
Preliminary Examination, Part I

August 28, 2007

This part of the examination consists of six problems. You should
work all of the problems. Show all of your work in your workbook.
Try to keep computations well-organized and proofs clear and com-
plete. Justify the assertions you make. Be sure to write your name
on each workbook you submit. All problems have equal weight.
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1. Consider the system of linear equations

x + y + 3z + w = a

x + 2y + 5z + 2w = b

2x + y + 4z + w = c

a) Find the set of all triples of real numbers (a, b, c) for which
the system has a solution (x, y, z, w).

b) Find all solutions (x, y, z, w) if a = b = c = 0.

2. Let f be a twice continuously differentiable function on the real
line. Suppose that a < b < c and that f(a) < f(c) < f(b).
Show that there exist real numbers d, e in the interval a < x < c

such that f ′(d) = 0 and f ′′(e) < 0.

3. Find all integers n that
√

n ∈ Q[
√

2]. Justify your assertion.

4. a) Let {fn} be a sequence of continuous functions on the closed
interval [0, 1], such that for every x ∈ [0, 1], f1(x) ≥ f2(x) ≥
. . . and limn→∞ fn(x) = 0. Prove that fn → 0 uniformly on
[0, 1]. (That is, show that

sup{|fn(x)| : x ∈ [0, 1]} → 0 as n → ∞.)

b) Show that if we instead consider functions on the open in-
terval (0, 1), then the corresponding assertion is false.

5. Find three complex numbers a, b, c such that C3 has an orthonor-
mal basis consisting of eigenvectors of the linear transformation
T : C3 → C3 corresponding to the matrix

A =







1 i a

b a c

−a b −1





 .

Explain.

6. Let R be the region in the first quadrant of the x, y-plane (where
x ≥ 0, y ≥ 0) bounded between the axes and the curve y =
1− x2. Let C be the boundary of R, oriented counterclockwise.
Evaluate the line integral

∮

C(ex2

+ xy)dx + (sin(ey) + x2)dy.
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Preliminary Examination, Part II

August 28, 2007

This part of the examination consists of six problems. You
should work all of the problems. Show all of your work in your
workbook. Try to keep computations well-organized and proofs
clear and complete. Justify the assertions you make. Be sure to
write your name on each workbook you submit. All problems
have equal weight.
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7. Find all connected subsets of the rational numbers, Q. Prove
your assertion.

8. A certain smooth connected curve C in the x, y-plane has the
property that it intersects all the hyperbolas xy = a (for a ∈
R, a 6= 0) at right angles, whenever they meet. If the curve C

passes through the point (1, 1), at which point(s) does C meet
the hyperbola xy = 16?

9. a) Find three non-isomorphic groups of order 42. Show that
no two of your groups are isomorphic.

b) Prove that every group G of order 42 has a normal subgroup
other than G and the trivial group.

10. Using the definition of continuity, prove that the function f(x, y) =
xy is continuous at every point (x, y) ∈ R2.

11. Let A, B be n × n matrices over a field F .

a) Show that the matrices AB and BA have the same trace.

b) Deduce that if F has characteristic 0 and AB − BA = cI

for some c ∈ F , then c = 0.

c) Does the conclusion in (b) necessarily hold if F has non-zero
characteristic? Either give a proof that it does, or else give
an example for which it does not.

12. Let a < b be real numbers, and let f be a continuous function on
the closed interval [a, b]. Prove that limn→∞

∫ b
a f(x) sinn(x)dx =

0. [Note: sinn(x) means (sin(x))n.]
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