Preliminary Examination, Part I

Monday, August 29, 2016

This part of the examination consists of six problems. You should work all of the problems. Show all of your work. Try to keep computations well-organized and proofs clear and complete. Be sure to write your name both on the exam and on any extra sheets you may submit.

All problems have equal weight.

Score	
1	
2	
3	
4	
5	
6	
Total $1-6$	
Total $7-12$	
Total	

1. Let V be the real vector space of continuous real-valued functions on the closed interval $[0,1]$, and let $w \in V$. For $p, q \in V$, define $\langle p, q\rangle=\int_{0}^{1} p(x) q(x) w(x) d x$.
a) Suppose that $w(a)>0$ for all $a \in[0,1]$. Does it follow that the above defines an inner product on V ? Justify your assertion.
b) Does there exist a choice of w such that $w(1 / 2)<0$ and such that the above defines an inner product on V ? Justify your assertion.
2. Let $\left\{x_{n}\right\}$ be a sequence of real numbers (indexed by $n \geq 0$), and let $0<c<1$ be a real number. Suppose that

$$
\left|x_{n+1}-x_{n}\right| \leq c\left|x_{n}-x_{n-1}\right|
$$

for all $n=1,2,3, \ldots$.
a) If $n \geq k$ are positive integers, show that

$$
\left|x_{n+1}-x_{k}\right|<\frac{c^{k}}{1-c}\left|x_{1}-x_{0}\right|
$$

(Hint: First bound $\left|x_{n+1}-x_{n}\right|$ in terms of $\left|x_{1}-x_{0}\right|$.)
b) Prove that the sequence $\left\{x_{n}\right\}$ converges to a real number.
3. a) In the polynomial ring $\mathbb{Q}[x]$, consider the ideal I generated by $x^{4}-1$ and $x^{3}-x$. Does I have a generator $f(x) \in \mathbb{Q}[x]$? Either find one or explain why none exists.
b) In the polynomial ring $\mathbb{Q}[x, y]$, do the same for the ideal generated by the polynomials x and y.
4. For each of the following, give either a proof or a counterexample.
a) Let f be a continuous real-valued function on the open interval $0<x<3$. Must f be uniformly continuous on the open interval $1<x<2$?
b) Suppose instead that f is only assumed to be continuous on the open interval $0<x<2$. Must f be uniformly continuous on the open interval $1<x<2$?
5. Let V, W be two-dimensional real vector spaces, and let f_{1}, \ldots, f_{5} be linear transformations from V to W. Show that there exist real numbers a_{1}, \ldots, a_{5}, not all zero, such that $a_{1} f_{1}+\cdots+a_{5} f_{5}$ is the zero transformation.
6. Evaluate $\oint_{C}\left(e^{x^{2}}+\sin \left(y^{2}\right)\right) d x+\left(2 x y \cos \left(y^{2}\right)+x y^{3}\right) d y$, where C is the triangle with vertices $(0,0),(1,-1),(1,1)$, oriented counterclockwise.

Preliminary Examination, Part II

Monday, August 29, 2016

This part of the examination consists of six problems. You should work all of the problems. Show all of your work. Try to keep computations well-organized and proofs clear and complete. Please write your name on both the exam and any extra sheets you may submit.

All problems have equal weight.

Score	
7	
8	
9	
10	
11	
12	

Total 7-12
7. Let $f: X \rightarrow Y$ be a continuous map between metric spaces. For each of the following, give either a proof or a counterexample, using just the definition of compactness.
a) If $A \subseteq X$ is compact, then so is $f(A) \subseteq Y$.
b) If $B \subseteq Y$ is compact, then so is $f^{-1}(B) \subseteq X$.
8. Find a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a constant A such that

$$
\int_{0}^{x} f(t)\left(1+t^{2}\right) d t=\cos \left(x^{2}\right)+A
$$

9. For every integer $n>1$, let U_{n} be the group of invertible elements of $\mathbb{Z} / n \mathbb{Z}$ under multiplication.
a) Find the orders of U_{8} and U_{9}. Explain.
b) Determine whether the groups U_{8} and U_{9} are cyclic.
10. Let $f(x, y)=x^{2}-x y+y^{2}-y$.
a) Does the function f achieve an absolute maximum on \mathbb{R}^{2} ? an absolute minimum on \mathbb{R}^{2} ? If so, find all points where this occurs.
b) Do the same with \mathbb{R}^{2} replaced by the square $0 \leq x, y \leq 1$.
11. Let a, b, c be real numbers, and consider the matrix $A=\left(\begin{array}{ccc}a & b & c \\ b & c & b \\ c & b & a\end{array}\right)$.
a) Explain why all the eigenvalues of A must be real.
b) Show that some eigenvalue λ of A has the property that for every vector $v \in \mathbb{R}^{3}, \quad v \cdot A v \leq \lambda\|v\|^{2}$. (Note: You are not being asked to compute the eigenvalues of A.)
12. Consider the differential equation $y^{(4)}-y=c e^{2 x}$ where c is a real constant.
a) Let S_{c} be the set of solutions of this equation. For which c is this set a vector space? Why?.
b) For each such c, find this solution space explicitly, and find a basis for it.
