FALL 2015 PRELIMINARY EXAM SOLUTIONS

Problem 1. Recall that two matrices A, B are similar if there exists an invertible matrix S such that $A=S B S^{-1}$. Similar matrices have the same eigenvalues, and these have the same geometric multiplicity (dimension of eigenspace). No two of the three given matrices are similar, because:

- $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ has unique eigenvalue 2 , whose eigenspace is 2 dimensional;
- $\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$ has unique eigenvalue 2 , whose eigenspace is 1 dimensional, spanned by $\binom{1}{0}$;
- $\left(\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right)$ has eigenvalues ± 2.

Problem 2. Recall the definition of uniform continuity, especially the order of qualifiers: for all $\epsilon>0$, there exists $\delta>0$ such that, for all $x_{0} \in \mathbb{R}$:

$$
\begin{equation*}
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon \tag{0.1}
\end{equation*}
$$

So assume given $\epsilon>0$ and $x_{0} \in \mathbb{R}$; we need to find $\delta>0$, which depends on ϵ, but not on x_{0}, and makes 0.1 true. ${ }^{1}$ Using the mean value theorem, for any $x \in \mathbb{R}$, there exists $c \in \mathbb{R}$ such that:

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|f^{\prime}(c)\right|\left|x-x_{0}\right| \leq 2015\left|x-x_{0}\right|
$$

Taking $\delta=\epsilon / 2015$ gives 0.1.
Problem 3. R is obtained from $F[x]$ by imposing the relation $x^{3}=x+1$. Using this, we can express all powers of x that are ≥ 3 as linear combinations of $1, x, x^{2}$. As such, R is a 3 dimensional vector space over $\mathbb{Z} / 3$, and it has $3^{3}=27$ elements.

We check explicitly that the polynomial $x^{3}-x-1$ has no roots in $\mathbb{Z} / 3$. Since it has degree 3 , the ideal $\left(x^{3}-x-1\right)$ is prime, and R is an integral domain. In fact, $F[x]$ is a PID, so every prime ideal is maximal. It follows that R is a field.

Since R is a field with 27 elements, the multiplicative group R^{\times}has 26 elements (remove 0). R^{\times}is abelian, so there exists a group isomorphism $\phi:(\mathbb{Z} / 26,+) \rightarrow R^{\times} .{ }^{2}$ We conclude:

- $\phi(13)=2$ is a primitive square root of unity;
- $\phi(k)$ is a primitive $13^{\text {th }}$ root of unity for even k;
- $\phi(k)$ is a primitive $26^{\text {th }}$ root of unity for k odd, other than 13 .

Problem 4. First, write the sequence as:

$$
S(n)=\sum_{i=1}^{n}\left[f(i)-\int_{i}^{i+1} f(t) d t\right]
$$

Note that f is decreasing, so $\int_{i}^{i+1} f(t) d t \leq \int_{i}^{i+1} f(i) d t=f(i)$. Thus, each term in the sum is non-negative. Consequently:

- $S(n) \geq 0$;
- $S(n)$ is increasing.

Next, write the sequence as:

$$
S(n)=f(1)+\sum_{i=1}^{n-1}\left[f(i+1)-\int_{i}^{i+1} f(t) d t\right]-\int_{n}^{n+1} f(t) d t
$$

Since f is decreasing, $\int_{i}^{i+1} f(t) d t \geq \int_{i}^{i+1} f(i+1) d t=f(i+1)$. Moreover, $f(t)>0$ for all t, so $\int_{n}^{n+1} f(t) d t>0$. Consequently:

[^0]- $S(n) \leq f(1)$.

Any series that is monotonous and bounded is convergent. So the three bullet points imply that S is convergent, with limit contained in $[0, f(1)]$.

Problem 5.

(a) The main point is that matrix multiplication coincides with the composition of the associated linear operators: $F\left(T_{A}\right)=T_{F(A)}$. So if $F(A)=0$, it is immediate that $F\left(T_{A}\right)=0$. Conversely, assume that $F(A) B=0$ for every $n \times n$ matrix B. In particular, fix $1 \leq i \leq n$, and let B be the matrix with $B_{i 1}=1$, and all other entries 0 . Then $F(A) B=0$ implies that the $i^{\text {th }}$ column of $F(A)$ is 0 . Repeating for all i, we obtain $F(A)=0$.
(b) The minimal polynomial of A is the polynomial F of minimal degree such that $F(A)=0$. From part a, it's immediate that the minimal polynomials of A and T_{A} coincide. However, A is a linear operator on an n dimensional vector space, and T_{A} is a linear operator on an n^{2} dimensional vector space. Their characteristic polynomials have degrees n, n^{2} respectively. They cannot be equal unless $n=1$.

Problem 6. Write $\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}$, where:

$$
\begin{array}{r}
\mathbf{F}_{1}=\pi y e^{\sin x} \cos x \mathbf{i}+\pi e^{\sin x} \mathbf{j} \\
\mathbf{F}_{2}=-z \mathbf{i}-x \mathbf{j}
\end{array}
$$

Notice that $\mathbf{F}_{1}=\nabla\left(\pi y e^{\sin x}\right)$, and \mathbf{F}_{1} doesn't depend on z. As such, its integral along C is equal to the integral along the projection of C in the $x y$ plane, which is a closed curve. The fundamental theorem of calculus then implies $\int_{C} \mathbf{F}_{1} \cdot d \mathbf{r}=0$. Then:

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C} \mathbf{F}_{2} \cdot d \mathbf{r} \\
& =\int_{C}(-z \mathbf{i}-x \mathbf{j}) \cdot(d x \mathbf{i}+d y \mathbf{j}+d z \mathbf{k}) \\
& =\int_{C}-z d x-x d y \\
& =\int_{-\pi / 2}^{\pi / 2} 2 t \sin t d t-4 \cos ^{2} t d t \\
& =4-2 \pi
\end{aligned}
$$

Problem 7. Let $U, V \subset X$ be disjoint open subsets such that $U \cup V=X$. We need to prove that either $U=X$ or $V=X$. Start from:

$$
(U \cap Y) \cup(V \cap Y)=Y
$$

$(U \cap Y)$ and $(V \cap Y)$ are disjoint open subsets of Y, whose union is Y. Y is connected by hypothesis, so either $U \cap Y=Y$ or $V \cap Y=Y$. Without loss of generality $U \cap Y=Y$, i.e. $U \supset Y$.

Analogously,

$$
(U \cap Z) \cup(V \cap Z)=Z
$$

implies that either $U \cap Z=Z$ or $V \cap Z=Z$.
Assume that $V \cap Z=Z$, which means that $V \supset Z$. Then $\emptyset=U \cap V \supset Y \cap Z \neq \emptyset$, a contradiction. So the only possibility is $U \cap Z=Z$. But then U contains both Y and Z, so $U=X$.

Problem 8. The general solution to the given ODE is:

$$
\mathbf{x}(t)=\exp t\left[\begin{array}{cc}
-1 & 0 \\
4 & -1
\end{array}\right] \mathbf{x}(0)
$$

Our goal is to compute the exponential. We decompose the given matrix into two commuting terms:

$$
\left[\begin{array}{cc}
-1 & 0 \\
4 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
4 & 0
\end{array}\right]=: D+N
$$

Due to commutativity:

$$
\exp t\left[\begin{array}{cc}
-1 & 0 \\
4 & -1
\end{array}\right]=e^{t D} e^{t N}
$$

These factors are easy to compute. D is a multiple of the identity matrix I, so $e^{t D}=e^{-t} I . N^{2}=0$, so $e^{t N}=I+t N$. Then:

$$
\mathbf{x}(t)=e^{-t}\left[\begin{array}{cc}
1 & 0 \\
4 t & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
e^{-t} \\
4 t e^{-t}
\end{array}\right]
$$

Problem 9. Let S denote the matrix whose columns are the given eigenvectors:

$$
S=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 1 & 1 \\
3 & 0 & 1
\end{array}\right]
$$

Then the following matrix has the required properties:

$$
A=S\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] S^{-1}=\frac{1}{2}\left[\begin{array}{ccc}
1 & 3 & -3 \\
-6 & 10 & -6 \\
-9 & 9 & -5
\end{array}\right]
$$

This happens because S is the change of basis matrix between the standard basis of \mathbb{R}^{3} and the basis of eigenvectors.

Problem 10.

(a) The ratio of two consecutive terms is:

$$
\frac{a_{n+1}}{a_{n}}=\frac{(1+1 / n)^{100}}{10}
$$

For $1+1 / n<5^{1 / 100}$, which covers all but finitely many n, this is smaller than $1 / 2$. Comparison with $(1 / 2)^{n}$ shows that the sequence converges to 0 .
(b) We'll show that the sequence is bounded and increasing, hence convergent. First, we prove by induction that $0 \leq a_{n}<1$. For a_{1} this is clear. Assuming that the statement holds for a_{n}, we have:

$$
\frac{1}{3} \leq a_{n+1}<\frac{3}{3}
$$

so the statement holds for a_{n+1} as well.
Consider now:

$$
a_{n+1}-a_{n}=\frac{1-a_{n}}{3}
$$

We know that $a_{n}<1$, so $a_{n+1}-a_{n}>0$, i.e. the sequence is increasing.
We proved that the limit exists; now we can compute it by solving the recurrence relation:

$$
\ell=\frac{2 \ell+1}{3} \Longrightarrow \ell=1
$$

Problem 11.
(a) Throughout we use the fact that $b=b^{-1}$. All elements of G are of the form a^{i} or $b a^{i}$, for some $0 \leq i \leq 24$. By explicit computation using the group relations we see that:

- a^{0} has order 1 ;
- a^{i} has order 5 if i is a nonzero multiple of 5 ;
- a^{i} has order 25 if i is not a multiple of 5 ;
- $b a^{i}$ has order 2 for all i.

We have exhausted all elements, so the possible orders are $1,2,5,25$.
(b) We use the following conjugation relations:

$$
\begin{align*}
& b a^{i} b^{-1}=a^{-i} \tag{0.2}\\
& b\left(b a^{i}\right) b^{-1}=b a^{-i} \tag{0.3}\\
& a b a^{-1}=b a^{-2} \tag{0.4}
\end{align*}
$$

From 0.2 we see that the subgroups $\langle a\rangle$ and $\left\langle a^{5}\right\rangle$ are normal. From 0.3 we see that the order 2 subgroups $\left\langle b a^{i}\right\rangle$ are not normal for any $i \neq 0$. From 0.4 we see that $\langle b\rangle$ is not normal either.

We can also consider subgroups generated by multiple elements. $\left\langle b, a^{5}\right\rangle$ is a subgroup of order 10 , but it's not normal due to 0.4 . Any other choice of generators produces one of the subgroups already considered.

So the normal subgroups are $1,\langle a\rangle,\left\langle a^{5}\right\rangle, G$.
Problem 12. Since $f \geq 0$, we have that $\int_{0}^{t} f(x) d x \geq 0$ and $\int_{t}^{1} f(x) d x \geq 0$, for all $0 \leq t \leq 1$. This gives two non-negative quantities which sum to 0 :

$$
\int_{0}^{t} f(x) d x+\int_{t}^{1} f(x) d x=\int_{0}^{1} f(x) d x=0
$$

So $\int_{0}^{t} f(x) d x=0$. But for all $0 \leq t<1$:

$$
f(t)=\lim _{\epsilon \rightarrow 0} \frac{\int_{0}^{t+\epsilon} f(x) d x-\int_{0}^{t} f(x) d x}{\epsilon}=\lim _{\epsilon \rightarrow 0} 0=0
$$

For $t=1$, the above argument doesn't work verbatim, because we don't know the behavior of f at $1+\epsilon$. We can replace it with:

$$
f(1)=\lim _{\epsilon \rightarrow 0} \frac{\int_{0}^{1} f(x) d x-\int_{0}^{1-\epsilon} f(x) d x}{\epsilon}=\lim _{\epsilon \rightarrow 0} 0=0
$$

[^0]: ${ }^{1}$ If we allowed δ to depend on x_{0} as well, we would obtain continuity, but not uniform continuity.
 ${ }^{2}$ Each choice of generator of R^{\times}gives a different ϕ; for example one can take $\phi(1)=2 x$.

