Premiliminary Examination, Part I \& II

Monday, August 29, 2016

Dept. of Mathematics
University of Pennsylvania

Problem 1. Let V be the real vector space of continuous real-valued functions on the closed interval $[0,1]$ and let $w \in V$. For $p, q \in V$, define $\langle p, q\rangle=\int_{0}^{1} p(x) q(x) w(x) \mathrm{d} x$.
(a) Suppose that $w(\alpha)>0$ for all $\alpha \in[0,1]$. Does this follow that the above defines an inner product on V? Justify your assertion
(b) Does there exist a choice of w such that $w(1 / 2)<0$ and such that the above defines an inner product on V ? Justify your assertion.

Solution. (a) Yes, when $w(a)>0$ on $[0,1],\langle p, q\rangle$ is an inner product over \mathbb{R}. We need verify four properties:

1. $\langle f+g, q\rangle=\langle f, q\rangle+\langle g, q\rangle$, from the distributive property and linearity of integration
2. $\langle c f, q\rangle=c\langle f, q\rangle$, from linearity of integration
3. $\langle f, g\rangle=\langle g, f\rangle$, from commutativity
4. $\langle f, f\rangle \geq 0$ and zero if and only if $f \equiv 0$

To see why the fourth property is true recall that if f is continuous and $f \geq 0$ then $\int f=0 \Longleftrightarrow f \equiv 0$. So, $\langle f, f\rangle=0 \Longleftrightarrow f^{2} w=0 \Longleftrightarrow f^{2}=0 \Longleftrightarrow f=0$. And of course $\langle f, f\rangle \geq 0$ since the integral of non-negative functions is non-negative.
(b) No $\langle p, q\rangle$ is not an inner product, as property (4) fails. To see this, we will find a non zero function f such that $\langle f, f\rangle \leq 0$. From continuity of w we can find a $\delta>0$ such that $w(a)<0$ for all $a \in(1 / 2-\delta, 1 / 2+\delta)$. Define $f(x)=\left(1-\left|\frac{2(x-1 / 2)}{\delta}\right|\right) 1_{\left[\frac{1-\delta}{2}, \frac{1+\delta}{2}\right]}(x)$, where $1_{A}(x)$ is the indicator function of A. As $f\left(\frac{1-\delta}{2}\right)=$ $f\left(\frac{1+\delta}{2}\right)=0$, the function f is indeed continuous. Since the function $f^{2} w$ is non-positive on $[0,1]$, we conclude that $\langle f, f\rangle \leq 0$.

Problem 2. Let $\left\{x_{n}\right\}$ be a sequence of real numbers (indexed by $n \geq 0$), and let $0<c<1$ be a real number. Suppose that

$$
\left|x_{n+1}-x_{n}\right| \leq c\left|x_{n}-x_{n-1}\right|
$$

for all $n=1,2,3, \ldots$
(a) If $n \geq k$ are positive integers, show that

$$
\left|x_{n+1}-x_{k}\right|<\frac{c^{k}}{1-c}\left|x_{1}-x_{0}\right|
$$

(Hint: First bound $\left|x_{n+1}-x_{n}\right|$ in terms of $\left.\left|x_{1}-x_{0}\right|.\right)$
(b) Prove that the sequence $\left\{x_{n}\right\}$ converges to a real number.

Solution. (a) By induction we get $\left|x_{n+1}-x_{n}\right| \leq c\left|x_{n}-x_{n-1}\right| \leq c^{n}\left|x_{1}-x_{0}\right|$, for all n. Now, by applying the
triangle inequality and the previous bound we obtain

$$
\begin{aligned}
\left|x_{n+1}-x_{k}\right| & =\left|\left(x_{n+1}-x_{n}\right)+\left(x_{n}-x_{n-1}\right)+\left(x_{k+1}-x_{k}\right)\right| \\
& \leq\left|x_{1}-x_{0}\right| \sum_{m=k}^{n} c^{m} \\
& =c^{k}\left|x_{1}-x_{0}\right| \sum_{m=k}^{n} c^{m-k} \\
& \leq c^{k}\left|x_{1}-x_{0}\right| \sum_{u \geq 0} c^{u} \\
& =\frac{c^{k}}{1-c}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

(b) It suffices to show that $\left\{x_{n}\right\}$ is Cauchy. Let $\epsilon>0$. We pick N such that $\frac{c^{N}}{1-c}\left|x_{1}-x_{0}\right|<\epsilon$. Suppose $n, m \geq N$, then from part (a) we have

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & \leq \frac{c^{\min \{n, m\}}}{1-c}\left|x_{1}-x_{0}\right| \\
& \leq \frac{c^{N}}{1-c}\left|x_{1}-x_{0}\right| \\
& <\epsilon
\end{aligned}
$$

Problem 3. (a) In the polynomial ring $\mathbb{Q}[x]$ consider the ideal I generated by $x^{4}-1$ and $x^{3}-x$. Does I have a generator $f(x) \in \mathbb{Q}[x]$? Either find one or explain why none exists.
(b) In the polynomial ring $\mathbb{Q}[x, y]$, do the same for the ideal generated by the polynomials x and y.

Solution. (a)Since \mathbb{Q} is a field $\mathbb{Q}[x]$ is a PID, there is $f \in \mathbb{Q}[x]$ such that $I=(f)$. By finding the common roots of $x^{4}-1$ and $x^{3}-x$, we obtain that $\operatorname{gcd}\left(x^{4}-1, x^{3}-x\right)=x-1$. Hence, there are $p, q \in \mathbb{Q}[x]$ such that

$$
\begin{equation*}
p(x)\left(x^{4}-1\right)+q(x)\left(x^{3}-x\right)=x-1 \tag{1}
\end{equation*}
$$

We claim that the ideal I generated by $x^{4}-1$ and $x^{3}-x$ is equal to the ideal J generated by $x-1$. Since $x-1 \mid x^{4}-1, x^{3}-x$ we have that $x^{4}-1, x^{3}-x \in J$, therefore, by minimality of $I, I \subset J$. Similarly, using equation (1), we conclude that $J \subset I$.
(b) The ideal I generated by x, y is not principal. We will argue by contradiction, and assume $I=(f)$ for some $f \in \mathbb{Q}[x, y]$. First notice that $f \notin \mathbb{Q}$, as I does not contain constant polynomials. Since $x, y \in I, f$ divides both x and y; but x and y are non-associated irreducible elements of the ring, therefore f must be a unit, which gives a contradiction.

Problem 4. For each of the following, give either a proof or a counterexample.
(a) Let f be a continuous real-valued function on the open interval $0<x<3$. Must f be uniformly continuous on the open interval $1<x<2$?
(b) Suppose instead that f is only assumed to be continuous on the open interval $0<x<2$. Must f be uniformly continuous on the open interval $1<x<2$?

Solution. (a) Yes. The restriction of f on $[1,2]$ is uniformly continuous since $[1,2]$ is compact. Therefore, the restriction of f on $1<x<2$ must be uniformly continuous as well.
(b) Not necessarily. A counterexample is $f(x)=\frac{1}{2-x}$. To show this we will argue by contradiction. Assume f is uniformly continuous. Take $x_{n}=2-\frac{1}{n}$, then $f\left(x_{n+1}\right)-f\left(x_{n}\right)=(n+1)-n=1$. This is a contradiction, since uniformly continuous functions map Cauchy sequences to Cauchy sequences.

Problem 5. Let V, W be two-dimensional real vectorspaces, and let f_{1}, \cdots, f_{5} be linear transformations from V to W. Show that there exist real numbers a_{1}, \ldots, a_{5}, not all zero, such that $a_{1} f_{1}+\cdots+a_{5} f_{5}$ is the zero transformation.

Solution. The vector space of linear transformations from V to W has dimension 4. So, $f_{1}, f_{2}, \ldots, f_{5}$ must be linearly dependent.

Problem 6. Evaluate $\oint_{C}\left(e^{x^{2}}+\sin \left(y^{2}\right)\right) \mathrm{d} x+\left(2 x y \cos \left(y^{2}\right)+x y^{3}\right) \mathrm{d} y$, where C is the triangle with vertices $(0,0),(1,-1),(1,1)$ oriented counterclockwise.

Solution. Define C_{I} to be the interior of C. We will calculate the line integral by applying Green's theorem.

$$
\begin{aligned}
\oint_{C}\left(e^{x^{2}}+\sin \left(y^{2}\right)\right) \mathrm{d} x+\left(2 x y \cos \left(y^{2}\right)+x y^{3}\right) \mathrm{d} y & =\iint_{C_{I}} \frac{\partial\left(2 x y \cos \left(y^{2}\right)+x y^{3}\right)}{\partial x}-\frac{\partial\left(e^{x^{2}}+\sin \left(y^{2}\right)\right)}{\partial y} \mathrm{~d} A \\
& =\int_{0}^{1} \int_{-x}^{x} y^{3} \mathrm{~d} y \mathrm{~d} x \\
& =0
\end{aligned}
$$

Problem 7. Let $f: X \rightarrow Y$ be a continuous map between metric spaces. For each of the following, give either a proof or a counterexample, using just the definition of compactness.
(a) If $A \subset X$ is compact, the so is $f(A) \subset Y$.
(b) If $B \subset Y$ is compact, the so is $f^{-1}(B) \subset X$.

Solution. (a)This is true. Take an open cover of $f(A) \subset \bigcup_{\alpha} U_{\alpha}$. Then,

$$
\begin{aligned}
A & \subset f^{-1}(f(A)) \\
& \subset f^{-1}\left(\bigcup_{\alpha} U_{\alpha}\right) \\
& =\bigcup_{\alpha} f^{-1}\left(U_{\alpha}\right),
\end{aligned}
$$

so, since A is compact, we can find a finite cover of A, i.e. $A \subset \bigcup_{i=1}^{n} f^{-1}\left(U_{i}\right)$. Finally, applying f to the previous containment we obtain $f(A) \subset \bigcup_{i=1}^{n} U_{i}$, hence, by definition, $f(A)$ is compact.
(b) This is not true. For instance, suppose that $X=\mathbb{R}$, then for any constant function $f: \mathbb{R} \rightarrow Y, x \mapsto c$, the preimage $f^{-1}(c)=\mathbb{R}$ is not compact.

Problem 8. Find a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a constant A such that

$$
\begin{equation*}
\int_{0}^{x} f(t)\left(1+t^{2}\right) \mathrm{d} t=\cos \left(x^{2}\right)+A \tag{2}
\end{equation*}
$$

Solution. Plugging $x=0$ into (2) yields $A=-1$. Take $f(t)=\frac{\left(\cos \left(x^{2}\right)\right)^{\prime}}{1+t^{2}}$. We will verify that f satisfies (2). Substituting f into (2), the LHS becomes $\int_{0}^{x}\left(\cos \left(t^{2}\right)\right)^{\prime} \mathrm{d} t=\cos \left(x^{2}\right)-1$.

Problem 9. For every integer $n>1$, let U_{n} be the group of invertible elements of $\mathbb{Z} / n \mathbb{Z}$ under multiplication.
(a) Find the orders of U_{8} and U_{9}. Explain.
(b) Determine whether the groups U_{8} and U_{9} are cyclic.

Solution. (a) The multiplicative group U_{n} consists of the invertible elements of \mathbb{Z}_{n}. The invertible elements of \mathbb{Z}_{n} are the numbers that are relatively prime to n. The number of the relatively prime elements is equal to $\phi(n)$, where ϕ is Euler's totient function, given by $\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$. Therefore $\left|U_{8}\right|=2^{3}-2^{2}=4$, and $\left|U_{9}\right|=3^{2}-3=6$.
(b) Using the fundamental theorem for abelian groups (FTAG) an abelian group of 4 elements is either $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or \mathbb{Z}_{4}. However, since all the elements $\{1,3,5,7\}$ have order 2 in U_{8}, we conclude that $U_{8} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, so U_{8} is not cyclic. By FTAG an abelian group of order 6 , is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \cong \mathbb{Z}_{6}$ since $\operatorname{gcd}(2,3)=1$. Therefore, U_{9} is cyclic.

Problem 10. Let $f(x, y)=x^{2}-x y+y^{2}-y$.
(a) Does the function f achieve an absolute maximum on \mathbb{R}^{2} ? an absolute minimum on \mathbb{R}^{2} ? If so, find all points where this occurs.
(b) Do the same with \mathbb{R}^{2} replaced by the square $0 \leq x, y \leq 1$.

Solution. (a) As $\lim _{x \rightarrow \pm \infty} f(x, 0)=\infty$, the function f does not attain a global maximum. Observe that

$$
f(x, y)=\left(x-\frac{y}{2}\right)^{2}+\frac{3}{4}\left(y-\frac{2}{3}\right)^{2}-\frac{1}{3}
$$

Therefore, the global minimum is attained when $y-\frac{2}{3}=0$ and $x-\frac{y}{2}=0$. So there is a unique global minimum achieved at $\left(\frac{1}{3}, \frac{2}{3}\right)$.
(b) Denote D the unit square $0 \leq x, y \leq 1$ and ∂D its boundary. Since D is compact f attains a global minimum and maximum. The function f achieves its extrema either in the interior of D, at points where ∇f is vanishing, or on ∂D. To find the critical points we solve $\nabla f(x, y)=0 \Longleftrightarrow 2 x-y=0,-x-1+2 y=$ $0 \Longleftrightarrow x=\frac{1}{3}, y=\frac{2}{3}$. From part (a) $f_{\mid D}$ must achieve its global minimum at $\left(\frac{1}{3}, \frac{2}{3}\right)$, consequently, from the previous calculation, f must achieve its maximum somewhere on ∂D. We partition $\partial D=\bigcup_{i=1}^{4} D_{i}$ where D_{i} correspond to the different edges of D, and calculate the points where the maximum occurs.

- $D_{1}=\{(x, y) \in \partial D \mid y=0\}$, since $f_{\mid D_{1}}=x^{2}$ we find $\arg \max f_{\mid D_{1}}=\{(1,0)\}$ and $\max f_{\mid D_{1}}=1$.
- $D_{2}=\{(x, y) \in \partial D \mid y=1\}$, since $f_{\mid D_{2}}=x^{2}-x \leq 0$ there are no maxima on D_{2}
- $D_{3}=\{(x, y) \in \partial D \mid x=0\}$, since $f_{\mid D_{3}}=y^{2}-y \leq 0$ there are no maxima on D_{3}
- $D_{4}=\{(x, y) \in \partial D \mid x=1\}$, since $f_{\mid D_{4}}=(y-1)^{2}$ we find $\arg \max f_{\mid D_{4}}=\{(1,0)\}$ and $\max f_{\mid D_{4}}=1$

From the previous analysis we see that the $\max f$ on D is 1 , and it is attained at $(1,0)$.
Problem 11. Let a, b, c be real numbers, and consider the matrix $A=\left(\begin{array}{ccc}a & b & c \\ b & c & b \\ c & b & a\end{array}\right)$
(a) Explain why all the eigenvalues of A must be real.
(b) Show that some eigenvalue λ of A has the property that for every vector $v \in \mathbb{R}^{3}, v \cdot A v \leq \lambda\|v\|^{2}$. (Note: You are not being asked to compute the eigenvalue of A.)

Solution. (a) Every symmetric matrix has real eigenvalues. Indeed, let v be an eigenvector and λ its corresponding eigenvalue. Then,

$$
\begin{aligned}
\lambda\langle v, v\rangle & =\langle\lambda v, v\rangle=\langle A v, v\rangle \\
& =\langle v, A v\rangle=\langle v, \lambda v\rangle \\
& =\bar{\lambda}\langle v, v\rangle
\end{aligned}
$$

Hence, $(\lambda-\bar{\lambda})\|v\|^{2}=0$. Therefore, λ is real.
(b) Since A is symmetric we can find an orthonormal basis v_{1}, v_{2}, v_{3} consisting of eigenvectors of A. Now, let λ_{i} be the corresponding eigenvalues (non necessarily distinct). So, using orthogonality, we obtain

$$
\begin{aligned}
\langle A v, v\rangle & =\left\langle A\left(\sum_{i=1}^{3} a_{i} v_{i}\right), \sum_{i=1}^{3} a_{i} v_{i}\right\rangle \\
& =\left\langle\sum_{i=1}^{3} a_{i} \lambda_{i} v_{i}, \sum_{i=1}^{3} a_{i} v_{i}\right\rangle \\
& =\sum_{i=1}^{3} \lambda_{i} a_{i}^{2}\left\|v_{i}\right\|^{2} \\
& \leq \max \lambda_{i} \sum_{i=1}^{3} a_{i}^{2}\left\|v_{i}\right\|^{2} .
\end{aligned}
$$

And since, $\|v\|^{2}=\sum_{i=1}^{3} a_{i}^{2}\left\|v_{i}\right\|^{2}$ we conclude.
Problem 12. Consider the differential equation $y^{(4)}-y=c e^{2 x}$ where c is a real constant.
(a) Let S_{c} be the set of solutions of this equation. For which c is this set a vector space? Why?
(b) For each such c, find this solution space explicitly, and find a basis for it.

Solution. (a) For $c \neq 0$ the space S_{c} is not a vector space since the zero function is not a member of S_{c}. For $c=0$, notice that S_{c} is the kernel of the linear transformation $L(f)=f^{(4)}-f$, hence S_{c} is a vector space as the subspace of a vector space.
(b) The characteristic polynomial of the ODE

$$
\begin{equation*}
y^{(4)}-y=0 \tag{3}
\end{equation*}
$$

is $\chi(r)=r^{4}-r$. Solving $\chi(r)=0$ we find 4 roots, $r_{1}=0$ and $r_{j}=e^{\frac{2 j i \pi}{3}}$ for $0 \leq j \leq 2$. Hence, the vectors $e^{r_{i} t}$ constitute the desired basis. A different basis, using real valued function is $1, e^{t}, e^{\frac{t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right), e^{\frac{t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)$.

