ in probability. The step size factor 1
n

is chosen appropriately, so that

there is an implicit averaging that eliminates the effects of the noise, eventually.

The previously described system hence behaves similarly to the ODE whose right-

hand side corresponds to the expectation of the driving term in the sense that their

limiting points coincide.

Later Kiefer [KW52], in a short paper, relaxed the conditions on M(x) =

E(ξ(ω, x)). In the following years Julius R. Blum first established that the con-

vergence in the R. Monro model is almost surely, and then later on he proved the

multidimensional analogue [RB54].

In an effort to improve the rate of convergence, in the multidimensional setting,

and make it more applicable in the field of statistics in [PJ92] they consider an

average of the iterates, i.e., Sn =
∑n

i=1 xi. Then they show that if Sn is averaged
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properly then, it converges in distribution to a normal random variable. In that

way it is possible to perform statistical testing like confidence intervals or hypothesis

testing. Next, we provide a motivating example:

Example 1. In paper [HLS80], they consider a random variable Xn taking values

in (0, 1), which we interpret as counting the percentage of the red balls out of n balls

in accordance to Polya’s urn model. Recursively define Xn+1 to be
nXn + 1

n+ 1
with

probability f(Xn), and Xn+1 =
nXn

n+ 1
with probability 1 − f(Xn). The main result

of [HLS80] is that Xn converges to a random variable X, whose range is a subset

of C = {p|f(p) = p}; moreover for all points p such that f ′(p) < 1 or (f ′(p) > 1),

we have P(X = p) > 0 (P(X = p) = 0).

This process fits the general form (1.1.1). Indeed, we may rewrite Xn in the

following form Xn+1 −Xn = An + Yn where Yn is the martingale

Yn =



1−f(Xn)
n+1

, with probability f(Xn)

, and An = f(Xn)−Xn
n+1

.

−f(Xn)
n+1

, with probability 1− f(Xn)

Define gn =


1− f(Xn), with probability f(Xn)

−f(Xn), with probability 1− f(Xn)

.

Then, the SDE becomes Xn+1 − Xn = f(Xn)−Xn
n+1

+
gn

n+ 1
= f(Xn)−Xn

n+1
+

Θ(1)

n+ 1
,

when f(Xn) is bounded away from {0, 1}. We have already mentioned that Xn can

only converge to points p, such that f(p) = p, f ′(p) < 1. The idea is that the
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condition f ′(p) < 1 implies that f(Xn) − Xn is positive when Xn ∈ (p − δ, p) and

negative when Xn ∈ (p, p + δ). Therefore, An pushes Xn towards p, when Xn lies

in a neighborhood of p, and since |Xn+1 −Xn| = O(1/n), the process (Xn)n≥0 may

eventually get trapped in the neighborhood. Consequentially, as p is the sole point

in the neighborhood that belongs in C, the convergence follows.

1.4.2 Convergence in one dimension

After the result of [HLS80], in recent years, the corresponding proofs have been

increasingly simplified using martingale techniques. Now, we offer a summary of

some of the most fundamental results taking place in the one dimensional setting.

Most of what follows is covered in [Pem07]. We define the following recursion,

Xn+1 −Xn = anF (Xn) + anξn+1 + anRn, (1.4.1)

where ξi are martingale differences and Rn is a predictable process, that represents

some approximation error or bias, depending on the context. The step sizes an

are positive and satisfy
∑∞

n=1 an = ∞ and
∑∞

n=1 a
2
n < ∞, the accumulated error

is summable, i.e., R̃n =
∑∞

n=1 an|Rn| < ∞. We will borrow some constraints

appearing in Urn processes and henceforth assume Xn ∈ [0, 1] and F ∈ [0, 1]. The

interval (0, 1) and the previous constrains, altogether, are chosen for illustrative

purposes. Next, we will see that the support of the limiting process is supported

on the zero set of F ,i.e., X∞ := limn→∞Xn ∈ {p|F (p) = 0}.
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Theorem 1.1. Suppose that Xn solve (1.4.1). Also, E(ξ2n+1|Fn) ≤ M , for some

positive constant M . If F > δ or F < −δ on [a, b] ⊂ (0, 1), then for any closed

interval I ⊂ [a, b] we have P(X∞ ∈ I) = 0.

To see why this is true, assume that Xn eventually stays inside I, then because∑∞
n=1 an =∞ the iterates Xn, would have to travel along a path of infinite length,

which contradicts the fact that there is a finite amount of noise in the system.

A direct corollary of the previous result is that X∞ ∈ {p|F (p) = 0}, when F is

continuous, as the sets {F > 1
n
} can be written as a countable union of open sets.

Corollary 1.2. Suppose that Xn solve (1.4.1). Also, E(ξ2n+1|Fn) ≤ M , for some

positive constant M . If F is a continuous function then X∞ ⊂ {p|F (p) = 0}.

The next two results provide a more detailed description for the support of X∞

as a subset of {p|F (p) = 0}.

Theorem 1.3. Suppose that Xn solve (1.4.1). Let p ∈ (0, 1), and assume that

F < 0 on (p − ε, p), F > 0 on (p, p + ε] and F (p) = 0. If Xn visits (p − ε, p + ε)

infinitely often then P(X∞ = 0) > 0.

Lastly, we provide a non-convergence theorem,

Theorem 1.4. Suppose that Xn solve (1.4.1). Let p ∈ (0, 1), and assume that

F = sign(x− p) on (p− ε, p+ ε) then P(X∞ = p) = 0.

We interpret the previous results in the context of SGD. In that setting corol-

lary 1.2 says that X∞ is supported on the stationary points of the corresponding
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potential function V such that V ′ = F . Theorem 1.3 says that a local minimum

for V , when visited infinitely often, is a point where SGD may convergent to. And

finally, Theorem 1.4 argues that a local maximum is always avoided.

1.4.3 Convergence in multiple dimensions

Here, we will discuss the ODE-method for a more detailed exposition, see [KY03],

which is used to establish convergence results for stochastic approximations. This

method links the asymptotic behavior of the discrete process to the autonomous

continuous dynamical system. It can be shown that there is a sequence of continuous

approximation of the tail of the discrete process, that converges to the continuous

dynamical system. Subsequently, under certain conditions imposed on the discrete

process, our knowledge about the asymptotic behavior of the deterministic contin-

uous model transfers to the corresponding discrete stochastic approximation. All

this will be made more precise after we have laid out the necessary apparatus. The

main results, in this section, will be a convergence and a non-convergence result

Theorem 1.7, and [Pem90] respectively. We will provide a sketch for the Theorem

1.7 and the rest of the results will be quoted.

The main analytic concept for this method is equicontinuity. We give the defi-

nition

Definition 1.5. Let fn : R → R be a family of measurable functions. Then {fn}

is called equicontinuous in the extended sense if sup |fn(0)| is bounded and for all

14



δ > 0

lim sup
n→∞

sup
0≤|s−t|<δ

|fn(t)− fn(s)| = 0

So, we have the following version of Arzela-Ascoli theorem.

Theorem 1.6. Let fn : R→ R be a family of measurable functions. Then, there is

a subsequence fkn such that fkn converges uniformly on a continuous function.

Next, we will see an application of the following theorem to a deterministic

model, which can serve as a template for establishing our main convergence result.

Example 2. Suppose that x′(t) = F (x(t)) for a continuously differentiable func-

tion F . Define xn(t) =
∑∞

m=0 1[mn ≤t<
m+1
n ]x

(
m
n

)
. Then we can see that {xn} is an

equicontinuous family of functions, that satisfy xn(t) =
∫ t
0
F (xn(u))du + ρn(t). It

is easy to see that ρn(t) → 0 uniformly. Therefore, the limiting object for xn(t)

satisfies x′(t) = F (x(t)).

We define the associated continuous process for the stochastic approximations

solving equation (1.1.1). Define tn =
∑n−1

i=1 ai for n ≥ 1. Set

X1(t) =


X1 for t ≤ 0

Xn when tn ≤ t < tn+1

,

and for n > 1 define Xn(t) = X1(tn + t). Now that we have set up the necessary

terminology, we can state a general convergence theorem for processes that satisfy

(1.1.1).
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Theorem 1.7. Suppose that Xn solve (1.1.1). Furthermore, assume that |Xn| is

almost surely bounded. Then there is a null set N such that for all ω /∈ N , the

sequence Xn is equicontinuous and the limits x′t of convergent subsequences of Xn

are trajectories of x′t = F (xt) in some bounded invariant set and Xn converges to

this invariant set. Furthermore, if F admits a potential functions −∇V , then Xn

converges to a stationary component of V .

The sketch of the proof consists of two main steps, the first step is to establish

that the shifted interpolated process converges to the deterministic one. After

establishing that one can argue that if the interpolated process did not behave as

expected it would contradict the fact that its limit satisfies the stationary ODE.

For the first part one can argue that the tail of the martingale sequence is going

to zero, using the Markov inequality. For the second part we characterize the limit

points as follows. Because the of boundedness assumption and the fact that the

iterates are bounded there must be a point inside the locally stable neighborhood

S where the iterates are converging to. The deterministic system remains inside

S, therefore the iterates eventually must stay in S, as well. Since Xn(0) = X1(tn)

is convergent, the iterates must converge to the limit set of S. When F arises

from a potential function the limit sets are the stationary points. Furthermore the

iterates must converge to a unique component since otherwise, as the difference

of successive iterates is going to zero, there would exist a point, outside of the

stationary component, where the iterates converged to.
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In the previous theorem an important assumption was that the iterates were

bounded. When the iterates are not constrained in a bounded domain the analysis

is more complicated. In this case the trajectories can possibly be unbounded, and

stability techniques, a prominent one is establishing the existence of a Liapunov

function, (see [KY03] chapter 5.4) is one of the main ways forward. These methods

can be used to establish that the iterates return to a bounded trajectory infinitely

often, in which case asymptotic analysis techniques similar to Theorem 1.7 can be

utilized.

The main ingredient for the proof of Theorem 1.7 was that the family of the

interpolated process was equicontinuous. In, principle, one can demand minimal

conditions for the step sizes and the stochastic approximation algorithm so that

this property is met. An effort to do that can be seen in [KY03] chapter 5.4,

producing results under weaker conditions. Furthermore, in a certain classes of

problems the conditions specified there can be seen not only being necessary, but

also sufficient.

We have established that the limit of a stochastic approximation is supported

on distinct stationary components. An important next step for the development of

the theory is the investigate which stationary points are limiting. Generally it is

hard to establish whether a saddle point is in the support of X∞, as the underlying

dynamics can lead to very complicated saddle point structures. However, a very

important result [Pem91], shows that when the linearization of F (·) as in (1.1.1),
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at a point p, has a positive eigenvalue value then p will never be in the support of

X∞.

1.4.4 Motivating example

Here we will revisit Example 1, and the follow up paper of Pemantle [Pem91] which

provides a more detailed description for the support of X∞. The analysis developed

in section 1.4.1 establishes that the support of the limiting process is exactly the set

of fixed points of f (critical points of the corresponding potential). More precisely,

the iterates Xn will avoid local maxima with probability 1, and Xn will converge to

a local minimum with some positive probability. However, at that point in history,

it was unknown whether Xn can converge to saddle points. Later Pemantle, with his

work [Pem91], settled this; giving explicit conditions, and surprisingly depending on

the local behavior of f , the process may or may not converge there. Next, we will

define a quantity which we will need in the next paragraph. Let Zn,m =
∑m−1

i=n Yi,

so E(Z2
n,m) ≤

∑
i≥n

1
(i+1)2

∼ 1
n
. The last equation, after taking m → ∞, is called

the remaining variance for the process Xn, and it measures how much Xn can

potentially deviate from the “mean flow” by the influence of future noise.

We will give the high level intuition, in qualitative terms, utilizing objects al-

ready described, namely the mean flow and the remaining variance. It is clear that
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the occurrence of convergence or non convergence to a point p, depends on the

behavior of the process Xn when lying in the stable trajectory. Now, for simplicity,

we assume the stable trajectory lies in a left neighborhood of p namely (p − δ, p),

and recalling that p is a saddle point (p, p + δ) realizes the unstable trajectory.

Consequently, assume Xn is moving towards p. The notion of the expected rate

of convergence o1(n) := (Xn − p) can be explicitly computed via solving the mean

flow differential equation. To continue further, as promised, we need to introduce

o2(n) =
√
E(Z2

n,∞) the order of the square root of the remaining variance. When

o1(n) = o(o2(n)), in every instance where Xn behaves as expected, with h.p. Xn will

be pushed, by the remaining noise, to the unstable trajectory i.e. Xn+k ∈ (p, p+ δ)

for some k > 0. Whenever this happens Xn+k may fail to return to (p− δ, p) with

some positive fixed probability. Finally, by Borel-Cantelli the process will not con-

verge to p with probability 1. Similarly, we can argue that when o2(n) = o(o1(n)),

Xn will converge to p with some positive probability. To elaborate, the probability

that Xn will escape the stable trajectory is decaying rapidly whence by Borel-

Cantelli, in the event that Xn behaves as expected, the process will fail to visit the

unstable trajectory, thereby establishing the convergence of Xn to p.

1.5 Non-convex optimization

Non-convex optimization problems are, generally, NP-hard (for a discussion in the

context of escaping saddle points see [AG16]). The difficulty with high order saddle
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points can be seen from the fact that it is NP-hard to confirm when a polynomial

of degree 4 is non-negative. We have the following theorem

Theorem 1.8. It is NP-hard to determine whether a homogeneous polynomial of

degree 4 is non-negative.

For a reference see [Nes00] and [HL13]. This limitation does not mean that there

could not exist algorithms that distinguish higher order degenerate saddle points

efficiently when noise is added appropriately into the system. Which in turn could

provide fast convergence to local minima with high probability.

So far, there has been a lot of effort finding fast converging SGD type of al-

gorithms when assuming some non-degeneracy conditions on the Hessian matrix.

Although there are results when the Hessian is degenerate, all the results require

using knowledge of the second order terms (Hessian and higher derivatives) which

are computationally very expensive because they need to calculate the inverse of

the Hessian matrix etc.. So, in practice, they mostly use results that require only

first order information, or at least an oracle calculating the Hessian along one di-

rection. The latter has been shown that it can implemented efficiently by running

a subroutine of a cubic regularization problem [AAZB+17].

One popular condition that guarantees that the SGD will avoid saddle points is

the strict saddle property. Using the terminology of equation (1.1.1), a point p is

a strict saddle when the linearization of F at p contains a positive eigenvalue see

[Pem90] [JGN+17] and [Lev2006]. The paper [Pem90] establishes that if a stochastic
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approximation satisfies (1.1.1) then it will avoid, asymptotically, a strict saddle

point with probability 1. A result of similar flavor is [LSJR16], where under the same

condition they show that if you randomly initialize GD, then with probability 1 you

avoid strict saddle points. Both of the problems use a stable manifold theorem. The

former result using this decomposition finds a good approximation of the trajectories

in the proximity of the saddle point, and by a change of coordinates it manages to

see how the process gets jiggled in the unstable direction. The latter, via the stable

manifold theorem argues that the set of stable trajectories is of measure zero, hence

if you randomly initialize and then do GD you will avoid the saddle points.

The previous results established some confidence that the first order information

is enough to evade saddle points asymptotically. Next, using the strict saddle

property, in [JGN+17] they managed to evade saddles point with high probability

in O
(
polylog(d) 1

ε2

)
iterations. Here, using again the strict saddle property they

managed to find a novel description of the geometry surrounding a saddle point.

The idea is that when the Hessian has a negative eigenvalue, then only in a small

band parallel to the corresponding eigenvector the process can get stuck. Since

outside of this small band the eigenvector has a dominant effect which forces the

process to decrease rapidly. Using these ideas the algorithm they came up with,

repeats unperturbed gradient descent as long as the gradient is big. When the

gradient is smaller than a certain threshold value they perturb the process, having

in mind, that if the process lands outside the small band the gradient is dominant
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again. Finally, since, the area of the band is small, with high probability the gradient

will become large so that performing gradient descent is efficient again.

1.6 Further discussion

Here, we will be occupied understanding the support of X∞ in an one dimensional

setting. More specifically, we will work with processes that solve

Xn+1 −Xn =
f(Xn)

nγ
+
Yn+1

nγ
, γ ∈ (1/2, 1]. (1.6.1)

To put in the SGD context, the antiderivative of −f would correspond to the

potential function −V . Therefore, if a point p has a neighborhood N such that f

is positive except f(p) = 0, then point p would be a saddle point.

Problem 1. Let (Xn)≥1 solve (1.6.1). Suppose that p is a saddle point. Find the

threshold value:=γ̃ for γ, should it exist, such that:

1. When γ ∈ (1/2, γ̃), then P(Xn → p) = 0.

2. When γ ∈ (γ̃, 1], then P(Xn → p) > 0.

Part 1 of Problem 1 guarantees that the SGD avoids saddle points, and hence

converging to local minima. Choosing different γ in the first regime i.e. γ ∈ (1/2, γ̃),

enables us to optimize SGD’s performance by choosing γ appropriately. In practice

choosing a small step size can slow the rate of convergence, however a bigger step
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size may lead the process to bounce around (see [BR95] and [SL87]). In [EDM04]

they study the rate of convergence for polynomial step sizes in the context of Q-

learning for Markov decision processes, and they experimentally demonstrate that

for γ approximately 17
20

the rate of convergence is optimal.

Here, we are trying to establish that if we understand the underlining dynamical

system sufficiently, then by adding enough noise, the process will wander until it

is captured by a downhill path, and, eventually, will escape the unstable neighbor-

hood. Furthermore, an extension of the results, could, potentially, lead to SGD

type algorithms (in higher dimensions) that converge fast to local minima, even in

the proximity of degenerate saddle points, with high probability.

1.7 Results for the continuous model

We proceed by transitioning to a continuous model. For that purpose we need a

potential, a step size, and a noise term. However, it is natural to consider, without

the need to contemplate, a process defined by

dLt =
f(Lt)

tγ
dt+

1

tγ
dBt, γ ∈ (1/2, 1]. (1.7.1)

We assume that f(0) = 0, and f is otherwise positive in a neighborhood N of zero.

What we wish to investigate is whether Lt will not converge to 0 with probability

1, or if it will converge there with some positive probability. The answer to these
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questions depends only on the local behavior of f on N .

The main non-convergence result is the following:

Theorem 1.9. Suppose that N is a neighborhood of zero. Let (Lt)t≥1 be a solution

of (1.7.1), where f(x) is Lipschitz. We distinguish two cases depending on f and

the parameters of the system.

1. k|x| ≤ f(x), k ≥ 1
2

and γ = 1 for all x ∈ N .

2. |x|k ≤ f(x) , 1
2

+ 1
2k
≥ γ and k > 1 for all x ∈ N .

If either 1 or 2 holds, then P(Lt → 0) = 0.

In part 1, we have only considered γ = 1 since that is the only critical case,

namely for γ < 1 the effects of the noise would be overwhelming and for all k, we

would obtain P(Lt → 0) = 0.

We now state the main convergence theorem:

Theorem 1.10. Suppose that N is a neighborhood of zero. Let (Lt)t≥1 be a solution

of (1.7.1). We distinguish two cases depending on f and the parameters of the

system.

1. k1|x| ≤ f(x) ≤ k2|x|, 0 < ki < 1/2 and γ = 1 for all x ∈ N ∩ (−∞, 0].

2. 0 < c|x|k ≤ f(x) ≤ |x|k, 1
2

+ 1
2k
> γ and k > 1 for all x ∈ N ∩ (−∞, 0].

If either 1 or 2 holds, then P(Lt → 0) > 0.
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This is accomplished by first establishing the previous results for monomials i.e.

f(x) = |x|k or f(x) = k|x|, which is done in sections 3.1, and 3.2. We prove the

stated theorems in section 3.3, by utilizing the comparison results found in section

2.

In section 3.1, we deal with the linear case, i.e. when f(x) = k|x|. There, the

SDE can be explicitly solved, which simplifies matters to a great extent. Firstly,

in subsection 3.1.2, we prove that when k > 1/2, the corresponding process a.s.

will not converge to 0, which is accomplished by proving that it will converge to

infinity a.s.. Secondly, in subsection 3.1.3 we show that process will converge to 0

with some positive probability.

In section 3.2, we move on to the higher order monomials, i.e., f(x) = |x|k.

Here, we show that the process will behave as the “mean flow” process h(t) infinitely

often, which is accomplished by studying the process Lt/h(t). In subsection 3.2.2,

the main theorem is that when 1
2

+ 1
2k
≥ γ, then Lt →∞ a.s.. In subsection 3.2.3,

we show that when 1
2

+ 1
2k
< γ holds, the process may converge to 0 with positive

probability.

Qualitatively, the previous constrains on the parameters are in accordance with

our intuition. To be more specific, when k increases, f becomes steeper, which

should indicate it is easier for the process to escape. When γ decreases the remaining

variance increases, hence we should expect that the process visits the unstable

trajectory with greater ease, due to higher fluctuations.
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1.8 Results for the discrete model

In this section we will state the corresponding results for the discrete model. Fur-

thermore at the end we will provide some examples, and experimental results cor-

roborating the theoretical ones. The asymptotic behavior of the discrete processes

is the expected one, depending on the parameters of the problem. Here, we study

processes satisfying

Xn+1 −Xn ≥
f(Xn)

nγ
+
Yn+1

nγ
, γ ∈ (1/2, 1), (1.8.1)

and

Xn+1 −Xn ≤
f(Xn)

nγ
+
Yn+1

nγ
, γ ∈ (1/2, 1), (1.8.2)

or

Xn+1 −Xn ≥
f(Xn)

n
+
Yn+1

n
, (1.8.3)

and

Xn+1 −Xn ≤
f(Xn)

n
+
Yn+1

n
, (1.8.4)

where Yn are a.s. bounded, i.e., there is a constant M such that |Yn| < M a.s.,

E(Yn+1|Fn) = 0, and E(Y 2
n+1|Fn) ≥ l > 0. The main non-convergence theorem is

the following

Theorem 1.11. Suppose that N is a neighborhood of zero. We separate two cases

1. Suppose (Xn)n≥1 solve (1.8.1), |x|k ≤ f(x) , 1
2

+ 1
2k
> γ and k > 1 for all
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x ∈ N

2. Suppose (Xn)n≥1 solve (1.8.3), k|x| ≤ f(x), k > 1/2 for all x ∈ N

then in both cases P(Xn → 0) = 0.

For the convergence result the non-degeneracy condition E(Y 2
n+1|Fn) ≥ l is

replaced with the assumption stated in part 1 of Theorem 1.12.

Theorem 1.12. Let N = (−3ε, 3ε) be a neighborhood of zero. Suppose (Xn)n≥1

solve (1.8.1). We separate two cases

1. There exist −ε2 > −3ε, −ε1 < −ε, such that for all M > 0, there exists

n > M such that P(Xn ∈ (−ε2,−ε1)) > 0.

2. Suppose (Xn)n≥1 solve (1.8.2) 0 < f(x) ≤ |x|k, 1
2

+ 1
2k
< γ and k > 1 for all

x ∈ N .

3. Suppose (Xn)n≥1 solve (1.8.4) 0 < k|x| ≤ f(x), k > 1/2 for all x ∈ N .

Then when the 1 holds in both cases 2 and 3 we have P(Xn → 0) > 0

The assumption imposed on Xn, part 1 of Theorem 1.12, says that the pro-

cess should be able visit a neighborhood of the origin for large enough n. If this

constraint is not imposed on the process, the previous result need not hold. For

instance, the drift could dominate the noise, and, consequentially, the process may

never reach a neighborhood of the origin with probability 1. There are processes
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that naturally satisfy this property; such an example is the urn process defined seen

in [Pem91], which is discussed in section 1.4.4.

Example 3. Suppose that Xn satisfies Xn+1−Xn = max(|Xn|3,1)
n

3
4

+ Un

n
3
4

where Un are

I.I.D uniformly distributed on (−2, 2). As the Un dominate the driving term the

assumption 1 is satisfied. And since 1
2

+ 1
2·3 <

3
4

we expect that Xn → 0 holds with

positive probability. In figure 1.1 we can see a typical example where convergence of

the iterates occurs.

Figure 1.1: (Xn)n≥10 and X10 = −1

Example 4. Suppose that Xn satisfies Xn+1 − Xn = max(k|Xn|,1)
n

+ Un
n

where Un

are I.I.D uniformly distributed on (−2, 2), and k = 1
3
. As before we have that the
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assumption 1 is satisfied. And since k < 1
2

we expect Xn → 0 to hold with positive

probability. In figure 1.2 we can see a typical example where convergence occurs.

Figure 1.2: (Xn)n≥10 and X10 = −1

Next we will provide some corroborating experimental results. Suppose Xn

satisfies Xn+1 − Xn = f(Xn)
nγ

+ Un
nγ

where Un are I.I.D uniformly distributed on

(−.5, .5). In the next table we have run simulations in order to investigate whether

Xn converges to 0 or not for various values of γ. The simulations were run for initial

n = 100 and X100 = −1. The criteria for nonconvergence is whether the process at

some point exceeds Xn > 1, at which point the process explodes. The next table is

for the specialization f(x) = |x|3. According to Theorem 1.12 the threshold value
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for γ is γ̃ = 2/3.

γ iterations nonconv#/100

1 55/100 104 79%

2 55/100 105 100%

3 60/100 104 61%

4 60/100 105 86%

5 70/100 104 4%

6 70/100 105 17%

7 70/100 106 32%

8 70/100 107 38%

The next table is for the specialization f(x) = |x|2. According to Theorem 1.12

the threshold value for γ is γ̃ = 3/4.

γ iterations nonconv#/100

1 60/100 104 91%

2 60/100 105 100%

3 70/100 104 33%

4 70/100 105 68%

5 70/100 106 94%

6 78/100 104 0%

7 78/100 105 1%

8 78/100 106 8%
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Next we will provide a similar analysis for the linear case, i.e., when f(x) = k|x|

and γ = 1. Here, we have a threshold value for k, namely k̃ = 1/2.

k iterations nonconv#/100

1 1 104 21%

2 1 105 64%

3 1 106 79%

4 2/5 104 0%

5 2/5 105 3%

6 2/5 106 6%
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1.9 Further conjectures

Suppose that (Xn)n≥1 satisfies (1.1.1), where F = −∇V and an = 1
nγ

. Here,

V : Rd → R is an analytic function, such that V (0) = ∇V (0) = 0. Hereby, we

assume that 0 is a saddle point that it is, also, an isolated critical point.

For this section we will focus on problem 1 part (1). More specifically, the goal

is to find γ ∈ (1/2, 1] such that P(Xn → 0) = 0. We will start by discussing about a

potential strategy for a generic analytic function F which arises from some potential

function V . Then we will provide specific examples.

One of the main tools we will need, for the initial discussion, is a Lojasiewicz

type inequality, for a reference see [Spr], Theorem 2 and [Son12], Lemma 3.2, page

315.

Definition 1.13. Suppose that V : Rn → R. Then denote the zero set of V by

ZV = {x ∈ Rn : V (x) = 0}.

Theorem 1.14. Let V be defined as before. Let ZV denote the zero set of V . Then,

there is an open set 0 ∈ O such that there is a positive constant k ∈ (1, 2) such that

the following holds:

(a) |∇V (x)| ≥ c|V (x)|k/2 for all x ∈ O.

The line of attack consists of three distinct steps.

• We start by studying the process (V (Xn))n≥1. Using Theorem 1.14 we get an

upper bound on the |V (Xn)|.
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• Then the process Xn may wander into the realm where V (Xn) < 0 with

probability bounded from below.

• Lastly, we show that when V (Xn) < 0, the process may stay negative with

probability bounded from below, hence concluding that P(Xn → 0) = 0.

For the first step using Theorem 1.14, part (a) we see that Yn := V (Xn) satisfies a

recursion similar to the ones in section 1.8, namely

Yn+1 − Yn = −|Yn|
k

nγ
+

Noisen+1

nγ
+ O

(
1

n2γ

)
, (1.9.1)

where the noise satisfies E
(
Noise2n+1|Fn

)
≥ |Yn|k. Proof of equation (1.9.1): We

expand V centered at Xn and we obtain

V (Xn+1)− V (Xn) = ∇V (Xn) · (Xn+1 −Xn) +M ||Xn+1 −Xn||2

≤ −||∇V (Xn)||2

nγ
+
∇V (Xn) ·Bn+1

nγ
+

1

n2γ

< −|V (Xn)|k

nγ
+
∇V (Xn) ·Bn+1

nγ
+

1

n2γ

Now, using that the noise is quasi-isotropic we see that the new noise satisfies

E((∇V (Xn) ·Bn+1)
2|Fn) = E((

∇V (Xn)

||∇V (Xn)||
·Bn+1)

2||∇V (Xn)||2|Fn)

= E((
∇f(vn)

||∇V (Xn)||
·Bn+1)

2|Fn)||∇V (Xn)− V (0)||2

≥ 1 · |V (Xn)|k.
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The recursion defined in equation (1.9.1), can provide an upper bound |V (Xn)|,

however this could be far from optimal as we have the bias term 1
n2γ that we need

take into account.

For the second part of the strategy we notice that the path from Xn to z ∈ ZV ,

along the flow x′t = −∇V (xt) has length V (Xn). So, we should expect that as long

as V (Xn) and the remaining noise in the recursion (1.1.1) are comparable, then Xn

may wander in the realm where V (Xn) < 0.

Definition 1.15. Suppose that V : Rn → R and let x ∈ Rn such that V (x) < 0.

Denote by Ox the connected component of {x ∈ Rn : V (x) ≤ 0} such that x ∈ Ox.

For the last step of the strategy we ought to understand the geometry of the

conical region OXn ∩ ZV . For instance the surface OXn ∩ ZV can be very steep

so that under the slightest perturbation the iterate Xn may return to the realm

V (Xn) > 0.

Example 5. Suppose that V (x, y) = x4 + x2y2 − y4, that is V is a homogeneous

polynomial of degree 4. Then since V (r~x) = r4V (~x), we see that O~y ∩ZV is a cone

for any ~y such that V (~y) < 0. Define Wn = (Xn, Yn) given by

Wn+1 −Wn =
∇V (Wn)

nγ
+
Bn+1

nγ

where for simplicity we assume that Bn+1 = (U1,n+1, U2,n+2) where Ui,n for i = 1, 2

and n ∈ N is a collection of independent uniforms on (−1, 1). Now, we may write
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the recursion for Xn and Yn, namely

Xn+1 −Xn =
−4X3

n − 2XnY
2
n

nγ
+
N1,n+1

nγ
(1.9.2)

and

Yn+1 − Yn =
−4Y 3

n + 2X2
nYn

nγ
+
N2,n+1

nγ
(1.9.3)

Using symmetry we may assume that Xn > 0. Under this assumption we obtain the

following bound

Xn+1 −Xn ≤
−4X3

n

nγ
+
N1,n+1

nγ
.

Therefore, by Theorem 4.1 it is always possible to choose γ such that Xn crosses 0.

From here, we can see that the process Wn will eventually land with probability 1 in

the realm V (Wn) < 0.

Example 6. Suppose that V (x, y) = x6 + x2y2 − y6. Here the conical surface is

similar to the surface y =
√
|x|. However, even though the region Oy is very steep,

see figure 1.3, simulations suggest that for certain values of γ the process defined by

Xn+1 −Xn =
∇V (Xn)

nγ
+
Yn+1

nγ
,

will not get stuck along a stable trajectory, i.e., P(Xn+1 → 0) = 0.

35



In the simulations the parameter γ was set γ = .6.

Figure 1.3: Vector flow
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Chapter 2

Preliminary results

We will now prove two important lemmas that will be needed throughout. Let

f : R→ R, be Lipschitz such that for all ε > 0 there exists c such that f(x) > c > 0,

for all x ∈ R\ (−ε, ε). Also, we define a continuous function g : R≥0 → R, such that∫∞
0
g2(t)dt <∞. Let Xt satisfy

dXt = f(Xt)dt+ g(t)dBt. (2.0.1)

Lemma 2.1. lim supt→∞Xt ≥ 0 a.s..

Proof: We will argue by contradiction. Assume that lim supt→∞Xt < 0, and

pick δ > 0 such that lim supt→∞Xt < −δ with positive probability. Then there is a

time u, such that Xt ≤ −δ for all t ≥ u. But this has as an immediate consequence

that
∫ t
1
f(Xs)ds → ∞. However, since the process Gt =

∫ t
1
g(s)dBs has finite

quadratic variation, i.e., supt〈Gt〉 =
∫∞
0
g2(t)dt <∞, Gt stays a.s. finite. The last
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two observations imply that Xt →∞, which is a contradiction. �

Lemma 2.2. lim inft→∞Xt ≥ 0 a.s..

Proof: We will again argue by contradiction. Assume that lim inft→∞Xt < 0

on a set of positive probability. Take an enumeration of the pair of positive rationals

(qn, pn) such that qn > pn. Now, define An = {Xt ≤ −qn i.o., Xt ≥ −pn i.o.}. Since

lim supt→∞Xt ≥ 0, we have
⋃
n≥0An = {lim inft→∞Xt < 0}. Now, for t1 < t2

assume that Xt1 ≥ −pn and Xt2 ≤ −qn. Then, we see that Xt2 −Xt1 ≤ −qn + pn,

however

Xt2 −Xt1 =

∫ t2

t1

f(Xs)ds+

∫ t2

t1

g(s)dBs

≥
∫ t2

t1

g(s)dBs.

Hence we conclude that
∫ t2
t1
g(s)dBs ≤ −qn + pn. By the definition of An, on

event An we can find a sequence of times (t2k, t2k+1) such that t2k < t2k+1 and∫ t2k+1

t2k
g(s)dBs ≤ −qn + pn. Now, if we define Gu,t =

∫ t
u
g(s)dBs, we see that

G1,t converges a.s. since it is a martingale of bounded quadratic variation. Hence

P(An) = 0, i.e., P(lim inft→∞Xt < 0) = 0. �

The next comparison result is intuitively obvious, however, it will be useful for

comparing processes with different drifts.

Proposition 2.3. Let (Ct)t≥0 and (Dt)t≥0 stochastic processes in the same Wiener

space, that satisfy dCt = f1(Ct)dt+ g(t)dBt, dDt = f2(Dt)dt+ g(t)dBt respectively,
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where g, f1, f2 are deterministic real valued functions. Assume that f1(x) > f2(x)

for all x ∈ R and Cs0 > Ds0, then Ct > Dt∀t ≥ s0 a.s..

Proof: Define τ = inf{τ > s0|Cτ = Dτ}, and setDτ = Cτ = c, for τ <∞. Now,

from continuity of f1, and f2 we can find δ such that f1(x) > f2(x),∀x ∈ (c− δ, c].

However, for all s we have Cτ−Dτ−(Cs−Ds) = −(Cs−Ds) =
∫ τ
s
f1(Cu)−f2(Du)du.

Thus, for s such that Cy, Dy ∈ (c− δ, c)∀y ∈ (s, τ) we have

0 > −(Cs −Ds)

=

∫ τ

s

f1(Cu)− f2(Du)du

> 0.

Therefore, {τ <∞} has zero probability. �

In what follows, we will prove two important lemmas, corresponding to Lemma

2.1 and Lemma 2.2, for the discrete case. We will assume that Xn satisfies

Xn+1 −Xn ≥
f(Xn)

nγ
+
Yn+1

nγ
, γ ∈ (1/2, 1) (2.0.2)

where f satisfies ∀ε > 0,∃c > 0, f(x) ≥ c, x ∈ (−∞,−ε), and the Yn are defined

similarly, as in (1.8.1).

Lemma 2.4. lim supXn ≥ 0 a.s..

Proof: The proof is nearly identical as in the continuous case (Lemma 2.1). �
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Lemma 2.5. lim inft→∞Xt ≥ 0 a.s..

Proof: The proof is identical as in the continuous case (Lemma 2.2). �

We provide a suitable version of the Borel-Cantelli lemma (for a reference see

Theorem 5.3.2 in [Dur13]).

Lemma 2.6. Let Fn, n ≥ 0 be a filtration with F0 = {0,Ω}, and An, n ≥ 1 a

sequence of events with An ∈ Fn. Then

{An i.o.} =

{∑
n≥1

P(An|Fn−1) =∞

}
.
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Chapter 3

Continuous model

3.1 Continuous model, simplest case

3.1.1 Introduction

Let Lt be defined by (1.7.1), for f(x) = k|x| and γ = 1. To simplify, we make a

time change and consider Xt := Let , and subsequently we obtain,

Xt+dt −Xt = Let+etdt − Let

= k|Let |dt+ e−t(Bt+etdt −Bet)

= k|Xt|dt+ e−
t
2 dBt.
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Which will be the model we will study. We begin with some definitions.

dXt = k|Xt|dt+ e−
t
2 dBt. (3.1.1)

We introduce another SDE closely related to the previous one, which will be useful.

dKt = kKtdt+ e−
t
2 dBt. (3.1.2)

It is easy to see that both of these SDEs admit unique strong solutions, for a

reference see theorem (11.2) in chapter 6 in [RWW87]. Therefore, we can construct

Xt, Kt in the classical Wiener space (Ω,F ,P). The solution for SDE (3.1.2), is

given by Kt = ekt(e−t0kKt0 +
∫ t
t0
e−s(k+

1
2
)dBs). Indeed, substituting in (3.1.2), and

using Itô’s formula we get

dKt = a′(t)(k0 +

∫ t

t0

b(s)dBs) + a(t)b(t)dBt

=
a′(t)

a(t)
Kt + a(t)b(t)dBt.

Where a(t) = ek(t−t0), and b(t) = e−t(
1
2
+k)+kt0 . Therefore, a′(t)

a(t)
= k, a(t)b(t) = e−

t
2 ,

so we conclude.

Proposition 3.1. Let (Xt)t≥t0 , (Kt)t≥t0 in the Wiener probability space (Ω,F ,P)

be the solutions of (3.1.1),(3.1.2) respectively. We start them at time t0, Xt0 ≥

Kt0 ≥ 0. Then Xt ≥ Kt, ∀t ≥ t0.
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It is a direct application of Proposition 2.3. �

3.1.2 Analysis of Xt when k ≥ 1/2.

We start by stating the main result of this subsection, which we will prove at the

end of the subsection.

Theorem 3.2. Let (Xt)t≥1 the solution of (3.1.1) for k ≥ 1
2
, then Xt →∞ a.s..

We will prove the theorem at the end of the subsection. Now, we will show that

(Xt)t≥1 cannot stay negative for all times. This will be accomplished by a direct

computation, after solving the SDE.

Proposition 3.3. Let (Xt)t≥1 the solution of (3.1.1) for k > 1
2
. Assume that at

time s, Xs < 0, then Xt will reach 0 with probability 1, i.e. P(supu≥sXu > 0) = 1

Proof: First, note that the solution of the SDE (3.1.1), run from time s with

initial condition Xs < 0 coincides with the solution of the SDE dXt = −kXtdt +

e−
t
2 dBt before Xt hits 0. Formally, we define τ0 = inf{t|t ≥ s, Xt = 0}. Using the

same method when solving SDE (3.1.2), we obtain Xt = e−kt(eksXs+
∫ t
s
eu(k−

1
2
)dBu),

on {t < τ0}. First we deal with the case k 6= 1
2
. Set Gt =

∫ t
s
eu(k−

1
2
)dBu, and

calculate the quadratic variation of Gt, namely 〈Gt〉 = (e2t(k−
1
2
)−e2s(k− 1

2
))/(2k−1).
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Next, we compute the probability of never returning to zero.

P(τ =∞) = P
(

sup
s<u<∞

Xu ≤ 0

)
= P

(
sup

s<u<∞
Gu ≤ −eksXs

)
= 1− P

(
sup

s<u<∞
Gu > −eksXs

)
= 1− lim

t→∞
P
(

sup
s<u<t

Gu > −eksXs

)
= 1− lim

t→∞
2P
(
Gt > −eksXs

)
, from the reflection principle

= 1− lim
t→∞

2P

(
N

(
0,
e2t(k−

1
2
) − e2s(k− 1

2
)

2k − 1

)
> −eksXs

)

= 0, since
e2t(k−

1
2
) − e2s(k− 1

2
)

2k − 1
→∞

When k = 1
2
, the solution simplifies to Xt = e−kt(eksXs + Bt) in distribution,

where {Bt}t≥s with initial condition Bs = 0. We repeat the previous calculation,

P(τ =∞) = P
(

sup
s<u<∞

Xu ≤ 0

)
= P

(
sup

s<u<∞
Bu ≤ −eksXs

)
= 0

as for a Brownian motion we have lim supt→∞Bt =∞ almost surely. �

We will now prove two important lemmas, that are true for solutions of (3.1.1)

for any k > 0.
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Lemma 3.4. Let (Xt)t≥1 the solution of (3.1.1). Then on the event {Xt ≥ 0 i.o.},

there is a positive constant c < 1 such that {Xt ≥ ce−t/2 i.o.} holds a.s..

Proof: Assume we start the SDE at time ti with initial condition Xti ≥ 0. Then

we see that Xt ≥
∫ t
ti
k|Xu|du+

∫ t
ti
e−

u
2 dBu ≥

∫ t
ti
e−

u
2 dBu.

Set Gt =
∫ t
ti
e−

u
2 dBu. The quadratic variation of Gt, is 〈Gt〉 = e−t1 − e−t.

Fix 0 < c < 1. Now, observe that we can always choose t big enough such that

〈Gt〉 ≥ ce−t1 for any t1.

Then,

P( sup
ti<u<t

Xt > e−t1/2) ≥ P( sup
ti<u<t

Gt > e−t1/2)

= 2P(Gt > e−t1/2)

≥ 2P(N(0, ce−t1) > e−t1/2)

= 2P(N(0, c) > 1) > γ > 0.

Let g(x) = inf{y|e−x − e−y ≥ ce−x}. Now, we can formally define the sequence of

the stopping times. The first stopping time is τ1 = inf{t|Xt ≥ 0}, then we define

recursively τi+1 = inf{t|t > τi, t > g(τi), Xt ≥ 0}. We, also, define the associated

filtration Fn = Fτn , for n ≥ 1 and F0 = {0,Ω}. Now, let An = {∃t, τn−1 <

t < τn , s.t. Xt ≥ ce−t/2}. So, by definition An ∈ Fn. We find a lower bound for
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P(An|Fn−1).

P(An|Fn−1) ≥ P( sup
τn−1<u<τn

Xu > ce−tn−1/2|Fn−1)

≥ P( sup
τn−1<u<g(tτn−1)

Xu > ce−τn−1/2|Fn−1)

> γ.

On {Xt ≥ 0 i.o.} the sum
∑

n≥1 P(An|Fn−1) has infinite non zero terms bigger than

γ, hence
∑

n≥1 P(An|Fn−1) = ∞ a.s.. Finally, by Lemma 2.6 (Borel-Cantelli) we

conclude. �

The next lemma uses the previous lemma to establish that on {Xt ≥ 0 i.o.} we

have lim inft→∞Xt > 0.

Lemma 3.5. Let (Xt)t≥1 the solution of (3.1.1). Then on the event {Xt ≥ 0 i.o.}

we have that {lim inft→∞Xt > 0} holds a.s..

Proof: Indeed, if we start the process at time s with initial condition Xs ≥ ce
−s
2 ,

then the solution of (3.1.1), before hitting 0, is given by

Xt = ekt
(
e−ksXs +

∫ t

s

e−u(k+
1
2
)dBu

)
≥ ekt

(
ce−s(k+

1
2
) +

∫ t

s

e−u(k+
1
2
)dBu

)
.

Denote Gt =
∫ t
s
e−s(k+

1
2
)dBs. We calculate its quadratic variation

〈Gt〉 =
e−2tk−t

−2k − 1
+
e−2sk−s

2k + 1
.
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Taking t→∞, shows 〈G∞〉 =
e−2sk−s

2k + 1
. Therefore,

P( inf
s≤u<∞

Xu >
c

2
e−

s
2 ) = P( inf

s≤u<∞
eku(ce−s(k+

1
2
) +Gu) >

c

2
e−

s
2 )

≥ P( inf
s≤u<∞

eks(ce−s(k+
1
2
) +Gu) >

c

2
e−

s
2 )

= P( inf
s≤u<∞

ce−s(k+
1
2
) +Gu >

c

2
e−s(k+

1
2
))

= P( inf
s≤u<∞

Gu > −
c

2
e−s(k+

1
2
)) (3.1.3)

= 1− P( sup
s≤u<∞

Gu >
c

2
e−s(k+

1
2
))

= 1− 2 lim
t→∞

P(Gt > −
c

2
e−s(k+

1
2
)), by the reflection principle

= 1− 2P(N(0,
e−s(2k+1)

2k + 1
) >

c

2
e−s(k+

1
2
))

= 1− 2P(N(0,
1

k + 1
) >

c

2
) > δ > 0.

We know that on {Xt ≥ 0 i.o.} the event {Xt ≥ ce−
t
2 i.o.} holds a.s.. Therefore, on

{Xt ≥ 0 i.o.}, if we define τ0 = 0, and τn+1 = {t > τn + 1|Xt ≥ ce−
t
2} we see that

τn <∞ a.s., and τn →∞ a.s.. Also, we define the corresponding filtration, namely

Fn = σ(τn).

To show that on the event {Xt ≥ ce−
t
2 i.o.} the event A = {lim inf→∞Xt ≤ 0}

has probability zero, it suffices to argue that there is a δ such that P(A|Fn) < 1−δ,
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a.s. for all n ≥ 1. This is immediate from the previous calculation. Indeed,

P(A|Fn) ≤ 1− P( inf
τn≤u<∞

Xu >
c

2
e−

τn
2 |Fn)

< 1− δ.

�

Now, we can prove Theorem 3.2.

Proof of Theorem 3.2: From Proposition 3.3 we know that {Xt ≥ 0 i.o.}

has probability 1. Therefore, from Lemma 3.5 we deduce lim inft→∞Xt > 0 almost

surely. Consequently,
∫∞
0
|Xu|du→∞ a.s.. At the same time lim supt→∞

∫ t
0
e−

u
2 dBu <

∞ a.s., hence Xt →∞ a.s.. �

3.1.3 Analysis of Xt when k < 1/2.

As before, (Xt)t≥1 is the solution of the stochastic differential equation dXt =

k|Xt|dt + e−
t
2 dBt.

The behavior of Xt, when k < 1/2 is different. The process in this regime can

converge to 0 with positive probability. More specifically, we have the following

theorem:

Theorem 3.6. Let (Xt)t≥1 solve (3.1.1) with k < 1
2
, and define A = {Xt → 0},

B = {Xt →∞}. Then the following hold:

1. Let A,B as before. Then P(A ∪B) = 1.
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2. Both A and B are non trivial, i.e., P(A) > 0 and P(B) > 0.

3. On {Xt ≥ 0 i.o.} we get Xt →∞.

Before proving the theorem, we need to prove a proposition first. We will show

that that the process, starting from a negative value, will never cross 0 with positive

probability.

Proposition 3.7. Let (Xt)t≥1 solve (3.1.1) with k < 1
2
. Assume that at time s,

Xs < 0. Then (Xt)t≥1 will hit 0 with probability α where 0 < α < 1.

Proof: Define the stopping time τ1 = inf{t ≥ s|Xt = 0}. As in Proposition 3.3,

the solution for Xt started at time s up till time τ1, is given by Xt = e−kt(eksXs +∫ t
s
eu(k−

1
2
)dBu).

P(τ =∞) = P( sup
s<u<∞

Xu ≤ 0)

= 1− lim
t→∞

2P(N(0,
e2t(k−

1
2
) − e2t(k− 1

2
)

2k − 1
) > −eksXs), as in Proposition 3.3

= 1− 2P(N(0,−e2s(k−
1
2
)/(2k − 1)) > −eksXs) = 1− α.

Therefore 0 < α < 1. �

Proof of Theorem 3.6:

1. Define the events N = {∃s, s.t.Xt < 0∀t ≥ s}, and P = {Xt ≥ 0 i.o.}. Of

course N and P are disjoint and P(P ∪N) = 1. To prove 1, we will show that

N ⊂ {Xt → 0} up to a null set and P = {Xt →∞}.
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From Lemma 2.2 we know that lim inft→∞Xt ≥ 0 a.s., therefore on N ⊂

{Xt → 0} up to a null set.

To show that P = {Xt → ∞}, note that Lemma 3.5 shows that on {Xt ≥

0 i.o.}, lim inft→∞Xt > 0 almost surely. Consequently, on {Xt ≥ 0 i.o.}, we

have Xt → ∞, as
∫∞
0
|Xu|du → ∞ and lim supt→∞

∫ t
0
e−

u
2 dBu < ∞ a.s..

Therefore, P = {Xt →∞}. Which concludes part 1.

2. The fact that P(A) > 0, follows immediately from Proposition 3.7. Now, we

will prove that P(B) > 0. Define the stopping time τ0 = inf{t|Xt = 0}. Also,

define Y (t, ω) = 1 if Xs ≥ 0 for all s ≥ t + 1. Observe that {Yτ0 = 1, τ0 <

∞} ⊂ P . Hence, using the strong Markov property

P(Yτ = 1, τ <∞) =

∫ ∞
0

P(τ = u)P0(Xt ≥ 0,∀t ≥ 1)du

≥
∫ ∞
0

P(τ = u)P0(Kt ≥ 0,∀t ≥ 1)du since Xt ≥ Kt

= αP0(Kt ≥ 0,∀t ≥ 1) > 0.

3. Follows immediately from the proof of 1.

�

Lastly, we prove a proposition that will be used in section 3.3.

Proposition 3.8. Suppose (Xt)t≥1, (Yt)t≥1 solve (3.1.1), with constants k and k1

respectively. Suppose, that 0 < k1 < k < 1/2. Let ε > 0, if Xs, Ys ∈ (−2ε,−ε)
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a.s., then there is an event A with positive probability, such that both Xt, Yt ∈

(−3ε, 0), ∀t > s.

Proof: Solving the SDE before it hits zero we find, Xt = e−kt(eksXs+
∫ t
s
eu(k−

1
2
)dBu)

and Yt = e−k1t(ek1sYs +
∫ t
s
eu(k1−

1
2
)dBu). Let ε > 0. Since, the process Gt =∫ t

s
eu(k−

1
2
)dBu has finite quadratic variation, the event A = {Gt ∈ (−ε, ε) ∀t > s}

has positive probability. Set G̃t =
∫ t
s
eu(k1−

1
2
)dBu, and define Nt = Gte

t(k1−k). Using

Itô’s formula, we find dNt = et(k−
1
2
)e(k1−k)tdBt + (k1 − k)e(k1−k)tGtdt. Therefore,

Gte
(k1−k)t = G̃t +

∫ t

s

(k1 − k)e(k1−k)uGudu.

So,

Gte
(k1−k)t −

∫ t

s

(k1 − k)e(k1−k)uGudu = G̃t.

To bound |G̃t| observe that

−
∫ t

s

(k1 − k)e(k1−k)uGudu ≤ −ε
∫ t

s

(k1 − k)e(k1−k)udu

= −ε
(
e(k1−k)t − e(k1−k)s

)

Similarly we obtain −
∫ t
s
(k1 − k)e(k1−k)uGudu ≥ ε

(
e(k1−k)t − e(k1−k)s

)
. Thus on A,

we obtain the following inequalities

−εe(k1−k)t + ε
(
e(k1−k)t − e(k1−k)s

)
≤ G̃t ≤ εe(k1−k)t − ε

(
e(k1−k)t − e(k1−k)s

)
.
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Simplifying, we obtain |G̃t| ≤ εe(k1−k)s ≤ ε. Now, we will estimate Xt on A. Using

that ε < |eksXs| we obtain the following upper bound,

Xt = e−kt
(
eksXs +

∫ t

s

eu(k−
1
2
)dBu

)
≤ e−kt

(
eksXs + ε

)
< 0.

and lower bound

Xt = e−kt
(
eksXs +

∫ t

s

eu(k−
1
2
)dBu

)
≥ e−kt(−2eksε− ε)

≥ −3ε.

Doing similarly for Yt, we conclude. �

3.2 Analysis of dLt =
|Lt|k
tγ dt + 1

tγdBt.

3.2.1 Introduction

As in the previous section, to simplify matters, we will work with reparametrizing

Lt. Set θ(t) = t
1

1−γ , and let Xt = Lθ(t). To obtain the SDE that Xt obeys, notice
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that dBθ(t) =
√
θ′(t)dBt. Therefore

dXt =
|Xt|k

θ(t)γ
θ′(t)dt+

1

θ(t)γ

√
θ′(t)dBt

= c1|Xt|kdt+ c2t
− γ

1−γ
√
θ′(t)dBt

= c1|Xt|kdt+ c2t
− γ

2(1−γ) dBt

where c22 = c1 = 1/(1 − γ). By abusing the notation we set Xt = Xt/c2, which

satisfies an SDE of the form

dXt = c|Xt|kdt+ t−
γ

2(1−γ) dBt, k > 1 and γ ∈ (1/2, 1), c ∈ (0,∞). (3.2.1)

By a time scaling, we may assume that Xt solves

dXt = |Xt|kdt+ t−
γ

2(1−γ) dBt, k > 1 and γ ∈ (1/2, 1). (3.2.2)

Notice, that the noise is scaled differently. However, it will be evident that only

the order of the noise is relevant. The SDE (3.2.2) will be the primary focus of the

next subsection and the results will apply to solutions of (3.2.1), as well.

We define another process that will be fundamental for our analysis, namely

Zt = − Xt
h(t)

where h(t) = −t
1

1−k . Next, we find the SDE that Zt satisfies.

Proposition 3.9. Suppose that (Xt)t≥1 solve (3.2.1), and set C(c) = 1
c(k−1) , h(t) =
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−t
1

1−k . Then, the process Zt = − Xt
h(t)

satisfies

Zt − Zs =

∫ t

s

c
Xu

h(u)

(
C
|h(u)|k

h(u)
− |Xu|k

Xu

)
du+

∫ t

s

− 1

h(u)
u−

γ
2(1−γ) dBu. (3.2.3)

Also, before Xt hits zero we get a solution purely in terms of Zt,

Zt − Zs =

∫ t

s

c|h(u)|k−1Zu
(
C − (−Zu)k−1

)
du+

∫ t

s

− 1

h(u)
u−

γ
2(1−γ) dBu. (3.2.4)

Proof: Recall that since h(t) is a continuous function, the covariance 〈h(t), Zt〉 =

0. Using Itô’s formula we obtain

dZt = − 1

h(t)
dXt +Xtd

(
− 1

h(t)

)
.

Thus,

Zt − Zs =

∫ t

s

− 1

h(u)
c|Xu|kdu+

∫ t

s

− 1

h(u)
u−

γ
2(1−γ) dBu +

∫ t

s

Xu
h′(u)

h(u)2
du

=

∫ t

s

Xu
h′(u)

h(u)2
− 1

h(u)
c|Xu|kdu+

∫ t

s

− 1

h(u)
u−

γ
2(1−γ) dBu

=

∫ t

s

c
Xu

h(u)

(
h′(u)

ch(u)
− |Xu|k

Xu

)
du+

∫ t

s

− 1

h(u)
u−

γ
2(1−γ) dBu

=

∫ t

s

c
Xu

h(u)

(
1

c(k − 1)

|h(u)|k

h(u)
− |Xu|k

Xu

)
du+

∫ t

s

− 1

h(u)
u−

γ
2(1−γ) dBu.

The SDE (3.2.4) is an immediate consequence of the last line of the previous calcu-

lation. �
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In the next proposition, we describe some properties of the noise for the process

Zt, and give a very important inequality for subsection 3.2.2, which relates the order

of the deterministic system converging to zero and order of the remaining noise for

Xt, i.e., the order of 〈
∫∞
s
u−

γ
2(1−γ) dBu〉.

Proposition 3.10. Set G′s,t =
∫ t
s
− 1
h(u)

u−
γ

2(1−γ) dBu, the noise term of (3.2.4) and

(3.2.3).

1. In the regime 1
2

+ k
2
≥ γ, 〈G′s,∞〉 =∞

2. In the regime 1
2

+ k
2
< γ, 〈G′s,∞〉 <∞

3. Also, given the same conditions as in part 1 for the pair (k, γ), the following

inequality is true

1

k − 1
≥ 2γ − 1

2(1− γ)

Proof: We calculate its quadratic variation at time t, namely, 〈G′s,t〉 =
∫ t
s

1
h(u)2

u−
γ

(1−γ) du.

Notice that by the definition of h(t), we have h(t)−1 = Θ(t
1

k−1 ), therefore− 1
h(u)2

u−
γ

(1−γ) =

Θ(u
2

k−1
− γ

1−γ ). Consequently, 〈G′s,∞〉 =∞ when

2

k − 1
− γ

1− γ
≥ −1 ⇐⇒ 2

k − 1
+

1

γ − 1
≥ −2.
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In the first regime we have,

1

2
+

1

2k
≥ γ ⇐⇒ k − 1

2k
≤ 1− γ ⇐⇒ 2k

k − 1
≥ 1

1− γ

⇐⇒ 2

k − 1
+ 2 ≥ 1

1− γ
⇐⇒ 2

k − 1
+

1

1− γ
≥ −2 (3.2.5)

So, indeed, when 1
2

+ 1
2k
≥ γ, 〈G′s,∞〉 =∞. Also, from the previous calculation we

see that when 1
2

+ 1
2k
< γ then 2

k−1−
γ

1−γ < −1, therefore when 1
2

+ 1
2k
< γ, 〈G′s,t〉 <

∞. Finally, rearranging the first inequality of (3.2.5) we obtain 1
k−1 ≥

2γ−1
2(1−γ) . �

The solution of the SDE (3.2.2), when Xt is positive, explodes in finite time.

However, since we are interested in the behavior of Xt when Xt < M for a positive

constant M , we may change the drift when Xt surpasses the value M , which in turn

it would imply that SDE (3.2.2) admits strong solutions. One way to do this is by

studying the SDE whose drift term is equal to |x|k when |x| < M and M when

|x| > M . This SDE can be seen to admit strong solutions for infinite time. The

reason is that this process Xt is a.s. bounded from below, as the drift is positive.

Also, Xt cannot explode to plus infinity in finite time since the drift is bounded

from above when Xt is positive. However, for simplicity, we will use the form as

shown in (3.2.2).

3.2.2 Analysis of Xt when 1/2+1/2k ≥ γ, k > 1 and γ ∈ (1/2, 1)

The main result of this subsection is the following theorem.
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Theorem 3.11. Let (Xt)t≥1, that solves (3.2.2). When 1/2 + 1/2k ≥ γ,Xt → ∞

a.s.

We will see its proof at the end of the subsection. Now, we will prove an

important proposition, which shows that Xt cannot stay far away from the left of

the origin.

Proposition 3.12. Let (Xt)t≥1 solve (3.2.1) for c = 1. Then, for some β < 0, the

event {Xt ≥ βt
1−2γ
2(1−γ) i.o.} has probability 1.

Proof: Set G′t =
∫ t
s
− 1
h(u)

u−
γ

2(1−γ) dBu, which corresponds to the noise term

of (3.2.4). First, we will prove that {Xt ≥ C ′h(t), i.o.} a.s., where C ′ > C
1

k−1

and C = C(1) = 1
k−1 . To do so, we will argue by contradiction. Assume that

A = {∃ s,Xt < C ′ · h(t)∀t > s} has positive measure. Take ω ∈ A, and find s(ω)

such that Xt < C ′ · h(t) for all t > s. Notice, that this implies that Zt < −C ′ for

t > s. Take u > s, since |x|
k

x
is increasing we see that |Xu|

k

Xu
< C ′k−1 |h(u)|

k

h(u)
< C |h(u)|

k

h(u)
.

This in turn gives C |h(u)|
k

h(u)
− |Xu|

k

Xu
> 0. Therefore

∫ t
s

Xu

h(u)

(
C |h(u)|

k

h(u)
− |Xu|

k

Xu

)
du > 0

for all t > 0. However, since G′w,t :=
∫ t
w
− 1
h(u)

u−
γ

2(1−γ) dBu for any fixed w has infinite

quadratic variation, we may find G′s,t > −Zs. Now, from (3.2.3) we get

Zt =

∫ t

s

Xu

h(u)

(
C
|h(u)|k

h(u)
− |Xu|k

Xu

)
du+ Zs +G′s,t

> 0.

This contradicts the fact that Zt < −C ′. Therefore {Xt > C ′h(t), i.o.} a.s.
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Finally, in Proposition 3.10 part 3 we have shown that 1
k−1 ≥

2γ−1
2(1−γ) , therefore

−t
1

1−k ≥ −t
1−2γ
2(1−γ) . So, we conclude that there exists a constant β < 0 such that

{Xt ≥ βt
1−2γ
2(1−γ) i.o.} holds a.s. �

Corollary 3.13. Let (Xt)t≥1 solve (3.2.1) for c = 1. Then lim inft→∞Xt > 0

almost surely.

Proof: Set Gs,t =
∫ t
s
u−

γ
2(1−γ) dBu and note that 〈Gs,∞〉 = Θ(s

1−2γ
(1−γ) ). Fix γ > 0,

since 〈Gs,∞〉 = Θ(s
1−2γ
(1−γ) ) for any u > 0, it is possible to find by using the reflection

principle W (u) > u > 0 such that

P

(
sup

u<t<W (u)

Gu,t > γu
1−2γ
2(1−γ)

)
> δ, (3.2.6)

for δ independent of u. Take γ > −β, where β is such that {Xt ≥ βt
1−2γ
2(1−γ) i.o.} (as

in Proposition 4.3). Now, using the lower bound Xt −Xs ≥ Gs,t, we obtain

P

(
sup

s<t<W (s)

Xt −Xs > γs
1−2γ
2(1−γ)

)
≥ P

(
sup

s<t<W (s)

Gs,t > γs
1−2γ
2(1−γ)

)
> δ. (3.2.7)

When Xs ≥ βs
1−2γ
2(1−γ) observe that on the event {sups<t<W (s)Xt − Xs > γs

1−2γ
2(1−γ)}

there is τs such that Xτs ≥ Xs + βs
1−2γ
2(1−γ) = (γ + β)s

1−2γ
2(1−γ) ≥ 0. Hence, if we choose

a sequence of stopping times such that Xτn ≥ βτn
1−2γ
2(1−γ) and τn+1 > W (τn), we have

P(supτn<t<τn+1
Gτn,t > γτn

1−2γ
2(1−γ) |Fτn) > δ. So, by Borel-Cantelli (Lemma 2.6) on

the events {supτn<t<τn+1
Xt −Xτn > γτ

1−2γ
2(1−γ)
n } we may conclude that {Xt ≥ 0 i.o.}

has probability 1. Define τn as before, except that instead of Xτn ≥ βτn
1−2γ
2(1−γ) we set
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Xτn ≥ 0, by Borel-Cantelli we obtain that {Xt ≥ γt
1−2γ
2(1−γ) i.o.} has probability 1.

Since Gs,t is symmetric and 〈Gs,∞〉 = Θ(s
1−2γ
(1−γ) )

P( inf
s<t<∞

Xt −Xs > −
γ

2
s

1−2γ
2(1−γ) ) ≥ P( inf

s<t<∞
Gs,t > −

γ

2
s

1−2γ
2(1−γ) )

= 1− P( sup
s<t<∞

Gs,t >
γ

2
s

1−2γ
2(1−γ) )

> δ′ > 0.

for some δ′ independent of s.

Define τn such that Xτn ≥ γτn
1−2γ
2(1−γ) , and set Fτn = Fn To show that A =

{lim inf→∞Xt ≤ 0} has probability zero, it suffices to argue that there is a δ such

that P(A|Fn) < 1 − δ, a.s. for all n ≥ 1. This is immediate from the previous

calculation. Indeed,

P(A|Fn) ≤ 1− P( inf
τn≤u<∞

Xu −Xτn > −
γ

2
τn

1−2γ
2(1−γ) |Fn)

< 1− δ′.

�

Proof of Theorem 3.11: Since Xt is a solution of (3.2.2), we have Xt −

X1 =
∫ t
1
|Xu|kdu + G1,t. From Corollary 3.13 we know that lim inft→∞Xt > 0 a.s.,

therefore
∫ t
1
|Xu|kdu→∞ almost surely. However, since 〈G1,∞〉 <∞, we have that

lim supt→∞ |G1,t| <∞ a.s.. Therefore, Xt →∞ a.s..
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�

3.2.3 Analysis of Xt when 1
2 + 1

2k < γ, and k > 1

We now state the main theorem of this subsection, which we will prove at the end.

Theorem 3.14. The process (Xt)t≥1 the solution of (3.2.1), converges to zero with

positive probability, when X1 < 0.

We prove a technical lemma first.

Lemma 3.15. Let (Zt)t≥s solve (3.2.3), and set G′t =
∫ t
s
− 1
h(u)

u−
γ

2(1−γ) dBu. Sup-

pose that Zs > −
(
C
k

) 1
k−1 . Define A = {G′t ∈ (−ε, ε)∀t ∈ (s, s + δ), and G′t ∈

(−2ε,− 9
10
ε)∀t ∈ (s+ δ,∞)}. Then:

1. P(A) > 0, ∀ε, δ > 0.

2. For all ε > 0 small enough, there is δ > 0 such that Zt < −
5ε

3
, ∀t ∈ (s, s+ δ)

on A.

3. Define τC = inf{t > s|Zt = −2
(
C
k

) 1
k−1}, then τC > s+ δ almost surely, where

δ is the same as part 2.

Proof:

1. This is immediate, since in Proposition 3.10 part 2 we have shown that

〈G′∞〉 <∞.
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2. The first restriction on ε is such that Zs < −3ε. Next, we begin by defining

f1 and f2 on (s, s+ δ) satisfying

f ′(x) = c|h(x)|k−1f(x)(C − (−f(x)k−1)) (3.2.8)

where c and C are the same as the parameters of SDE (3.2.3), with initial

conditions satisfying −
(
C
k

) 1
k−1 < Zs + ε < f1(s) < −

5ε

3
, and −

(
C
k

) 1
k−1 <

f2(s) < Zs − ε.

Also, we define the function q(x) = x(C − (−x)k−1), whose derivative is

q′(x) = C − k(−x)k−1, which implies that q(x) is increasing on (
(
−C

k

) 1
k−1 , 0).

This function will be important later. We should also note, that f is decreasing

in intervals where f(x) ∈ (−
(
C
k

) 1
k−1 , 0), since there f ′(x) < 0.

We can pick the δ > 0, such that f2(t) > −
(
C
k

) 1
k−1 , ∀t ∈ (s, s + δ). We will

show that Zt > f2(t) on (s, s+ δ) by contradiction. Using the SDE (3.2.4) for

Zt, we get that

Zt − Zs =

∫ t

s

c|h(u)|k−1Zu
(
C − (−Zu)k−1

)
du+ g(t), (3.2.9)

where g(t) is a continuous function such that supt∈(s,s+δ) |g(t)| ≤ ε. Assume

that f2, Z become equal at some point, and choose t to be the first time. Using
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the integral form of (3.2.8), and subtracting it from (3.2.4), we get

0 = Zt − f2(t) = Zs − f2(s) +

∫ t

s

c|h(u)|k−1Zu
(
C − (−Zu)k−1

)
− c|h(u)|k−1f2(u)

(
C − (−f2(u))k−1

)
du+ g(t)

= Zs + g(t)− f2(s) + (t− s)(c|h(ξ)|k−1Zξ
(
C − (−Zξ)k−1

)
− c|h(ξ)|k−1f2(ξ)

(
C − (−f2(ξ))k−1

)
)

> (t− s)(c|h(ξ)|k−1Zξ
(
C − (−Zξ)k−1

)
− c|h(ξ)|k−1f2(ξ)

(
C − (−f2(ξ))k−1

)
),

where in the last line we used that Zs + g(t)− f2(s) > 0. Since ξ < t, we have

that Zξ > f2(ξ) > −
(
C
k

) 1
k−1 , and consequently q(Zξ) > q(f2(ξ)), so

|h(ξ)|k−1q(Zξ) > |h(ξ)|k−1q(f2(ξ)).

Therefore,

0 < c|h(ξ)|k−1Zξ
(
C − (−Zξ)k−1

)
− c|h(ξ)|k−1f2(ξ)

(
C − (−f2(ξ))k−1

)
,

which gives a contradiction.

Arguing similarly we can show that f1(t) > Zt on (s, s+ δ), which completes

part 2.

3. Finally, for part 3 we observe that Zt > f2(t) for t ∈ (s, s+δ), hence τC > s+δ
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almost surely.

�

Before proving the theorem we will need the following proposition.

Proposition 3.16. Let (Xt)t≥s solve (3.2.1). Assume that at time s, Xs < 0, and

Zs > −
(
C
k

) 1
k−1 . Then the process with positive probability never returns to 0.

Proof: The condition 1/2+1/2k < γ as it has already been shown in Proposition

3.10 part 2, implies that 〈G′∞〉 < ∞. On the event A as defined in Lemma 3.15,

using (3.2.3), we get the following upper and lower bounds for all t ≥ s+ δ

− Xt

h(t)
≤ − Xs

h(s)
+

∫ t

s

c
Xu

h(u)

(
C
|h(u)|k

h(u)
− |Xu|k

Xu

)
du− 9

10
ε (3.2.10)

− Xt

h(t)
≥ − Xs

h(s)
+

∫ t

s

c
Xu

h(u)

(
C
|h(u)|k

h(u)
− |Xu|k

Xu

)
du− 2ε (3.2.11)

Claim: On the event A, Xt < 0, for all t > s.

Proof: We will argue by contradiction. Assume that P({τ0 < ∞} ∩ A) > 0.

We choose ε, such that 3ε
2
< C

1
k−1 . Now, define τl = sup{t ≤ τ0| −

Xt

h(t)
= −3ε

2
}

and notice that Lemma 3.15, implies that τlε > s+ δ, since Zt < −
5ε

3
, on (s, s+ δ).

Also, on {τ0 <∞} ∩ A we have τl <∞. Then from (3.2.11) we see that

∫ τl

s

c
Xu

h(u)

(
C
|h(u)|k

h(u)
− |Xu|k

Xu

)
du ≤ Xs

h(s)
+
ε

2
.
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Therefore,

− Xs

h(s)
+

∫ τl

s

c
Xu

h(u)

(
C
|h(u)|k

h(u)
− |Xu|k

Xu

)
du− 9

10
ε ≤ −2ε

5
. (3.2.12)

Now, notice that Xt >
3
2
εh(t), ∀t ∈ (τl, τ0), so if w ∈ (τl, τ0), we get C |h(w)|

k

h(w)
− |Xw|

k

Xw
<

C |h(w)|
k

h(w)
− C |h(w)|

k

h(w)
= 0 and of course Xw

h(w)
> 0. So, we conclude that

∫ τ0

τl

c
Xu

h(u)

(
C
|h(u)|k

h(u)
− |Xu|k

Xu

)
du < 0. (3.2.13)

Combining (3.2.12), and (3.2.13), we get that

0 = − Xτ0

h(τ0)
≤ − Xs

h(s)
+

∫ τ0

s

c
Xu

h(u)

(
C
|h(u)|k

h(u)
− |Xu|k

Xu

)
du− 9

10
ε

= − Xs

h(s)
+

∫ τl

s

c
Xu

h(u)

(
C
|h(u)|k

h(u)
− |Xu|k

Xu

)
du− 9

10
ε+

+

∫ τ0

τl

c
Xu

h(u)

(
C
|h(u)|k

h(u)
− |Xu|k

Xu

)
du

≤ −2ε

5
,

a contradiction. �

We have developed all the tools necessary, to prove the theorem.

Proof of Theorem 3.14: Define a stopping time σ = inf{t|Zt > −
(
C
k

) 1
k−1}.

If the event {σ < ∞} has positive probability, then Proposition 3.16 implies that

Xt converges to zero with positive probability. Indeed, remember from Lemma 2.2

that lim inft→∞Xt ≥ 0 a.s.. Therefore, since on the event A as defined in Lemma
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3.15 we have lim supt→∞Xt ≤ 0, we deduce limt→∞Xt = 0. To finish the proof, it

suffices to show that when {σ <∞} has zero probability then Xt → 0 with positive

probability. This is easy to see since P({σ < ∞}) = 0 implies that Zt, never hits

zero, therefore lim supt→∞Xt ≤ 0 on {σ <∞}. �

We now prove a proposition that will be used in the next section.

Proposition 3.17. Let (Xt)t≥s solve (3.2.1). Take the event A, such that Lemma

3.15 holds, where ε <
(
C
k

) 1
k−1 , where C(c) = 1

c(k−1) as in the parameter C of SDE

(3.2.3). Then, on A the process Xt stays within a region of the origin. More

specifically, Zt > −2
(
C
k

) 1
k−1 .

Proof: Let τC = inf{t > s|Zt = −2
(
C
k

) 1
k−1}, and define σ = sup{τC > t >

s|Zt = −
(
C
k

) 1
k−1}. We will show that τC =∞ a.s.. We assume otherwise, and reach

a contradiction. From Lemma 3.15 part 3, we know that τC > s+ δ. Therefore,

ZτC ≥ Zs +

∫ t

s

c|h(u)|k−1Zu
(
C − (−Zu)k−1

)
du− 2ε

≥ Zσ − Zσ + Zs +

∫ t

s

c|h(u)|k−1Zu
(
C − (−Zu)k−1

)
du− 2ε

≥ Zσ +
9ε

10
− 2ε > −2

(
C

k

) 1
k−1

,

the desired contradiction. �
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3.3 Analysis of dLt =
f(Lt)
tγ dt + 1

tγdBt .

For this section, we assume that f is globally Lipschitz. For f as before, we define

dLt =
f(Lt)

tγ
dt+

1

tγ
dBt, γ ∈ (

1

2
, 1] (3.3.1)

By our assumptions on f , the SDE (3.3.1) admits strong solutions. Also, we define

a more general SDE, namely

dXt = f(Xt)dt+ g(t)dBt (3.3.2)

where g : R≥0 → R>0 is continuous, and T =
∫∞
0
g2(t)dt is possibly infinite.

Proposition 3.18. Let (Xt)t≥1 be a solution of (3.3.2). Then for every t, c > 0,

and x ∈ R, P(Xt ∈ (x− c, x+ c)) > 0.

Proof: Firstly, we change time. Let ξ(t) =
∫ t
0
g2(t)dt, and define X̃t = Xξ−1(t).

Then,

dX̃t =
f(X̃t)

g2(ξ−1(t))
dt+ dBt (3.3.3)

This gives a well defined SDE whose solution is defined on [0, T ′] for T ′ ∈ R, T ′ < T .

The path space measure of X̃t is mutually absolutely continuous to the one induced

from the Brownian motion. Since the Brownian motion satisfies the property de-

scribed in the proposition, so does Xt. �

We give the proof of Theorems 1.9 and 1.10. For the proofs, we use that the
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theorems hold if and only if they hold for their corresponding reparameterizations.

Proof of Theorem 1.9 part 1 & 2: Both parts can be proved simultaneously.

Let τ = inf{t|Xt ∈ (−ε, ε)}, and τ ′ = inf{t > τ |Xt ∈ {−3ε, 3ε}}. Now, define a

stochastic process (Ut)t≥τ started on Fτ that satisfies (3.2.2) with Uτ = −2ε.

From Proposition 2.3, we see that Ut < Xt,∀t ∈ (τ, τ ′). Now, we can see that

P(τ ′ =∞) = 0. Indeed, P(τ ′ =∞) ≤ P(Ut ≤ 3ε∀t ≥ τ) ≤ 1− P(Ut →∞) = 0. �

Proof Theorem 1.10 part 1: Suppose N = (−3ε, 3ε) for ε > 0. Without loss

of generality and for the purposes of this proof, assume that ε < min

((
C(1)
k

) 1
k−1

,
(
C(c)
k

) 1
k−1

)
.

Pick a time z such that h(t) ≥ −3
2

(
k

C(c)

) 1
k−1

ε for all t ≥ z, and define τ =

inf{t ≥ z|Xt ∈ (−ε, ε)}, and τ ′ = inf{t > τ |Xt ∈ {−3ε, 3ε}}. From Proposi-

tion 3.18, τ <∞ with positive probability. Now, we define two stochastic processes

(Yt)t≥τ , (Y
′
t )t≥τ in the same probability space as Xt started on Fτ , that satisfy

(3.2.1) with drift constant 1 and c respectively. From Proposition 2.3, we see that if

Yτ > Xτ > Y ′τ , then Yt > Xt > Y ′t for all t ∈ (τ, τ ′). We set Y ′τ , such that Xτ > Y ′τ ,

and ZY ′
t = − Y ′t

h(t)
> max

(
−
(
C(1)
k

) 1
k−1

,−
(
C(c)
k

) 1
k−1

)
. Now, we should show that

{τ ′ =∞}∩{Yt → 0}∩{Y ′t → 0} is non trivial. Take ε1 and εc, both less than ε, as in

the statement of Lemma 3.15 for Yt and Y ′t respectively, and pick ε′ = min(ε1, εc).

For ε′, using Lemma 3.15, we know we can find δ1 and δc such that on A1 =

{Gt ∈ (−ε′, ε′) for all t ∈ (s, s + δ1), and Gt ∈ (−2ε′,− 9
10
ε′) for all t ∈ (s + δ1,∞)}

we have Ys → 0, and on Ac = {Gt ∈ (−ε′, ε′) for all t ∈ (s, s + δc), and Gt ∈

(−2ε′,− 9
10
ε′) for all t ∈ (s + δc,∞)} we have Y ′s → 0. From here, since A1 ∩ Ac is
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non trivial, we only need to argue that {τ ′ = ∞} ⊃ A ∩ A′. From the remark of

Lemma 3.15 we see that Yt and Y ′t always stay below 0 on A1 ∩ Ac. Also, from

Proposition 3.17, we see that ZY ′
t > −2

(
C(c)
k

) 1
k−1

. Equivalently, and using that

h(t) ≥ −3
2

(
k

C(c)

) 1
k−1

ε,

Y ′t > 2h(t)

(
C(c)

k

) 1
k−1

≥ −3ε

�

We now prove the second part of Theorem 1.10.

Proof Theorem 1.10 part 2: Let N = (−3ε, 0). Define τ = inf{t ≥ 1|Xt ∈

(−3ε
2
,−5ε

4
)}, and the exit time fromN , τe = inf{t|Xt 6∈ (−3ε, 0)}. From Proposition

3.18, we have that τ <∞ holds with positive probability. Define (Yt)τ≤t≤τe , (Yt)τ≤t≤τe

to be two processes that satisfy (3.1.1) with constants k1, k2 respectively. Suppose

that Yτ < Xτ < Y ′τ and Yτ , Y
′
τ ∈ (−2ε,−ε). Then from Proposition 2.3, we get

Yt < Xt < Y ′t , for all t ∈ (τ, τe). Now, using Proposition 3.8, there is an eventA such

that Yt, Y
′
t ∈ (−3ε, 0), for all t ≥ τ . Consequentially Xt ∈ (−3ε, 0), for all t ≥ τ

since τe =∞ on A. Finally, using Lemma 2.2 we conclude that Yt → 0 on A, hence

also Xt → 0 on A. �
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Chapter 4

The discrete model

4.1 Analysis of Xn when 1
2 + 1

2k > γ, k > 1 and

γ ∈ (1/2, 1)

Throughout this section we assume 1
2

+ 1
2k
> γ. We will prove Theorem 1.11 at the

end of the subsection with the help of Theorem 4.1. The former theorem is a local

version of the latter. For Theorem 4.1 we will need Xn that satisfy

Xn+1 −Xn ≥
|Xn|k

nγ
+
Yn+1

nγ
, k > 1 and γ ∈ (1/2, 1), (4.1.1)

where Yn are a.s. bounded and E(Yn+1|Fn) = 0. In this subsection we additionally

require Yn to satisfy E(Y 2
n+1|Fn) ≥ l > 0.

Theorem 4.1. Let (Xn)n≥1 solve (4.1.1). Then Xt →∞ a.s..
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Now, we develop the necessary tools to prove this theorem.

Proposition 4.2. Let (Xn)n≥1 solve (4.1.1). The process (Xn)n≥1 gets close to the

origin infinitely often. More specifically, for β < 0 the event {Xn ≥ βn
1−2γ

2 i.o.} has

probability 1.

Proof: Now, from the restrictions on k we obtain

1

2
+

1

2k
> γ ⇐⇒ k − 1

2k
< 1− γ.

Set h(t) = −t
1−γ
1−k , and define Zn = −Xn

hn
. From here, on the event {Xm <

0 for allm ≥ n}, we get the following recursion,

Zn+1 − Zn ≥ −
Xn+1

h(n+ 1)
+

Xn

h(n)
(4.1.2)

≥ −Xn

(
1

h(n+ 1)
− 1

h(n)

)
− |Xn|k

nγh(n+ 1)
− Yn+1

nγh(n+ 1)

≥ Xn
1− γ
k − 1

ξ
− 1−γ

1−k−1
n − |Xn|k

nγh(n+ 1)
− Yn+1

nγh(n+ 1)
, where ξn ∈ (n, n+ 1)

≥ Xn

h(n+ 1)nγ

(
1− γ
k − 1

ξ
− 1−γ

1−k−1
n h(n+ 1)nγ − |Xn|k

Xn

)
− Yn+1

nγh(n+ 1)

≥ Xn

h(n+ 1)nγ

(
−an

1− γ
k − 1

|h(n)|k−1 − |Xn|k

Xn

)
− Yn+1

nγh(n+ 1)
(4.1.3)

≥ Xn

h(n+ 1)nγ

(
−2(1− γ)

k − 1
|h(n)|k−1 − |Xn|k

Xn

)
− Yn+1

nγh(n+ 1)
(4.1.4)

where

an =
ξ
−(1−γ)
1−k −1

n h(n+ 1)nγ

−|h(n)|k−1
. (4.1.5)
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To justify the inequality (4.1.4) for large enough n, notice that an → 1.

Define G′s,n =
∑n−1

i=s
Y i+1
ih(i+1)

. As seen in 4.1

Lemma 4.3. lim supn→∞G
′
1,n =∞ a.s..

Proof: We use the following theorem, for a reference see [Fis92] page 676 The-

orem 1,

Theorem 4.4. Let Xn be a martingale difference such that E(X2
i |Fi−1) < ∞.

Set s2n =
∑n

i=1E(X2
i |Fi−1), and define φ(x) = (2 log2(x

2 ∨ e2)) 1
2 . We assume

that sn → ∞ a.s. and that |Xi| ≤ Kisi
φ(si)

a.s. where Ki is Fi−1 measurable with

lim supi→∞Ki < K for some constant K. Then there is a positive constant ε(K)

such that lim supn→∞
∑n

i=1
Xi

snφ(sn)
≥ ε(K) a.s..

It is clear that G′1,n satisfies all the hypothesis required for the aforementioned

theorem to hold. �

From Lemma 4.3, it is immediate that for any random time s (not necessarily a

stopping time) lim supn→∞G
′
s,n =∞, a.s..

Now, we return to prove proposition 4.2. Assume that there is n0 such that

Xn < −
(

3(1−γ)
k−1

) 1
k−1

n
1−γ
1−k , for all n ≥ n0. Then, since |x|

k

x
is increasing we get that

|Xn|k
Xn

< −3(1−γ)
k−1 n−1+γ. Therefore,

−2(1− γ)

k − 1
|h(n)|k−1 − |Xn|k

Xn

> −2(1− γ)

k − 1
n1−γ +

3(1− γ)

k − 1
n1−γ =

(1− γ)

k − 1
n−1+γ > 0
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So,

Zn ≥ Zn0 +
n∑

i=n0

Xn

h(n+ 1)nγ

(
−2(1− γ)

k − 1
|h(n)|k−1 − |Xn|k

Xn

)
− Yn+1

nγh(n+ 1)
+G′n0,n

> Zn0 +G′n0,n,

which gives lim supn→∞ Zn = ∞ which is a contradiction since this would imply

Xn ≥ 0.

Since n
1−γ
1−k = o(n

1−2γ
2 ), for every constant β < 0, the event {Xn ≥ βn

1−2γ
2 i.o.},

holds a.s. �

We define Gn,u =
∑u−1

i=n
Y i+1
iγ

, which is an important quantity for the next lemma

and the remaining of the section.

Lemma 4.5. For any n large enough, we can find a1 > 0, δ > 0 such that P(supu≥nGn,u ≥

a1n
1−2γ

2 |Fn) > δ and P(Gn,∞ ≥ a1n
1−2γ

2 |Fn) > δ.

Proof: Define τ = inf{u ≥ n|Gn,u /∈ (−a2n
1−2γ

2 , a2n
1−2γ

2 )}. We calculate the
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stopped variance of Gτ := Gn,τ . We will do so recursively; fix m ≥ n and calculate,

E((Gτ∧m+1)
2|Fn)− E(Gτ∧m)2|Fn) = E

(
1τ>m

(
2
Ym+1

mγ
Gm +

Y 2
m+1

m2

)
|Fn

)
= E

(
1τ>m2

Ym+1

mγ
Gm|Fn

)
+ E

(
1τ>m

Y 2
m+1

m2
|Fn

)
= 0 + E

(
1[τ>m]E

(
Y 2
m+1

m2γ
|Fm

)
|Fn

)
≥ ε

1

m2γ
E(1[τ>m]|Fn)

≥ ε
1

m2γ
P(τ =∞|Fn).

Therefore,

E((Gτ∧m)2|Fn) ≥ E((Gτ∧n)2|Fn) + cP(τ =∞|Fn)(n1−2γ − (m− 1)1−2γ)

= cP(τ =∞|Fn)(n1−2γ − (m− 1)1−2γ). (4.1.6)

Notice that since Yn are a.s. bounded, |Gτ | ≤ a2n
1−2γ

2 + M
nγ

, and since γ > γ − 1/2,

we get that |Gτ | ≤ 2a2n
1−2γ

2 for n large enough. For m large, we can find a constant

c′ such that n1−2γ − (m− 1)1−2γ ≥ c′n1−2γ. Using (4.1.6), we obtain

4a22n
1−2γ

εc′n1−2γ =
4a22
εc′
≥ P(τ =∞|Fn).

Choosing a2 small enough we may conclude P(τ < ∞|Fn) > 1/2, for all n large

enough.
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Now, we take any martingale Mn starting at 0, such that it exits an interval

(−2a, 2a), with at least probability p, and |Mn+1 −Mn| < a, a.s.. Then, we stop

the martingale upon exiting the interval (−2a, 2a); namely, define τ− to be the first

time Mn goes below −2a and τ+ to be the first time that Mn surpasses 2a, and set

τ = τ−∧ τ+. Using the optimal stopping theorem for the bounded martingale Mτ∧n

and taking n to infinity we obtain

0 = E(Mτ ) ≤ −2aP(τ− < τ+) + 3aP(τ− > τ+) + 2aP(τ =∞)

= −2ap+ 2a(1− p) + 5aP(τ− > τ+).

So, P(τ− > τ+) ≥ 4p− 2

5
, which implies that P(supnMn ≥ 2a) ≥ 4p− 2

5
.

The previous applied to Gn,u given Fn, concludes the lemma. Indeed, since

the probability p, of exiting the interval is bigger than 1/2, we may deduce that

4p− 2

5
> 0.

For the second part of the lemma, we use the following inequality: let Mn be

a martingale such that M0 = 0 and E(M2
n) < ∞. Then P(maxn≥u≥0Mu ≥ λ) ≤

E(M2
n)

E(M2
n)+λ

2 (for a reference see [Dur13], page 213, exercise 5.4.5). Let τ be the first time

Gn,u, surpasses a2n
1−2γ. Condition on [τ < ∞], and notice that Gn,∞ ≥ a2

2
n1−2γ

when infu≥τ Gτ,u > −a2
2
n1−2γ. Using the previous inequality, and the fact that x

x+1
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is increasing gives

P(Gn,∞ ≤
a2
2
n

1−2γ
2 |Fτ , [τ <∞]) ≤ P(inf

u≥τ
Gτ,u ≤ −

a2
2
n1−2γ|Fτ , [τ <∞])

≤ E((Gτ,∞)2|Fτ , [τ <∞])

E((Gτ,∞)2|Fτ , [τ <∞]) +
a22
4
n1−2γ

≤ cτ 1−2γ

cτ 1−2γ +
a22
4
n1−2γ

≤ c

c+
a22
4

.

Therefore, P(Gn,∞ ≥ a2
2
n

1−2γ
2 |Fn) ≥ P(τ < ∞)

a22
4

c+
a22
4

, which concludes the lemma.

�

So, for any stopping time σ, we get the following version of the previous lemma:

Lemma 4.6. For any n, we can find a1 > 0, δ1 > 0, δ2 > 0 such that P(supu≥σ Gσ,u ≥

a1σ
1−2γ

2 |Fσ) > δ1 and P(Gσ,∞ ≥ a1σ
1−2γ

2 |Fσ) > δ2.

�

Before proving Theorem 4.1 we will need the following corollary.

Corollary 4.7. Let (Xn)n≥1 solve (4.1.1). The event {Xn ≥ 0 i.o.} holds a.s.

Proof: For any m,n we get the lower bound Xm − Xn ≥ Gn,m. Now, we

define an increasing sequence of stopping times τn, going to infinity a.s., such that

Xτn ≥ βτ
1−2γ

2
n for |β| < a1, where a1 is such that the statement of Lemma 4.6 holds.

From Proposition 4.2, we can do so, with all τn a.s. finite. Hence, P(sup∞≥u≥τn Xm−

Xτn ≥ a1τn
1−2γ

2 |Fτn) ≥ P(sup∞≥u≥τn Gτn,u ≥ a1τn
1−2γ

2 |Fτn) > δ1 > 0. Therefore,
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by Borel-Cantelli on the events {Xτn ≥ βτ
1−2γ

2
n }, we get {Xτn ≥ 0 i.o.}. Therefore

{Xn ≥ 0 i.o.} holds a.s. �

Proof of Theorem 4.1: Define τn, as in the proof of the previous corollary,

such that Xτn ≥ 0. Since P(Gτn,∞ ≥ a1τ
1−2γ

2
n |Fτn) > δ2, an application of Borel-

Cantelli shows that {Xn ≥ a1
2
n

1−2γ
2 i.o.} holds a.s.. We claim a.s. there are constants

c(ω) > 0 m(ω) such that {Xn > c for all n ≥ m} = {lim inf→∞Xn > 0}. Indeed, if

we define τ0 = 0 and τn+1 = inf{m > τn + 1|Xm ≥ a1
2
m

1−2γ
2 } we see that τn < ∞

a.s. and τn →∞. This gives a corresponding filtration, namely Fn = σ(τn).

To finish the claim, we show that A = {lim inf→∞Xn ≤ 0} has probability zero.

To do so, it is sufficient to argue that there is a δ such that P(A|Fn) < 1 − δ a.s.

for all n ≥ 1. This is immediate from the previous calculation. Indeed,

P(A|Fn) ≤ 1− P
(

lim inf
n

Xn ≥
3a1
2
τ

1−2γ
2

n |Fn

)
= 1− P

(
lim inf

n
Xn −

a1
2
τ

1−2γ
2

n ≥ a1τ
1−2γ

2
n |Fn

)
≤ 1− P(lim inf

n
Gτn,n ≥ a1τ

1−2γ
2

n |Fn)

< 1− δ2.

The process Gm,∞ is a.s. finite, and since the drift term
∑

i≥n
|Xi|k
iγ
→ ∞, we get

that Xn →∞. �

Finally, we can prove Theorem 1.11. In the next proof Xn, X
′
n solve (1.8.1) and

(4.1.1), respectively.
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Proof of Theorem 1.11: We define, τ = inf{n|Xn ∈ (−ε, ε)}, and τ ′ = inf{τ ′ >

τ |Xn 6∈ (−ε′, ε′)}. When ε is small enough, we may assume that τ <∞ with positive

probability, otherwise we have nothing to prove. On {τ <∞}, couple Xn with X ′n,

so that P(Xn = X ′n, τ ≤ n ≤ τ ′|[τ < ∞]) = 1, where X ′n is a process that solves

(4.3.1). Since X ′n →∞, a.s., we have that τ ′ <∞ a.s.. Thus, on {limn→∞Xn = 0},

Borel-Cantelli implies {Xn = 0 i.o.}. Therefore, P(limn→∞Xn = 0) = 0. �

4.2 Analysis of Xn when 1
2 + 1

2k < γ, k > 1 and

γ ∈ (1/2, 1)

Before proving the main theorem Theorem 1.12, as described in subsection 1.8 we

will study a process (Xn)n≥1 that satisfies

Xn+1 −Xn ≤
f(x)

nγ
+
Yn+1

nγ
, γ ∈ (1/2, 1), k ∈ (1,∞), (4.2.1)

where, f(x) ≤ |x|k when x ∈ (−ε, ε), and f(x) = |x|k when x ∈ R \ (−ε, ε).

Also, as before, |Yn| < M a.s. and E(Yn+1|Fn) = 0. Let x0 < 0, such that

f(x) > M, ∀x ≤ x0. We will use x0 in the next lemma.

Lemma 4.8. Take C = max(M, |X1|, |x0|). Then Xn > −2C for all n a.s..

Proof: We can show this by induction. Of course X1 > −2C. For the inductive
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step, we distinguish two cases. First, assume that −2C < Xn < −C. Then

Xn+1 = Xn +
f(Xn)

nγ
+
Yn+1

nγ

≥ −2C +
f(Xn)

nγ
− M

nγ

> −2C.

Now, assume Xn ≥ −C. Then

Xn+1 = Xn +
|Xn|k

nγ
+
Yn
nγ

≥ −C + 0− M

nγ

> −2C.

�

Pick ε > 0 such that ε ≤ min

(
1
4
, 1
2

(
1−γ

3(k−1)

) 1
k−1

)
. Let an, be defined as in the

previous subsection 4.1, first appearing in (4.1.3) and defined in (4.1.5).

Claim: Any n0 large enough satisfies the following properties

1. an > 1/2, n ≥ n0.

2. if − Xn+1

h(n+1)
> −2ε, and − Xn

h(n)
≤ −2ε, then − Xn+1

h(n+1)
< −ε, when n ≥ n0.

3. P(G′n0,n ∈ (−ε
2
, ε
2
)∀n ≥ n0|Fn0) > 0.

Proof:
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1. This is is trivial.

2. Since |Yn| < M , and Xn > C a.s., then whenever Xn < 0, we have |Xn+1 −

Xn| = O(n−γ). Also, n−γ = o(h(n)), since γ > 1−γ
k−1 . Indeed, γ > 1−γ

k−1

is equivalent to γ > 1/k = 1/2k + 1/2k, however 1/2 > 1/2k and since

γ > 1/2 + 1/2k we conclude. Furthermore, notice that
h(n)

h(n+ 1)
→ 1.

Calculate

− Xn+1

h(n+ 1)
= −Xn+1 −Xn

h(n+ 1)
− Xn

h(n)
· h(n)

h(n+ 1)

≥ o(1)− 2ε
h(n)

h(n+ 1)

Since the o(1) term and h(n)
h(n+1)

depend only on n, we conclude 2.

3. Using Doob’s inequality, and the fact that mγh(m+1) ∼ m
1−γ
k−1
−γ ≤ m

1−γ
k−1
−γ ≤

m
−1−δ

2 for some δ > 0, we have:

P
(

sup
u≥n0

(G′
n0

u |Fn0)
2 ≥ ε2

4

)
≤
∑
m≥n0

E(Y 2
m+1|Fn0)

mγh(m+ 1)

≤ C
∑
m≥n0

1

mγh(m+ 1)

=
∑
m≥n0

Θ(m
1−γ
k−1
−γ)

=
∑
m≥n0

Θ(m−1−δ)

= Θ(n0
−δ)→ 0.
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�

Notice, that the previous claim holds for any stopping time τ , in place of n. So,

we obtain a version of the previous lemma for stopping times.

Lemma 4.9. Let τ be a stopping time such that τ ≥ n0, where n0 is the same as

in the previous claim. Then, P(G′τ,n ∈ (−ε
2
, ε
2
)∀n ≥ τ |Fτ ) > 0

�

Let ε ≤ min

(
1
4
, 1
2

(
1−γ

3(k−1)

) 1
k−1

)
, and define a stopping time τ = inf{n ≥

n0|Zn < −2ε}.

Proposition 4.10. Let (Xn)n≥1 that satisfies (4.2.1). When τ <∞, with positive

probability, then P(Xn → 0) > 0. More specifically, the process (Xn : n ≥ τ)

converges to zero with positive probability.

Proof: On the event {Xm < 0 for allm ≥ n} we use the expression for Zn =

− Xn

h(n)
and obtain, as done in (4.1.3), expect, now the inequalities are reversed,

Zn+1 − Zn ≤
Xn

h(n+ 1)nγ

(
−an

1− γ
k − 1

|h(n)|k−1 − |Xn|k

Xn

)
− Yn+1

nγh(n+ 1)

<
Xn

h(n+ 1)nγ

(
− 1− γ

2(k − 1)
|h(n)|k−1 − |Xn|k

Xn

)
− Yn+1

nγh(n+ 1)
.

Set Dn =
Xn

h(n+ 1)nγ

(
− 1− γ

2(k − 1)
|h(n)|k−1 − |Xn|k

Xn

)
. Then we have

Zm − Zτ ≤
m−1∑
i=τ

Di +G′τ,m. (4.2.2)
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Now, we will show, by contradiction, that on the eventA = {G′τ,n ∈ (−ε
2
, ε
2
), ∀n ≥

τ} the process satisfies Xn < 0 for all n ≥ τ . Define τ0 = inf{n ≥ τ |Zn ≥ 0}, and

σ = sup{τ ≤ n < τ0|Zn−1 ≤ −2ε, Zn > −2ε}. Also, when Zn ≥ −2ε we have

Xn ≥ 2εh(n) = −2εn
1−γ
1−k . So |Xn|k

Xn
≥ −(2ε)k−1n−1+γ. Therefore, by the definition

of ε, we get

− 1− γ
2(k − 1)

|h(n)|k−1−|Xn|k

Xn

<

(
− 1− γ

2(k − 1)
+

1− γ
3(k − 1)

)
n−1+γ = − 1− γ

6(k − 1)
n−1+γ < 0.

Hence Dn < 0 whenever Zn ≥ −2ε. If {τ0 <∞} ∩ A has positive probability, then

{σ <∞} ∩ A also does. Thus, on {τ0 <∞} ∩ A,

0 ≤ Zτ0 = Zτ +

τ0−1∑
i=τ

Di +G′τ,τ0

= Zτ − Zσ + Zσ +

τ0−1∑
i=τ

Di +G′τ,τ0

= Zσ −G′τ,σ +G′τ,τ0 +

τ0−1∑
i=σ

Di

< −ε+
ε

2
+
ε

2
+ 0 = 0

which is a contradiction.

Now, we can complete the proof of the proposition. On the event A, Xn < 0

for all n > τ , therefore lim supn→∞Xn ≤ 0 on A. However, by Lemma 2.5 we have

lim supn→∞Xn ≥ 0 a.s.. Therefore, on A, Xn → 0. �

Remark: On A we showed that Xn converges to zero, since for all n ≥ τ , Xn < 0

81



and the only place to converge is the origin.

Proof of Theorem 1.12: We define τ = inf{n ≥ n0|Xn ∈ (−ε2,−ε1)}, where

n0 is the same as in Lemma 4.9, and τe = inf{n|Xn 6∈ (−3ε, 3ε)}. Let (X ′n : n ≥ τ)

be a process that satisfies (4.1.1). Then we couple (Xn) with (X ′n) on {τ <∞} such

that P(Xn = X ′n, τ ≤ n ≤ τe|{τ < ∞}) = 1. To show that X ′n, converges to zero

with positive probability, first we need to verify that the conditions for Proposition

4.10 are met. The only thing we need to check is that Z ′τ = − X′τ
h(τ)

< −2ε. However,

since h(t) → 0 this is always possible by choosing n0 large enough. Furthermore,

by Proposition 4.10, we see that there is an event of positive probability such that

X ′n → 0, where τe is infinite conditioned on this event. Therefore, Xn converges to

0 with positive probability. �

4.3 Analysis of Xt when k > 1/2 and γ = 1

Throughout this section we assume k > 1/2. We will prove the second part of

theorem 1.11. This section will be almost identical to section 4.1. As before first

we will prove a local version of the latter theorem. For Theorem 4.11 we will need

Xn that satisfy

Xn+1 −Xn ≥ k
|Xn|
n

+
Yn+1

n
, k > 1/2, (4.3.1)

where Yn are a.s. bounded and E(Yn+1|Fn) = 0. In this section we additionally

require Yn to satisfy E(Y 2
n+1|Fn) ≥ l > 0.
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Theorem 4.11. Let (Xn)n≥1 solve (4.3.1). Then Xn →∞ a.s..

We have the following proposition corresponding to Proposition 4.2.

Proposition 4.12. Let (Xn)n≥1 solve (4.1.1). The process (Xn)n≥1 gets close to

the origin infinitely often. More specifically, for β < 0 the event {Xn ≥ βn−
1
2 i.o.}

has probability 1.

Proof: Set h(t) = −t−k, and define Zn = −Xn
hn

. Also we pick 1/2 < k1 < k.

From here, on the event {Xm < 0 for allm ≥ n}, we get the following recursion,

Zn+1 − Zn ≥ −
Xn+1

h(n+ 1)
+

Xn

h(n)
(4.3.2)

≥ −Xn

(
1

h(n+ 1)
− 1

h(n)

)
− k |Xn|

nh(n+ 1)
− Yn+1

nh(n+ 1)

≥ Xnkξ
k−1
n − k |Xn|

nh(n+ 1)
− Yn+1

nh(n+ 1)
, where ξn ∈ (n, n+ 1)

≥ Xn

h(n+ 1)n

(
kξk−1n h(n+ 1)n− k |Xn|

Xn

)
− Yn+1

nh(n+ 1)

≥ Xn

h(n+ 1)n

(
−ank − k

|Xn|
Xn

)
− Yn+1

nh(n+ 1)
(4.3.3)

≥ Xn

h(n+ 1)n

(
−k1 − k

|Xn|
Xn

)
− Yn+1

nh(n+ 1)
(4.3.4)

≥ Xn

h(n+ 1)n
(k − k1)−

Yn+1

nh(n+ 1)
(4.3.5)

where

an = −ξk−1n h(n+ 1)n. (4.3.6)

To justify the inequality (4.3.4) for large enough n, notice that an → 1.
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Define G′s,n =
∑n−1

i=s
Y i+1
ih(i+1)

as done in section 4.1 To this end, we have the

following lemma,

Lemma 4.13. lim supn→∞G
′
1,n =∞ a.s..

Proof: Same proof as Lemma 4.3. �

From Lemma 4.13, it is immediate that for any random time s (not necessarily

a stopping time) lim supn→∞G
′
s,n =∞, a.s..

Now, we return to prove proposition 4.12. Assume that there is n0 such that

Xn < 0, for all n ≥ n0. Then,

Zn ≥ Zn0 +
n∑

i=n0

Xi

h(i+ 1)i
(k − k1) +G′n0,n

> Zn0 +G′n0,n,

which gives lim supn→∞ Zn = ∞ which is a contradiction since this would imply

Xn ≥ 0.

�

We define Gn,u =
∑u−1

i=n
Y i+1
iγ

. We are almost done since, the noise estimates done

in section 4.1 was a big bulk of the work and they also hold when γ = 1.

Before proving Theorem 4.1 we will need the following corollary.

Corollary 4.14. Let (Xn)n≥1 solve (4.3.1). The event {Xn ≥ 0 i.o.} holds a.s.

Proof: For any m,n we get the lower bound Xm − Xn ≥ Gn,m. Now, we

define an increasing sequence of stopping times τn, going to infinity a.s., such that
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Xτn ≥ βτ
− 1

2
n for |β| < a1, where a1 is such that the statement of Lemma 4.6 holds.

From Proposition 4.2, we can do so, with all τn a.s. finite. Hence, P(sup∞≥u≥τn Xm−

Xτn ≥ a1τn
− 1

2 |Fτn) ≥ P(sup∞≥u≥τn Gτn,u ≥ a1τn
− 1

2 |Fτn) > δ1 > 0. Therefore, by

Borel-Cantelli on the events {Xτn ≥ βτ
− 1

2
n }, we get {Xτn ≥ 0 i.o.}. Therefore

{Xn ≥ 0 i.o.} holds a.s. �

Proof of Theorem 4.11: Define τn, as in the proof of the previous corollary,

such that Xτn ≥ 0. Since P(Gτn,∞ ≥ a1τ
− 1

2
n |Fτn) > δ2, an application of Borel-

Cantelli shows that {Xn ≥ a1
2
n−

1
2 i.o.} holds a.s.. We claim a.s. there are constants

c(ω) > 0 m(ω) such that {Xn > c for all n ≥ m} = {lim inf→∞Xn > 0}. Indeed, if

we define τ0 = 0 and τn+1 = inf{m > τn + 1|Xm ≥ a1
2
m−

1
2} we see that τn <∞ a.s.

and τn →∞. This gives a corresponding filtration, namely Fn = σ(τn).

To finish the claim, we show that A = {lim inf→∞Xn ≤ 0} has probability zero.

To do so, it is sufficient to argue that there is a δ such that P(A|Fn) < 1 − δ a.s.

for all n ≥ 1. This is immediate from the previous calculation. Indeed,

P(A|Fn) ≤ 1− P
(

lim inf
n

Xn ≥
3a1
2
τ
− 1

2
n |Fn

)
= 1− P

(
lim inf

n
Xn −

a1
2
τ
− 1

2
n ≥ a1τ

− 1
2

n |Fn

)
≤ 1− P(lim inf

n
Gτn,n ≥ a1τ

− 1
2

n |Fn)

< 1− δ2.

The process Gm,∞ is a.s. finite, and since the drift term
∑

i≥n k
|Xi|
i
→ ∞, we get
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that Xn →∞. �

Finally, we can prove Theorem 1.11. In the next proof Xn, X
′
n solve (1.8.1) and

(4.3.1), respectively.

Proof of Theorem 1.11: We define, τ = inf{n|Xn ∈ (−ε, ε)}, and τ ′ = inf{τ ′ >

τ |Xn 6∈ (−ε′, ε′)}. When ε is small enough, we may assume that τ <∞ with positive

probability, otherwise we have nothing to prove. On {τ <∞}, couple Xn with X ′n,

so that P(Xn = X ′n, τ ≤ n ≤ τ ′|[τ < ∞]) = 1, where X ′n is a process that solves

(4.1.1). Since X ′n →∞, a.s., we have that τ ′ <∞ a.s.. Thus, on {limn→∞Xn = 0},

Borel-Cantelli implies {Xn = 0 i.o.}. Therefore, P(limn→∞Xn = 0) = 0. �

4.4 Analysis of Xn when k < 1/2 and γ = 1

Before proving the second part of the main theorem Theorem 1.12, as described in

subsection 1.8 we will study a process (Xn)n≥1 that satisfies

Xn+1 −Xn ≤
f(x)

n
+
Yn+1

n
, k < 1/2, (4.4.1)

where, f(x) ≤ k|x| when x ∈ (−ε, ε), and f(x) = k|x| when x ∈ R \ (−ε, ε).

Also, as before, |Yn| < M a.s. and E(Yn+1|Fn) = 0. Let x0 < 0, such that

f(x) > M, ∀x ≤ x0. We will use x0 in the next lemma.

Lemma 4.15. Take C = max(M, |X1|, |x0|). Then Xn > −2C for all n a.s..

Proof: We can show this by induction. Of course X1 > −2C. For the inductive

86



step, we distinguish two cases. First, assume that −2C < Xn < −C. Then

Xn+1 = Xn +
f(Xn)

n
+
Yn+1

n

≥ −2C +
f(Xn)

n
− M

n

> −2C.

Now, assume Xn ≥ −C. Then

Xn+1 = Xn +
k|Xn|
n

+
Yn
n

≥ −C + 0− M

n

> −2C.

�

Let an, be defined as in the previous subsection 4.3, first appearing in (4.3.3)

and defined in (4.3.6).

Claim: Any n0 large enough satisfies the following properties

1. an > 1/2, n ≥ n0.

2. if − Xn+1

h(n+1)
> −2ε, and − Xn

h(n)
≤ −2ε, then − Xn+1

h(n+1)
< −ε, when n ≥ n0.

3. P(G′n0,n ∈ (−ε
2
, ε
2
)∀n ≥ n0|Fn0) > 0.

Proof:
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1. This is is trivial.

2. Since |Yn| < M , and Xn > C a.s., then whenever Xn < 0, we have |Xn+1 −

Xn| = O(n−1) and n−1 = o(h(n)). Furthermore, notice that
h(n)

h(n+ 1)
→ 1.

Calculate

− Xn+1

h(n+ 1)
= −Xn+1 −Xn

h(n+ 1)
− Xn

h(n)
· h(n)

h(n+ 1)

≥ o(1)− 2ε
h(n)

h(n+ 1)

Since the o(1) term and h(n)
h(n+1)

depend only on n, we conclude 2.

3. Using Doob’s inequality, and the fact that mh(m + 1) ∼ m1−k ≤ m
−1−δ

2 for

some δ > 0, we have:

P
(

sup
u≥n0

(G′
n0

u |Fn0)
2 ≥ ε2

4

)
≤
∑
m≥n0

E(Y 2
m+1|Fn0)

m2h2(m+ 1)

≤ C
∑
m≥n0

1

m2h2(m+ 1)

=
∑
m≥n0

Θ(m−1−δ)

= Θ(n0
−δ)→ 0.

�

Notice, that the previous claim holds for any stopping time τ , in place of n. So,

we obtain a version of the previous lemma for stopping times.
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Lemma 4.16. Let τ be a stopping time such that τ ≥ n0, where n0 is the same as

in the previous claim. Then, P(G′τ,n ∈ (−ε
2
, ε
2
)∀n ≥ τ |Fτ ) > 0

�

Let ε > 0, and define a stopping time τ = inf{n ≥ n0|Zn < −2ε}.

Proposition 4.17. Let (Xn)n≥1 that satisfies (4.2.1). When τ <∞, with positive

probability, then P(Xn → 0) > 0. More specifically, the process (Xn : n ≥ τ)

converges to zero with positive probability.

Proof: Pick k2 > k. On the event {Xm < 0 for allm ≥ n} we use the expression

for Zn = − Xn

h(n)
and obtain, as done in (4.3.3), expect, now the inequalities are

reversed,

Zn+1 − Zn ≤
Xn

h(n+ 1)n

(
−ank − k

|Xn|
Xn

)
− Yn+1

nh(n+ 1)
(4.4.2)

≤ Xn

h(n+ 1)n

(
−k2 − k

|Xn|
Xn

)
− Yn+1

nh(n+ 1)
(4.4.3)

≤ Xn

h(n+ 1)n
(k − k2)−

Yn+1

nh(n+ 1)
(4.4.4)

Set Dn = Xn
h(n+1)n

(k − k2). Then we have

Zm − Zτ ≤
m−1∑
i=τ

Di +G′τ,m. (4.4.5)

Now, we will show, by contradiction, that on the eventA = {G′τ,n ∈ (− ε
2
, ε
2
),∀n ≥

τ} the process satisfies Xn < 0 for all n ≥ τ . Define τ0 = inf{n ≥ τ |Zn ≥ 0}, and
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σ = sup{τ ≤ n < τ0|Zn−1 ≤ −2ε, Zn > −2ε}. Also Dn < 0 whenever Zn ≥ −2ε.

If {τ0 < ∞} ∩ A has positive probability, then {σ < ∞} ∩ A also does. Thus, on

{τ0 <∞} ∩ A,

0 ≤ Zτ0 = Zτ +

τ0−1∑
i=τ

Di +G′τ,τ0

= Zτ − Zσ + Zσ +

τ0−1∑
i=τ

Di +G′τ,τ0

= Zσ −G′τ,σ +G′τ,τ0 +

τ0−1∑
i=σ

Di

< −ε+
ε

2
+
ε

2
+ 0 = 0

which is a contradiction.

Now, we can complete the proof of the proposition. On the event A, Xn < 0

for all n > τ , therefore lim supn→∞Xn ≤ 0 on A. However, by Lemma 2.5 we have

lim supn→∞Xn ≥ 0 a.s.. Therefore, on A, Xn → 0. �

Remark: On A we showed that Xn converges to zero, since for all n ≥ τ , Xn < 0

and the only place to converge is the origin.

Proof of Theorem 1.12: We define τ = inf{n ≥ n0|Xn ∈ (−ε2,−ε1)}, where

n0 is the same as in Lemma 4.9, and τe = inf{n|Xn 6∈ (−3ε, 3ε)}. Let (X ′n : n ≥ τ)

be a process that satisfies (4.1.1). Then we couple (Xn) with (X ′n) on {τ <∞} such

that P(Xn = X ′n, τ ≤ n ≤ τe|{τ < ∞}) = 1. To show that X ′n, converges to zero

with positive probability, first we need to verify that the conditions for Proposition
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4.17 are met. The only thing we need to check is that Z ′τ = − X′τ
h(τ)

< −2ε. However,

since h(t) → 0 this is always possible by choosing n0 large enough. Furthermore,

by Proposition 4.17, we see that there is an event of positive probability such that

X ′n → 0, where τe is infinite conditioned on this event. Therefore, Xn converges to

0 with positive probability. �
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