
Fall 2017 Prelim answers

Part I:

1. Find an orthogonal basis of R3 that contains a basis of the span of (1, 2, 3) and

(4, 5, 6).

Solution:

First use Gram-Schmidt to find an orthogonal basis {v1, v2} for the span of w1 = (1, 2, 3)

and w2 = (4, 5, 6). We may take v1 = w1. The orthogonal projection of w2 on v1 is prv1w2 =

[(v1 · w2)/(v1 · v1)]v1 = (16/7)v1. So the vector v′2 := w2 − prv1w2 = (12/7, 3/7,−6/7) is

orthogonal to v1 and is in the span of w1, w2. We may take v2 = (7/3)v′2 = (4, 1,−2).

Now to find a third orthogonal basis vector for R3 that includes v1, v2, we can take their

cross product v1 × v2 = (−7, 14,−7), or any non-zero multiple of this. So we can take

v3 = (1,−2, 1).

2. For each positive integer n, define fn(x) = xn for 0 ≤ x ≤ 1.

(a) Is each function fn uniformly continuous?

(b) Is the sequence of functions {fn} uniformly convergent?

Justify your assertions.

Solution:

(a) Yes. The function fn is continuous because it is a polynomial, and it is uniformly

continuous because it is given on a closed interval.

(b) No. The functions fn converge pointwise to the function given by f(x) = 0 for

0 ≤ x ≤ 1 and f(1) = 1. The function f is discontinuous. Since the uniform limit of

continuous functions is continuous, the functions fn do not converge uniformly.

3. (a) How many abelian groups of order 108 are there, up to isomorphism?

(b) Are there any non-abelian groups of order 108? Either show that there aren’t any

or else give an example of one.

Solution:

(a) 108 = 22×33. By the fundamental theorem of finite abelian groups, a group of order

108 is of the form A × B, where A is abelian of order 22 and B is abelian of order 33.

Here A is a direct product of cyclic 2-groups and B is a direct product of cyclic 3-groups.

Since there are 2 partitions of 2 and 3 partitions of 3, there are 6 = 2 · 4 abelian groups of

order 108: Z/4×Z/27;Z/2×Z/2×Z/27;Z/4×Z/9×Z/3;Z/2×Z/2×Z/9×Z/3;Z/4×
(Z/3)3;Z/2× Z/2× (Z/3)3.
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(b) There is a dihedral group of this order, on generators a, b with relations a54 = 1, b2 =

1, bab−1 = a−1. Another possible example is the product of the symmetric group S3 with

the cyclic group of order 18. (There are various others.)

4. Let {a1, a2, . . .} be a sequence of real numbers such that
∑∞

n=1 an converges, but∑∞
n=1 |an| does not converge. Let b1, b2, . . . be the positive terms among the an’s, and let

c1, c2, . . . be the negative terms.

(a) Prove that there are infinitely many terms bi and infinitely many terms ci.

(b) Prove that the series
∑∞

i=1 bi diverges to ∞, and
∑∞

i=1 ci diverges to −∞.

(c) Let α be a real number. Show that there is some rearrangement of the terms an such

that the sum of the rearranged series converges to α.

Solution:

(a) If there are only finitely many terms ci, then after omitting a finite number of initial

terms of the sequence {an}, we may assume that all an are positive and so an = |an|. This

contradicts the assumption that
∑∞

n=1 an converges, but
∑∞

n=1 |an| does not converge. The

case of only finitely many bi is similar.

(b) If
∑∞

i=1 ci converges, say to c < 0, then in each partial sum of
∑∞

n=1 an the sum of

the negative terms is at least c. Thus for each N ,
∑N

n=1 an ≥
∑M

n=1 bn + c, where M is the

number of non-negative terms among a1, . . . , aN . Since
∑∞

n=1 |an| does not converge and

the terms are positive, the partial sums become arbitrarily large. Hence so do the partial

sums of
∑∞

i=1 bi. Thus that series diverges to ∞. The case of
∑∞

i=1 ci is similar.

(c) Begin by choosing terms b1, b2, . . . , bn1 , until the partial sum first reaches a number

β1 ≥ α; we can do this since the sum of the bi diverges to ∞. Here β1 < α + bn1 . Next

choose terms c1, c2, . . . , cn2 , following the terms we have so far (which add to β1) until we

first reach a number β2 ≤ α; we can do this since the sum of the ci diverges to −∞. Here

β2 > α + cn2 . Then choose the next terms in the bn1+1, . . . , bn3 to get a sum β3 ≥ α, etc.

For each odd k, α ≤ βk < α + bnk
; and for each even k, α ≥ βk > α + cnk

. The partial

sums appearing after βk and before βk+1 lie between βk and βk+1. Since the series
∑∞

n=1 an
converges, the terms an → 0, and hence bi → 0 and ci → 0. Thus the partial sums of the

rearranged series converge to α.

5. Let A denote the matrix

A =

[
4 3

1 2

]
.
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(a) Determine if there is a basis of R2 consisting of eigenvectors of A. If there is, find

one.

(b) Compute A2017u0, where u0 =

[
4

0

]
.

Hint: Do not try to compute this directly.

Solution:

(a) The characteristic polynomial of A is (4− λ)(2− λ)− 3 · 1 = (λ− 5)(λ− 1), so the

eigenvalues are 1, 5. Since these are distinct, there is a basis of eigenvectors. Explicitly,

(1,−1) is an eigenvector with eigenvalue 1, and (3, 1) is an eigenvector with eigenvalue 5,

since these span the kernels of A − I and A5I respectively. One sees directly that these

two vectors are linearly independent, and so form a basis of R2.

(b) By the explicit choice of eigenvectors in (a), one has

A =

[
1 3

−1 1

][
1 0

0 5

][
1 3

−1 1

]−1
.

So

A2017

[
4

0

]
=

[
1 3

−1 1

][
1 0

0 52017

][
1 3

−1 1

]−1 [
4

0

]
=

[
1 + 3 · 52017

−1 + 52017

]
.

6. (a) Show that a closed subset of a compact topological space is compact.

(b) Show that a compact subset of a Hausdorff space is closed.

Solution:

(a) Let {Ui}i∈I be an open cover of a closed subset A of a topological space X, with

Ui ⊆ A. Since A is given the subspace topology, for each i there is an open set Ũi ⊂ X

such that Ui = Ũi ∩ A. The sets Ũi, together with the complement Ũ of A in X, form an

open cover of X. Since X is compact, there is a finite subcover consisting of Ũj for all

j ∈ J (where J is a finite subset of I), possibly together with Ũ . Since Ũ is disjoint from

A, the sets Uj = Ũj ∩ A, for j ∈ J , form a finite subcover of A.

(b) Let A ⊂ Y , with A compact and Y Hausdorff. Suppose y /∈ A. For each x ∈ A there

exist open sets Ux and Vx with x ∈ Ux, y ∈ Vx, and Ux ∩ Vx = ∅. The sets Ux together

form an open cover of A, and so there exist x1, . . . , xn such that A ⊂ Ux1 ∪ ... ∪ Uxn . Let

V = Vx1 ∩ ... ∩ Vxn . Then y ∈ V , V is open, and V ∩ A = ∅. This shows that every point

of X rA is contained in an open set that is disjoint from A. Hence X rA is open, and so

A is closed.
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Fall 2017 Prelim answers

Part II:

7. Evaluate the contour integral∮
C

(
y3 + 3x2y + cos(x2)

)
dx+

(
x+ ey

3)
dy,

where C is the unit circle x2 + y2 = 1 oriented counterclockwise. (Hint: Some ways are

easier than others.)

Solution:

C = ∂D, where D is the closed unit disc x2 + y2 ≤ 1. By Green’s theorem,∮
C

(
y3 + 3x2y + cos(x2)

)
dx+

(
x+ ey

3)
dy =

∫∫
D

∂

∂x
(x+ ey

3)− ∂

∂y
(y3 + 3x2y + cos(x2)

)
dx dy

=

∫∫
D

1− (3y2 + 3x2)dx dy

=

∫∫
D

1 dx dy −
∫∫
D

3r2 r dr dθ

= π − 2π · 3/4 = −π/2.

8. Let f : R → R be an infinitely differentiable function such that 0 < f(x) < 1 for all

real numbers x. Show that f ′′(x) = 0 for some real number x.

Solution:

Since f is infinitely differentiable, f ′′ is continuous. Suppose that f ′′ is never equal to 0.

By the intermediate value theorem, f ′′ is either always positive or always negative. Possibly

after replacing f(x) by 1−f(x), we may assume that f ′′ is always positive. So f ′ is a strictly

increasing function, and is therefore non-constant. Therefore f ′(a) is non-zero for some

a. After replacing f(x) by f(−x) (which does not affect the condition that f ′′ is always

positive), we may assume that f ′(a) > 0 for some a. Let b = a+ 1/f ′(a). So b > a. By the

mean value theorem, there exists c with a ≤ c ≤ b such that f ′(c) = (f(b)−f(a))/(b−a) =

f ′(a)(f(b) − f(a)). Since f ′ is increasing, f ′(a) ≤ f ′(c) = f ′(a)(f(b) − f(a)), and thus

1 ≤ f(b)− f(a) < f(b) since f(a) > 0, and this is a contradiction.

9. Let T : Rn → Rk be a linear transformation, corresponding to a matrix A. Let T ∗ be

the adjoint operator of T , corresponding to the transpose of A. Show that

ker(T ∗T ) = ker(T ).
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Here ker(T ) denotes the kernel of T .

(Hint: Consider ‖Tx‖.)
Solution: If x ∈ ker(T ), then T ∗T (x) = T ∗(0) = 0 and so x ∈ ker(T ∗T ). To prove the

opposite inclusion, let x ∈ ker(T ∗T ). Then

〈Tx, Tx〉 = 〈x, T ∗Tx〉 = 0;

i.e., ‖Tx‖ = 0, and so Tx = 0 and x ∈ ker(T ).

10. Using just the definition of the derivative, prove that every differentiable function

f : R→ R is continuous.

Solution:

For every real number a, there is a derivative of f at a, and

lim
h→0

(f(a+ h)− f(a))/h = f ′(a).

So lim
h→0

f(a+ h)− f(a) = lim
h→0

hf ′(a) = 0. Thus lim
b→a

f(b) = lim
h→0

f(a+ h) = f(a).

11. (a) For which integers n is there a finite field whose additive group is cyclic of order

n?

(b) For which integers n is there a finite field whose multiplicative group of invertible

elements is cyclic of order n?

Justify your assertions.

Solution:

(a) These are precisely the prime numbers. A finite field has prime characteristic p, and

is a vector space over the field of p elements, say of dimension r. The additive group is

thus isomorphic to (Z/p)r, of order n = pr. This is cyclic iff r = 1, i.e. iff n is the prime p.

(b) These are the integers of the form pr − 1, for p prime and r a positive integer. A

finite field F has order pr for some prime p and r ≥ 1, and for every p, r there is such a

field. The multiplicative group F r {0} of a finite field is cyclic, of order one less than the

order of F . So the assertion follows.

12. Find orthogonal trajectories for the family of plane curves Ec given by 4x2+9y2 = c,

for c > 0. That is, find a non-constant one-parameter family of curves Dt such that each

Dt intersects each Ec orthogonally, wherever they meet.

Solution:
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The curve Ec satisfies 8x dx+18y dy = 0, i.e., dy/dx = −4x/9y for y 6= 0. An orthogonal

trajectory has derivative equal to the negative reciprocal, i.e., dy/dx = 9y/4x for x, y 6= 0.

Solving this differential equation by separation of variables gives 4 log |y| = 9 log |x| + C,

or equivalently the curves Dt given by y4 = tx9 for any non-zero t. (The coordinate axes

are also orthogonal to each Ec.)


