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A B S T R A C T

A U T O M AT E D A N A LY S I S I N G E N E R I C G R O U P S

Edvard Fagerholm

Andre Scedrov

This thesis studies automated methods for analyzing hardness assumptions
in generic group models, following ideas of symbolic cryptography. We de-
fine a broad class of generic and symbolic group models for different settings—
symmetric or asymmetric (leveled) k-linear groups—and prove “computational
soundness” theorems for the symbolic models. Based on this result, we formulate
a master theorem that relates the hardness of an assumption to solving problems
in polynomial algebra. We systematically analyze these problems identifying dif-
ferent classes of assumptions and obtain decidability and undecidability results.
Then, we develop automated procedures for verifying the conditions of our mas-
ter theorems, and thus the validity of hardness assumptions in generic group
models. The concrete outcome is an automated tool, the Generic Group Analyzer,
which takes as input the statement of an assumption, and outputs either a proof
of its generic hardness or shows an algebraic attack against the assumption.

Structure-preserving signatures are signature schemes defined over bilinear
groups in which messages, public keys and signatures are group elements, and
the verification algorithm consists of evaluating “pairing-product equations”. Re-
cent work on structure-preserving signatures studies optimality of these schemes
in terms of the number of group elements needed in the verification key and the
signature, and the number of pairing-product equations in the verification algo-
rithm. While the size of keys and signatures is crucial for many applications,
another aspect of performance is the time it takes to verify a signature. The most
expensive operation during verification is the computation of pairings. However,
the concrete number of pairings is not captured by the number of pairing-product
equations considered in earlier work.
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We consider the question of what is the minimal number of pairing computa-
tions needed to verify structure-preserving signatures. We build an automated
tool to search for structure-preserving signatures matching a template. Through
exhaustive search we conjecture lower bounds for the number of pairings required
in the Type II setting and prove our conjecture to be true. Finally, our tool ex-
hibits examples of structure-preserving signatures matching the lower bounds,
which proves tightness of our bounds, as well as improves on previously known
structure-preserving signature schemes.
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P R E FA C E

The motivation behind this thesis is to increase trust in security proofs in cryptog-
raphy. In the last decade or so a development within cryptography has been
to push the boundary on new features provided by cryptographic primitives
[BF03, BBG05a, HL02, GPSW06, LOS+10, Gen09], but at the same time relax-
ing the standard for security assumptions. While the security of cryptographic
primitives used to rely on well-known and long-studied problems, such as the
hardness of factoring and the discrete logarithm assumptions, cryptographers
started inventing new assumptions while justifying the security of their assump-
tions in restricted computational models. The generic group model studied and
extended in this thesis is one particularly common example while inventing new
assumptions is especially prevalent within the field of pairing-based cryptogra-
phy [KM10]. This has lead to a plethora of new security assumptions.

Worrying about this state-of-affairs is not new. In 2005, Halevi wrote a paper
[Hal05], where he noted that “we generate more proofs than we carefully ver-
ify (and as a consequence some of our published proofs are incorrect)”. Indeed,
a paper was recently accepted to one of the flagship conferences in cryptogra-
phy, ASIACRYPT, which had a faulty generic group proof [HS14, Fuc14, Pan14].
Halevi also noted that some of the reasons for this problem are social: “we mostly
publish in conferences rather than journals”. As a solution Halevi proposed writ-
ing a tool that could be used to verify the “mundane” parts of cryptographic
proofs. Halevi’s paper eventually led to Barthe et. al developing the CertiCrypt
[BGZB09] and later the EasyCrypt [BGHZ11] proof assistants for writing mechan-
ically verified cryptographic proofs. However, tools like EasyCrypt still have a
fairly steep learning curve as well as requiring significant effort from the user
compared to writing manual proofs. Unfortunately, this is currently a price to
pay for mechanically verified proofs, which is shared by most proof assistants;
formal proofs typically take an order-of-magnitude more time to write.

We note that attempts to formalize proofs is not just a development in e.g. the
programming language and the cryptographic communities. A recent article by
Avigad and Harrison [AH14] surveys the state of formally verified proofs in math-
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ematics. A classic example of an unusually complicated proof is e.g. the Four
Color Theorem proven by Appel and Haken [AH80] using a computer program
to verify some 1,936 special cases as part of the proof. Traditional mathemat-
ical proofs of significant length and complexity include the proof of the Feit-
Thompson theorem [FT62, FT63]. There has been an increased effort in recent
years to use automated theorem provers and proof assistants to verify mathe-
matical proofs. An example is the recently announced formal proof of the Feit-
Thompson theorem after six years of effort by Gonthier et al. [GAA+

13] that had
followed a similar effort for the Four Color Theorem [Gon08]. Instead of verify-
ing old theorems with very complicated proofs a different point-of-view has been
taken by the Univalent Foundations project initiated by Voevodsky, Awodey and
others [Uni13]. The aim of the project is to provide constructive foundations for
contemporary abstract mathematics. This could be used to build a formalization
of most of modern mathematics in a proof assistant such as Coq.

This thesis is an attempt to alleviate the problem of verifying new crypto-
graphic assumptions. The concrete outcome is a tool, the Generic Group Ana-
lyzer, that takes as input a description of a cryptographic assumption or certain
types of schemes and verifies the security or finds an attack. As an example, the
tool can automatically find an attack against the signature scheme in the flawed
ASIACRYPT paper mentioned above. It’s also worth noting that the step to syn-
thesis from verification is short. Having a tool that can automatically verify cryp-
tographic schemes, we can exhaustively generate candidates from a pre-defined
search space and use the verification tool to prune the search space of insecure
schemes. One can then study the candidates that remain in order to find schemes
satisfying the properties that were sought after. Finally, we note that such a tool
is not just useful for practical discovery of new schemes, we can also use the tool
to increase our belief in conjectures by looking for counterexamples.

This thesis is based on the following two papers:

• Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Sce-
drov and Benedikt Schmidt. Automated Analysis of Cryptographic Assump-
tions in Generic Group Models. In CRYPTO 2014, pages 354–368.

• Gilles Barthe, Edvard Fagerholm, Dario Fiore, Andre Scedrov, Benedikt
Schmidt and Mehdi Tibouchi. Strongly-Optimal Structure Preserving Sig-
natures from Type II Pairings: Synthesis and Lower Bounds. In PKC 2015.
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Significant extensions have since been made to the CRYPTO 2014 paper with
respect to supporting Laurent polynomials instead of just polynomials in the in-
put language as well as extending the interactive solver to accept group elements
as parameters to oracle queries. These extensions were both necessary prerequi-
sites to be able to do the work in the PKC 2015 paper. Additionally, the tool has
been extended to handle assumptions dealing with composite-order groups e.g.
subgroup decision assumptions. We also develop the necessary theory that allow
handling non-parametric assumptions with rational expressions as input, but this
has not been implemented in the tool as this type of assumptions have not been
widely used in the literature.
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1
A P R I M E R O N S O M E T O P I C S I N C RY P T O G R A P H Y

We start by presenting the necessary background for the thesis. With respect
to a mathematical background the reader is assumed to know the material cov-
ered in a standard undergraduate mathematics major. In particular, we assume
knowledge of basic linear algebra, group theory and probability. From computer
science, we assume that the reader is familiar with basics of algorithms, Turing
machines and oracles at the level of Sipser [Sip06]. Additionally, we assume that
the reader is familiar with some basic notions of cryptography, namely, security
assumptions and reduction proofs at the level of Katz and Lindell [KL07]. All
the other necessary background will either be covered in this chapter or given
necessary references to when needed.

1.1 pairings and multilinear maps

The Diffie-Hellman key exchange protocol between two parties A and B is one
of the cornerstones of modern cryptography. To perform the key exchange, A
and B agree on a group G of prime order p together with a generator g. They
then proceed by choosing their respective secrets a,b ∈ Z/pZ after which A

sends ga to B and B sends gb to A. A then computes hA = (gb)a = gab and B
computes hB = (ga)b = gab, which is their shared secret. A passive eavesdropper
is unable to compute the shared secret assuming the Diffie-Hellman assumption is
hard, namely, given g,ga,gb computing gab should be infeasible in the group G

with generator g.

The Diffie-Hellman key exchange protocol needs only one round, i.e. the par-
ties send each other only one message, which is independent of any previously
sent messages. A natural question to ask was then whether there exists a one-
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1.1 pairings and multilinear maps

round key exchange protocol between three parties? It wasn’t until 2000 that
Joux [Jou00] settled this in the affirmative by a construction relying on pair-
ings. Shortly thereafter, Boneh and Franklin [BF01] discovered the celebrated
Boneh-Franklin Identity-Based Encryption scheme solving an old problem posed
by Shamir [Sha85]. Since then, there has been a plethora of new cryptographic
constructions based on pairings.

We now give the relevant definitions of pairings for this work and note that we
only need to consider them as abstract operations for the rest of this work. How-
ever, we note that in general its important to understand the underlying instan-
tiations and their limitations as recently pointed out by Menezes and Chatterjee
[CM14].

Definition 1. Let G1, G2, GT be cyclic groups of order n with generators g1,g2,gT .
A bilinear group is a tuple (e, G1, G2, GT ), where e : G1 × G2 → GT is a map
satisfying

e(ga1 ,gb2) = e(g1,g2)
ab.

We always assume that the pairing is non-degenerate, meaning that e(g1,g2) is a
generator of GT and assume that gT = e(g1,g2).

Note that although the typical instantiation of a bilinear pairing comes from
pairing operations on elliptic curves, where G1 and G2 is written using additive
notation, it’s customary in cryptography to use multiplicative notation for all
groups.

Following Galbraith, Paterson and Smart [GPS08], we classify pairings into
three types according to whether or not there exists efficiently computable iso-
morphisms G1 → G2 or vice versa. We say a bilinear group is of Type I if there are
efficiently computable isomorphisms G1 → G2 and G2 → G1, Type II if there is
only an efficiently computable isomorphism G2 → G1, and, Type III if there are no
efficiently computable isomorphisms between G1 and G2 in either direction. In
the Type I setting we will in general write G = G1 = G2, i.e. we may just assume
that the source groups are equal. This simplifies notation. Furthermore, we will
refer to Type I bilinear groups as symmetric while the Type II and III groups are
called asymmetric. Finally, in order to use bilinear groups, we must be able to
construct them. This leads to the following definition.

2



1.1 pairings and multilinear maps

Definition 2. A bilinear group generator G is an efficient algorithm, which,
on input of a security parameter 1λ, returns a bilinear group description
(n, G1, G2, GT , e,ψ,g1,g2), where n = 2Ω(λ), ψ is a description of efficiently
computable isomorphisms between the groups depending on the type and gi is a
generator of Gi for i = 1, 2.

For a bilinear group generator to be useful for cryptographic applications, it
needs to generate group descriptions that satisfy some hardness assumption. In
this thesis, we will always assume that the discrete logarithm problem is hard.
Depending on the application, one might require other useful properties. For
example, we might require the existence of efficient hash functions H : {0, 1}∗ →
G2, we might expect the group order to always be prime or always composite.
Even though most papers on pairing-based cryptography only use the abstract
description of a bilinear group, it’s worth noting that for many combinations of
additional requirements, we might not know of any efficient instantiations.

Definition 3. Let G1, . . . , Gn, GT be cyclic groups of order n with generators
g1, . . . ,gn,gT . An n-linear group is a tuple (e, G1, . . . , Gn, GT ), where e : G1 ×
· · · ×Gn → GT is a map satisfying

e(ga11 , . . . ,gann ) = e(g1, . . . ,gn)a1···an .

Just as for bilinear groups, we assume that the pairing is non-degenerate, meaning
that e(g1, . . . ,gn) is a generator of GT , whenever each gi generates Gi. Again, we
typically assume that gT = e(g1, . . . ,gn). When the value of n is not important,
we will refer to n-linear maps as multilinear. As before, we will call an n-linear
group symmetric if G1 = . . . = Gn and otherwise it is called asymmetric.

Once the first important constructions based on bilinear maps had been dis-
covered, Boneh and Silverberg [BS02] explored the question of what can be con-
structed if we could build useful n-linear maps? However, at the same time they
were pessimistic that such maps could be constructed using algebraic geometry.
It took 10 years before the first plausible cryptographically useful construction
was discovered by Garg, Gentry and Halevi using ideal lattices [GGH13], which
was quickly followed by a construction by Coron, Lepoint and Tibouchi [CLT13].

3



1.1 pairings and multilinear maps

Unfortunately, the latter construction is now considered broken [CHL+
14, CLT14].

Additionally, neither construction is useful in practical schemes when the degree
of multilinearity is large. For example, the paper by Coron, Lepoint and Tibouchi
presents a 7-multipartite Diffie-Hellman key exchange with 80-bits of security (se-
curity estimate prior to the above attack) using their construction. With this level
of security, the public parameters that need to be shared between the parties, i.e.
the chosen group elements etc., take some 2.5GB of space. Furthermore, the key
exchange requires some 40 seconds of CPU time for each participant. Therefore,
while the abstract view of multilinear maps is easy to work with, constructions
can’t be translated into practical use until the underlying instantiations have been
significantly improved to the point where constructions as the one above takes a
few milliseconds at most and would require an exchange of only a few hundred
bytes of data.

The reader interested in how these instantiations of multilinear groups work
is referred to the two papers mentioned above. However, an additional property
worth noting is that both current instantiations actually instantiate something
called a leveled multilinear group. A definition for the symmetric case follows.

Definition 4. Let G1, . . . , Gn be cyclic groups of order nwith generators g1, . . . ,gn.
Assume that for each i+ j 6 n, where i, j > 1 we have a map eij : Gi ×Gj → Gi+j

satisfying
eij(g

a
i ,gbj ) = eij(gi,gj)

ab.

Then the tuple (G1, . . . , Gn, {eij}) is called an n-leveled multilinear group.

An n-leveled multilinear group can be used to instantiate a symmetric n-linear
group as follows. Set G = G1, GT = Gn and define maps ek : Gk

1 → Gk by setting
e2 = e1,1, and, recursively,

ek(g
a1
1 , . . . ,gak1 ) = e1,k−1(g

a1
1 , ek−1(g

a2
1 , . . . ,gak1 )).

Then letting e = en, e is an n-linear map e : Gn → GT .

4



1.2 signature schemes

1.2 signature schemes

A problem that comes up in both digital contracts as well as software distribution
is whether or not the content of a file is what it should be. For example when
signing a digital contract, we may want to be certain that the file can’t be tampered
with while still claiming to represent the original agreement. When distributing
software, we want to be sure that the file we are installing was actually distributed
by the vendor and doesn’t include malicious components added by a third party.
The standard solution to this problem is a signature scheme defined below.

Definition 5. A digital signature scheme is a quadruple of efficient algorithms
(Setup, KeyGen, Sign, Verify) defined as follows:

• Setup : Takes as input the security parameter, λ, and returns a public parame-
ter PP← Setup(λ).

• KeyGen : The key generation algorithm KeyGen takes PP as input and re-
turns (SK, VK) ← KeyGen(PP), where SK is the secret signing key and VK
the public verification key. We always assume that SK contains VK.

• Sign : The signing algorithm Sign takes as input PP, SK and a message
M in the message space M defined by PP and returns a signature σ ←
Sign(PP, SK,M).

• Verify: The verification algorithm Verify takes as input the public parameters
PP, the verification key VK, a message M and the signature σ and returns
a bit b ← Verify(PP, VK,M,σ). If b = 1 the algorithm accepts the signature
and if b = 0 it rejects.

We require that the signature scheme is correct, i.e. for all correctly generated
public parameters PP, key pairs (SK, VK), and messages M in the message space
M, we have Verify

(
PP, VK,M, Sign(PP, SK,M)

)
= 1.

Secure signature schemes are surprisingly difficult to construct in practice. As-
sume for example that N = pq for some primes p,q and ed ≡ 1 (mod φ(N)), i.e.

5



1.2 signature schemes

(N, e,d) is the standard setup for RSA encryption. We can then set pk = (N, e)
and sk = (N,d, e). One could then try to define a signature algorithm by setting

σ = Sign(m, sk) = [md],

where [md] denotes the value thatmd reduces to moduloN in the range 0, . . . ,N−

1. Verification could then be performed by checking whether

Verify(m,σ, pk) = σd
?≡ m.

Unfortunately, this would not be considered secure, since it’s easy to see that if σ1
is a valid signature for m1 and σ2 is a valid signature for m2, then σ1σ2 is a valid
signature for m1m2. In other words, the signature scheme is malleable by allowing
us to construct valid signatures for messages not signed by the signer by knowing
valid message signature pairs.

The standard method to guard against malleability is to take a hash function
H : {0, 1}→ Z∗N and hash messages in M = {0, 1}∗ by setting

σ = Sign(m, sk) = [H(m)d].

A heuristic argument for the non-malleability of this signature scheme is that
the hash function should destroy any algebraic relations. For example, a hash
function should not satisfy relations like H(m1m2) = H(m2)H(m2), which is the
basis of the forgery mentioned above. The problem is that if we choose H to be a
fixed hash function like Keccak, then we don’t know how to prove security of the
signature scheme. However, if we assume that H is a “random function”, then we
can reduce security to the RSA assumption. Such an argument that relies on the
hash function being random is called a proof in the Random Oracle Model [BR93]
and is a standard security heuristic for many cryptographic primitives.

There are two standard security definitions that we use for signatures in this
work. The stronger definition is against an adaptive adversary that is allowed to
adaptively query valid signatures on any messages of its choice from a signing
oracle.

6



1.2 signature schemes

Definition 6 (EUF-CMA). A signature scheme (Setup, KeyGen, Sign, Verify) is exis-
tentially unforgeable under adaptive chosen message attack (EUF-CMA) if for all non-
uniform polynomial time algorithms A, we have:

Pr




PP← Setup(1λ)

(VK, SK)← KeyGen(PP)

(M,Σ)← ASign(PP,SK,·)(PP, VK)

:M /∈ Q ∧ Verify(PP, VK,M,Σ) = 1




= negl(λ),

where Q is the set of queries made by A to the signing oracle.

Sometimes it is also useful to prevent the adversary from issuing a new signa-
ture for a message that has already been signed. A signature scheme is strongly
existentially unforgeable if it is hard to find a signature on a message that has not
been signed before and also hard to find a new signature for a message that has
already been signed. This notion, denoted by sEUF-CMA, is formally captured
in the same way as the definition of EUF-CMA except for requiring (M,Σ) /∈ Q
where Q is the set of message-signature pairs from A’s queries to the signing
oracle.

A much weaker definition only assumes an adversary that can get a set of
signatures on random messages.

Definition 7 (EUF-RMA). A signature scheme (Setup, KeyGen, Sign, Verify) is exis-
tentially unforgeable under random message attack (EUF-RMA) if for all non-uniform
polynomial time algorithms A, we have:

Pr




PP← Setup(1λ)

(VK, SK)← KeyGen(PP)

(M,Σ)← AO(SK)(PP, VK)

:M /∈ Q ∧ Verify(PP, VK,M,Σ) = 1


 = negl(λ),

where Q is the set of messages returned to A by the signing oracle O.

Corresponding security notions for one-time (resp. n-time) signature schemes
can be obtained by restricting the adversary to only calling the signing oracle once
(resp. n times) in the above definitions.

7



2
T H E G E N E R I C G R O U P M O D E L

Computing lower complexity bounds for any non-trivial algorithms is typically
hard or impossible given currently available mathematical tools. The Millennium
Prize problem P vs. NP, stated by Stephen Cook [Coo71], is a famous example of
this type of problem and the lack of progress on it exemplifies this difficulty. The
current state of affairs poses a major problem for cryptography, since it is well-
known that proving that an encryption scheme is hard to break on the average
implies P 6= NP. Therefore, unless we are trying to settle the P vs. NP problem,
proving lower bounds in an unrestricted computational model is infeasible and
we are forced to settle for the next best thing, i.e. define idealized models in
which we can compute lower bounds. One can then hope that lower bounds in a
reasonable simplified model translates to an actual lower bound, but no guarantee
can of course be given. On the other hand, any scheme insecure in a simplified
model is guaranteed to be insecure in the unrestricted model. In this chapter we
will specifically explore idealized models for algorithms that operate on groups.

2.1 the definitions of shoup and maurer

In purely algebraic terms, isomorphic groups are typically thought of as “equal”.
However, this does not take into account that the choice of representative from
an isomorphism class of groups, i.e. the chosen encoding, typically has a major
impact on the efficiency of algorithms that one can implement on it. A simple
example is to take a prime q s.t. p = (q− 1)/2 is prime and let G be the group of
quadratic residues modulo q. We know that G is isomorphic to the additive group
Z/pZ, since both have order p. However, if given generators g ∈ G, h ∈ Z/pZ,
and gx as well as xh (hx in multiplicative notation) for some randomly sampled

8



2.1 the definitions of shoup and maurer

x ∈ Z/pZ, then computing x from gx is thought to be hard [Bon98], while it’s triv-
ial to compute from xh by dividing by h. Thus, the discrete logarithm problem is
hard in one instance while easy in another instance of a group belonging to the
same isomorphism class. This difference is a consequence of the additional struc-
ture carried by Z/pZ, i.e. it’s also a field, which is revealed when representing
the elements in this form.

The idea of a generic group is a “generic representative” of an isomorphism class
that hides any additional structure that a concrete representative might provide.
In concrete terms this means that any algorithm that one can implement on a
generic representative is implementable without modification on any representa-
tive of the same isomorphism class as long as the group operations are efficiently
computable. Nechaev [Nec94] was the first to explore these ideas while alter-
native models were later proposed by Shoup [Sho97] and Maurer [Mau05]. The
models of Shoup and Maurer are slightly more “generic”, in the sense that certain
algorithms that can be implemented in Nechaev’s model can’t be implemented in
the other two models. Additionally, in cases where both Shoup’s and Maurer’s
models apply, they have been proven to be equivalent by Jager and Schwenk
[JS08].

We start by describing the model of Shoup. Let (G,+) be a cyclic group of
order n and S be a set of bit strings of cardinality at least S. An encoding func-
tion is an injective map σ : G → S. A generic algorithm A operating on G is a
probabilistic algorithm that takes as input a list of encodings (σ(x1), . . . ,σ(xk)).
During execution, A may compute xi ± xj by giving an oracle the indices i, j and
a bit b. The oracle then computes xi + (−1)bxj and returns σ(xi + (−1)bxj) to A,
which appends σ(xi + (−1)bxj) to its current list of encodings. Finally, the output
of A is denoted by A(x1, . . . , xk). We note that A is dependent on G and S, but
can’t depend on σ. In other words, it needs to be able to operate on any random
encoding of the group elements, which prevents it from exploiting any special
structure in the encodings. The runtime complexity of a generic algorithm A is
the number of oracle queries made during execution.

In the model of Maurer, instead of having random bit strings represent the
group elements, we refer to every given group element through a unique handle.
Two distinct handles can refer to the same group element, so we provide an equal-
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ity oracle that takes as parameters two handles and checks whether they internally
represent the same element. Since any generic algorithm in Shoup’s model can
check for equality by himself, by just checking that the corresponding bit strings
are the same, we account for this, by making the equality oracle calls free, i.e. we
do not account for them in the runtime analysis. A more precise explanation fol-
lows. Let (G,+) be a cyclic group of order n. A generic algorithm A operates
as follows. On initialization A is given integers 1, . . . ,k as well as a group oper-
ation oracle that internally maintains a list L initialized to length k, with the ith
element initialized to some xi ∈ G. When A wants to compute xi ± xj, it sends
the oracle the indices i and j as well as a bit b. The oracle computes xi + (−1)bxj,
appends the value to its internal list L and returns the index of the appended
element. When A wants to check if two elements are equal, it queries the equality
oracle with the indices corresponding to the elements. Finally, the output of A is
denoted by A(x1, . . . , xk). The runtime complexity of a generic algorithm A is the
number of oracle calls to the group operation oracle.

The following example illustrates both Shoup’s and Maurer’s model in action.

Example 8. Assume we are given the group Z/4Z and and encoding function
σ : Z/4Z, s.t.

σ(0) = 00 σ(1) = 01, σ(2) = 10,σ(3) = 11.

We illustrate the generic algorithm that gets as input x1 = 1. It proceeds by
computing recursively xn = xn−1+ x1 for n = 2, 3, 4, 5. In Shoup’s model we send
the group operation oracle the following four queries:

O(01, 01, 0) = 10, O(10, 01, 0) = 11, O(11, 01, 0) = 00, O(00, 01, 0) = 01.

In Maurer’s model the list L is initialized as L = [1]. To our queries we get back
increasing handles and send the group operation oracle the four queries:

O(1, 1, 0) = 2, O(2, 1, 0) = 3, O(3, 1, 0) = 4, O(4, 1, 0) = 5.

Note that at the end, the list maintained by the oracle will be

L = [1, 2, 3, 0, 1],

10
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so if A would query the equality oracle with the indices 1 and 5 they would be
reported back as equal.

From the previous example we see that in Shoup’s model the algorithm A can
try to “guess” encodings. For example A might have issued as it’s first query
O(00, 00, 0) receiving the response 00. Note that there would be no way to query
the result from this computation in Maurer’s model, since at this stage there is no
valid handle that refers to an index in the list L containing the value 0. Therefore,
the models are equivalent when S is large enough with respect to the group G

that the probability of A guessing a bit string that refers to a valid element of
G is negligible. Note that even though A may internally perform any amount
of computation, it still can’t guess bit strings if they are sparse, since each guess
would require a call to the oracle, which would be accounted for in its runtime
complexity.

In what follows we will discuss the extended generic group model of [BFF+
14],

which in the special case of a single group reduces to the model by Maurer.

2.2 group settings

The generic group construction by Nechaev, Shoup and Maurer were restricted
to single groups, but the constructions have since been generalized to bilinear
groups [BBG05b, Boy08, Fre10]. To accommodate for (leveled) multilinear maps,
as well as possibly more complicated scenarios, we introduce the notion of a
group setting.

Definition 9. A group setting is a tuple GS = (n,G, I,Φ,E), where I is an index
set, G = {Gi}i∈I a family of cyclic groups of order n indexed by I, Φ is a set of
isomorphisms ϕ : Gi → Gj, and E a set of admissible k-linear maps e : Gi1 × · · · ×
Gik → Gik+1 . We note that the k is not fixed, so the maps in E do not need to have
the same multilinearity. We often drop the index set I when it is obvious.

A group setting simply describes a collection of cyclic groups of equal orders
together with the efficiently computable maps between them. These efficiently
computable maps can either be multilinear maps or isomorphisms between indi-
vidual groups. The following examples illustrate different settings.

11
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Example 10. A prime order p bilinear group e : G1 ×G2 → GT in the Type II
setting is represented by (p, {G1, G2, GT }, {1, 2, T }, {G2 → G1}, {e}).

Example 11. A pair of cyclic groups (G1, G2) of order n with an isomorphism
from G1 → G2 is represented by (n, {G1, G2}, {1, 2}, {G1 → G2}, ∅).

From the latter example we see that a group setting doesn’t necessary have
to represent a collection of groups used in pairing-based cryptography. Finally,
since group settings will be used as internal hidden group representations in our
generalized generic group construction, our goal will be to choose “nice” internal
representations and for this we introduce the concept of an isomorphism of group
settings.

Definition 12. Two group settings GS = (n,G, I,Φ,E) and GS ′ = (n,G ′, I,Φ ′,E ′),
with G = {Gi}i∈I, G ′ = {G ′i}i∈I are isomorphic if there exists isomorphisms ηi : Gi →
G ′i and bijections µ : Φ→ Φ ′ and ν : E→ E ′ such that for all e ∈ E and ϕ ∈ Φ the
following diagrams are well-defined and commute

∏k
j=1 Gij

Gik+1

∏k
j=1 G ′ij G ′ik+1

e

∏k
j=1 ηij

ν(e)

ηik+1

Gi Gj

G ′i G ′j

ϕ

ηi

µ(ϕ)

ηj

.

For the isomorphism class of cyclic groups of order n, the most elementary
representative is arguably the group (Z/nZ,+). As one would expect, for any
group setting consisting of groups of order n, one may construct an isomorphic
group setting, where each group is (Z/nZ,+). The following result makes this
precise.

Theorem 13. Let GS = (n,G, I,Φ,E) be a group setting and G ′ = {G ′i | i ∈ I} a family
of groups such that Gi

∼= G ′i. If ηi : Gi → G ′i is any set of isomorphisms, then there is
a group setting GS = (n,G ′, I,Φ ′,E ′) such that the collection {ηi : Gi → G ′i} of group
isomorphisms can be extended to an isomorphism of group settings GS→ GS ′.

12
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Proof. Assume we are given isomorphisms ηi : Gi → G ′i for all i ∈ I. Define
Φ ′ = {ηj ◦ ϕ ◦ η−1i | ϕ : Gi → Gj ∈ Φ} and E ′ = {ηik+1 ◦ e ◦

∏k
j=1 η

−1
ij

| e :

Gi1 × · · ·×Gik → Gik+1 ∈ E}. With these definitions, the correct diagrams trivially
commute.

The following corollary gives us a nice concrete normal form for all the group
settings we will encounter. An important point is that we may fix the generators of
each group to be 1. When dealing with composite order groups, we will typically
combine this normal form with an application of the previous theorem and the
canonical isomorphism Z/nZ ∼=

∏k
i=1 Z/priZ, where n = p

r1
1 · · ·p

rk
k , since the

product group form is more convenient in this case.

Corollary 14. Let GS = (n,G, I,Φ,E) be a group setting where each Gi ∈ G is cyclic
of degree n. Then GS is isomorphic to a group setting G̃S = (n, G̃, I, Φ̃, Ẽ), where each
G̃i ∈ G̃ is equal to Z/nZ. Furthermore, if each Gi ∈ G has a fixed generator gi ∈ Gi, we
may assume that the isomorphism maps gi to 1 ∈ Z/nZ.

Proof. Let each ηi : Gi → Z/nZ in the previous theorem be the isomorphism
taking the fixed generator of Gi to 1.

We note that in most scenarios arising in practice, we assume that the generators
are chosen in a way such that if e : Gi1 × · · · ×Gik → Gik+1 ∈ E is a k-linear map
and each Gij has a fixed generator gij , then the equation

e(gi1 , . . . ,gik) = gik+1

holds and in addition for all isomorphism Gi → Gj, we have gi 7→ gj. Of course,
this might not always be possible, if different maps in E and Φ pose conflicting
requirements. However, when this is possible, then the isomorphic group setting
provided by the corollary gives a particularly simple group setting, where each
pairing ẽ ∈ Ẽ and isomorphism ϕ̃ ∈ Φ̃ will satisfy

ẽ(1, . . . , 1) = 1, ϕ̃(1) = 1.
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2.3 extending maurer’s definition

We extend the generic group model of Maurer by defining it as a computational
model, where a probabilistic algorithm A is given access to an oracle O, which
performs computations on a group setting. In order to give a precise definition,
we start by explaining how the oracle operates.

Let GS = (n,G, I,Φ,E) be a group setting. The oracle O internally maintains for
each i ∈ I a set of lists Li, where each Li contains group elements of the group Gi.
O supports the following operations:

1. Group operations on the groups Gi: The oracle takes as input a group
index i, two indices j, l in the list Li, as well as a bit b, and computes Li[j] +
(−1)bLi[l], appends the value to Li and returns the index in Li of the newly
appended element.

2. Isomorphisms of Φ: The oracle takes as input a description of an isomor-
phism ϕ : Gi → Gj ∈ Φ as well as an index l in Li, appends ϕ(Li[l]) to Lj
and returns the index in Lj of the newly appended element.

3. k-linear maps of E: The oracle takes as input a description of a map
e : Gi1 × · · · ×Gik → Gik+1 ∈ E, indices j1, . . . , jk in Li1 , . . . ,Lik , appends
e(Li1 [j1], . . . ,Lik[jk]) to Lik+1 and returns the index in Lik+1 of the newly
appended element.

4. Equality queries: The oracle takes as input a group index i as well as two
indices j,k in Li and returns true if Li[j] = Li[k] and false if Li[j] 6= Li[l].

We omit the rigorous details of how to specify an input language for O that let’s
it distinguish the requested operation as well as parse its input. If the oracle
receives a malformed input, by e.g. receiving an index that is out-of-bounds for
the current state of one of its internal lists, the oracle returns some special symbol
⊥ indicating an error.

Definition 15. The extended generic group model is an idealized computational
model, where an algorithm A is given access to an oracle O corresponding to
a group setting GS = (n,G, I,Φ,E) as described above. The lists Li, i ∈ I, are each
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2.3 extending maurer’s definition

initialized to contain ni elements of Gi according to some distributions Di. The
group setting GS and the values ni are assumed to be known by A together with
descriptions of each Di. The initial values of the lists Li is the input of A. The
runtime of the algorithm A is the number of queries made to the oracle O, not
counting equality queries. The oracle O is called a generic group.

Note that a generic group is a probability distribution in the sense that its
behavior will be determined by the initial state of the lists Li provided by the
joint distribution of each Di. Particular initial values of the lists Li defines an
instance of a generic group. Another important detail is that we only count the
number of oracle queries made by A. A could internally perform any amount
of computation without doing queries to O and this will not impact our runtime
analysis.

As discussed in section 2.1, we want a generic group to somehow represent its
isomorphism class in the sense that the particular choice of representative doesn’t
matter. The following theorem captures this property.

Theorem 16. Let GS = (n,G, I,Φ,E) and GS ′ = (n,G ′, I,Φ ′,E ′) be isomorphic group
settings given by the isomorphisms ηi : Gi → G ′i and O, O ′ the corresponding generic
groups as defined above. Let Di be a distribution sampling the initial value of the state
Li of O. We define D ′i as the distribution, where we apply ηi to each element of the
sampled list Li and assume that the initial state of O ′ is sampled by D ′i. Then given any
algorithm A, it cannot distinguish whether it’s given a random instance of the oracle O

or O ′. Furthermore, applying the same transformation to an already sampled instance of
a generic group gives an indistinguishable instance of a generic group.

Proof. Let {L ′i} be the image of {Li}, when the isomorphism ηi is applied to each
element of Li for each i. By the definition of an isomorphism of group settings,
the generic group instance of O initialized with {Li} and O ′ initialized with {L ′i}

will respond identically to any sequence of queries.

What the previous theorem says is that we can use isomorphisms of group set-
tings to change the internal representation of the groups as long as the initial
states are sampled by distributions compatible as in the theorem. This is par-
ticularly important for automated analysis, since we may after an appropriate
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translation assume that a generic group O corresponding to the group setting
GS = (n,G, I,Φ,E) always satisfies Gi = Z/nZ for all i ∈ I. Therefore, represent-
ing the groups on a computer is trivial.

2.4 the schwarz-zippel lemma

In this section we prove for completeness the Schwartz-Zippel lemma, which is a
key ingredient in the standard proof technique used for proving hardness results
in the generic group model. In order to analyze composite-order groups, we
prove the following slightly more general version.

Lemma 17 (Schwartz-Zippel Lemma). Let P ∈ (Z/nZ)[X1, . . . ,Xk] be a polynomial
of total degree d, where n = p1 · · ·pr is a product of distinct primes. Then the probability
that an independently chosen uniformly random element (a1, . . . ,ak) ∈ (Z/nZ)k is a
root of P is bounded above by dr

n .

Proof. We start by first proving the lemma when n = p is prime by doing induc-
tion on k. If k = 1, then P can have at most d roots, so a uniformly chosen element
in Z/pZ is a root with probability d/p. For k > 1, we may write the polynomial
in the form

P(X1, . . . ,Xk) =
d∑
i=0

Pi(X1, . . . ,Xk−1)Xik.

Let i be the highest i, s.t. Pi 6= 0 and denote by U1, . . . ,Uk independent uniform
distributions on Z/pZ, by A the event P(U1, . . . ,Uk) = 0 and by B the event
Pi(U1, . . . ,Uk−1) = 0. By definition, P(a1, . . . ,ak−1,Xk) is of degree at most i and
degPi 6 d− i, so by induction

Pr[P(U1, . . . ,Uk) = 0] =Pr[A | B]Pr[B] + Pr[A | ¬B]Pr[¬B] 6
d− i

p
+
i

p
=
d

p
.

The general case follows, since by the Chinese Remainder Theorem the values of
some a ∈ Z/nZ modulo distinct prime factors p,q of n are independent. There-
fore, random elements a1, . . . ,ak ∈ Z/nZ are a root of P ∈ (Z/nZ)[X1, . . . ,Xn]
if they are independently roots modulo each prime factor. It follows that if
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2.4 the schwarz-zippel lemma

n = p1 · · ·pr and U1, . . . ,Uk are independent uniformly distributed random vari-
ables on Z/nZ, then

Pr[P(U1, . . . ,Uk) = 0] 6
dr

p1 · · ·pr
=
dr

n
.

Corollary 18. Let P ∈ (Z/nZ)[X1, . . . ,Xk] be a polynomial of total degree at most d,
where n = p1 · · ·pr is a product of distinct primes. Then P has at most drnk−1 roots.

Proof. If there existed a polynomial with more roots, then a randomly sampled
element in (Z/nZ)[X1, . . . ,Xk] would be a root of P with probability higher than
dr/n.

It turns out that most hardness proofs in the generic group model in the litera-
ture omit rather sloppily the fact that any algorithm with access to a generic group
instance performs queries in an adaptive fashion, i.e. the choice of the next query
depends on the result of the previous query. It turns out, however, that omitting
adaptiveness doesn’t change the typical probability bounds, so this doesn’t lead
to incorrect results. However, to fix this lack of rigor, we derive the following
result from the Schwartz-Zippel lemma and use it as the main ingredient of our
proofs.

Lemma 19. Let n = p1 · · ·pr be a product of distinct primes. Assume we have a game,
where we sample x ∈ (Z/nZ)k and assume that an adversary is allowed to adaptively
choose q polynomials of (Z/nZ)[X1, . . . ,Xk] of degree at most d without knowing x.
After each choice we tell whether or not x is a root of the chosen polynomial and the
adversary wins if it finds a polynomial, such that x is a root. Then, in the previously
described game, the winning probability of the adversary is bounded above by qdr/n.

Proof. From the previous corollary, we know that any chosen polynomial P ∈
(Z/nZ)[X1, . . . ,Xk] of degree d has at most drnk−1 roots. Therefore, we can
change the game, so that the adversary may adaptively choose sets of size drnk−1

and it wins if x belongs to one of these sets. Clearly, any upper bound in the
winning probability in this game upper bounds the winning probability in the
original game.
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If the adversary is allowed one query, then clearly the winning probability is
bounded above by

drnk−1

nk
=
dr

n
.

If we allow q choices, then we either win during the first q − 1 or we do not
win on the first q− 1 choices and win on the qth choice when there are at least
nk−(q− 1)drnn−1 possible values left for x. By induction the winning probability
is then

(q− 1)dr

n
+

drnk−1

nk − (q− 1)drnk−1

(
1−

(q− 1)dr

n

)
=
qdr

n
.

As mentioned above, note that the upper-bound is the same as the upper bound
that we get from Schwartz-Zippel by non-adaptively choosing q polynomials of
degree d.

2.5 a few proof examples

In this section we prove two well-known hardness results in the classical generic
group model. Both problems only concern single groups, so the extended generic
group model reduces to the generic group model of Maurer, but we will present
them in the terminology of the previous section to better illustrate the concept to
the reader. Namely, we start with the discrete logarithm problem, a computational
assumption, and finish off with a decisional assumption, the Decisional Diffie-
Hellman problem. The proofs highlight the main proof methods in the generic
group model, which are generalized in the next section to the extended generic
group model. Furthermore, the examples serve to highlight that the proofs follow
a very specific template, which makes full automation possible.

As a warmup to the proof, we discuss a key step required for understanding the
proof method. Assume that we have the group setting GS = (n, {Z/nZ}, {1}, ∅, ∅)
and O is a corresponding generic group instance, where we initialize L1 to, say,
[1, x,y, z], where x,y, z ← Z/nZ. However, we can also obtain an oracle O ′ by
setting L1 = [1,X, Y,Z], where X, Y,Z are formal variables and we additionally
sample x,y, z← Z/nZ. O ′ then operates as follows:
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• On a query asking to compute L1[i] + (−1)bL1[j], we compute L1[i] +

(−1)bL1[j] ∈ (Z/nZ)[X, Y,Z], i.e. we add/subtract the corresponding formal
polynomials and append the resulting formal polynomial to L1.

• On an equality query asking to compare L1[i] to L1[j], we plug in x,y, z
for X, Y,Z and compare the corresponding values, i.e. we check whether
L1[i](x,y, z) = L1[j](x,y, z).

Note that it makes no difference for the equality check whether we plug in for
X, Y,Z immediately on initialization or only when performing equality checks.
Therefore, the two oracles behave exactly the same way, in other words, they are
indistinguishable.

Example 20 (The Discrete Logarithm Problem). Let p be a prime and G a group
of order p. The discrete logarithm problem is defined as the problem where an
adversary is given (g,gx), where g← G and x← Z/pZ, and is asked to compute
x. We formulate the problem in the generic group model below and prove a
generic lower bound for the success probability of any adversary.

Let p be a prime and assume that we have the group setting GS = (p, {G1}, {1}, ∅, ∅),
where the group operation in G1 is written additively. We define D1 as the dis-
tribution that sets L1 = [x,yx], where x ← G1 and y ← Z/pZ. The discrete
logarithm problem is then the problem of computing y given a random instance of
the generic group O defined by GS and initialized by D1. Note that by Theorem
16 we may assume that GS = (p, {1}, {Z/pZ}, ∅, ∅). In which case D1 becomes the
distribution, where both x,y are sampled independently from Z/pZ.

The adversary wins if it correctly returns the value of y. If we denote by O(x,y)
the oracle, where x and y has been given fixed values, and by X, Y independent
uniform distributions on Z/pZ, then the winning probability of A is

Pr[AO(X,Y) = Y]

where the probability is taken over the random variables X and Y as well as any
random coins used by A. The winning probability can be upper-bounded based
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on the number of group operation queries made by A. We are interested in the
number of queries that A must perform in order to have

Pr[AO(X,Y) = Y] > c > 0

for some fixed constant c.

The proof now follows as a sequence of games, where each game is played by an
adversary A querying an oracle O some q times and finally returning an element
y ∈ Z/pZ. In the sequence of games, we make small changes to the oracle O

analyzing the winning probabilities of A in adjacent games in the sequence. At
step i we denote the oracle by Oi. In the final game, A obtains no information
about the sampled value Y, so it will have to resort to pure guessing, while in the
first game, the oracle is the actual generic group.

Game 1: Here O1 is an instance of the generic group defined by GS with D1 used
to initialize L1. In this case

Pr[AO1(X,Y) = Y] = ε.

Game 2: We change Game 1, so that X is sampled in (Z/pZ) \ {0} instead. In this
case

Pr[AO2(X,Y) = Y] ≈ ε,

since there is a negligible probability that X is sampled to be 0.

Game 3: We first sample the value of x← (Z/pZ) \ {0} and y← Z/pZ, but then
apply the group setting isomorphism induced by x 7→ 1 on the oracle. This is
equivalent to changing D1 to sample L1 = [1,y], ignoring x. By theorem 16 the
resulting oracle O3, will behave exactly as in Game 2. Therefore,

Pr[AO2(X,Y) = Y] = Pr[AO3(X,Y) = Y].

20



2.5 a few proof examples

Game 4: We instead set L1 = [1,Z], where Z is a formal variable and sample
y← Z/pZ. When O performs group operations on elements of L1 it does them in
the ring (Z/pZ)[Z]. When an equality query is made for the handles i and j, we
substitute y for Z, i.e. check if L1[i](y) = L1[j](y). The difference here to Game 3 is
that instead of plugging in y for Z during initialization, we do it prior to equality
checks. As discussed above, this makes no difference, so that

Pr[AO3(X,Y) = Y] = Pr[AO4(X,Y) = Y].

Game 5: We change Game 4, so that when an equality query is made for handles
i and j, we instead check if L1[i] = L1[j]. In other words, we do not plug in y for
Z. Note that the value of y is not used at all by O5, so A can only blindly guess.
It follows that

Pr[AO5(X,Y) = Y] =
1

p

and the interesting step in the proof is bounding the difference

∣∣∣Pr[AO5(X,Y) = Y] − Pr[AO4(X,Y) = Y]
∣∣∣

which is the main step in the proof.

We note that after q group operation queries, L1 will contain q + 2 elements.
Let E denote the event that at some point during the execution of A, there will be
two handles i, j, such that

L1[i] − L1[j] 6= 0, (L1[i] − L1[j])(y) = 0.
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If event E never happens, then O4 and O5 will answer identically to all queries. If
we denote by A the event AO5(X,Y) = Y and by B the event AO4(X,Y) = Y, we may
write

|Pr[A] − Pr[B]| = |Pr[A∩ E] + Pr[A∩ Ec] − (Pr[B∩ E] + Pr[B∩ Ec])|
= |(Pr[A | E] − Pr[B | E])Pr[E] + (Pr[A | Ec] − Pr[B | Ec])Pr[Ec]|

= |(Pr[A | E] − Pr[B | E])Pr[E]|

6Pr[E].

However, if A makes q group operation queries, then Pr[E] is bounded above by
the probability that an adversary adaptively choosing (q+ 2)2/2 polynomials of
degree 1 finds a polynomial for which y is a root. This probability we know an
upper bound for from Lemma 19, so that

∣∣∣Pr[AO5(X,Y) = Y] − Pr[AO4(X,Y) = Y]
∣∣∣ 6 Pr[E] 6

(q+ 2)2

2p
.

Summarizing, we have that

Pr[AO1(X,Y) = Y] ≈ Pr[AO4(X,Y) = Y], Pr[AO5(X,Y) = Y] =
1

p

and ∣∣∣Pr[AO5(X,Y) = Y] − Pr[AO4(X,Y) = Y]
∣∣∣ 6 (q+ 2)2

2p
,

which implies that

Pr[AO1(X,Y) = Y] 6
1

p
+

(q+ 2)2

2p
.

Therefore, if we want the success probability to be larger than a positive constant
c > 0, we must have

c 6
1

p
+

(q+ 2)2

2p
.

It follows that we need at least Ω(
√
p) queries.

In the next example we show how we can handle decisional assumptions by
using the exact same proof technique.
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Example 21 (The Decisional Diffie-Hellman Problem). Let p be a prime and G

a group of order p. The Decisional Diffie-Hellman problem is defined as the
problem where an adversary is given the tuple (g,gx,gy,gz), where either z = xy
or z is z← Z/pZ is uniformly random.

We can directly skip the two first steps in the previous proof by the exact same
argument, so assume that we have the group setting GS = (p, {Z/pZ}, {1}, ∅, ∅).
Denote by OL1 the oracle, where L1 = [1, x,y, xy] and by OR the oracle, where
L1 = [1, x,y, z], where x,y, z← Z/pZ. We assume that an adversary wins if given
an instance of OL1 it returns 0 or if it returns 1when given an instance of OR1 . Again,
denote by X, Y,Z independent uniformly distributed random variables on Z/pZ.
Therefore, if an adversary A does at most q queries, using the notation from the
previous example, we want to bound the difference

∣∣∣Pr[AOL1(X,Y,Z) = 0] − Pr[AOR1 (X,Y,Z) = 0]
∣∣∣ .

We first look at the following sequence of games:

Game 1: A is given an instance of the oracle OL1 .

Game 2: A is given an instance of the oracle OL2 , where we instead treat x,y, z as
formal variables and plug in for them during equality check queries.

Game 3: A is given an instance of OL3 , where the oracle operates as OL2 , except
that for each equality check query, we compare the formal polynomials directly
without evaluating them.

Additionally, we have the analogous sequence OR1 ,OR2 ,OR3 . We note here that
X, Y,XY are linearly independent as formal polynomials over Z/pZ, and the
group operation only allows us to add and subtract polynomials, so there is no
way to distinguish whether we are given X, Y,XY or X, Y,Z. It follows that OL3 and
OR3 are indistinguishable. By the same argument as in the previous example, after
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2.6 types of cryptographic assumptions

q queries, L1 has q+ 4 elements, which are polynomials of degree at most 2 in the
case of OL3 . Therefore,

∣∣∣Pr[AOL2(X,Y,Z) = 0] − Pr[AOL3(X,Y,Z) = 0]
∣∣∣ 6 (q+ 4)22

2p
=

(q+ 4)2

p

and similarly

∣∣∣Pr[AOL2(X,Y,Z) = 0] − Pr[AOL3(X,Y,Z) = 0]
∣∣∣ 6 (q+ 4)2

2p
,

where the difference comes from the fact that the polynomials X, Y,Z are all of
degree one, so L1 will contain degree one polynomials in OR3 . Combining, we get

∣∣∣Pr[AOL1(X,Y,Z) = 0] − Pr[AOR1 (X,Y,Z) = 0]
∣∣∣ 6
∣∣∣Pr[AOL1(X,Y,Z) = 0] − Pr[AOL2(X,Y,Z) = 0]

∣∣∣

+
∣∣∣Pr[AOL2(X,Y,Z) = 0] − Pr[AOL3(X,Y,Z) = 0]

∣∣∣

+
∣∣∣Pr[AOL3(X,Y,Z) = 0] − Pr[AOR3 (X,Y,Z) = 0]

∣∣∣

+
∣∣∣Pr[AOR3 (X,Y,Z) = 0] − Pr[AOR2 (X,Y,Z) = 0]

∣∣∣

+
∣∣∣Pr[AOR2 (X,Y,Z) = 0] − Pr[AOR1 (X,Y,Z) = 0]

∣∣∣

6
(q+ 4)2

p
+

(q+ 4)2

2p

6
2(q+ 4)2

p

2.6 types of cryptographic assumptions

In a cryptographic assumption, some elements are usually sampled from a group
and then handed over to an adversary. Such sampling of group elements is typi-
cally done in a restricted way which is captured by the following definition.

Definition 22. Assume we are given a group setting GS = (n,G, I,Φ,E), where
Gi ∈ G has generator Pi and the group operation is written additively. For a list
of lists L = [L1, . . . ,Lk] of Laurent polynomials in (Z/nZ)[X−1

1 , . . . ,X−1
m ,X1, ..,Xm],

we define the distribution DL by the following procedure. Uniformly sample a
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2.6 types of cryptographic assumptions

point ~x ∈ (Z/nZ)m and return the list of lists L ′ = [L ′1, . . . ,L
′
k] where L ′i = [f1(~x)Pi,

. . . , f|Li|(~x)Pi] for fj = Li[j]. A distribution D is polynomially induced if D = DL for
some L.

As an example, the DDH assumption is defined by the single lists Ll =

[1,X, Y,XY] and Lr = [1,X, Y,Z] for the left and right distribution, where the list
entries are Laurent polynomials in (Z/nZ)[X−1, Y−1,Z−1,X, Y,Z]. These give two
polynomially induced distributions DLl and DLr corresponding to the left and
the right game.

Most hardness assumptions in generic group models belong to the following
classes of decisional, computational, or generalized extraction problems stated
with respect to a group setting GS:

• Decisional problem for DL and DL ′ :
The adversary returns b ∈ {0, 1} to distinguish the corresponding generic
group models differing by their distributions.

• Computational problem for DL, Laurent polynomial f, and group index i:
We consider the event Li[h] = f(~x)Pi, where h is a handle returned by the
adversary and ~x is the random point sampled by DL.

• Generalized extraction problem for DL, r, m, i1, . . ., im and polynomials
H1, . . ., Hk and G1, . . ., Gl: The adversary returns ~a ∈ (Z/nZ)r and handles
h1, . . . ,hm. We consider the event that for all i ∈ [k] and j ∈ [l], the vector ~x
sampled by DL and a vector ~y sampled by an oracle satisfies the constraints

Hi(~x,~y, ~a, dlog(Li1 [h1]), . . . , dlog(Lim [hm])) = 0

and
Gj(~x,~y, ~a, dlog(Li1 [h1]), . . . , dlog(Lim [hm])) 6= 0.

Here each Hi and Gj is a polynomial.

The above classification generalizes the one proposed by Maurer [Mau05]. Pre-
cisely, in addition to decisional and computational assumptions, Maurer consid-
ered “straight” extraction problems (such as discrete logarithm) in which the ad-
versary has to extract the random value x of a handle. Our class of generalized
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2.6 types of cryptographic assumptions

extraction problems captures extraction problems like discrete logarithm, but also
captures problems like the Strong Diffie-Hellman Problem [BB04]. Additionally,
it is possible to express much more complicated assumptions, like security games
for signature schemes. Moreover, note that our class of generalized extraction
problems contains the class of computational problems.

Example 23. Set r = 1, m = 0, then H(X,a1) = X− a1 encodes DLOG as a gen-
eralized extraction problem and r = m = 1, H(X,a1,Z) = (X− a1)Z− 1 encodes
SDH.
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3
P R O O F A U T O M AT I O N I N T H E G E N E R I C G R O U P M O D E L

A nice feature of the generic group model described in the previous chapter is
that proving lower complexity bounds in most cases follows a template. This
observation was first exploited by Boneh, Boyen and Goh [BBG05b] in their so
called “Master Theorem”, which made it possible to prove the security of certain
simple assumptions in the generic group model by checking an independence
condition of polynomials.

In this chapter we develop principled, automated methods for analyzing hard-
ness assumptions in generic group models. Our main contribution is essentially
threefold. First, we reformulate master theorems in the style of the celebrated
“computational soundness” theorem of Abadi and Rogaway [AR07], and formally
show that the problem of analyzing assumptions in the generic group reduces to
solving problems in polynomial algebra. Second, we systematically analyze these
problems. While we show that the most general problem is undecidable, we dis-
till a set of properties (capturing most interesting cases) for which the problem is
decidable. Finally, by applying tools from linear algebra, we develop and imple-
ment automated procedures for verifying the conditions of master theorems, and
thus the validity of hardness assumptions in generic group models. The concrete
outcome of this work is an automated tool1 which takes as input an assumption
and outputs either a proof of its generic hardness or shows an algebraic attack
against the assumption.

1 The tool is available at http://www.easycrypt.info/GGA
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3.1 the symbolic group model

3.1 the symbolic group model

The symbolic group model for a group setting (n,G, I,Φ,E) and a polynomially-
induced distribution DL provides the same adversary interface as the corre-
sponding generic group model. The difference is that, internally, the challenger
now stores lists of Laurent polynomials in (Z/nZ)[X−1

1 , . . . ,X−1
m ,X1, . . . ,Xm]

where X1, . . . ,Xm are the variables occurring in L. The oracles perform addition,
negation, and equality checks in the polynomial ring. To define the polynomial
operations corresponding to applications of isomorphisms and k-linear maps,
observe that for all isomorphisms φ ∈ Φ there is an a ∈ (Z/nZ)× such that
φ(gi) = gaj . We therefore define the oracle isomφ(h) such that it computes
a · Li[h]. Similarly, we define the oracle mape(h1, . . . ,hk) such that it computes
a · (Li1 [h1] · · ·Lik[hk]). We also define symbolic versions S(E) of events E used
to define decisional, computational, and generalized extraction problems. For
decisional problems and computational problems, the symbolic event is equal to
the generic event, i.e., S(E) = E. For generalized extraction problems, the event
E is translated by replacing all arguments of the Laurent polynomials Hj and Gj
that are of the form dlog(Li[h]) by Li[h]. We denote the symbolic group model
for a group setting GS and a distribution DL with SymDL

GS and the corresponding
generic group model with GenDL

GS .

We now specialize to the case, where the group order n in a group setting
(n,G, I,Φ,E) is prime. The composite-order case is treated separately in Section
3.6, since it’s more involved and would unnecessarily clutter the presentation of
the main ideas.

Theorem 24. Let (p,G, I,Φ,E) denote a group setting, DL a distribution, A an adversary
performing at most q queries, and E the winning event of a decisional, computational, or
generalized extraction problem. Let d = d1 + d2, where d1 (resp. d2) is an upper bound
on the degree of the numerator (resp. denominator) of the Laurent polynomials occurring
in the internal state of SymDL

GS (A) and S(E), s the sum of the sizes of the lists in L, and
the event S(E) contains at most e equality tests, then

|Pr[ GenDL
GS (A) : E ] − Pr[ SymDL

GS (A) : S(E) ]| 6
(q+ s)2d

2p
+
sd2
p

+
ed

p
,
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3.1 the symbolic group model

where the probability is taken over the coins of GenDL
GS and A.

Proof. An issue with Laurent polynomials in a polynomially induced distribution
DL is if we happen to sample values that are a root of a polynomial in a de-
nominator, then the sampling will “fail”. By Schwartz-Zippel, we know that this
probability is bounded by sd2/p.

First, observe that the number of equality checks between group elements (resp.
polynomials) performed in GenDL

GS (resp. SymDL
GS ) is upper-bounded by n = (q+

s)2/2+ e. The adversary can perform at most (q+ s)2/2 distinct eq-queries since
the lists L contain q+ s polynomials and the evaluation of the event requires e
equality checks. To perform the proof, we utilize a hybrid argument that replaces
equality checks f1/f2 = g1/g2 in SymDL

GS by equality checks f1(~x)g2(~x) = g1(~x)f2(~x)
for the random point ~x sampled by DL. The probability that the results for one
equality check differ is then bounded by the Schwartz-Zippel Lemma, where the
degree of f1g2 − g1f2 is bounded by d.

More formally, assuming sampling did not fail, for i = 0, . . . ,n, we obtain
the hybrid game HybDL

GS 〈i〉 and hybrid event H〈i〉(E) from SymDL
GS and S(E) by

sampling the random point ~x on initialization and using f1/f2 = g1/g2 for equality
checks 1 to i and f1(~x)g2(~x) = g1(~x)f2(~x) for equality checks i+ 1 to n. Then

Pr[ GenDL
GS : E ] = Pr[ HybDL

GS 〈0〉 : H〈0〉(E) ]

and
Pr[ HybDL

GS 〈n〉 : H〈n〉(E) ] = Pr[ SymDL
GS : S(E) ].

To complete the proof, we use the Schwartz-Zippel Lemma to prove that for all
i ∈ [n],

|Pr[ HybDL
GS 〈i− 1〉(A) : H〈i− 1〉(E) ] − Pr[ HybDL

GS 〈i〉(A) : H〈i〉(E) ]| 6 d/p.

The two games are equivalent unless the i-th equality-check returns different re-
sults in the left and the right experiment. This is equivalent to f1g2−g1f2 6= 0 and
f1(~x)g2(~x) − g1(~x)f2(~x) = 0 where f1g2 − g1f2 is a polynomial of degree at most d
and ~x is uniform independent of f1/f2 and g1/g2 since earlier equality checks use
equality on polynomials in both experiments.
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3.2 our master theorem

By applying this theorem, we can therefore analyze the hardness of assump-
tions in the simpler symbolic model. We note that existing master theorems usu-
ally include a similar step in their proofs. Here we explicitly prove the equiva-
lence of the Gen and Sym experiments. This stronger result is required for our
decidability results.

3.2 our master theorem

In this section we state our master theorem for decisional, non-interactive prob-
lems. In Section 3.5, we give a master theorem for interactive assumptions which
cover generalized extraction problems (and computational ones per Section 2.6).

To state our theorem, we first define the completion C(L) of a list L with respect
to the group setting (p,G, I,Φ,E). This notion will be instrumental to define the
side condition of our master theorem. Intuitively speaking, given a list L, its
completion C(L) is the list of all Laurent polynomials that can be computed by
the adversary by applying isomorphisms and maps to Laurent polynomials in L.

We compute the completion C(L) of L in two steps. In the first step, we compute
the recipe lists {Ri}i∈I using the algorithm given in Figure 1. The elements of the
recipe lists are monomials over the variables Wi,j for (i, j) ∈ I× [|Li|]. The mono-
mials characterize which products of elements in L the adversary can compute by
applying isomorpisms and maps. The result of the first step is independent of the
elements in the lists L and only depends on the lengths of the lists. In the second
step, we compute the actual Laurent polynomials from the recipes as

C(L)i = [m1(L), . . . ,m|Ri|
(L)] for [m1, . . . ,m|Ri|

] = Ri,

where everymi is a monomial over the variablesWi,j andmi(L) denotes the result
of evaluating the monomial mi for the values Li[ji].

To ensure that the computation of the recipes terminates, we restrict ourselves
to group settings without cycles. We also assume that the group setting contains
a target group. Formally, for a group setting (p,G, I,Φ,E), we define the weighted
directed graph G = (V ,E) with V = G and E defined as follows. For each isomor-
phism Gi → Gj ∈ Φ, there is an edge from Gi to Gj of weight 0. Similarly, given
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3.2 our master theorem

foreach i ∈ I : S ′i = ∅ ; Si = {Wi,1, . . . ,Wi,|Li|}

while ~S 6= ~S ′ :

~S ′ := ~S
foreach e : Gj1 × . . .×Gjn → Gjn+1

∈ E :

Sjn+1
:= Sjn+1

∪ {f1 · · · fn | fi ∈ Sji , i ∈ [n]}

foreach φ : Gi → Gj ∈ Φ : Sj := Sj ∪ Si
foreach i ∈ I : Ri := setToList(Si)

figure 1: Computation of lists of recipes Ri for input lists Li.

any Gi1 × · · · ×Gin → Gin+1 ∈ E, there are edges from Gij to Gin+1 of weight
1 for j ∈ [n]. We assume that the graph G contains no loops of positive weight.
Furthermore, we assume there is a unique Gt ∈ V called the target group, such
that from any Gi ∈ V there is a path to Gt and Gt does not have any outgoing
edges, i.e. it’s a sink node of the graph that is reachable from all other vertices.

Example 25. Assume we are given a leveled 3-linear map with inputs L1 = [1,X]
and Li = ∅ for i = 2, 3, 4. Then S1 = {W1,1,W1,2} and Si = ∅ for i = 2, 3, 4. Since
there are no isomorphisms, the body of the while loop reduces to the first for
loop and to checking whether or not we have saturated the sets. The completion
algorithm proceeds as follows (writing down the sets that have changed):

1. e : G1 ×G1 → G2 gives S2 = {W2
1,1,W1,1W1,2,W2

1,2}.

2. e : G1 ×G2 → G3 and e : G2 ×G2 → G4 gives:

S3 = {fg | f ∈ S1, g ∈ S2} = {W3
1,1,W

2
1,1W1,2,W1,1W

2
1,2,W

3
1,2}

S4 = {fg | f ∈ S2, g ∈ S2} = {W4
1,1,W

3
1,1W1,2,W2

1,1W
2
1,2,W1,1W

3
1,2,W

4
1,2}

3. At the last iteration we union {fg | f ∈ S1, g ∈ S3} to S4. It turns out that this
adds no new elements to S4.

Finally, we plug in W1,1 = 1 and W1,2 = X to get the completions (using the
ordering in which the elements were written down above):

L1 = [1,X], L2 = [1,X,X2], L3 = [1,X,X2,X3], L4 = [1,X,X2,X3,X4]
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3.2 our master theorem

Theorem 26. Let GS = (p, {Gi}i∈I, I,Φ,E) denote a group setting, and DL,DL ′ be
polynomially-induced distributions such that |Li| = |L ′i| for all i ∈ I. Let t denote the
index of the target group, s =

∑
i∈I |Li|, r = |C(L)t|, and let d = d1 + d2, where d1 (resp.

d2) denotes an upper bound for the total degrees of the polynomials in the numerator (resp.
denominator) of the Laurent polynomials in the completion of the lists. If

{~a ∈ Frp | ~a · C(L)t = 0} = {~a ∈ Frp | ~a · C(L ′)t = 0},

then

|Pr[ GenGSDL
(A) = 1 ] − Pr[ GenGSDL ′

(A) = 1 ]| 6
(s+ q)2d

p
+
2sd2
p

for all adversaries A that perform at most q operations.

Proof. By using a standard hybrid argument we can apply our Theorem 24 to
switch both experiments GenDL

GS (A) and GenDL ′
GS (A) from the generic group model

to the symbolic group model. Hence, we obtain:

|Pr[ GenDL
GS (A) = 1 ] − Pr[ SymDL

GS (A) = 1 ]| 6
(s+ qo)

2d

2p
+
sd2
p

|Pr[ SymDL ′
GS (A) = 1 ] − Pr[ GenDL ′

GS (A) = 1 ]| 6
(s+ qo)

2d

2p
+
sd2
p

This leaves us with bounding

|Pr[ SymDL
GS (A) = 1 ] − Pr[ SymDL ′

GS (A) = 1 ]|

However, note that the view of the adversary A in this symbolic game essentially
depends on the equality queries that are performed on all polynomials computed
by A and stored by the challenger. By viewing the completion C(L) as the generat-
ing set of a vector space V (which is all polynomials computable by the adversary
starting from L), then {~a ∈ Frp | ~a · C(L)t = 0} is the kernel of the map that ex-
presses every polynomial in V as a linear combination of polynomials in C(L). In
particular, note that such map also encodes equalities of polynomials in V . Hence,
the validity of our side condition essentially says that the equalities seen by the
adversary in both games (i.e., w.r.t. lists L and L ′) are the same. Namely, the
adversary gets an identical view in the two experiments.
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3.3 non-parametric assumptions

Note that deciding the side condition is sufficient for deciding the hardness of
the corresponding decisional problem for a fixed group setting and fixed distri-
butions. Either the side condition is satisfied or there exists an ~a ∈ Frp that is
included in one of the sets, but not in the other one. In the first case, the distin-
guishing advantage is upper-bounded by the ε given above. In the second case,
we can construct an adversary that distinguishes the two symbolic models with
probability 1, which implies that it distinguishes the corresponding generic mod-
els with probability 1− ε. Note that for real-or-random assumptions where the
adversary is given L̂ and must distinguish f from a fresh variable Z in the target
group Gt, our side condition simplifies to

∑r
j=1 ajC(L̂)t[j] 6= f for all ~a ∈ Frp. This

is similar to the independence condition in the BBG master theorem [BBG05b].

3.3 non-parametric assumptions

In this section, we present methods to automatically verify or falsify the hardness
of decisional assumptions. As mentioned earlier, our master theorem is stated
with respect to a fixed group setting and fixed distributions. To consider multiple
group settings or distributions at once, we define a decisional assumption A as
a possibly infinite set of triples (GS,DL,DL ′). A is generically hard if the disting-
uishing probability is upper-bounded by ε in Theorem 26 for all triples in A.

An assumption is non-parametric if only the concrete groups, isomorphisms,
and n-linear maps vary, but the structure of the group setting and the lists L

and L ′ defining the distributions remain fixed. This captures assumptions such
as “3-lin is hard in all groups with a symmetric 3-linear map”. Conversely, an
assumption is parametric if one or more of these restrictions do not hold.

We perform the following computations over Z to decide the hardness of a
decisional assumption defined by lists L and L ′ for all group settings GS with a
given index set and types of isomorphisms and n-linear maps.

1. Initialize the set T of distinguishing tests and the set E of exceptional primes
to the empty set ∅.

2. Compute the completions C(L) and C(L ′) and set Lt := C(L)t, L ′t := C(L ′)t
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3.3 non-parametric assumptions

3. Compute a generating set K of the Z-module {~a ∈ Z|Lt| | ~a · Lt = 0} as
follows:

a) Represent all polynomials g ∈ Lt as vectors ~v1, . . . , ~vn and denote by M
the matrix, where row i is ~vi with respect to the basis monomials(Lt).

b) Compute the Hermite Normal Form N of M and read off a generating
set K of the left kernel from N and the transformation matrix. Set
E := E∪ F where F is the set of factors of pivots of N.

Perform the same steps for L ′t to obtain M ′ and K ′.

4. Check for every ~k ∈ K if ~kM ′ = 0. If ~kM ′ = ~c 6= 0, then set T := T ∪ ~k
and E := E ∪ F where F denotes the set of common prime factors of the
components of ~c. Perform the same steps for K ′ and M.

5. Compute distinguishing probability ε from degrees in Lt and L ′t.

6. If T is empty, return that distinguishing probability is upper-bounded by ε
except (possibly) for primes in E. If T is nonempty, return that using the tests
in T , an adversary can distinguish with probability 1− ε except (possibly)
for primes in E.

Note that performing division-free computations over Z allows us to track the set
of exceptional primes, which we return. We have implemented this algorithm in
a tool that takes a group setting and two sequences of group elements as input
and decides if the corresponding decisional assumption is hard, returning ε, E,
and the distinguishing tests T (if nonempty).

Example 27. We show that the following assumption is insecure in a bilinear
group using our method. This is just a slight modification of DDH where not
all inputs are monomials, since it better highlights how the algorithm works. Let
L1 = [1,X, Y,XY + Y] or L ′1 = [1,X, Y,Z] with L2 = L ′2 = ∅, with L = [L1,L2] and
L ′ = [L ′1,L

′
2]. Using the notation above, we have that

L2 = [1,X, Y,XY + Y,X2,XY,X2Y +XY, Y2,XY2 + Y2,X2Y2 + 2XY2 + Y2]

L
′
2 = [1,X, Y,Z,X2,XY,XZ, Y2, YZ,Z2]
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To compute the left kernels, we choose the following monomial bases:

B = (1,X, Y,XY,X2, Y2,XY2,X2Y2)

B ′ = (1,X, Y,Z,X2,XY,XZ, Y2, YZ,Z2)

We obtain the following matrices, where each row represents an element in the
completions in the corresponding monomial basis.

M =




1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 2 1




, M ′ =




1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



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M ′ is the identity matrix, so it’s already in HNF and has trivial kernel. The HNF
for M and its transformation matrix K are

N =




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0




, K =




1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 −1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 1 −2 1

0 0 1 −1 0 1 0 0 0 0




The generators of the kernel are the rows of the matrix K corresponding to the
zero rows of the HNF, N, of M. All the pivots of N are 1, so there are no ex-
ceptional primes. Thus the kernel is generated by ~a = (0, 0, 1,−1, 0, 1, 0, 0, 0, 0)
and ~a denotes the relation L1[3] − L1[4] + e(L1[2],L1[3]) = 0. We also have that
~aM ′ = ~a 6= ~0, so this relation is not present in L ′2. Furthermore, ~a is not zero
modulo any prime, so there are no exceptional primes. In addition to what is
shown here, our software keeps track of how each element of L2 was constructed,
so it can print out the formulas for all algebraic attacks against the assumption.

3.4 parametric assumptions

For parametric decisional assumptions, we restrict ourselves to the real-or-
random case. The approach can also be adapted to handle computational
assumptions. We also assume that input distributions are defined by polynomials
instead of Laurent polynomials. Our methods do extend to Laurent polynomials
with some minor modifications, but no current parametric assumptions known
to us require this level of generality. We distinguish parametricity in two di-
mensions. First, an assumption may be parameterized by range limits l1, . . . , lm
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3.4 parametric assumptions

(ranging over N) that determine the size of the adversary input. We use range
expressions ∀r ∈ [α,β].hr, where α and β are polynomials over range limits,
to express such assumptions. The polynomials hr can use the range index r in
the exponent or as the index of an indexed variable Xr. We will denote range
expressions with capital letters R. Second, the group setting of an assumption
may be parameterized by an arity k that captures the maximum number of
multiplications that can be performed.

Parametricity in the input size allows us to analyze assumptions such as “l-
DHE is hard for all l”. Parametricity in the arity allows us to analyze assump-
tions such “2-BDH is hard for all k-linear groups”. Combining both types of
parametricity allows us to analyze assumptions such as “k-lin is hard in k-linear
groups” or “(l,k)-MMDHE is hard for all l and k > 3”. In the following, we
will present two methods that deal with both parametricity in the input size and
parametricity in the arity. The first method assumes a fixed number of random
variables. The second method allows for indexed random variables, but assumes
that the degree of adversary input and challenge is fixed.

The way we handle parametric assumptions is based on a trivial observation.
Let S1, . . . ,Sn be not necessarily distinct sets of monomials. Then a polynomial f
belongs to the span of the product set S1 · · ·Sn if and only if all its terms belong
to S1 · · ·Sn. Therefore, we need to define products of range expressions as well
as methods to check whether a monomial is an instance of a range expression.
Additionally, we must assume that all inputs are monomials.

Fixed Number of Variables.

We assume a real-or-random decisional assumption in a (leveled) k-linear group
where the challenge polynomial g is in the target group, and the adversary input
is expressed using range expressions R1, . . . ,Rn on the levels λ1, . . . , λn. Here λi
is either of the form c or of the form k− c for a constant c ∈ N. Furthermore,
we assume that the assumption uses random variables ~X and range limits ~l. To
simplify the presentation, we will use the notation ~X

~f = X
f1
1 · · ·X

fm
m . Then the

ranges are of the form

Ri = ∀ri,1 ∈ [αi,1,βi,1], . . . , ri,ti ∈ [αi,ti ,βi,ti ]. ~X
~fi
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3.4 parametric assumptions

where every αi,j and βi,j is a polynomial over ~l and every f ∈ ~fi is a polynomial
over k,~l, and ri,1, . . . , ri,ti . The challenge polynomial is of the form g =

∑w
i=1 ci

~X ~ui .
Using the independence condition derived from Theorem 26, it follows that real
distribution and the random distribution are indistinguishable iff there is a mono-
mial ~X ~ui that is not an element of the completion of the Ri.

To check this condition, we proceed in two steps. In the first step, we compute
a single range expression R that denotes the completion of the Ri in the target
group. In the second step, we check for each ~X ~ui whether ~X ~ui ∈ R, by encod-
ing the required equalities of the exponent-polynomials into a set of diophantine
(in)equalities. We then show that satisfiability checking for such constraints is
undecidable in general. Nevertheless, we identify two decidable fragments and
demonstrate that SMT solvers can handle most instances derived from practical
cryptographic assumptions, even those that are not in the decidable fragments.

If R1, . . . ,Rn denote the sets S1, . . . ,Sn, then the completion R of R1, . . . ,Rn in
the target group must denote the set

⋃

~δ∈Nn s.t.
∑n
i=1 δi·λi=k

S
δ1
1 · · ·Sδnn

where SS ′ = {ss ′ | s ∈ S∧ s ′ ∈ S ′} and Sδ = {
∏δ
i=1 si|s1 ∈ S∧ . . .∧ sδ ∈ S}. We

therefore define multiplication of range expressions with distinct range indices as

(∀r1 ∈ [α1,β1], . . . , rt ∈ [αt,βt]. ~X
~f)(∀r ′1 ∈ [α ′1,β

′
1], . . . , r

′
s ∈ [α ′t ′ ,β

′
t ′]. ~X

~f ′)

= ∀r1 ∈ [α1,β1], . . . , rt ∈ [αt,βt], r ′1 ∈ [α ′1,β
′
1], . . . , r

′
s ∈ [α ′t ′ ,β

′
t ′]. ~X

~f+~f ′ .

To define the δ-fold product of a range expression, we restrict ourselves to
exponent-polynomials that can be expressed as f+ g such that f =

∑t
j=1 rjφj(

~l,k)
for polynomials φj in Z[~l,k] and such that g is a polynomial in Z[~l,k]. The δ-fold
product is then defined as

(∀r1 ∈ [α1,β1], . . . , rm ∈ [αt,βt]. ~X
~f+~g)δ

= ∀r1 ∈ [δα1, δβ1], . . . , rm ∈ [δαt, δβt]. ~X
~f+δ~g.
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3.4 parametric assumptions

Given range expressions R1, . . . ,Rn, we can now compute R by introducing fresh
variables δ1, . . . , δn, computing the range expressions Rδii , and then computing the
product of these range expressions.

The remaining task is now to check if

~X~u ∈ (∀r1 ∈ [α1,β1], . . . , rt ∈ [αt,βt]. ~X
~f) = R

where ~u ∈ Z[~l,k]m, αi,βi ∈ Z[~δ,~l], ~f ∈ Z[~l,k, r1, . . . , rt]m, and
∑n
i=1 δi · λi = k. To

achieve this, we compute the following set of integer constraints that is satisfiable
iff ~X~u ∈ R: 

0 6 δi for i ∈ [1,n]

αi 6 ri 6 βi for i ∈ [1, t]

ui = fi, for i ∈ [1,m]∑n
i=1 δiλi = k

If we allow for both types of parametricity, it is possible to reduce Hilbert’s 10th
problem to the generic hardness of cryptographic assumptions expressed as pre-
viously described. This yields the following theorem.

Theorem 28. Deciding hardness of parametric assumptions with a fixed number of vari-
ables in the generic group model is undecidable, even if all exponent-polynomials are linear
in range limits, range indices, and the arity.

Proof. Given a Diophantine problem, by introducing new variables, we can always
reduce the equation to a system of the following form c1X1 + . . .+ cnXn = d

Xi = Xj ·Xk
. (1)

We show that this system can always be encoded in the set of equations
0 6 δi for i ∈ [1,n]

αi 6 ri 6 βi for i ∈ [1, t]

ui = fi, for i ∈ [1,m]∑n
i=1 δiλi = k
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3.4 parametric assumptions

by appropriate choice of decision function and input polynomials. Undecidability
then follows from Matiyasevich’s theorem [Mat70]. We note that for undecidabil-
ity, it’s enough to look for solutions over the naturals, since the general case over
the integers reduces to this by independently replacing each variable X by ±X
and checking all the possible equations over the naturals.

We now show how to encode the system (1) as a range and arity parametric
assumption with all inputs at level one and the decision polynomial a monomial
at the target level. First, we look at the linear relation c1X1 + . . .+ cnXn = d. Let
l1, . . . , ln be fresh range limit variables. We add the input monomial

M = Zc1l1+...+cnln1 Z2

as input, where Z1,Z2 are freshly introduced variables not used in any other input
monomial. Conversely, we add to the decision polynomial f the factors

Zd1Z2.

The degree equations corresponding to the variables Z1 and Z2 are now d = δ(c1l1 + . . .+ cnln)

1 = δ
,

which encode d = c1l1 + . . . + cnln. Having switched variables in (1) to range
limits, we look at an equation li = lj · lm. Again, we let Z1,Z2 be new fresh
variables and add the input monomial M = Z1Z

lm
2 . Conversely, we multiply f

with the factors Zlj1 Z
li
2 . The degree equations now become lj = δ

li = δ · lm
,

which gives us precisely li = lj · lm. Since k is not used anywhere in the input or
f it only appears in the first equation in the system (1). Therefore, k can grow un-
bounded, so

∑t
i=1 δi 6 k adds no restrictions on the δi except what was forced by

our computations above. Similarly, range indices are never used, so no limitations
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3.4 parametric assumptions

are forced on the range limits except that they are positive. Therefore, we have
encoded the system (1) under the sole requirement that li ∈ N for each i while
only placing restrictions on the other variables that can be trivially independently
satisfied.

However, for a restricted class of assumptions, the problem is decidable.

Theorem 29. For all parametric assumptions with a fixed number of variables such that
all exponent-polynomials fi,j and range bounds αi,j and βi,j in the input are linear, and
either (1) the arity k is fixed or (2) the assumption does not contain range limits li and the
input exponent-polynomials do not use k, deciding hardness in the generic group model
is decidable.

Sketch. In both cases, we transform the constraint system into a system of linear
constraints. Note that the first type of constraint is already linear. In the first
case, the arity k is fixed and we can eliminate the variables δi by performing a
case distinction since there are only finitely many possible values. Then, the con-
straints of the first and fourth type are constant and the constraints of the second
and third type are linear. If there are no range limits, then the range bounds are
constants and we can eliminate the range indices by expanding all range expres-
sions into finite sets of monomials. Then the constraints of the second type are
constant and we can linearize the constraints of the last type using Proposition 30.
For constraints of the third type, every ui is a linear polynomial in Z[k] and every
fi is a linear polynomial in Z[~δ,k].

Proposition 30. The equation
∑t
i=1 δiλi = k can always be split into a finite number of

cases, where the remaining equation is linear.

Proof. The variables λi are by definition either of the form ci or k− ci, where ci is a
constant. In the former case δici is a first-degree term. In the latter case δi(k− ci)
is a degree two term. By arranging terms, we may write the equation in the form

r∑
i=1

δici +

t∑
i=r+1

δi(k− ci) = k.
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Write c = max{ci | i = r+ 1, . . . , t}, so that

(k− c)

t∑
i=r+1

δi =
∑
i=r+1

δi(k− c) 6
t∑

i=r+1

δi(k− ci) 6 k

and therefore
t∑

i=r+1

δi 6
k

k− c
6

c+ 1

c+ 1− c
= c+ 1.

This shows that there are a finite number of possible values for δr+1, . . . , δt. This
leads to at most

(
c+t−r
t−r−1

)
possible choices for δr+1, . . . , δt.

We have implemented this method in our tool and use Z3 [DMB08] to check the
constraints. Our experiments confirm that Z3 can prove most assumptions taken
from the literature, even those outside the decidable fragment.

Example 31. The decisional l-BDHE [BGW05] problem is as follows: In
a symmetric bilinear group, e : G0 × G0 → G1, we are given the input
(h,g,gx,gx

2
, . . . ,gx

l
,gx

l+2
, . . . ,gx

2l
). Writing h = gy, the problem is to dis-

tinguish e(h,g)x
l+1

= e(g,g)yx
l+1

from random. Symbolically, the problem is
given as the input

M1 = 1, M2 = Y, M3 = ∀i ∈ [0, l].Xi, M4 = ∀j ∈ [0, l− 2].Xl+2+j, g = YXl+1,

where theMi are all at level 1with the challenge at level 2. Therefore, we compute

M
δ1
1 = 1

M
δ2
2 = Yδ2

M
δ3
3 = ∀i ∈ [0, δ3l].Xi

M
δ4
4 = ∀j ∈ [0, δ4(l− 2)].Xj+δ4(l+2)

M
δ1
1 M

δ2
2 M

δ3
3 M

δ4
4 = ∀i ∈ [0, δ3l], j ∈ [0, δ4(l− 2)].Xi+j+δ4(l+2)Yδ2
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This yields the following set of constraints

0 6 δ1, δ2, δ3, δ4

0 6 i 6 δ3l

0 6 j 6 δ4(l− 2)

l+ 1 = i+ j+ δ4(l+ 2)

1 = δ2

δ1 + δ2 + δ3 + δ4 = 2

.

The fourth and (resp. fifth) equation corresponds to taking the degrees of both
sides of the equation YXl+1 = M

δ1
1 M

δ2
2 M

δ3
3 M

δ4
4 with respect to X (resp. Y). In

this case the system trivially linearizes, since there are only finitely many possible
values for the δi, i = 1, . . . , 4.

3.5 interactive assumptions

In this section, we present our methods for the analysis of interactive assumptions
such as LRSW [LRSW99]. We focus on assumptions where exactly one additional
oracle O is provided to the adversary and the problem is a generalized extraction
problem. In the remainder, we fix a group setting GS = (p, {G}i∈I, I,Φ,E) and a
distribution DL. We use ~X to denote the variables occurring in L and ~x to denote
the point sampled by DL.

Generalizing GGM and SGM .

Our first step is generalizing the generic group and symbolic group models to
the interactive setting. In order to do this, we need to give precise definitions of
our oracles that we can mathematically work with. We first note that an oracle
operates as follows:

1. It takes as parameters elements in Fp as well as handles to group elements.
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3.5 interactive assumptions

2. It returns handles to group elements that are formed from the parameters, val-
ues randomly sampled by DL and finally elements in Fp randomly sampled
by the oracle.

In the symbolic model, the oracle has the same interface, except that when in-
ternally sampling a new value, it instead creates a new formal variable. Instead of
handles to group elements, it then returns handles to formal Laurent polynomials
in the ring augmented with the new formal variables.

Denote parameters in Fp given to the oracle using the variables A1, . . . ,An, the
parameters in various Gi by Z1, . . . ,Zr. Furthermore, denote the elements in Fp

internally sampled by the oracle by the variables Y1, . . . , Ym. An oracle can then
be described as a vector of some length k of Laurent polynomials in the ring

Fp[~X, ~X−1, ~A, ~A−1, ~Y, ~Y−1, ~Z, ~Z−1]

together with a vector of length k of elements in I. The latter vector denotes which
groups the corresponding polynomials returns handles to. Here we use the no-
tation ~Y = (Y1, . . . , Ym), where we use ~Y−1 to denote the vector (Y−11 , . . . , Y−1m ).
In the symbolic model, instead of sampling values for the Yi, the oracle instead
creates fresh new variables for each Yi and substitutes them for each correspond-
ing Yi in the Laurent polynomials returned. The oracle then returns handles to
the corresponding formal Laurent polynomials appended to their corresponding
groups.

Finally, we augment the oracle definition with a nonnegative integer value q,
which is a limit for the number of queries of the oracle that is allowed.

Example 32. A signing oracle for the randomizable structure-preserving signature
scheme in Figure 5 in Section 4.5.4 can be described as the following vector of
Laurent polynomials

(Y1, (Z1X1 +X2)/Y1)

in the ring Fp[X1,X2,X−1
1 ,X−1

2 , Y1, Y−11 ,Z1,Z−1
1 ], together with the vector (2, 2). The

latter vector comes from the fact that the oracle returns two elements in G2. In the
notation of Figure 5 in Section 4.5.4, X1,X2 correspond to the keys V ,W sampled
by DL, Y1 corresponds to R and Z1 corresponds to the message M.
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It’s worth noting that in the definition, nothing prevents us from writing an
oracle that makes no sense mathematically. For example if oracle parameters
Z1,Z2 correspond to handles for group elements, we can still return the product
Z1Z2 even though there is no suitable pairing that would allow the computation
of this value, i.e. the value makes no sense. The tool doesn’t care about this
though, since it internally handles everything as formal Laurent polynomials over
Z, where such a product would have a meaning. In other words, the tool won’t
do any type checking of the return values of an oracle and assumes that the user
writes down oracles that make sense.

Definition 33. An oracle is a tuple O = (q,n,m, r, l,~F,~v, ~w), where the different
parts are defined as follows:

• q is the number of oracle queries allowed,

• n is the number of variables A1, . . . ,An in Fp taken as a parameter,

• m is the number of values Y1, . . . , Ym sampled in Fp by the oracle,

• r is the number of group handles Z1, . . . ,Zr taken as a parameter and the
length of ~w,

• l is the length of the vectors ~F and ~v,

• ~F is a vector of Laurent polynomials in Fp[~X, ~X−1, ~A, ~A−1, ~Y, ~Y−1, ~Z, ~Z−1].

• ~v is a vector of indices in I describing groups that oracle return values belong
to,

• ~w is a vector of indices in I describing groups the Zi belong to.

Here ~v contains the indices of the groups that each element of ~F returns a handle
to and ~w contains the indices of the groups that each parameter Zi contains a
handle to.

The following describes the precise steps performed on each oracle query in the
symbolic model:
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1. On query j ∈ [q] we create a new fresh variable Yi,j for each Yi, where
i = 1, . . . ,m.

2. Denote by ai the value of the parameter Ai, by zi the value of the parameter
Zi and by xi the value of each Xi sampled by DL.

3. We substitute xi for each Xi, Yi,j for each Yi, ai for each Ai and Lwi [zi] for
each Zi in the Laurent polynomials in ~F.

4. We append the value of Fi after the substitution to Lvi .

Since Theorem 24 captures generalized extraction problems and can be gener-
alized to oracle queries, we can analyze such assumptions in the symbolic group
model as before. As mentioned earlier, the symbolic version of the winning event
can be obtained by plugging in the polynomials Lij[hj] for the variables Zj instead
of using the discrete logarithm.

Interactive Master Theorem.

To define the interactive master theorem, we introduce the notion of parametric
completion. The parametric completion of L with respect to a group setting GS

and an oracle O defined by (q,n,m, r, l,~F,~v, ~w) is a family Li of lists of Laurent
polynomials defined as follows. Assume that in the oracle definition, ~F consists of
Laurent polynomials in Fp[~X, ~X−1, ~A, ~A−1, ~Y, ~Y−1, ~Z, ~Z−1]. Define A = {Ai,j}, where
i ∈ [n], j ∈ [q], Y = {Yi,j}, i ∈ [m], j ∈ [q]. The parametric completion then consists
of lists of Laurent polynomials in

Fp[~X, ~X−1,A,A−1,Y,Y−1,C]

according to the algorithm described in Figure 2. The variables C are fresh vari-
ables created during the completion calculation, which represent the choice in
the group elements that the adversary can give as a parameter to the oracle just
like the variables in A represent the choice of constants given by the adversary as
parameters. Their meaning becomes apparent in the following example.

Example 34. Assume that our group setting contains the single additive group
G1 = Z/pZ and an oracle that on input x ∈ Z/pZ returns x2. Such an oracle
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i = 0
while i < q :

L = C(L)

sj = |Lj| ∀j ∈ I

Z ′j =

sj−1∑
k=0

Cj,i,kLj[k], for fresh variables C·,·,·

F ′i = Fi[Aj → Aj,i, Yj → Yj,i,Zj → Z ′j]

Append F ′j to Lwj
∀j ∈ [l]

i := i+ 1

L = C(L)

figure 2: Parametric completion w.r.t. an oracle

would be described by the single polynomial F1(X1,Z1) = Z21. Assume that L1 =
[1,X1] upon initialization in the symbolic model. We have only one input list with
no isomorphism or pairing, so the standard completion does nothing. On the first
query, we have s1 = 2, so we get

Z ′1 = C1,1,01+C1,1,1X1

and
F ′1 = (C1,1,01+C1,1,1X1)

2.

This implies that after one query L1 = [1,X1, (C1,1,01+C1,1,1X1)2]. Since the values
of the C·,·,· are chosen by the adversary, we see that anything computable by the
adversary is a linear combination of the elements of L under some choices of the
values of the C·,·,·. This can trivially be proven by induction. Given one more
query, we would have

L1 = [1,X1, (C1,1,01+C1,1,1X1)2, (C1,2,0 +C1,2,1X1 +C1,2,2(C1,1,01+C1,1,1X1)2)2].

This also shows that given an oracle that takes group handle parameters, we can
generally only handle problems under at most 3 oracle queries due to a typical
combinatorial explotion in the number of constraints that our solver extracts from
the problem. The number of constraints depends on the number of terms in the
expanded expressions in L1.
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To state our interactive master theorem, we exploit that in the symbolic model,
we can translate a generalized extraction problem to an equivalent generalized
extraction problem where the adversary returns only elements in Fp and no han-
dles. This is simply, because the setting is completely deterministic and because
the adversary can return a handle to a polynomial element if and only if the poly-
nomial is in the span of the completion. Thefore, instead of returning the handle
to the polynomial, we can return the coefficients in the linear combination that
constructs the polynomials from the completion and modify the winning condi-
tion accordingly. More precisely, let CO(L) = Li1 , . . . ,Lil denote the lists in the
parametric completion. Assume now that the winning condition in the general-
ized extraction problem has a polynomial of the form

H(~X,Y, ~B,h1, . . . ,hn),

where hj is a handle to some element in Lij . We replaceH in the winning condition
by

H ′(~X,Y, ~B, ~α1, . . . , ~αn) = H(~X,Y, ~B, ~α1 · Li1 , . . . , ~αn · Lin),

i.e. a handle to a polynomial is replaced by requiring the actual linear combina-
tion that computes it from the completion. Renaming variables, we can therefore
assume in the symbolic case that the polynomials in the generalized extraction
problem are of the form

H(~X,Y, ~B).

Finally, we note that an attack strategy in the symbolic model is given with
respect to the sampled variables ~X and Y that are treated as formal variables.
Any attack in the symbolic model requires a sequence of oracle queries, which
is represented by instantiating A and C with some concrete values chosen by
the adversary. We can encode the strategy directly in the polynomials in the
generalized extraction problem by writing polynomials in the form

H(~X,Y, ~B,A,C),

i.e. we plug A and C into the parametric completion before plugging in for ~X, Y
and ~B.
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Theorem 35. Let GS denote a group setting and let DL denote a polynomially-induced
distribution. Consider the (n̂, m̂,~j, ~H, ~G)-extraction problem in the generic and symbolic
group models for GS, DL, and the oracle defined by (q,n,m, r, l,~F,~v, ~w). Let ~H ′ and ~G ′

denote the translations of ~H and ~G with respect to this model that do not use handles.
Then the problem is symbolically hard if there are no vectors ~a,~b,~c over Fp satisfying

(∧|~H ′|

j=1
H ′j(~X,Y,~b, ~a,~c) = 0

)
∧

(∧|~G ′|

j=1
G ′j(~X,Y,~b, ~a,~c) 6= 0

)
.

In this case, the winning probability for the generic version is upper-bounded by

(s+ q+ q ′l)2d
2p

+
(s+ q ′l)d2

p
+
ed

p
,

where p is the group order, s is the sum of the sizes of the lists in L, q the number of
queries to the group-oracles, q ′ the number of queries to O and e = | ~H ′|+ | ~G ′|. Finally,
d = d1 + d2, where d1 is an upper bound on the degree of the numerators and d2 and
upper bound on the degree of the denominators (in ~X and ~Y) in any rational expression
stored by the corresponding symbolic model and occuring in ~H ′ and ~G ′.

Proof. We use Theorem 24 to switch to the symbolic model which is equivalent
up to the ε-bound stated in the theorem. Here, we take into account that each
of the q ′ oracle calls adds l group elements to the lists and that the winning
condition contains e = |~H|+ |~G| equality checks. Then, we show that if the side-
condition condition is false, then there exists a symbolic adversary that wins with
probability one. If the side-condition is true, then the winning probability in the
symbolic model is always zero. To see why this is the case, first observe that an
adversary that wins must query O with parameters corresponding to instantiating
A and C with some ~a and ~c and return ~b such that the equalities ~H and the
inequalities ~G are satisfied. Therefore, the side condition of the theorem exactly
mirrors the winning condition.
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3.5.1 Automated Analysis

To solve interactive problems, we use Gröbner basis techniques and SMT solvers
to prove one of

1. No solution for all primes,

2. No solution for all primes except for some bad primes,

3. A solution over the rationals which can be converted into an attack for al-
most all primes, or

4. A solution over C.

Even though we only encountered cases (1-3) in practice, case (4) is the reason for
the incompleteness of our algorithm since the existence of a solution over C does
not imply the existence of solutions over Fp. Additionally, current Gröbner basis
algorithms for a polynomial ring over Z are all exponential in the worst-case,
but they tend to work reasonably well for ideals encountered in the wild. For this
reason, in practice, our tool sometimes fails to give a response, in particular, when
the number of queries is increased.

Our Method for Bounded Number of Queries.

We now describe the algorithm used by our tool to evaluate the side condition of
Theorem 35.

1. We translate a given assumption to a group setting GS, a list of polynomi-
als L, an oracle description (q,n,m, r, l,~F,~v, ~w), and an extraction problem
(r,m, {i1, . . . , im}, ~H, ~G).

2. We compute the parametric completion for a fixed number of queries q and
translate the extraction polynomials ~H = (H1, . . . ,Hk), ~G = (G1, . . . ,Gl) to
obtain handle-free versions ~H ′ = (H ′1, . . . ,H

′
k) and ~G ′ = (G ′1, . . . ,G

′
l).

3. We extract the coefficients ~fi, ~gj of the polynomials H ′i,G
′
j for i = 1, . . . ,k,

j = 1, . . . , l, represented as polynomials in (Z[~A, ~B, ~C])[~X, ~Y]. Writing ~fi =
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3.5 interactive assumptions

(fi,1, . . . , fi,ni) and ~gj = (gj,1, . . . ,gj,mj), where fi,s,gj,r ∈ Z[~A, ~B, ~C], we note
that the side condition of Theorem 35 is satisfied iff there are no points ~a,~b,~c
over Fp such that for all i = 1, . . . ,k, s ∈ {1, . . . ,ni}, fi,s(~a,~b,~c) = 0, and for
all j = 1, . . . , l there is some s ∈ {1, . . . ,mj} such that gj,s(~a,~b,~c) 6= 0.

4. We use the Rabinowitch trick to transfer inequalities to equalities by defin-
ing for each gj,s(~A, ~B, ~C) the polynomial g̃j,s(~A, ~B, ~C)Dj,s − 1 and set φj =
g̃j,1 · · · g̃j,mj .

5. It is not hard to see that (over Fp)

{(~a,~b,~c) |
∧

i,s

fi,s(~a,~b,~c) = 0∧
∧

j

∨

s

gj,s(~a,~b,~c) 6= 0}

= {(~a,~b,~c) | ∃~d.
∧

i,s

fi,s(~a,~b,~c) = 0∧
∧

j

φj(~a,~b,~c,dj,1, . . . ,dj,mj) = 0}.

6. We compute a Gröbner basis I of the ideal generated by the fi,s and φj over
Z. We can then conclude as follows (for all adversaries performing up to q
queries):

a) If I = (1), then return assumption is hard for all primes p.

b) If I contains a constant n 6= 1, then return assumption is hard except
for B consisting of all primes that divide n.

c) If I does not contain a constant, we know that there is a solution over
the complex numbers. We then try to find a solution over the rationals
using a combination of primary decomposition of ideals, linear algebra,
and model finding using SMT solvers. If we find a solution, we return
the solution which describes an attack that works for almost all primes
p. If we do not find a solution, then we return “unknown”.

To summarize, our method is sound, i.e., whenever we return an attack or “hard
except for B”, then this is a valid conclusion. It is incomplete because the existence
of a solution over the complex numbers does not imply the existence of a solution
over Fp. On the other hand, no solution over C implies no solutions over Fp when
p is large enough. This is a consequence of the compactness theorem of first-order
logic, i.e. Robinson’s principle [Rob59].
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3.6 composite-order groups

We consider group settings generated by algorithms GroupGen that take a se-
curity parameter λ in unary representation and return a group setting GS =

(N,G, I,Φ,E) where N is the product of distinct primes p1, . . . ,pk, each greater
than 2λ, G = {Gi}i∈I is a family of cyclic groups of composite-order N, Φ is a
set of isomorphisms φ : Gi → Gj, and E is a set of admissible l-linear maps
e : Gi1 × . . . ×Gil → Gil+1 . Additionally, GroupGen returns the prime factors
p1, . . . ,pk of N as well as for each group Gi generators Pi,1, . . . ,Pi,k for the prime
order subgroups. We assume that for a given group generator GroupGen, the
index set I, the number k of primes, and the types of isomorphisms and maps
are fixed. We also assume that for each group Gi, its description includes the
generator Pi = Pi,1 + . . . + Pi,k. Finally, we assume that the isomorphisms and
maps are compatible with the generators, e.g., for e : Gi ×Gj → Gt, it holds that
e(Pi,r,Pj,r) = Pt,r.

An important property satisfied by bilinear pairings in our group settings is that
e(Pi,r,Pj,s) = 0 for r 6= s. This is called the canceling property of composite-order
pairings and follows from the fact that

pre(Pi,r,Pj,s) = e(prPi,r,Pj,s) = e(0,Pj,s) = 0.

Analogously, pse(Pi,r,Pj,s) = 0, so choosing a,b ∈ Z, s.t. apr + bps = 1, we get

e(Pi,r,Pj,s) = (apr + bps)e(Pi,r,Pj,s) = apre(Pi,r,Pj,s) + bpse(Pi,r,Pj,s) = 0.

The implication of the canceling property is that computing a general pairing
e : Gi ×Gj → Gt has the form

e(a1Pi,1 + . . .+ akPi,k,b1Pj,1 + . . .+ bkPj,k) = a1b1Pt,1 + . . .+ akbkPt,k.

for ai,bi ∈ Z, i = 1, . . . ,k. Clearly, the same argument generalizes to multilinear
pairings of higher arity. From the perspective of our tool, this means that we
can process composite-order groups as lists of tuples and compute pairings by
multiplying the tuples component by component.
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3.6.1 Generic and symbolic model for composite-order bilinear groups

In the composite-order case, the generic group model is not defined for a concrete
group setting, but the group setting is sampled on initialization. For a group
generator GroupGen, a security parameter λ, and a distribution D, we denote
the corresponding generic group model with GGM GroupGen, λD. To define a
symbolic version of this model, we restrict ourselves to polynomially induced
distributions, which we define as follows for composite-order group settings.

Definition 36. Let GS = (N = p1 · · ·pk,G, I,Φ,E) be a composite-order group set-
ting as defined above. Let L = {Li}i∈I be a set of lists where each list element is a
tuple of polynomials in (Fp1 [X1, . . . ,Xn], . . . , Fpk[X1, . . . ,Xn]). We define a distri-
bution DL on G = {Gi}i∈I as follows. Uniformly sample a point ~x ∈ ZN, where
N = p1 · · ·pk, and return L ′ = {L ′i}i∈I, where L ′i = [Σkj=1fj(~x)Pi,j | (f1, . . . , fk) ← Li].
We say that a distribution D on {Gi}i∈I is polynomially induced if D = DL for some
L.

We note that the definition of decisional, computational and generalized extrac-
tion problems directly translate to the product group setting.

Example 37. The Subgroup Decision Problem for 3 primes is defined as fol-
lows. A group generator returns (GS, {p1,p2,p3}, {gp1 ,gp2 ,gp3}, {hp1 ,hp2 ,hp3}) ←
GroupGen(λ), where the group setting is GS = (N = p1p2p3, {G1, GT }, {1, T }, ∅, {e :

G1 ×G1 → GT }) and we assume that the description of G1 and GT in the group
setting includes generators g = gp1 +gp2 +gp3 and h = hp1 +hp2 +hp3 . Our com-
patibility assumption, then translates to e(gpi ,gpi) = hpi , e(gpi ,gpj) = 0, i 6= j,
and e(g,g) = h.

Using the additive notation in the definition above, the adversary is then given
agp1 , bgp3 , where a,b ← ZN, as well as GS and has to distinguish between
T0 = cgp1 +dgp2 and T1 = cgp1 , where c,d← ZN. We denote the distribution that
samples Ti by Di for i = 0, 1. Following our definition, the distribution D0 is de-
scribed by the list of tuples of polynomials L = [(1, 1, 1), (a, 0, 0), (0, 0,b), (c,d, 0)]
and LT = [(1, 1, 1)] in Z[a,b, c,d]3, where the tuples (1, 1, 1) corresponds to the
generators g and h given as part of the group description. D1 is described simi-
larly, except that L = [(1, 1, 1), (a, 0, 0), (0, 0,b), (c, 0, 0)].
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3.6 composite-order groups

From Generic to Symbolic Group Models

We define the symbolic group model SymGroupGen,λ
DL

for a group generator
GroupGen, a security parameter λ and a polynomially induced distribution DL as
follows.

• Sample primes p1, . . . ,pk according to the same distribution as GroupGen.

• Internally store lists of vectors of polynomials in ZN[X1, . . . ,Xn]k where
X1, . . . ,Xn are the variables occurring in L and N = p1 · · ·pk.

• The oracles perform addition, negation, and equality checks in the product
ring of the polynomial rings.

• The oracle isomφ(h) copies elements from one list to another.

• The oracle mape(h1, . . . ,hk) appends the product of the source list elements
to the target list.

Example 38. The symbolic version of the Subgroup Decision Problem for 3 primes
in Example 37 is defined by letting the internal state of the oracle be initialized to
L = [(1, 1, 1), (a, 0, 0), (0, 0,b), (c,d, 0)] and LT = [(1, 1, 1)] in ZN[a,b, c,d]3, where
N is the order of the groups in the corresponding group setting.

We now prove that it is hard to distinguish the generic group model and the
corresponding symbolic group model under the assumption that it is hard to
factor the composite numbers N sampled by GroupGen.

Theorem 39. Let λ be a security parameter and let GS = (N,G, I,Φ,E) denote a group
setting obtained by running GroupGen(λ), where each G ∈ G is cyclic of degree N =

p1 · · ·pk, where the pi, i = 1, . . . ,k are distinct primes of size λ. Let DL be a polynomially
induced distribution, s =

∑
i∈I |Li| and q the total number of queries performed by an

adversary A, then

∣∣∣Pr[SymGroupGen,λ
DL

(A) = 1] − Pr[GenGroupGen,λ
DL

(A) = 1]
∣∣∣ 6 (s+ q)2dk

2p1 · · ·pk
+ ε(λ),

where ε(λ) is an upper bound on the probability that A succeeds in factoring N.
54



3.6 composite-order groups

Proof. Translating composite-order assumptions in a group setting GS =

(N,G, I,Φ,E), where the initial state of the generic group is sampled by a
polynomially induced distribution DL, to a symbolic model is based on the
following sequence of games.

Game 0: Real game.

Game 1: Replace the internal representations of the groups by the additive group
Zp1 × · · · ×Zpk .

Game 2: Replace all sampled elements by formal variables and sample val-
ues for them in ZN. Replace the internal representation of the groups by
(Zp1 [X], . . . , Zpk[X]), where X denotes the set of formal variables. Perform
equality check on polynomial tuples evaluated at the sampled values.

Game 3: Replace the equality check oracle in the previous game to perform an
equality check on the tuples of formal polynomials.

Game 4: Replace the polynomial computations to happen over (ZN[X], . . . , ZN[X])

We note that games 0–2 are indistinguishable. Let d be the highest degree of any
polynomial appearing as a component of a k-tuple. If we plug in randomly sam-
pled values for the variables, then the probability that component i is zero is by
Schwarz-Zippel bounded above by d/pi and the probability that all components
are zero is dk/(p1 · · ·pk), since by the Chinese Remainder Theorem, the value of
each variable X modulo pi is independent of the value modulo pj for i 6= j. Let q
be the number of queries and s =

∑
i∈I |Li| the total initial lengths of the internal

lists. The number of polynomial tuples in the problem is then limited by s+q, so
the distinguishing probability of Game 2 and 3 is bounded by

(s+ q)2dk

2p1 · · ·pk
.
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3.6 composite-order groups

Note that any adversary that can distinguish between Game 3 and 4 can be used
to efficiently factor N, which gives us the second term in the bound.

3.6.2 Master Theorem

Let DL and DL ′ be two polynomially induced distributions such that |Li| = |L ′i| for
all i. In what follows we derive a condition under which

|Pr[Game 4GroupGen,λ
DL

(A) = 1] − Pr[Game 4GroupGen,λ
DL ′

(A) = 1]| = 0

with Game 4 defined as in the proof of Theorem 39.

In the setting of Game 4 computing pairings corresponds to component-wise
multiplication of tuples. This allows us to directly extend our concept of comple-
tion to tuples. From example 25 we directly see that computing the completion
for tuples can be done in exactly the same way, except that we plug in tuple values
for the freshly chosen variables. In the composite-order symbolic model the com-
pletion on the product group structure similarly records the possible elements
that the adversary may compute from the inputs. It follows that the left and right
version of Game 4 are equally distributed if

{~α ∈ Zr
N | ~α · C(L)t} = {~α ∈ Zr

N | ~α · C(L ′)t},

where r = |C(L)t| = |C(L ′)t|.

Finally, by combining Theorem 39 and the above argument, we obtain the fol-
lowing version of the master theorem for the composite-order setting:

Theorem 40. Let λ be a security parameter and let GS = (N,G, I,Φ,E) denote a group
setting obtained by running GroupGen(λ), where each G ∈ G is cyclic of degree N =

p1 · · ·pk, where the pi, i = 1, . . . ,k are distinct primes of size λ. Let DL,DL ′ be
polynomially-induced distributions such that |Li| = |L ′i| for all i ∈ I. Let t denote the
index of the target group, s =

∑
i∈I |Li|, r = |C(L)t|, and let d denote an upper bound for

the total degrees of the polynomials in the completions of the lists. If

{~a ∈ Zr
N | ~a · C(L)t = 0} = {~a ∈ Zr

N | ~a · C(L ′)t = 0},
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3.7 rational input distributions

then

|Pr[GenGroupGen,λ
DL

(A) = 1] − Pr[GenGroupGen,λ
DL ′

(A) = 1]| 6
(s+ q)2dk

p1 · · ·pk
+ 2ε(λ).

for all adversaries A that perform at most q operations and with probability ε(λ) of fac-
toring N.

3.6.3 Non-parametric and Non-interactive Assumptions

The algorithm in section 3.3 extends directly with one simple modification. For
the polynomials in the closure a basis is given by all the monomials appearing in
the closure. We just need to extend this to tuples, i.e. for any element (P1, . . . ,Pk)
in the closure and any monomial M appearing in Pi, we add (0, . . . , 0,M, 0, . . . , 0)
to the basis, where M is in the ith position. In the resulting basis, we can express
all the polynomial tuples in the closure and the algorithm extends with no further
modifications.

3.7 rational input distributions

Assume that we work in a (leveled) k-linear model. We can translate an assump-
tion with rational exponents to a symbolic model with polynomial exponents. If
we treat the sampled field elements as variables, we can compute an expression
Q with the property that any input at level i is cleared of its denominator when
multiplied by Qi. Since we can clear denominators with Q, we can rewrite all
inputs with Qi in the denominator. This does not change the inputs, since they
are still precisely the same elements in the field. Note also that Q is only zero if
one of the denominators are zero.

Example 41. Given 1/x at level 1 and 1/x2 at level 3, we choose Q = x. We may
rewrite the elements as 1/Q and x/Q3.

We can now apply the following sequence of games to reduce to the symbolic
model.

game 0 : The original game defined by the assumption.
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3.7 rational input distributions

game 1 : Rewrite the elements to have Qi in the denominator at level i. This is
still exactly the same game, since the input ele

game 2 : Replace the sampled field elements by variables. Do equality checks by
plugging in their sampled values.

game 3 : Switch to symbolic model using Schwartz-Zippel.

game 4 : Throw away all denominators in the inputs in Game 3.

Games 0–1 are indistinguishable and so are Game 1–2 unless Q is zero at the
sampled points. Game 4 is in the polynomial symbolic group model and we can
continue as before. The crucial step is from Game 3 to Game 4. These two games
are indistinguishable, since we can only compare things that are at the same level.
By construction (similarly for a k-linear pairing)

e(a/Qi,b/Qj) = ab/Qi+j

so elements at each level that we can compute always have the ”correct” denom-
inators. Since denominators are always equal at each level, they will have no
impact on equality queries and may just be dropped. We only need to be a bit
careful about the Schwartz-Zippel step. We will be comparing elements of the
form P/Qi = R/Qi. We only fail to simulate correctly if either Q is zero at the
sampled points or P = R with P 6= R as polynomials. We see that it suffices to
compute the highest degree d that we can get in the numerator in Game 2, add
degQ to it, and use this for the degree in Schwartz-Zippel.

Finally, we note that a general group setting ignoring Φ can be expressed as
a graph with nodes {Gi} and edges from Gij to Gin+1 , j = 1, . . . ,n, if ∃e : Gi1 ×
· · · ×Gin → Gin+1 ∈ E. In this case, we must assume that the resulting graph is
directed and acyclic and has the property that any two paths between two nodes
must have the same length. The latter property is required in order to assign a
“level” for each group.
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Assumption Source Type Result Runtime
DBDH [BF01] NP valid 2.3s
Freeman 3 [Fre10] NP valid (p > 2) 89.2s
Freeman 4 [Fre10] NP valid (p > 2) 13.9s
k-lin, k ∈ {1, 2, 3, 4} [Sha07] NP valid 67.1s
2-lin w/ 3-lin map NP attack 3.3s
2-SCasc [EHK+

13] NP valid 2.3s
2-BDH [BSW13] NP valid 2.8s
l-DHE [BB04] P valid 0.2s
l-DHI [BGW05] P valid 0.1s
(l,k)-MMDHE [HSW13] P valid 3.7s
5-SDH [BB04] GE valid 2.3s
LRSW [LRSW99] I valid (q = 4) 2.3s
m-LRSW [BGOY07a] I attack (q = 2) 0.1s
IBSAS [BGOY07b] I valid (q = 3) 28.8s
Strong-LRSW [ACdM05] I valid (q = 4) 2.8s
s-LRSW [GT12] I valid (q = 4) 2.3s
KSW, Assumption 1 [KSW13] C valid 4.5s

table 1: Analysis for various assumptions from the literature. In the Type col-
umn, NP = nonparametric, P = parametric, GE = generalized extraction,
I = interactive, C = composite.

3.8 examples

The purpose of this section is to show how the tool can handle real-world crypto-
graphic assumptions. Table 1 shows a fairly versatile set of assumptions extracted
from the literature together with the runtime of the tool. For interactive assump-
tions we note that the runtime is strongly dependent on the number of oracle
queries allowed to be performed by the attacker with significant slowdown typi-
cally starting when q = 3 or q = 4.

Example 42. We start by describing the 2-SCasc assumption of [EHK+
13], since it

shows how an assumption given in a non-standard format can be translated to a
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form the Generic Group Analyzer can understand. Let G be some group of order
p, g a generator, and write

A =




a 0

1 a

0 1


 .

For a matrix B = (bi,j) with bi,j ∈ Zp, we write [B] for the matrix (gbi,j). We then
say that the 2-SCasc assumption holds in G if it’s infeasible for an adversary to
distinguish [~r] from [~u] given [A], where

~r = A =




a 0

1 a

0 1





 x
y


 =




ax

x+ ay

y


 , ~u =




x

y

z


 ,

where a, x,y, z ← Zp. In traditional notation, we can describe the assumption as
the following two lists of tuples being computationally indistinguishable

(g,ga,gax,gx+ay,gy), (g,ga,gx,gy,gz),

where a, x,y, z← Zp.
To describe the assumption in the input language of the Generic Group Ana-

lyzer, in a setting, where we assume that G is equipped with a pairing e : G×G→
GT , we would have the following:

maps G * G -> GT.

input [ a ] in G.

input_left [ a*x, x + a*y, y ] in G.

input_right [ x, y, z ] in G.

Note that we do not need to include the 1 in the common input in G, since the
tool implicitly assumes that the generator has been given.

Example 43. A simple parametric assumption is l-DHE [BB04], which is described
as follows. We say that l-DHE is hard in a bilinear group e : G×G→ GT of order
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p with generators g,h ∈ G, if given gx
i
, i = 1, . . . , l− 1, l+ 1, . . . , 2l, it’s hard to

distinguish e(g,h)x
l

from random, where x ← Zp. If we write h = gy, then the
assumption can be translated into

setting symmetric.

levels 2.

problem_type decisional.

input

[ 1

, Y

, forall i in [0, l - 1]: X^i

, forall j in [l + 1, 2*l]: X^j ] @ 1.

challenge Y*X^l @ 2.

In the snippet of code above, we simply model a bilinear group as a two-leveled
multilinear group.

Example 44. Let e : G×G→ GT be a bilinear group of order n = pqr, where p,q, r
are prime. Let gp,gq,gr be generators of the p,q, r order subgroups of G. Then,
Assumption 1 in [KSW13], is hard we choose random elements Q1,Q2,Q3 ∈ Gq,
R1,R2,R3 ∈ Gr, and give n out to an adversary together with

gp,gr,gqR1,gbp,gb
2

p ,gap,gq,gabp Q1,g
s
p,gbsp Q2R2,

then it’s hard for the adversary distinguish T = Gb
2s
p R3 from T ′ = Gb

2s
p Q3,R3,

where a,b, c← Zs
p. We note that the Generic Group Analyzer choses a canonical

set of generators for the p,q, r order subgroups that are given to the adversary.
If we denote by x,y, z the discrete logarithms of gp,gq,gr with respect to the
canonical generators, then we can express the assumption as follows:

map G1 * G1 -> GT.

composite 3.
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input [ (X,0,0), (0,0,Z), (0,Y,Z*R1), (X*b,0,0), (X*b^2,0,0), (X*a,Y,0),

(X*a*b,Y*Q1,0), (X*s,0,0), (X*b*s, Y*Q2, Z*R2) ] in G1.

input_left [ (X*b^2*s, 0, Z*R3) ] in G1.

input_right [ (X*b^2*s, Y*Q3, Z*R3) ] in G1.

Examples of how to describe interactive assumptions with complicated winning
conditions can be found in Section 4.5.
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4
S T R U C T U R E - P R E S E RV I N G S I G N AT U R E S C H E M E S

Structure-preserving signatures [AFG+
10] (SPS) are signature schemes defined

over bilinear groups in which messages, public keys and signatures are all group
elements, and the verification algorithm consists of evaluating pairing-product
equations. One of the main motivations of considering such specific signature
schemes is that they are remarkably useful in the modular design of several cryp-
tographic protocols, notably in combination with non-interactive zero-knowledge
(NIZK) proofs of knowledge about group elements, and more specifically with
the Groth-Sahai proof system.

Realization of SPS has been considered over the three possible bilinear groups
settings introduced in the classification of Galbraith, Paterson and Smart [GPS08].
Recent work has focused on proving lower bounds on the complexity of SPS, and
exhibiting optimal constructions that match lower bounds. The common mea-
sures of complexity adopted in all these works are the number of group elements
in the public key, the number of group elements in the signature, and the number
of pairing-product equations in the verification algorithm.

This chapter is based on the results in [BFF+
15]. Instead of analyzing the num-

ber of pairing-product equations required, we analyze the number of pairings that
need to be performed by the verifier during signature verification. As previous
work only considers the number of verification equations, this does not shed much
light on the number of pairings required, since a verification equation might be
very complicated and require many pairings for verification. Intuitively though,
one would expect fewer equations to lead the fewer pairings. To close this gap in
the analysis, we consider the Type II case, specifically, we look at signatures in the
Type II setting of optimal bandwidth. For such signatures we prove lower bounds
and prove tightness of these bounds by providing signatures secure in the generic
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group model, which have verification equations matching the lower bounds. A
key part of this work is using automation provided by our generic group analyzer
tool. Specifically, the conjectured lower bound is a consequence of trying to syn-
thesize schemes with low number of pairings. Additionally, our new EUF-CMA
secure scheme matching the proven lower bound is found through exhaustive
search.

4.1 preliminaries

Given a bilinear group e : G1×G2 → GT , a structure-preserving signature scheme
is a signature scheme, where the verification key, the messages and the signatures
consist only of group elements from G1 and G2. The verification algorithm eval-
uates the signature by deciding group membership of elements in the signature,
and by evaluating pairing product equations, which are equations of the form:∏

i

∏
j

e(Xi, Yj)aij = 1,

where X1,X2, . . . ∈ G1, Y1, Y2, . . . ∈ G2 are group elements appearing in PP, VK,
M and σ. Note that in the Type II setting it may hold that Xi = φ(Yj) for some
i, j. Furthermore, we assume that the elements aij ∈ Zp are constants stored in
PP. More precisely:

Definition 45 (Structure-preserving signatures (SPS)). A signature scheme (Setup,
KeyGen, Sign, Verify) is said to be structure-preserving with respect to some bilinear
group generator G if

• PP : Consists of a bilinear group (p, G1, G2, GT , e,ψ,G,H) generated by G

and a set of constants in Zp,

• VK : The verification key consists of group elements in G1 and G2,

• M: Messages consist of group elements in G1 and G2,

• σ: Signatures consist of group elements in G1 and G2,
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• Sign : The signing algorithm only uses generic group operations.1

• Verify : The verification algorithm only needs to decide membership in G1

and G2, use the homomorphism ψ (in the Type II setting), and evaluate
pairing product equations.

4.2 known lower bounds of type ii sps

A number of lower bounds on signature size, verification key size and the
number of verification equations have been established for secure structure-
preserving signature schemes and one-time signature schemes. In particular, Abe
et al. [AGOT14a] establish many such bounds in the Type II setting. As some
of our results rely heavily on those bounds, we recall them below. Note that
membership tests are not counted as “verification equations”, although some of
them may require an amortizable pairing computation in practical instantiations.

First, just as Type I and Type III SPS, Type II SPS for messages in G1 require
two verification equations:

Lemma 46 ([AGOT14a, Theorem 3]). A structure-preserving signature scheme for
messages in G1 must have at least two verification equations. This holds even for one-
time signatures with security against random message attack.

Since we will focus on schemes with a single verification equation, we will there-
fore consider signatures on messages in G2, which can have a single verification
equation. In that case, Abe et al. obtain a lower bound on verification key size,
and show that all signature elements must be in G2.

Lemma 47 ([AGOT14a, Theorem 4 and Lemma 1]). A structure-preserving signature
scheme with a single verification equation must have at least two group elements in the
verification key, and can have no non-redundant signature element in G1. This holds even
for one-time signatures secure under random message attack.

1 Technically, this condition was not required in the original definition of Abe et al. [AFG+
10],

but all known constructions satisfy this property and it is required for the proofs of most lower
bounds to go through. Since an SPS scheme with a non-generic signing algorithm would be
very unnatural and surprising, it seems appropriate to include genericity of the signer in the
definition (see also the discussion in [AGOT14a, §2.3]).
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Finally, signatures in a secure Type II SPS scheme must consist of at least two
group.

Lemma 48 ([AGOT14a, Theorem 5]). An EUF-RMA-secure structure-preserving sig-
nature scheme must have at least 2 group elements for messages in G2 and at least 3 group
elements for messages in G1.

4.3 lower bounds on the number of pairings

We now show lower bounds for the number of pairings in the pairing-product
verification equations of SPS in the Type II setting. In particular, in our analysis we
consider SPS schemes that already match the lower bounds shown in [AGOT14a],
i.e., they have 2 group elements in the verification key, 2 group elements in the
signature and the verification consists of a single pairing-product equation (as
well as possible group membership tests).

Definition 49. A pairing in a verification equation of an SPS scheme is offline if if
its parameters only consists of group elements in PP as well as VK. Any pairing
not satisfying this requirement is called online.

The previous classification simply takes into account that certain pairings can
be computed once if we verify for example many messages signed using the
same public parameters and signing key. However, if a pairing in a verification
equation takes as a parameter either the message to be verified or its signature,
then the parameters will be different for each message, regardless of whether they
are signed with the same key and public parameters. Therefore, we can’t avoid
computing these pairings by e.g. caching pairings computed in earlier signature
verifications.

4.3.1 Main result

Having defined the notion of online and offline pairings, we are now ready to
state our main result. It shows that any optimal-size SPS scheme requires at least
three pairings for verification, and two of these pairings must be online ones.
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Theorem 50 (Main result). Any EUF-CMA-secure structure-preserving signature
scheme in the Type II setting with 1 verification pairing-product equation, 2 group
elements in the verification key and 2 elements in the signature requires at least 3 pairings
in the pairing-product equation, and at least 2 of them must be online pairings.

To prove the theorem, we distinguish between three cases according to which
groups the two elements V ,W of the verification key belong to, i.e., (i) V ,W ∈ G2,
(ii) V ,W ∈ G1, and (iii) V ∈ G1,W ∈ G2.

The first case is rather simple and is addressed in the following lemma which
shows that there exists no such structure-preserving signature scheme.

Lemma 51. There is no secure structure-preserving signature scheme in the Type II set-
ting with a single verification equation and a verification key consisting entirely of ele-
ments of G2.

Proof. We know by Lemma 47 and Lemma 48 that the signatures and messages
all have to be in G2. Since all inputs are in G2 the scheme would also be secure
in the Type I setting and must therefore be insecure since Type I SPS require two
pairing product equations for security [AGOT14b, Theorem 4].

The second case is somewhat more involved, and mainly addressed by the
following lemma, proved in Section 4.3.3 below.

Lemma 52. An EUF-CMA-secure structure-preserving signature scheme in the Type II
setting with 1 verification pairing-product equation, 2 group elements V ,W ∈ G1 in the
verification key and 2 group elements in the signature requires at least 3 pairings in the
pairing-product equation.

The previous lemma establishes that 3 pairings are needed, so all that remains
to show is that 2 of them must be online. This follows immediately from the
following observation.

Lemma 53. In a Type II structure-preserving signature scheme where all verification
key elements are in G1, it is possible to compute all the offline pairings in a verification
pairing-product equation using a single pairing evaluation. More generally, `+ 1 pairing
evaluations are sufficient if the verification key contains ` elements in G2.
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4.3 lower bounds on the number of pairings

Proof. Indeed, if the verification key is (V1, . . . ,Vk,U1, . . . ,U`) ∈ Gk
1 × G`

2, then
any product of offline pairings can be expanded into an expression of the form∏
i,j e(Xi, Yj)

cij where Yj runs through H,U1, . . . ,U` (since these are the only ele-
ments of G2 in the verification key and the public parameters) and Xi runs through
G,V1, . . . ,Vk,ψ(U1), . . . ,ψ(U`). By rewriting the product as:∏

j

e
(∏

i

X
cij
i , Yj

)

we can compute it with at most `+ 1 pairing evaluations as required.

Finally, to complete the proof of Theorem 50, we only need to prove it when
the verification key consists of one element of G1 and one element of G2. This
case, which is somewhat less interesting in practice as such a scheme is less space
efficient than when all key elements are in G1, but turns out to be more technically
challenging, is dealt with in detail in Section 4.4.

4.3.2 Gaps in Bounds Between EUF-RMA and EUF-CMA-Security

It is worth noting that Lemma 52, in the setting when (V ,W) ∈ G2
1, holds only for

EUF-CMA-secure SPS schemes, which forces EUF-CMA-security into the state-
ment of Theorem 50. However, for the setting (V ,W) ∈ G1 ×G2, as discussed in
Section 4.4, the lower bound holds even for EUF-RMA-secure SPS. In this section
we therefore investigate the case of EUF-RMA-security for the (V ,W) ∈ G2

1 set-
ting. We prove next a slightly weaker lower bound in this setting for the case of
EUF-RMA-secure SPS.

Theorem 54. Any EUF-RMA-secure structure-preserving signature scheme in the
Type II setting with 1 verification pairing-product equation requires at least 2 pairings in
the pairing-product equation, and both of them must be online pairings.

Proof. It suffices to show that a Type II SPS scheme with a single verification
equation (and which we can assume without loss of generality signs one-element
messages) cannot be EUF-RMA-secure if the pairing-product equation consists of
only one online pairing (and any number of offline pairings).
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4.3 lower bounds on the number of pairings

To see this, denote by (S1, . . . ,Sk) the signature vector (which is in Gk
2 without

loss of generality by Lemma 47), and observe that the pairing product equation
must be of the form:

∏
i,j

e(Xi, Yj) = e
(
ψ(M)a0 ·

k∏
i=1

ψ(Si)
ai ·Z,Mb0 ·

k∏
j=1

ψ(Sj)
bj · T

)

where the pairings on the left-hand side are offline (and hence the Xi’s and Yj’s
do not depend on the message or the signature), and Z, T are elements which also
do not depend on the message or the signature. But then we can do the change
of variables:

(R ′,S ′) =
(
ψ(M)a0 ·

k∏
i=1

ψ(Si)
ai ,Mb0 ·

k∏
j=1

ψ(Sj)
bj
)

and then (R ′,S ′) provides a two-element EUF-RMA-secure signature scheme
whose verification equation is just:∏

i,j

e(Xi, Yj) = e(R ′ ·Z,S ′ · T),

and in particular does not depend on the message: this is a contradiction.

We see that the bounds given by Theorem 50 and Theorem 54 show a gap.
Namely, there could exist an EUF-RMA-secure scheme with precisely two online
pairings and no offline pairing. We confirm that both lower bounds are indeed
tight, by providing an EUF-RMA-secure SPS with precisely two online pairings
in Section 4.5.4.

4.3.3 Proof of Lemma 52

Proof. The proof proceeds by contradiction showing that having a scheme with
only 2 pairings in the single pairing-product equation is impossible. Let us first
recall that in this setting we have a message M ∈ G2, verification keys V ,W ∈ G1

and signature elements R,S ∈ G2. As usual, we denote their discrete logarithms
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4.3 lower bounds on the number of pairings

by the corresponding lower case letters. We may write the general verification
equation in terms of the discrete logarithms of M,R,S,V ,W as follows:

(c1m+ c2r+ c3s+ c4v+ v5w+ c6)(d1m+ d2r+ d3s+ d4) =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f3s+ f4),
(2)

where the products represent a pairing, the left factor in each product represent
the element in G1 and the right factor the element in G2 of each pairing.

Now if we define the vectors X1 = (c1, . . . , c6),X2 = (e1, . . . , e6), Y1 =

(d1, . . . ,d4), Y2 = (f1, . . . , f4) over Zp and the matrix:

E = Xt1Y1 −X
t
2Y2,

then the verification equation (2) can be rewritten as

(m, r, s, v,w, 1)t · E · (m, r, s, 1) = 0.

A simple observation shows that if KerE contains a vector (x1, . . . , x4), where
x4 6= 0, then we may scale to x4 = 1 and then

m = x1, r = x2, s = x3

is a valid key-only attack forgery (since the kernel of E can be computed entirely
from the public parameters). It follows that if the scheme is secure, then KerE ⊂
{(x1, . . . , x4) | x4 = 0}. However, this implies that the following system d1m+ d2r+ d3s = −d4

f1m+ f2r+ f3s = −f4

lacks a solution, since otherwise

E(m, r, s, 1) = Xt1Y1(m, r, s, 1) −Xt2Y2(m, r, s, 1) = 0− 0 = 0.
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4.3 lower bounds on the number of pairings

Up to exchanging the roles of Y1 and Y2 without loss of generality, this implies
that Y1 = cY2 + (0, 0, 0, λ) for some constants c, λ, and hence:

E = Xt1Y1−X
t
2Y2 = X

t
1

(
cY2+(0, 0, 0, λ)

)
−Xt2Y2 = (λX1)

t · (0, 0, 0, 1) − (X2− cX1)
tY2.

Therefore, after relabeling the coefficients, we may assume that Y1 = (0, 0, 0, 1)
and the verification equation (2) can be rewritten as

c1m+ c2r+ c3s+ c4v+ v5w+ c6 =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f3s+ f4),
(3)

Now if (c4, c5) = λ(e4, e5) or (e4, e5) = λ(c4, c5), then we may replace the verifi-
cation key by a single element t = e4v+ e5w or t = c4v+ c5w. For example, if
(c4, c5) = λ(e4, e5), set t = e4v+ e5w and write the verification as

c1m+ c2r+ c3s+ λt+ c6 =

(e1m+ e2r+ e3s+ t+ e6)(f1m+ f2r+ f3s+ f4),

which is insecure by Lemma 47. It follows that

det


 c4 c5

e4 e5


 6= 0

and we may do a linear change of variables


 v ′

w ′


 =


 c4 c5

e4 e5




 v

w


+


 c6

e6


 ,

so that the verification equation (3) becomes, after renaming coefficients,

c1m+ c2r+ c3s+ v = (e1m+ e2r+ e3s+w)(f1m+ f2r+ f3s+ f4). (4)
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Note that the vectors (c2, c3), (e2, e3), (f2, f3) cannot all be collinear, because oth-
erwise we may again compress the signature into one group element as above,
which we already know is impossible.

Next, we look at the matrix

N =


 e2 e3

f2 f3




and distinguish two cases depending on the determinant.

On one hand, if detN 6= 0, then as before, a change of variables let us write the
verification equation (4) in the form

c1m+ c2r+ c3s+ v = (r+w)s.

Since m must be used in the verification equation, we know that c1 6= 0. An
easy calculation then shows that if (m, r, s) is a triple satisfying the verification
equation for the keys v,w, then so does (m− (c2 − s)/c1, r+ 1, s). This gives us
a forgery unless c2 = s for a non-negligible set of signatures. However, if this
happens, then s would be a redundant signature element. From Lemma 48 we
know that the scheme must be insecure.

On the other hand, if detN = 0, we have the two cases (e2, e3) = λ(f2, f3) or
(f2, f3) = 0. If (f2, f3) = 0, then

det


 c2 c3

e2 e3


 6= 0

or otherwise (c2, c3), (e2, e3), (f2, f3) would be collinear, which would again allow
us to compress the verification key. It follows that the verification equation (4)
reduces to

r+ v = (s+w)(f1m+ f4).
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and since f1 6= 0, as the message must be used, we may query m1 = −f−11 f4

getting back a signature (r1, s1), where r1 = −v. Now make another query with
m2 = f

−1
1 (1− f4) to get back a signature (r2, s2). Then

r2 + v = s2 +w⇒ w = r2 + v− s2 = r2 − r1 − s2,

so with two chosen-message queries the attacker can transfer V ,W to G2 and then
we know the scheme cannot be secure (concretely, (R1,R1R−12 S2) = (V−1,W−1) is a
valid signature on any message). Therefore, we must have that (e2, e3) = λ(f2, f3).
Again using the fact that (c2, c3), (e2, e3), (f2, f3) are not collinear, we must have

det


 c2 c3

f2 f3


 6= 0.

It follows that we may do a change of variables s ′ = f1m + f2r + f3s + f4 and
r ′ = c1m+ c2r+ c3s and by the collinearity of (e2, e3) and (f2, f3) the verification
equation (4) becomes of the form

r+ v = (e1m+ e3s+w+ e6)s

and now if (m, r, s) is a valid signature, then so is (m+ 1/e1, r+ s, s), which is a
valid forgery, since m must be used in the verification equation and hence e1 6= 0.
Also, note that in the latter case, the attack can be performed in the random-
message security game.

4.4 sps schemes with verification key (V ,W ) ∈ G1 × G2

This section is devoted to the analysis of minimal Type II SPS schemes whose
verification key is of the form (V ,W ) ∈ G1 × G2. As mentioned in Section 4.3.2,
Theorem 50 holds in this case even for EUF-RMA-secure schemes. This follows
directly from Theorem 54 together with the lemma below.

Before going into the details of the proof, we give a short overview of the main
proof ingredient, namely, how to prove the impossibility of a certain verification
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equation by using a computer algebra system. The proof below then consists of a
large number of case distinctions. As a guide for choosing the right variable(s) for
the basis of the case distinctions, we have used a Gröbner basis approach, which
we describe next.

Using the notation from Section 4.3.3, when (V ,W) ∈ G1 ×G2, the verification
equation below can be written in the form

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)(d1m+ d2r+ d3s+ d4w+ d5) =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f3s+ f4w+ f5).

We begin by defining the field

F = Q(c1, . . . , c6,d1, . . . ,d5, e1, . . . , e6, f1, . . . , f5).

To mount a random message attack, we assume that (m, r, s) is a random signa-
ture triple given to the adversary. In other words, we assume that (m, r, s) satisfies
the verification equation. In the symbolic group model, the adversary will now
have access to the elements 1,m, r, s, so it is able to create elements of the form

α1m+α2r+α3s+α4, where αi ∈ Z.

Therefore, any forgery that it can attempt to generate will be of the form

m∗ = m1m+m2r+m3s+m4

r∗ = r1m+ r2r+ r3s+ r4

s∗ = s1m+ s2r+ s3s+ s4.

Using this notation, we define

P1 = c1m+ c2r+ c3s+ c4v+ c5w+ c6

P2 = d1m+ d2r+ d3s+ d4w+ d5

P3 = e1m+ e2r+ e3s+ e4v+ e5w+ e6

P4 = f1m+ f2r+ f3s+ f4w+ f5
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and

Q1 = c1m
∗ + c2r

∗ + c3s
∗ + c4v+ c5w+ c6

Q2 = d1m
∗ + d2r

∗ + d3s
∗ + d4w+ d5

Q3 = e1m
∗ + e2r

∗ + e3s
∗ + e4v+ e5w+ e6

Q4 = f1m
∗ + f2r

∗ + f3s
∗ + f4w+ f5.

Now define
P = P1P2 − P3P4, Q = Q1Q2 −Q3Q4.

Ideally, we would want to compute a Gröbner basis of the ideal generated by the
coefficients of Q in the ring

F[m1, . . . ,m4, r1, . . . , r4, s1, . . . , s4]/(P),

but such a computation is out of reach of current CAS systems. Instead, we
compute the polynomial H = Q− P. What we are a looking for is a non-trivial
solution for the constants m1, . . . ,m4, r1, . . . , r4 and s1, . . . , s4 for which H will
become the zero polynomial. Note that a trivial solution is always found by
choosing

m1 = 1,m2 = m3 = m4 = 0, r2 = 1, r1 = r3 = r4 = 0, s3 = 1, s1 = s2 = s4 = 0,

which just means that we pick as the forgery attempt (m∗, r∗, s∗) the already given
signature triple (m, r, s).

We can instead compute the Gröbner basis of the ideal I generated by the coef-
ficients of H in the ring

F[m1, . . . ,m4, r1, . . . , r4, s1, . . . , s4]

When performing this computation, one of two things will happen:

1. I = (m1 − 1,m2,m3,m4, r1, r2 − 1, r3, r4, s1, s2, s3 − 1, s4)

2. I is some more complicated ideal.
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If we get the former case, then we are unable to find a non-trivial solution by
looking at the ideal I and we are forced to make a case distinction. We can try to
pick e.g. c1 and split into the cases c1 = 0 and c1 6= 0. In the first case, we have
to repeat the steps and in the second, we can scale the equation, so that c1 = 1.
This removes a constant from the equation and increases the likelihood of finding
a workable Gröbner basis. In the latter case, we can read out a general formula
for the forgery. Unfortunately, the formula might not always be valid. A typical
problem is that the Gröbner basis contains a reciprocal of one of the coefficients
in the field F. For example, if it contains c−11 , then we have to separately analyze
the cases c1 = 0 and c1 6= 0.

All in all, producing the full proof, will take a lot of trial and error, as well as
CPU time, since for many equations, the Gröbner basis for the ideal I can take
hours to compute. The problem also becomes choosing the right case distinctions
that make the tree as small as possible. With the wrong choices, the proof can
more than double in length.

Lemma 55. An EUF-RMA-secure structure-preserving signature scheme in the Type II
setting with 1 verification pairing-product equation, 2 group elements V ∈ G1 and W ∈
G2 in the verification key and 2 group elements in the signature requires at least 3 pairings
in the pairing-product equation.

Proof. We can write the verification equation in the form:

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)(d1m+ d2r+ d3s+ d4w+ d5) =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f3s+ f4w+ f5).
(5)

Our proof is a large case distinction based on the values of the parameters. The
following Figure 3 illustrates the case distinction tree. We label the cases according
to the tree and assume the reader follows the case distinctions by looking at the
tree nodes.

Case 1. Assume first that det(d2 d3; f2 f3) 6= 0. Then we can do a linear change
of variables


 r ′

s ′


 =


 d2 d3

f2 f3




 r

s


+


 d1m+ d4w+ d5

f1m+ f4w+ f5


 .
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root

1.det

(
d2 d3
f2 f3

)
6= 0 2.det

(
d2 d3
f2 f3

)
= 0

3.(d2, d3) = (0, 0)

4.det

(
d1 d4
f1 f4

)
6= 0 5.det

(
d1 d4
f1 f4

)
= 0

6.(d1, d4) = (0, 0) 7.(d1, d4) 6= (0, 0)

8.d1 6= 0

9.(f2, f3) = 0 10.(f2, f3) 6= 0

11.d1 = 0

12.(d2, d3) 6= (0, 0)

figure 3: Case distinction tree for the proof of Lemma 55.

After relabeling the constants and dropping the primes, this reduces the equation
into the form

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)r = (e1m+ e2r+ e3s+ e4v+ e5w+ e6)s

We can now choose r = s = 0, which is a valid signature for any m. Therefore,
this case is impossible.

Case 2. We know that det(d2 d3; f2 f3) = 0, so this splits into two subcases.

Case 3. If (d2,d3) = 0, then the verification equation (5) becomes

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)(d1m+ d4w+ d5) =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f3s+ f4w+ f5).
(6)

We want to simplify the right factor on the left-hand side. This gives us two case
distinctions.

Case 4. If det(d2 d3; f2 f3) 6= 0, then we can make a change of variables m ′ =
d1m+ d4w+ d5, w ′ = f1m+ f4w+ f5, which turns (6) into the form

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)m =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f2r+ f3s+w).
(7)
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If f2 6= 0, then r = −f−12 w, s = 0 is a valid signature for m = 0. If f3 6= 0, the same
argument works with r and s swapped. Therefore, f2 = f3 = 0 and (7) becomes

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)m = (e1m+ e2r+ e3s+ e4v+ e5w+ e6)w,

and in that equation, (c2, c3), (e2, e3) cannot be collinear, as there would be only
one independent signature element otherwise. As a result, a change of variables
lets us rewrite it as:

(r+ c4v)m = (s+ e4v)w. (8)

If c4 6= 0, then r = s = 0 gives a valid signature on m = (e4/c4) ·w. Therefore,
we must have c4 = 0, and for any valid message-signature pair (m; r, s), the pair
(2m; r/2, s) is also valid, which breaks security against random-message attacks.

Case 5. det(d2 d3; f2 f3) = 0, so either (d1,d4) = 0 or (d1,d4) 6= 0, i.e. (f1, f4) =
λ(d1,d4).

Case 6. If (d1,d4) = 0, then (6) becomes

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)d5 =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f3s+ f4w+ f5).

If d5 = 0, then verification equation requires just one pairing and this is easily
shown to be impossible. Hence, d5 6= 0 and we may assume that d5 = 1 by
scaling. The verification equation thus becomes

c1m+ c2r+ c3s+ c4v+ c5w+ c6 =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f3s+ f4w+ f5).
(9)

Assume now that (m; r, s) is a valid message-signature pair satisfying the equa-
tion. Then (m∗; r∗, s∗) given by:

m∗ = m+ (e2f3 − e3f2)(f1m+ f2r+ f3s+ f4w+ f5) + (c3f2 − c2f3)

r∗ = r+ (e3f1 − e1f3)(f1m+ f2r+ f3s+ f4w+ f5) + (c1f3 − c3f1)

s∗ = s+ (e1f2 − e2f1)(f1m+ f2r+ f3s+ f4w+ f5) + (c2f1 − c1f2)

(10)
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is another valid signature (easily obtained by looking for forgeries of the form
(m+µ; r+ρ, s+σ) fixing the G2 side of (9), and solving the resulting linear system
in (µ, ρ,σ). This is a forgery unlessm∗ = mwith overwhelming probability, which
implies that

(e2f3 − e3f2)(f1m+ f2r+ f3s+ f4w+ f5) + (c3f2 − c2f3) = 0,

and unless det(e2 e3; f2 f3) = det(f2 f3; c2 c3) = 0, that relation makes verification
equation (9) linear, and hence the scheme clearly insecure.

Thus, we must have det(e2 e3; f2 f3) = det(f2 f3; c2 c3) = 0, and since the
vectors (c2, c3), (f2, f3), (e2, e3) cannot be all collinear by independence of the two
signature elements, it follows that (f2, f3) = 0 and det(c2 c3; e2 e3) 6= 0. Therefore,
after a change of variables, (9) becomes:

r+ c4v = (s+ e4v)(f1m+ f4w+ f5),

where f1 6= 0, since m must be used in the verification equation. Therefore, after
m ′ = f1m+ f4w+ f5, we get r+ c4v = (s+ e4v)m, which does not use w and must
hence be insecure.

Case 7. In this case we have assumed that det(d1 d4; f1 f4) = 0 and (d1,d4) 6= 0.
It follows that (f1, f4) = λ(d1,d4) and the verification equation is as in (6), i.e., it
has the form

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)(d1m+ d4w+ d5) =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f3s+ f4w+ f5).
(11)

We now distinguish between whether d1 is zero or not.

Case 8. Assume that d1 6= 0, so that we may make a change of variables
m ′ = d1m+ d4w+ d5, so that by (f1, f4) = λ(d1,d4) the verification equation (11)
becomes

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)m =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f3s+ f5).
(12)
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namely we can drop the w term from the G2 side on the right. We now make a
case distinction on whether (f2, f3) = 0.

Case 9. Assume that (f2, f3) = 0. In this case the equation becomes

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)m = (e1m+e2r+e3s+e4v+e5w+e6)(f1m+ f5).

Now det(c2 c3; e2 e3) 6= 0 or else there is just one independent signature ele-
ment. It follows that we may simplify the equation to the form (r + c4v)m =

(s+ e4v)(f1m+ f5). However, w is not used here, so the scheme is trivially inse-
cure.

Case 10. Assume that (f2, f3) 6= 0. Looking at equation (12), we see that
(c2, c3), (f2, f3), (e2, e3) cannot be all collinear or else there is just one indepen-
dent signature element. It follows that one of det(c2 c3; f2 f3) and det(f2 f3; e2 e3)
must be nonzero. In the first case, (12) becomes

(r+ c4v)m = (e1m+ e2r+ e3s+ e4v+ e5w+ e6)s.

so that m = 0, s = 0 gives a valid signature for any r. In the latter case, (12)
becomes

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)m = (r+ e4v)s,

which is insecure by the same argument.

Case 11. Since d1 = 0, the equation (11) becomes

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)(d4w+ d5) =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f3s+ f4w+ f5).

Let (m; r, s) be a valid message-signature pair, then so is (m∗; r∗, s∗) given by:

m∗ = m+ (e3f2 − e2f3)(f2r+ f3s+ f4w+ f5) + (c2f3 − c3f2)(d4w+ d5)

r∗ = r+ e1f2f3r+ e1f
2
3s+ (−c1d4f3 + e1f3f4)w− c1d5f3 + e1f3f5

s∗ = s− e1f
2
2r− e1f2f3s+ (c1d4f2 − e1f2f4)w+ c1d5f2 − e1f2f5
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(obtained by the same approach as in Case 6). As in Case 6, this provides a valid
forgery or lets us linearize the verification equation (concluding in both cases)
unless the determinants det(e2 e3; f2 f3) and det(c2 c3; f2 f3) are both zero. In
that case, since we know that (c2, c3), (f2, f3), (e2, e3) can’t be collinear, we obtain
(f2, f3) = 0 and det(c2 c3; e2 e3) 6= 0. This implies that we may write the verifica-
tion equation in the form

(r+ c4v)(d4w+ d5) = (s+ e4v)(f1m+ f4w+ f5).

The equation must depend on both m and w, so d4 and f1 are non zero, and we
may simplify that further to (r+ c4v)w = (s+ e4v)m, and this has been ruled out
in Case 4 already.

Case 12. We now have the original verification equation

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)(d1m+ d2r+ d3s+ d4w+ d5) =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f3s+ f4w+ f5),

but we know that (d2,d3) 6= 0 and (f2, f3) = λ(d2,d3). We note that the problem is
completely symmetric with respect to d2 and d3, so we may assume that d2 6= 0.
Set r ′ = d1m + d2r + d3s + d4w + d5 and s ′ = s. Since (f2, f3) = λ(d2,d3), the
verification equation becomes

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)r =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f1m+ f2r+ f4w+ f5).

If f1 6= 0, choose r = 0 and pick an m such that f1m+ f4w+ f5 = 0. This is a valid
forgery for any value of s. It follows that f1 = 0, so that the equation becomes

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)r =

(e1m+ e2r+ e3s+ e4v+ e5w+ e6)(f2r+ f4w+ f5).

81



4.5 synthesis of sps

Assume now that (m; r, s) is a valid message-signature pair. Then so is (m∗; r∗, s∗)
given by

m∗ = m+ (c3 − e3f2)r− e3f4w− e3f5

r∗ = r

s∗ = s+ (e1f2 − c1)r+ e1f4w+ e1f5.

By the argument of Case 6 again, we deduce that the scheme is insecure (by
forgery or linearization of the verification equation) unless perhaps if c3−e3f2 = 0,
e3f4 = 0 and e3f5 = 0. From c3 = e3f2, we see that if e3 = 0, then c3 = 0 and
s would not be used in the verification equation, which is impossible. It follows
that e3 6= 0 and f4 = f5 = 0. The verification equation is therefore

(c1m+ c2r+ c3s+ c4v+ c5w+ c6)r = (e1m+ e2r+ e3s+ e4v+ e5w+ e6)f2r.

It follows that r = 0 gives a forgery for any choice of m and s. Therefore, we
have another contradiction and since we have exhausted all cases, the proof is
complete.

4.5 synthesis of sps

Our tool for the synthesis of SPS schemes consists of two components. The first
component takes the description of a search space and generates all included SPS
schemes. The second component classifies a given scheme by performing a proof
and attack search.

4.5.1 Generation of Schemes

For our generation algorithm, we consider SPS schemes with generic KeyGen
and Sign algorithms and assume all random values are sampled uniformly. Our
definition of an SPS scheme consists of

• the employed group type and the supported message space Gk
1 ×Gl

2,
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map G1 ×G2 → GT . iso G2 → G1.

input [V] in G1. input [W] in G2.

oracle o(M : G2) = sample R; return [R, (1+W2 +M ∗ V) ∗ R−1] in G2.

win (M ′ : G2,R ′ : G2,S ′ : G2) = (S ′ ∗ R ′ = 1+W2 + V ∗M ′ ∧ ∀i :M ′ 6=Mi).

figure 4: Example of input for analyzing EUF-CMA security of an SPS scheme.

• the randomly sampled values ui ∈ Zp used in KeyGen,

• the verification keys Vi = Gfi(~u) ∈ G1 and Wi = H
gi(~u) ∈ G2,

• the randomly sampled values ri ∈ Zp used in Sign,

• the signature elements Si = Gsi(~u,~r,~m) ∈ G1 and Ti = Hti(~u,~r,~m) ∈ G2, and

• the pairing-product equations used by Verify.

Here, fi and gi are arbitrary rational functions in the random variables ~u. Sim-
ilarly, si and ti are rational functions in the random variables ~u,~r and the dis-
crete logarithms ~m of the messages such that there exists a corresponding generic
signing algorithm, i.e., Si and Ti can be computed without knowing the discrete
logarithms of the messages.

A search space description characterizes a finite set of SPS schemes and consists
of (1) the group type, (2) the number of messages, verification key elements, and
signature elements in G1 and G2, (3) the number of random values sampled in
KeyGen and Sign, and (3) a description of the rational expressions that can be
used for fi, gi, si, and ti.

There are two ways to characterize the allowed rational expressions. First, the
tool can take a set of Laurent polynomials with placeholders and allowed values
for these placeholders, and generate all instances. Second, the tool accepts a set of
constraints that specify bounds on the number of additions, the size of coefficients,
and the degree of monomials. Then, it generates all Laurent polynomials that
satisfy these constraints.
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Given a search space description and concrete polynomials for the verification
keys and the signature elements, the tool can compute the (strongest) verification
equation as follows. Using distinct variables Z1,Z2, . . . for all group elements in
the verification keys, signature elements, and messages, enumerate all products
over these variables that can be computed by applying the homomorphisms and
the bilinear map. This yields a sequence of monomials M1,M2, . . . over the the
variables Zi denoting products in GT that can be computed from the input of the
verification algorithm using Ψ and e. To characterize the linear relations between
the elements in GT corresponding to the monomials Mi, we associate a rational
expression Fi over ~u,~r, ~m to Mi by evaluating the monomial for Zi := hi(~u,~r, ~m)

where hi is the exponent of the group element associated with Zi. Finally, we use
linear algebra to compute a basis of the linear relations between the Fi and map
them back to verification equations using Mi.

4.5.2 Proof and Attack Search

We classify generated schemes using a proof and attack search based on an ex-
tension of the Generic Group Analyzer (GGA). To analyze SPS schemes, we use
GGA’s support for the generic bilinear group model. The definition in Figure 4

specifies the EUF-CMA security experiment for an SPS scheme in the Type II set-
ting. The verification keys are specified in the second line, the signing algorithm is
given in the third line, and the winning condition (including the verification equa-
tion) is given in the last line. Here, group elements are specified by giving their
exponent polynomials and the variables V and W are assumed to be randomly
sampled. For such an input and a bound on the number q of performed oracle
queries, the tool either returns an attack or a proof that the scheme is q-EUF-CMA
secure in the generic group model.

4.5.3 Synthesized Schemes

We have performed an exhaustive search for Type II schemes with keys V ,W ∈ G1,
message M ∈ G2, and signature T ,S ∈ G2 such that: V and W are random;
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Search Space Schemes Results (for eq. classes)

Verification equation First signature element total eq. cl. Noverif Attack Proof

s = f(r, v,w,m) T = Hr for random r 212 57 0 55 1

s t = f(r, v,w,m) T = Hr for random r 224 67 0 55 12

s (t−w) = f(r, v,w,m) T = Hr+w for random r 1344 774 651 103 14

sw = f(r, v,w,m) T = Hr for random r 224 126 0 120 3

2004 1024 651 333 30

table 2: Synthesis results for Type II with keys V ,W ∈ G1, message M ∈ G2, and
signature T ,S ∈ G2.

T = Hr ·U where r is random and U does not involve r; the exponent polynomials
of S, i.e., s(r, v,w,m), have coefficients in {0, 1}. The results of our search are
presented in Table 2. We use “Proof” to denote that our tool could prove at
least 2-EUF-CMA security. Among the SPS schemes that are found, we identify
equivalent schemes according to the following notion: we say two schemes Σ and
Σ ′ are in the same equivalence class if Σ can be obtained from Σ ′ by applying
invertible affine transformations to the verification keys, the messages, and the
signature elements. This implies the existence of reductions from the security of
Σ to the security of Σ ′ and vice-versa. As a simple example, consider a scheme
that is obtained from another scheme by first multiplying the message M with G
and then applying the original signing algorithm.

4.5.4 New SPS Schemes

Among the schemes that we found using our tool, we highlight two of them that
are of particular interest, as well as a counterpart of the first one in the Type III
setting.

A Strongly-Optimal Randomizable SPS.

The first scheme is an SPS which is randomizable and matches the lower bound of
Theorem 50, i.e., it can be verified using one offline and two online pairings. This
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scheme improves over the previously known randomizable schemes (in particular
over the one recently proposed in [AGOT14a]) as the latter requires three online
pairings. This new scheme is presented in Fig. 5 with its security proven below.

Theorem 56. The signature scheme in Fig. 5 is EUF-CMA-secure in the generic bilinear
group model.

Proof. Since we are in the generic bilinear group model, the adversary A can only
perform generic operations via the oracles. Thus, in G1 and G2 it can compute
only linear combinations of elements that are in the public key, or elements that
were returned by the signing oracle (i.e., signatures). Such linear combinations
in G2 correspond to formal Laurent polynomials whose variables are the discrete
logarithms of the corresponding group elements.

From the public key, A sees in G1 the elements G,V ,W which correspond to
1, v,w respectively, while in G2 A only sees H, which corresponds to 1. For every
signing query Mi (with discrete log mi), the adversary receives Ri = Hri ,Si =
M
v/ri
i Hw/ri ∈ G2, namely ri and si = miv/ri +w/ri.

Let (M,R,S) ∈ G3
2 be the forgery returned by the adversary after making q

signing queries. From the assumption that A is generic, these three elements in
G2 can be computed only as linear combinations of all the available material in
G2. Namely, when looking at their discrete logarithms (m, r, s), it must be

m = µ+

q∑
i=1

µriri +

q∑
i=1

µsi

(
miv

ri
+
w

ri

)

r = ρ+

q∑
i=1

ρriri +

q∑
i=1

ρsi

(
miv

ri
+
w

ri

)

s = σ+

q∑
i=1

σriri +

q∑
i=1

σsi

(
miv

ri
+
w

ri

)

Moreover, in order for the adversary to succeed in the EUF-CMA security game,
the verification equation

rs = mv+w
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must be satisfied with significant probability over the random choices of v,w and
all the ri sampled in the security experiment. By Schwartz-Zippel, Lemma 17, the
above equation holds as an identity of polynomials.

Therefore, in our proof we show that for every forgery (m, r, s) which verifies
correctly it must be the case that A reuses one of the previously obtained mes-
sages, i.e., m = mj for some j ∈ [q].

The verification equation is rs = mv+w that, by expanding r, s we can write as

(
ρ+

q∑
i=1

ρriri +

q∑
i=1

ρsi

(
miv

ri
+
w

ri

))
·
(
σ+

q∑
i=1

σriri +

q∑
i=1

σsi

(
miv

ri
+
w

ri

))

= mv+w

(13)

First, we show that it must be σri = 0 for all i = 1, . . . ,q. Assume by contra-
diction that ∃j ∈ [q] : σrj 6= 0. Then when looking at the coefficients of r2j , these
must be zero, i.e., σrjρrj = 0 which implies ρrj = 0. Similarly, when analyzing the
monomials rirj for all i 6= j, their coefficients ρriσrj + ρrjσri must be zero. Since
ρrj = 0 and σrj 6= 0 it must be ρri = 0 for all i 6= j. Hence, so far we have shown
that it must be the case that ρri = 0 ∀i ∈ [q].

If we now look at the coefficient of rj (on the left-hand side of equation (13)),
i.e., ρσrj , this must be zero which implies ρ = 0. Essentially, equation (13) can be
rewritten as
(

q∑
i=1

ρsi

(
miv

ri
+
w

ri

))
·
(
σ+

q∑
i=1

σriri +

q∑
i=1

σsi

(
miv

ri
+
w

ri

))
= mv+w (14)

Now, let us analyze the terms w/ri whose coefficients must be zero as well, i.e.,
σρsi = 0 ∀i ∈ [q]. This shows that σ = 0, otherwise (if σ 6= 0) it must be the case
that ρsi = 0 ∀i ∈ [q], thus yielding a zero polynomial on the left-hand side of
equation (14) which is impossible.
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If we then look at the coefficients of terms wrj
ri

for all i 6= j, these must be zero,
i.e., ρsiσrj = 0, which means ρsi = 0 for all i 6= j since σrj 6= 0 by our assumption.
Thus equation (14) can be rewritten as

ρsj

(
mjv

rj
+
w

rj

)
·
(

q∑
i=1

σriri +

q∑
i=1

σsi

(
miv

ri
+
w

ri

))
= mv+w (15)

where ρsj 6= 0 otherwise there would be a zero polynomial on the left-hand side
of the equation.

Now, if we look at the terms w2

rirj
, using a similar argument as above we obtain

that σsi = 0 for all i ∈ [q]. And if we look at the terms wrk
rj

for all k 6= j, it must be
σrkρsj = 0, which means σrk = 0 for all k 6= j.

Hence, we are left with ρsj

(
mjv

rj
+ w
rj

)
σrjrj = mv + w which simplifies to

ρsjσrj(mjv+w) = mv+w that forces ρsjσrj = 1 and thus mj = m, which is a
contradiction since (m, r, s) is a forgery only if m 6= mi for all i = 1, . . . ,q.

Therefore, it must be the case that σri = 0 for all i = 1, . . . ,q.

By using very similar arguments to the ones presented above, we can also argue
that σri = 0 for all i = 1, . . . ,q unless m = mj.

Hence, since ρri = σri = 0 ∀i ∈ [q], equation (13) can be rewritten as

(
ρ+

q∑
i=1

ρsi

(
miv

ri
+
w

ri

))
·
(
σ+

q∑
i=1

σsi

(
miv

ri
+
w

ri

))
= mv+w (16)

Now, if we expand m in the right-hand side of the above equation, one can see
that when considering the formal polynomials the equation cannot hold. To see
this, assume that ∃j : ρsj 6= 0. By looking at the coefficients of w2

rirj
, it must hold

σsi = 0 for all i ∈ [q]. It is clear that σ 6= 0 otherwise one has a zero polynomial
on the left-hand side of equation (16). At this point either mv+w contains the
constant term ρσ, or (if ρ = 0) it must contain a term w/rj which is not the case
either. This shows that ρsi = 0 ∀i ∈ [q]. Analogously, one can see that equation
ρ
(
σ+

∑q
i=1 σsi

(
miv
ri

+ w
ri

))
= mv+w cannot hold as well.

This scheme can be translated to Type III groups using the transformation
in [CM14], which essentially consists in “duplicating” R, i.e., to give R = Gr ∈ G1
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Setup(1k) : return P = (p , G1 , G2 , GT , e , ψ , G , H) ← G(1k).

KeyGen(P) : choose random v , w ← Zp and return VK = (V ,W ), SK = (v , w)
where V = Gv and W = Gw .

Sign(P , SK ,M) : given M ∈ G2 , choose a random r ← Z∗p and return (R , S)
where R = Hr and S = (MvHw)1/r.

Rerand(P , VK ,M , (R , S)) : pick a random α ← Z∗p and compute a randomized
signature (R ′ , S ′) as R ′ = Rα and S ′ = S1/α.

Verify(P , VK ,M , (R , S)) : accept if and only if M , R , S ∈ G2 and

e(ψ(R) , S) = e(V ,M) · e(W , H) .

figure 5: Our strongly-optimal re-randomizable SPS.

and T = Hr ∈ G2, and adding a pairing-product equation to check that R, T have
the same discrete logarithm, i.e., e(R,H) = e(G, T). Such transformed scheme
however requires one offline and four online pairings in the pairing-product
equations. In what follows we propose a slightly different way to transform our
scheme in the Type III setting which yields a solution requiring only three online
pairings. The basic idea is that in the previous transformation T is not used in the
first pairing-product equation, and its utility is to force the adversary to show that
it knows the discrete log of R (or obtained (R, T) by applying a linear operation on
a pair received by the challenger). We obtain the same functionality by letting the
signer compute T = H1/r. This allows us to test “equality of r between R and T”
by checking e(R, T) = e(G,H). The last pairing, however, involves only the gen-
erators and can thus be computed offline. A precise description of the resulting
scheme is provided in Fig. 6, and the security is proven by the following theorem.

Theorem 57. The signature scheme in Fig. 6 is EUF-CMA-secure in the generic bilinear
group model.

Proof. The proof proceeds similarly to the one of Theorem 56 except that now
we have to take into considerations the two verification equations as well as the
additional information which is received in the different groups.
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From the public key, A sees in G1 the elements G,V ,W which correspond to
discrete logs 1, v,w respectively, while in G2 A only sees H, which corresponds to
1. For every signing query Mi (with discrete log mi), the adversary receives Ri =
Gri ∈ G2, Ti = H1/ri ,Si =M

v/ri
i Hw/ri ∈ G2, namely ri, 1/ri and si = miv/ri+w/ri.

Let (M,R, T ,S) ∈ G2 ×G1 ×G2
2 be the forgery returned by the adversary after

making q signing queries. From the assumption that A is generic, the elements
(M,R,S) in G2 can be computed only as linear combinations of all the available
material in G2, and similarly T can be computed only as a linear combination
of the available group elements in G1. Namely, when looking at their discrete
logarithms (m, r, t, s), it must be

m = µ+

q∑
i=1

µti
1

ri
+

q∑
i=1

µsi

(
miv

ri
+
w

ri

)

r = ρ+

q∑
i=1

ρriri + ρvv+ ρww

t = τ+

q∑
i=1

τti
1

ri
+

q∑
i=1

τsi

(
miv

ri
+
w

ri

)

s = σ+

q∑
i=1

σti
1

ri
+

q∑
i=1

σsi

(
miv

ri
+
w

ri

)

Moreover, in order for the adversary to succeed in the EUF-CMA security game,
the two verification equations

rs = mv+w∧ rt = 1

must be satisfied with significant probability over the random choices of v,w and
all the ri sampled in the security experiment. By Schwartz-Zippel, Lemma 17, the
above equations hold as identities of polynomials.

For our proof we first consider the second equation rt = 1 and we show that,
when expanding r, t as follows

(
ρ+

q∑
i=1

ρriri + ρvv+ ρww

)
·
(
τ+

q∑
i=1

τti
1

ri
+

q∑
i=1

τsi

(
miv

ri
+
w

ri

))
= 1 (17)
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4.5 synthesis of sps

it must be the case that both ρv and ρw are 0.

Assume by contradiction that ρw 6= 0. Then by looking at the coefficients of
w2/ri, these must be zero, which implies that τsi = 0 for all i ∈ [q]. Similarly, we
also obtain that all coefficients of w/ri must be zero, and thus τti = 0, ∀i ∈ [q]. So,
we are left with (

ρ+

q∑
i=1

ρriri + ρvv+ ρww

)
· τ = 1 (18)

which, being ρw 6= 0 is however impossible. Hence, ρw = 0, and in an analogous
way, one can prove that also ρv = 0.

In conclusion, from the fact that the forgery satisfies rt = 1 we obtain that it
must be the case that ρv = ρw = 0. In the next part of the proof we will use this
information to derive a contradiction on the fact that m 6= mi for all i = 1 to q.

Plugging this information in the first verification equation expanded for r, s we
obtain

(
ρ+

q∑
i=1

ρriri

)
·
(
σ+

q∑
i=1

σti
1

ri
+

q∑
i=1

σsi

(
miv

ri
+
w

ri

))
= mv+w (19)

First, we show that σti = 0 for all i = 1, . . . ,q. Indeed, assume by contradiction
that ∃j : σtj 6= 0. Then, by looking at the coefficients of terms ri/rj for all i 6= j we
obtain that ρri = 0 for all i 6= j. And similarly, since the term 1/rj is not in mv+w
it must be ρσtj = 0 and thus ρ = 0.

Essentially, we can rewrite equation (19) as

ρrjrj ·
(
σ+

q∑
i=1

σti
1

ri
+

q∑
i=1

σsi

(
miv

ri
+
w

ri

))
= mv+w (20)

where ρrj 6= 0 otherwise we would get a zero polynomial on the left-hand side
of the equation above. By analyzing the terms rj/ri for all i 6= j we obtain that
σti = 0 for all i 6= j. Similarly, we also have σ = 0. When looking at the terms
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4.5 synthesis of sps

wrj/ri for all i 6= j, we obtain that σsi = 0 for all i 6= j. This allows us to rewrite
equation (20) as

ρrjrj ·
(
σtj
1

rj
+ σsj

(
mjv

rj
+
w

rj

))
= mv+w

which simplifies to
ρrjσsj

(
mjv+w

)
= mv+w (21)

since σtj must be zero. However, equation (21) holds only if m = mj which is a
contradiction. Therefore, σti = 0 for all i = 1, . . . ,q.

Using this information, we can rewrite equation (19) as

(
ρ+

q∑
i=1

ρriri

)
·
(
σ+

q∑
i=1

σsi

(
miv

ri
+
w

ri

))
= mv+w (22)

Since the terms rjw/ri must have coefficients zero, it must be ρrjσsi = 0 for all
i 6= j. We claim that there exists exactly one k ∈ [q] such that both ρrk and σsk are
non-zero while ρri = σsi = 0 for all i 6= k. First, assume by contradiction that there
exists two distinct indices k1,k2 such that ρrk1 6= 0 and σsk2 6= 0. Then it would
be the case the term wrk1/rk2 has a non-zero coefficient, which is impossible.
Second, we show that it cannot be the case that only one of ρrk and σsk is non-
zero. Indeed assume by contradiction that ρrk = 0, then one can see that the
equation (22) cannot be satisfied. Similarly, it holds σsk 6= 0.

Therefore, it must be the case that ρrk 6= 0 and σsk 6= 0, and we can simplify the
equation as

(ρ+ ρrkrk) ·
(
σ+ σsk

(
mkv

rk
+
w

rk

))
= mv+w (23)

However, it is not hard to see that it must be ρ = σ = 0, which means ρrkσsk(mkv+

w) = mv+w, i.e., m = mk, which is a contradiction.

A Strongly-Optimal RMA-Secure SPS.

Our second new SPS scheme, presented in in Fig. 7, is secure against random-
message attacks, and achieves the lower bound of only two pairings in the
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4.5 synthesis of sps

Setup(1k) : return P = (p , G1 , G2 , GT , e , G , H) ← G(1k).

KeyGen(P) : choose random v , w ← Zp and return VK = (V ,W ), SK = (v , w)
where V = Gv and W = Gw .

Sign(P , SK ,M) : given M ∈ G2 , choose a random r ← Z∗p and return (R , T , S) ∈
G1 × G22 where R = Gr, T = H1/r and S = (MvHw)1/r.

Rerand(P , VK ,M , (R , T , S)) : pick a random α ← Z∗p and compute a random-
ized signature (R ′ , T ′ , S ′) as R ′ = Rα, T ′ = T 1/α and S ′ = S1/α.

Verify(P , VK ,M , (R , T , S)) : accept if and only if R ∈ G1 , M , T , S ∈ G2 and

e(R , S) = e(V ,M) · e(W , H) and e(R , T ) = e(G , H) .

figure 6: A re-randomizable SPS in Type III groups.

pairing-product equation (both necessarily online) for EUF-RMA-secure schemes,
as stated in Theorem 54. In particular, it beats the lower bound of Theorem 50

that holds for EUF-CMA-secure schemes.

This scheme is also perfectly randomizable, with the simple randomization al-
gorithm that sends a signature (R,S) on M to (R ·Ht,S ·Mt) for some uniformly
random t.

As an interesting note, we observe that the verification equation of this scheme
is exactly the only possible one, according to our impossibility proof. Indeed,
while our Lemma 52 holds for SPS schemes that are EUF-CMA-secure, the actual
proof relies on EUF-RMA-security in all cases but one. For that particular case,
in which we show a chosen-message attack, the verification equation is of the
form s+w = (r+ v)(f1m+ f4) for some constants f1, f4, up to invertible linear
transformations on the verification key and signature elements.

Theorem 58. The signature scheme in Fig. 7 is EUF-RMA-secure in the generic bilinear
group model.

Proof. In this case, the generic adversary receives the verification key V ,W ∈ G1

as well as q valid message-signature pairs (Mi;Ri,Si) ∈ G2 ×G2
2, i = 1, . . . ,q,

on random messages In particular, the discrete logarithms (mi; ri, si) satisfy that
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4.5 synthesis of sps

mi, ri are uniformly random in Zp and si is given by si = (ri+ v)mi−w. We need
to prove that this information does not enable the adversary to construct a valid
signature (R,S) on any message M other the Mi’s themselves.

Suppose that he does construct a valid pair (M;R,S), with discrete logarithms
(m; r, s). Since the adversary is generic and the only available elements in G2

are H and the Mi’s, Ri’s and Si’s, m, r, s must be explicit linear combinations of
1,m1, . . . ,mq, r1, . . . , rq, s1, . . . , sq. In other words, m, r, s are of the form:

m = µ+

q∑
i=1

µmimi + µriri + µsi
(
(ri + v)mi −w

)
,

r = ρ+

q∑
i=1

ρmimi + ρriri + ρsi
(
(ri + v)mi −w

)
,

s = σ+

q∑
i=1

σmimi + σriri + σsi
(
(ri + v)mi −w

)
.

Moreover, for the adversary to succeed, the verification equation

rm+ vm = s+w (24)

should hold with significant probability on the choice of the private key v,w
and the random values mi, ri. As a result, the Schwartz-Zippel lemma [?
? ? ] implies that relation (24) holds as an identity of polynomials in
Zp[v,w,m1, . . . ,mq, r1, . . . , rq].

Now, the monomial v appears only in the term vm, with coefficient µ. Therefore,
µ = 0. Similarly, the monomials vri and v2mi appear only in vm, with coefficient
µri + µsi and µsi respectively. Therefore, µri = µsi = 0 for all i, and m simply
becomes:

m =

q∑
i=1

µmimi.

Clearly, the coefficients µmi cannot all be zero: otherwise, we obtain s+w = 0,
and inspection of the coefficients of the monomials 1, mi, ri and vmi yields that
all the coefficients of s vanish, and hence w = 0, which is a contradiction.
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4.5 synthesis of sps

Setup(1k) : return P = (p , G1 , G2 , GT , e , ψ , G , H) ← G(1k).

KeyGen(P) : choose random v , w ← Zp and return VK = (V ,W ), SK = (v , w)
where V = Gv and W = Gw .

Sign(P , SK ,M) : given M ∈ G2 , choose a random r ← Zp and return (R , S)
where R = Hr and S = Mr+vH−w .

Verify(P , VK ,M , (R , S)) : accept if and only if M , R , S ∈ G2 and

e(ψ(S) ·W , H) = e(R · V ,M) .

figure 7: Our RMA-secure SPS with two pairings.

Therefore, we can fix an index j such that µmj 6= 0. The monomial m2
j appears

only in the term rm with coefficient µmjρmj , hence ρmj = 0, and mimj, i 6= j also
appears only in rm with coefficient µmiρmj + µmjρmi = µmjρmi , hence ρmi = 0

for all i. Similarly, inspection of the coefficients of vrimj, rimj yields ρsi = 0 for
all i and ρri = 0 for all i 6= j respectively. Hence:

r = ρ+ ρrjrj.

Then, inspection of the coefficients of vmi and rimi gives σsi = µmi = µmiρri for
all i. In particular, we get σsj = µmj , ρrj = 1, and for all i 6= j, σsi = µmi = 0.
Moreover, the coefficient of w is 0 on the left-hand side and 1 −

∑
i σsi on the

right-hand side, hence σsj = µmj = 1. This shows that m = mj, which concludes
the proof.
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5
S U M M A RY O F C O N T R I B U T I O N S

In this chapter we briefly state our main original contributions.

5.1 generalizing the generic group model

We introduce the concept of a group setting to describe recent constructions in the
literature, e.g. leveled multilinear maps. Second, we extend Maurer’s definition
of the generic group model to handle any group setting. Third, we define a
very general framework, generalized extraction problems, for expressing many
complicated forms of cryptographic assumptions and definitions. In particular,
in the setting of interactive assumptions, generalized extraction problems allow
us to describe complicated conditions, such as the winning condition under a
chosen message attack for a structure-preserving signature scheme.

5.2 master theorems for the extended ggm

In Chapter 3 we define a symbolic group model corresponding to a group set-
ting and relate the distinguishing probability of a symbolic group model oracle
with a corresponding generic group model oracle under a polynomially induced
distribution providing the initial internal state. Furthermore, we prove a master
theorem with a machine-checkable side-condition that relates the distinguishing
probability of two generic group models having their initial state sampled through
two different polynomially induced distributions. Our master theorem encapsu-
lates and extends all previous master theorems stated in the literature. Finally,
we prove a novel type of master theorem, an interactive master theorem, that
not only encapsulates generalized extraction problems, but also allows analyzing
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5.3 automated analysis in the extended ggm

interactive assumptions. Interactive assumptions are particularly tricky to ana-
lyze by hand and in the literature there has been several incorrect proofs in the
interactive setting that have passed peer review.

5.3 automated analysis in the extended ggm

We identify three broad types of cryptographic assumptions: non-parametric,
parametric and interactive. We develop algorithms for checking the side-
conditions of our master theorems for all three assumption types. In the
non-parametric and parametric setting the side-condition is a problem of linear
algebra. When the assumption is parametric, the side-condition is, unfortunately,
a problem involving matrices of variable dimension, which typically can’t be
handled by computer algebra systems. We identify a restricted category of
parametric assumptions, where we show that solving the linear algebra problem
is equivalent to solving a system of equations. Even in this restricted case, we
show that solving the system of equations is undecidable. However, we also
discover that SMT solvers are able to find solutions or prove their absence for the
resulting system of equations that arise from typical cryptographic assumptions.
Finally, in the interactive setting, we develop an algorithm that uses Gröbner
basis techniques as well as SMT solvers to check the side-condition of the interac-
tive master theorem. All these algorithms are real-world tested by having been
implemented in a practical tool, the Generic Group Analyzer.

5.4 synthesis of sps and new sps schemes

Using the interactive solver of our Generic Group Analyzer, we develop a tem-
plate system that allows us to specify families of structure-preserving signature
(SPS) schemes for which we can automatically generate input scripts for the
Generic Group Analyzer. This allows us to generate large number of candidate
SPS schemes matching certain design criteria in order to find new SPS schemes
through brute force. As a result of our brute-force search, we identify two new
Type II SPS schemes that improve on the most efficient previously known ones.

97



5.5 new lower bounds for sps

5.5 new lower bounds for sps

Through our brute-force search of Type II SPS schemes, we are able to conjecture
lower bounds for SPS schemes in the Type II setting with respect to the number
of pairing computations required in the verification equation of a signature. We
then proceed to prove by hand that the lower bounds hold. Combined with the
synthesis results, we are able to show that our lower bounds for Type II SPS
schemes are tight, in other words, our synthesized schemes are optimal.
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