Premiliminary Examination, Part I & II

Monday, August 29, 2016

Dept. of Mathematics University of Pennsylvania

Problem 1. Let V be the real vector space of continuous real-valued functions on the closed interval [0,1] and let $w \in V$. For $p, q \in V$, define $\langle p, q \rangle = \int_0^1 p(x)q(x)w(x) dx$.

- (a) Suppose that $w(\alpha) > 0$ for all $\alpha \in [0,1]$. Does this follow that the above defines an inner product on V? Justify your assertion
- (b) Does there exist a choice of w such that w(1/2) < 0 and such that the above defines an inner product on V? Justify your assertion.

Solution. (a) Yes, when w(a) > 0 on [0,1], $\langle p,q \rangle$ is an inner product over \mathbb{R} . We need verify four properties:

1. $\langle f + g, q \rangle = \langle f, q \rangle + \langle g, q \rangle$, from the distributive property and linearity of integration

- 2. $\langle cf, q \rangle = c \langle f, q \rangle$, from linearity of integration
- 3. $\langle f, g \rangle = \langle g, f \rangle$, from commutativity
- 4. $\langle f, f \rangle \ge 0$ and zero if and only if $f \equiv 0$

To see why the fourth property is true recall that if f is continuous and $f \ge 0$ then $\int f = 0 \iff f \equiv 0$. So, $\langle f, f \rangle = 0 \iff f^2 w = 0 \iff f^2 = 0 \iff f = 0$. And of course $\langle f, f \rangle \ge 0$ since the integral of non-negative functions is non-negative.

(b) No $\langle p,q \rangle$ is not an inner product, as property (4) fails. To see this, we will find a non zero function f such that $\langle f,f \rangle \leq 0$. From continuity of w we can find a $\delta > 0$ such that w(a) < 0 for all $a \in (1/2 - \delta, 1/2 + \delta)$. Define $f(x) = \left(1 - \left|\frac{2(x-1/2)}{\delta}\right|\right) \mathbb{1}_{\left[\frac{1-\delta}{2}, \frac{1+\delta}{2}\right]}(x)$, where $\mathbb{1}_A(x)$ is the indicator function of A. As $f(\frac{1-\delta}{2}) = f(\frac{1+\delta}{2}) = 0$, the function f is indeed continuous. Since the function f^2w is non-positive on [0,1], we conclude that $\langle f,f \rangle \leq 0$.

Problem 2. Let $\{x_n\}$ be a sequence of real numbers (indexed by $n \ge 0$), and let 0 < c < 1 be a real number. Suppose that

$$|x_{n+1} - x_n| \le c|x_n - x_{n-1}|$$

for all $n = 1, 2, 3, \ldots$

(a) If $n \ge k$ are positive integers, show that

$$|x_{n+1} - x_k| < \frac{c^k}{1 - c} |x_1 - x_0|$$

(Hint: First bound $|x_{n+1} - x_n|$ in terms of $|x_1 - x_0|$.)

(b) Prove that the sequence $\{x_n\}$ converges to a real number.

Solution. (a) By induction we get $|x_{n+1} - x_n| \le c |x_n - x_{n-1}| \le c^n |x_1 - x_0|$, for all n. Now, by applying the

triangle inequality and the previous bound we obtain

$$\begin{aligned} |x_{n+1} - x_k| &= |(x_{n+1} - x_n) + (x_n - x_{n-1}) + (x_{k+1} - x_k)| \\ &\leq |x_1 - x_0| \sum_{m=k}^n c^m \\ &= c^k |x_1 - x_0| \sum_{m=k}^n c^{m-k} \\ &\leq c^k |x_1 - x_0| \sum_{u \ge 0}^n c^u \\ &= \frac{c^k}{1 - c} |x_1 - x_0| \end{aligned}$$

(b) It suffices to show that $\{x_n\}$ is Cauchy. Let $\epsilon > 0$. We pick N such that $\frac{c^N}{1-c}|x_1 - x_0| < \epsilon$. Suppose $n, m \ge N$, then from part (a) we have

$$\begin{aligned} |x_n - x_m| &\leq \frac{c^{\min\{n,m\}}}{1 - c} |x_1 - x_0| \\ &\leq \frac{c^N}{1 - c} |x_1 - x_0| \\ &< \epsilon \end{aligned}$$

Problem 3. (a) In the polynomial ring $\mathbb{Q}[x]$ consider the ideal I generated by $x^4 - 1$ and $x^3 - x$. Does I have a generator $f(x) \in \mathbb{Q}[x]$? Either find one or explain why none exists.

(b) In the polynomial ring $\mathbb{Q}[x, y]$, do the same for the ideal generated by the polynomials x and y.

Solution. (a)Since \mathbb{Q} is a field $\mathbb{Q}[x]$ is a PID, there is $f \in \mathbb{Q}[x]$ such that I = (f). By finding the common roots of $x^4 - 1$ and $x^3 - x$, we obtain that $gcd(x^4 - 1, x^3 - x) = x - 1$. Hence, there are $p, q \in \mathbb{Q}[x]$ such that

$$p(x)(x^4 - 1) + q(x)(x^3 - x) = x - 1.$$
(1)

We claim that the ideal I generated by $x^4 - 1$ and $x^3 - x$ is equal to the ideal J generated by x - 1. Since $x - 1|x^4 - 1, x^3 - x$ we have that $x^4 - 1, x^3 - x \in J$, therefore, by minimality of $I, I \subset J$. Similarly, using equation (1), we conclude that $J \subset I$.

(b) The ideal I generated by x, y is not principal. We will argue by contradiction, and assume I = (f) for some $f \in \mathbb{Q}[x, y]$. First notice that $f \notin \mathbb{Q}$, as I does not contain constant polynomials. Since $x, y \in I$, f divides both x and y; but x and y are non-associated irreducible elements of the ring, therefore f must be a unit, which gives a contradiction.

Problem 4. For each of the following, give either a proof or a counterexample.

- (a) Let f be a continuous real-valued function on the open interval 0 < x < 3. Must f be uniformly continuous on the open interval 1 < x < 2?
- (b) Suppose instead that f is only assumed to be continuous on the open interval 0 < x < 2. Must f be uniformly continuous on the open interval 1 < x < 2?

Solution. (a) Yes. The restriction of f on [1, 2] is uniformly continuous since [1, 2] is compact. Therefore, the restriction of f on 1 < x < 2 must be uniformly continuous as well.

(b) Not necessarily. A counterexample is $f(x) = \frac{1}{2-x}$. To show this we will argue by contradiction. Assume f is uniformly continuous. Take $x_n = 2 - \frac{1}{n}$, then $f(x_{n+1}) - f(x_n) = (n+1) - n = 1$. This is a contradiction, since uniformly continuous functions map Cauchy sequences to Cauchy sequences.

Problem 5. Let V, W be two-dimensional real vectorspaces, and let f_1, \dots, f_5 be linear transformations from V to W. Show that there exist real numbers a_1, \dots, a_5 , not all zero, such that $a_1f_1 + \dots + a_5f_5$ is the zero transformation.

Solution. The vector space of linear transformations from V to W has dimension 4. So, f_1, f_2, \ldots, f_5 must be linearly dependent.

1 2

Problem 6. Evaluate $\oint_C \left(e^{x^2} + \sin(y^2)\right) dx + (2xy\cos(y^2) + xy^3) dy$, where C is the triangle with vertices (0,0), (1,-1), (1,1) oriented counterclockwise.

Solution. Define C_I to be the interior of C. We will calculate the line integral by applying Green's theorem.

$$\oint_C \left(e^{x^2} + \sin(y^2)\right) dx + \left(2xy\cos(y^2) + xy^3\right) dy = \iint_{C_I} \frac{\partial \left(2xy\cos(y^2) + xy^3\right)}{\partial x} - \frac{\partial \left(e^{x^2} + \sin(y^2)\right)}{\partial y} dA$$
$$= \int_0^1 \int_{-x}^x y^3 dy dx$$
$$= 0$$

Problem 7. Let $f : X \to Y$ be a continuous map between metric spaces. For each of the following, give either a proof or a counterexample, using just the definition of compactness.

- (a) If $A \subset X$ is compact, the so is $f(A) \subset Y$.
- (b) If $B \subset Y$ is compact, the so is $f^{-1}(B) \subset X$.

Solution. (a) This is true. Take an open cover of $f(A) \subset \bigcup_{\alpha} U_{\alpha}$. Then,

$$A \subset f^{-1}(f(A))$$
$$\subset f^{-1}\left(\bigcup_{\alpha} U_{\alpha}\right)$$
$$= \bigcup_{\alpha} f^{-1}(U_{\alpha}),$$

so, since A is compact, we can find a finite cover of A, i.e. $A \subset \bigcup_{i=1}^{n} f^{-1}(U_i)$. Finally, applying f to the previous containment we obtain $f(A) \subset \bigcup_{i=1}^{n} U_i$, hence, by definition, f(A) is compact.

(b) This is not true. For instance, suppose that $X = \mathbb{R}$, then for any constant function $f : \mathbb{R} \to Y, x \mapsto c$, the preimage $f^{-1}(c) = \mathbb{R}$ is not compact.

Problem 8. Find a continuous function $f : \mathbb{R} \to \mathbb{R}$ and a constant A such that

$$\int_0^x f(t)(1+t^2) \,\mathrm{d}t = \cos(x^2) + A.$$
(2)

Solution. Plugging x = 0 into (2) yields A = -1. Take $f(t) = \frac{(\cos(x^2))'}{1+t^2}$. We will verify that f satisfies (2). Substituting f into (2), the LHS becomes $\int_0^x (\cos(t^2))' dt = \cos(x^2) - 1$.

Problem 9. For every integer n > 1, let U_n be the group of invertible elements of $\mathbb{Z}/n\mathbb{Z}$ under multiplication.

- (a) Find the orders of U_8 and U_9 . Explain.
- (b) Determine whether the groups U_8 and U_9 are cyclic.

Solution. (a) The multiplicative group U_n consists of the invertible elements of \mathbb{Z}_n . The invertible elements of \mathbb{Z}_n are the numbers that are relatively prime to n. The number of the relatively prime elements is equal to $\phi(n)$, where ϕ is Euler's totient function, given by $\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$. Therefore $|U_8| = 2^3 - 2^2 = 4$, and $|U_9| = 3^2 - 3 = 6$.

(b) Using the fundamental theorem for abelian groups (FTAG) an abelian group of 4 elements is either $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_4 . However, since all the elements $\{1, 3, 5, 7\}$ have order 2 in U_8 , we conclude that $U_8 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, so U_8 is not cyclic. By FTAG an abelian group of order 6, is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$ since gcd(2,3) = 1. Therefore, U_9 is cyclic.

Problem 10. Let $f(x, y) = x^2 - xy + y^2 - y$.

- (a) Does the function f achieve an absolute maximum on \mathbb{R}^2 ? an absolute minimum on \mathbb{R}^2 ? If so, find all points where this occurs.
- (b) Do the same with \mathbb{R}^2 replaced by the square $0 \leq x, y \leq 1$.

Solution. (a) As $\lim_{x\to\pm\infty} f(x,0) = \infty$, the function f does not attain a global maximum. Observe that

$$f(x,y) = \left(x - \frac{y}{2}\right)^2 + \frac{3}{4}\left(y - \frac{2}{3}\right)^2 - \frac{1}{3}$$

Therefore, the global minimum is attained when $y - \frac{2}{3} = 0$ and $x - \frac{y}{2} = 0$. So there is a unique global minimum achieved at $(\frac{1}{3}, \frac{2}{3})$.

(b) Denote D the unit square $0 \le x, y \le 1$ and ∂D its boundary. Since D is compact f attains a global minimum and maximum. The function f achieves its extrema either in the interior of D, at points where ∇f is vanishing, or on ∂D . To find the critical points we solve $\nabla f(x, y) = 0 \iff 2x - y = 0, -x - 1 + 2y = 0 \iff x = \frac{1}{3}, y = \frac{2}{3}$. From part (a) $f_{|D}$ must achieve its global minimum at $(\frac{1}{3}, \frac{2}{3})$, consequently, from the previous calculation, f must achieve its maximum somewhere on ∂D . We partition $\partial D = \bigcup_{i=1}^{4} D_i$ where D_i correspond to the different edges of D, and calculate the points where the maximum occurs.

- $D_1 = \{(x, y) \in \partial D | y = 0\}$, since $f_{|D_1} = x^2$ we find $\arg \max f_{|D_1} = \{(1, 0)\}$ and $\max f_{|D_1} = 1$.
- $D_2 = \{(x, y) \in \partial D | y = 1\}$, since $f_{|D_2} = x^2 x \le 0$ there are no maxima on D_2
- $D_3 = \{(x, y) \in \partial D | x = 0\}$, since $f_{|D_3} = y^2 y \le 0$ there are no maxima on D_3
- $D_4 = \{(x, y) \in \partial D | x = 1\}$, since $f_{|D_4} = (y 1)^2$ we find $\arg \max f_{|D_4} = \{(1, 0)\}$ and $\max f_{|D_4} = 1$

From the previous analysis we see that the max f on D is 1, and it is attained at (1,0).

Problem 11. Let a, b, c be real numbers, and consider the matrix $A = \begin{pmatrix} a & b & c \\ b & c & b \\ c & b & a \end{pmatrix}$

- (a) Explain why all the eigenvalues of A must be real.
- (b) Show that some eigenvalue λ of A has the property that for every vector $v \in \mathbb{R}^3$, $v \cdot Av \leq \lambda ||v||^2$. (Note: You are not being asked to compute the eigenvalue of A.)

Solution. (a) Every symmetric matrix has real eigenvalues. Indeed, let v be an eigenvector and λ its corresponding eigenvalue. Then,

$$\begin{split} \lambda \langle v, v \rangle &= \langle \lambda v, v \rangle = \langle Av, v \rangle \\ &= \langle v, Av \rangle = \langle v, \lambda v \rangle \\ &= \overline{\lambda} \langle v, v \rangle \end{split}$$

Hence, $(\lambda - \overline{\lambda})||v||^2 = 0$. Therefore, λ is real.

(b) Since A is symmetric we can find an orthonormal basis v_1, v_2, v_3 consisting of eigenvectors of A. Now, let λ_i be the corresponding eigenvalues (non necessarily distinct). So, using orthogonality, we obtain

$$\langle Av, v \rangle = \langle A\left(\sum_{i=1}^{3} a_{i}v_{i}\right), \sum_{i=1}^{3} a_{i}v_{i}\rangle$$

$$= \langle \sum_{i=1}^{3} a_{i}\lambda_{i}v_{i}, \sum_{i=1}^{3} a_{i}v_{i}\rangle$$

$$= \sum_{i=1}^{3} \lambda_{i}a_{i}^{2}||v_{i}||^{2}$$

$$\le \max \lambda_{i}\sum_{i=1}^{3} a_{i}^{2}||v_{i}||^{2}.$$

And since, $||v||^2 = \sum_{i=1}^3 a_i^2 ||v_i||^2$ we conclude.

Problem 12. Consider the differential equation $y^{(4)} - y = ce^{2x}$ where c is a real constant.

(a) Let S_c be the set of solutions of this equation. For which c is this set a vector space? Why?.

(b) For each such c, find this solution space explicitly, and find a basis for it.

Solution. (a) For $c \neq 0$ the space S_c is not a vector space since the zero function is not a member of S_c . For c = 0, notice that S_c is the kernel of the linear transformation $L(f) = f^{(4)} - f$, hence S_c is a vector space as the subspace of a vector space.

(b) The characteristic polynomial of the ODE

$$y^{(4)} - y = 0 (3)$$

is $\chi(r) = r^4 - r$. Solving $\chi(r) = 0$ we find 4 roots, $r_1 = 0$ and $r_j = e^{\frac{2ji\pi}{3}}$ for $0 \le j \le 2$. Hence, the vectors $e^{r_i t}$ constitute the desired basis. A different basis, using real valued function is $1, e^t, e^{\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right), e^{\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right)$.