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ABSTRACT

RAMIFICATION IN THE INVERSE GALOIS PROBLEM

Benjamin Pollak

David Harbater

This thesis focuses on a refinement of the inverse Galois problem. We explore

what finite groups appear as the Galois group of an extension of the rational num-

bers in which only a predetermined set of primes may ramify. After presenting new

results regarding extensions in which only a single finite prime ramifies, we move on

to studying the more complex situation in which multiple primes from a finite set

of arbitrary size may ramify. We then continue by examining a conjecture of Har-

bater that the minimal number of generators of the Galois group of a tame, Galois

extension of the rational numbers is bounded above by the sum of a constant and

the logarithm of the product of the ramified primes. We prove the validity of Har-

bater’s conjecture in a number of cases, including the situation where we restrict

our attention to finite groups containing a nilpotent subgroup of index 1, 2 or 3,

and also derive consequences that are implied by the truth of this conjecture. We

conclude by exploring how circumstances change when the base field of the rational

numbers is replaced by an arbitrary number field.
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Chapter 1

Introduction

1.1 The Inverse Galois Problem

The traditional inverse Galois problem asks if every finite group appears as the Ga-

lois group of some extension of the rational numbers. Although this question has

remained open for centuries, many families and specific examples of finite groups

have been realized as Galois groups over Q. By the end of the 19th century, it

had become evident that all finite abelian groups are Galois groups over Q. Then,

in 1937, Scholz and Reichardt showed that all finite nilpotent groups of odd order

occur as Galois groups over Q. Finally, in 1954 with a subsequent correction in

1989, Shafarevich proved that every finite solvable group can be realized as a Ga-

lois group over Q. While an answer to whether every finite non-solvable group is

a Galois group over the rational numbers continues to elude us, techniques includ-
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ing Hilbert irreducibility, rigidity, modular Galois representations, and computer

searches have provided a partial understanding. For example, all the finite sym-

metric and alternating groups, as well as 25 of the 26 sporadic simple groups, are

known to be Galois groups over Q. In [34], Zywina shows the same for PSL2 (Fp)

where p ≥ 5 is prime.

1.2 A Refinement of the Inverse Galois Problem

Given a finite group, in addition to simply asking whether it appears as a Galois

group over Q, it is also of interest to study the finer structure of extensions that

realize it as a Galois group. We will focus on how the set of ramified primes in a

Galois extension of the rationals relates to properties of the Galois group. More

precisely, given a finite set of primes, we will explore what finite groups may appear

as Galois groups of extensions of Q that are unramified outside of the given set of

primes.

Following the notation in [10], given a square-free n ∈ N we let Un denote

Spec
(
Z
[

1
n

])
, an open subset of Spec (Z). π1 (Un) will be the étale fundamental

group; it is the Galois group of the maximal extension of Q that is unramified at

finite primes not dividing n. We then let πA(Un) be the set of finite quotients of

π1(Un); it is the set of finite groups appearing as Galois groups of extensions of Q

unramified at finite primes not dividing n. Finally, we denote by πtA(Un) the set of

Galois groups appearing when we restrict our attention to tame extensions.
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Our main goal is to provide some insight into the contents of πA(Un). Since at

least one finite prime ramifies in every extension of Q, πA(U1) consists of only the

trivial group. Apart from this simple case, there is no other square-free n for which

πA(Un) is completely understood. Nevertheless, we can obtain a partial description.

Given a specific square-free n, the focus of Chapter 2 is to say as much as possible

about extensions of Q unramified at finite primes not dividing n. Chapter 3 is

devoted to studying how generating sets of a Galois group relate to the ramified

primes in the corresponding extension.

For a finite group G, let

d(G) = min {|S| |S is a generating set for G} .

In the function field case, a square-free polynomial f ∈ Fp[t] of degree d has norm

pd. Let U ⊆ A1
Fp

be the complement of the vanishing set of f and πt,reg
A (U) be

the finite groups appearing as Galois groups of tame, regular extensions of Fp(t)

unramified outside of primes dividing f . Then, any G ∈ πt,reg
A (U) satisfies d(G) ≤

d = logp (Norm(f)). Motivated by this analogy, in the arithmetic situation we

view Un ⊆ Spec (Z) as the complement of the vanishing set of a square-free natural

number n that has norm n. In [10], Harbater then proposes the following conjecture:

Conjecture 1.2.1. There is a constant C such that for every square-free n ∈ N,

every G ∈ πtA(Un) satisfies d(G) ≤ log (n) + C.
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Remark 1.2.2. In the function field case, the base of the logarithm was the char-

acteristic. Since that is not possible in the arithmetic case, we use e as the base

instead. The addition of the constant is because in the function field case we may

require one extra generator, the Frobenius, if we do not restrict our attention to

regular extensions. Additionally, the analogous statement for curves of higher genus

in the function field case would require a constant depending on the genus. If in

the analogy between number fields and function fields the “genus” of Q is not 0,

then this would be accounted for by the extra constant in the conjecture.

In Chapter 3 we will prove that if we only consider groups with a nilpotent

subgroup of index 1, 2, or 3, then Conjecture 1.2.1 is true.

1.3 Background

In this section we introduce some notation and provide some background results

that will be essential in the subsequent chapters. This includes statements from

class field theory, bounds on the discriminant of a number field, and the Brauer-

Siegel theorem; these results are collected from [20], [30], [15], and [4].

We start by listing some key results from class field theory.

Theorem 1.3.1. (Kronecker-Weber) A finite extension of Q is abelian if and only

if it is a subfield of some cyclotomic field.

For a number field K with ring of integers OK , we let Cl(K) denote the class
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group of K, the group of fractional ideals modulo principal ideals in OK .

Theorem 1.3.2. The Hilbert class field of a number field K is the maximal abelian

unramified extension of K. The Galois group of the Hilbert class field over K is

isomorphic to Cl(K).

A modulus, m = m0m∞, is a formal product of primes in OK ; m0 denotes the

product of the finite places and m∞ denotes the product of the infinite places. The

ray class group corresponding to m, Clm(K), is the group of fractional ideals co-

prime to m modulo the group of principal ideals generated by elements that are

congruent to 1 modulo m0 and positive at each place dividing m∞. m admits an

abelian extension of K, called the ray class field corresponding to m, with Galois

group isomorphic to Clm(K).

Theorem 1.3.3. Every finite abelian extension of K is contained in a ray class

field of K corresponding to some modulus.

If E/K is abelian and E is a subfield of the ray class field of K for the modulus

m, we say that m is an admissible modulus. The greatest common divisor of two

admissible moduli is also admissible. Hence, there is a least admissible modulus,

called the conductor.

Theorem 1.3.4. If E/K is abelian with conductor m, then the primes that ramify

in E/K are those that divide m. Furthermore, P | m is tamely ramified if and only

if the highest power of P dividing m is 1.
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If m = m0m∞, then we let

(OK/m)∗ = (OK/m0)∗ × (Z/2Z)|m∞| .

Let U(K) denote the unit group of K and Um(K) the intersection of the unit group

with elements that are congruent to 1 modulo m0 and positive at each place dividing

m∞.

Theorem 1.3.5. The following sequence is exact:

1→ Um(K)→ U(K)→ (OK/m)∗ → Clm(K)→ Cl(K)→ 1.

We now provide some bounds for the discriminant of a number field. The fol-

lowing upper bound can be found in [30].

Theorem 1.3.6. Let K be a number field with discriminant ∆. For a prime p,

let ei and fi denote the ramification indices and residue degrees of the primes lying

over it. Then

vp(∆) ≤
∑
i

fi (ei − 1 + eivp(ei)) .

[23], [24], and [7] provide lower bounds for discriminants of number fields.

We conclude with a statement of the Brauer-Siegel theorem from [4].

Theorem 1.3.7. Let K1, K2, K3, . . . be a sequence of number fields all of a fixed de-

gree over Q. Let di, hi, and Ri denote the discriminant, class number, and regulator

6



of Ki respectively. Then

log (hiRi)

log
(
|di|

1
2

) → 1 as i→∞.

1.4 Related Results

In [10], Harbater studies extensions in which a single prime ramifies. One of his

main results is

Theorem 1.4.1. If p < 23 is prime, then πt1(Up) is cyclic of order p− 1.

In Section 2.1.1 we obtain a similar statement for totally real extensions. Har-

bater also more extensively studies the prime 2 and shows

Theorem 1.4.2. 1. Let G be a solvable group in πA(U2). Then either G is a

2-group of order < 16, or G has a quotient of order 16.

2. Let K/Q be a Galois extension in which 2 is the only finite prime that ramifies.

Then 16 divides the ramification index unless the Galois group is a 2-group of

order < 16.

For a prime p and a finite group G, we let p(G) denote the subgroup generated

by the union of the Sylow p-subgroups. In [12], Hoelscher proves the following:

Theorem 1.4.3. 1. If p = 3 and G is a solvable group in πA(Up), then either G

is cyclic, G/p(G) ∼= Z/2Z, or G has a cyclic quotient of order 27.
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2. Suppose K/Q is a nontrivial Galois extension in which 3 is the only finite

prime that ramifies. Let G denote the Galois group. Then 9 divides the

ramification index unless G/p(G) ∼= Z/2Z or G ∼= Z/3Z

In Section 2.1.2 we provide an analogous result for the prime 5. Expanding upon

Harbater’s work in [10], Hoelscher also shows that small groups in πA(Up) for small

primes tend to be solvable.

Theorem 1.4.4. Let 2 ≤ p ≤ 23 be a prime number. If G ∈ πA(Up) and |G| ≤ 300,

then G is solvable.

We improve upon this result in Theorem 2.1.10.

Given a finite group G, one may also ask what is the smallest number of ramified

primes necessary for an extension of Q to have Galois group G. Letting Gab denote

the abelianization of G, Boston and Markin conjecture the following in [3]:

Conjecture 1.4.5. For every nontrivial finite group G, there is an extension of

Q with Galois group G and max
{

1, d
(
Gab
)}

many ramified primes (counting the

infinite place).

If G is abelian and nontrivial, the Kronecker-Weber theorem shows that the

fewest number of ramified primes in an extension of Q with Galois group G is d(G).

Hence, for an arbitrary nontrivial finite group G,max
{

1, d
(
Gab
)}

is a lower bound

on the minimal number of ramified primes we can have in any extension with Galois

group G; Conjecture 1.4.5 posits that this lower bound is actually achieved.
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Since the finite symmetric groups and alternating groups have cyclic abelianiza-

tion, Conjecture 1.4.5 suggests that they should be realizable as Galois groups over

Q with only a single ramified prime. In [14], Jones and Roberts prove the following:

Theorem 1.4.6. 1. p = 101 is the smallest prime such that S5 ∈ πA(Up).

2. p = 197 is the smallest prime such that S6 ∈ πA(Up).

3. p = 163 is the smallest prime such that S7 ∈ πA(Up).

4. p = 653 is the smallest prime such that A5 ∈ πA(Up).

5. p = 1579 is the smallest prime such that A6 ∈ πA(Up).

In Section 2.1.4 we show that for any natural number n ≤ 30, there is a prime p

such that Sn ∈ πA(Up). We also provide examples of A7, A8, A9, and A10 extensions

of Q ramified at a single finite prime.
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Chapter 2

Galois Extensions of Q with

Specified Ramification

2.1 Extensions Ramified at a Single Prime

2.1.1 Totally Real Extensions

Harbater shows in [10] that for p < 23 a prime number, the cyclotomic extension

Q(ζp) is the maximal extension of Q that is tamely ramified only at p and ∞. We

now present some analogous results in the totally real case in which the infinite

place is also restricted from ramifying. For a square-free n ∈ N, we let πt,tr
1 (Un)solv

denote the set of solvable groups appearing as the Galois group of tame, totally real

extensions of Q in which only primes dividing n may ramify.

Proposition 2.1.1. Let p be a prime number. If Q(ζp + ζ−1
p ) has class number
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1, then πt,tr
1 (Up)

solv is cyclic of order p−1
2

. Hence, if K/Q is a totally real, tame,

solvable extension only ramified at p, then K ≤ Q(ζp + ζ−1
p ).

Proof. Let p be a prime number such that Q(ζp+ζ−1
p ) has class number 1. Suppose

G ∈ πt,tr
A (Up)

solv. Let K/Q be an extension providing witness to the fact that

G ∈ πt,tr
A (Up)

solv. Let G(1) = [G,G] and G(2) = [G(1), G(1)] be the first and second

commutator subgroups respectively. Letting KG(1)
and KG(2)

denote the fixed fields,

we obtain the following diagram:

K

KG(2)

KG(1)

Q
.

Since KG(1)
is an abelian extension of Q that is totally real and tamely ramified

only at p, by the Kronecker-Weber theorem we have KG(1) ≤ Q(ζp + ζ−1
p ) and

KG(1)
/Q is totally ramified. Note now that KG(1)

must have class number 1. If

not, it would have a nontrivial, unramified, abelian extension. However, taking the

compositum of such an extension with Q(ζp + ζ−1
p ) would then yield a nontrivial,

unramified, abelian extension of Q(ζp+ ζ−1
p ), contradicting Q(ζp+ ζ−1

p ) having class

11



number 1. Thus, the abelian extension KG(2)
/KG(1)

has no nontrivial, unramified

subextensions, and so must be totally ramified. This implies that KG(2)
/Q is totally

ramified. By the tameness assumption, it must also be cyclic. Hence, G/G(2) is

abelian, and so G(1) = G(2). By assumption of G being solvable, we conclude that

G(1) must be trivial and KG(1)
= K. Thus, K ≤ Q(ζp + ζ−1

p ) and G is cyclic of

order dividing p−1
2

.

Corollary 2.1.2. Suppose p ≤ 151 is an odd prime. Then πt,tr
1 (Up)

solv is cyclic of

order p−1
2

; the maximal tame, totally real, solvable extension of Q ramified only at

p is Q(ζp + ζ−1
p ).

Proof. By Theorem 1.1 in [19], the class number of Q(ζp + ζ−1
p ) is 1 for p ≤ 151.

Now apply Proposition 2.1.1.

Remark 2.1.3. If the class number of Q(ζp+ζ−1
p ) is larger than 1, then, as evidenced

by the Hilbert class field of Q(ζp + ζ−1
p ), πt,tr

1 (Up)
solv is not cyclic.

For p ≤ 53, we can drop the solvable assumption in Proposition 2.1.1.

Proposition 2.1.4. Suppose p ≤ 53 is an odd prime. Then πt,tr
1 (Up) is cyclic of

order p−1
2

and Q(ζp + ζ−1
p ) is the maximal totally real, tame extension of Q that is

ramified only at p.

Proof. It suffices to just prove the claim that Q(ζp + ζ−1
p ) is the maximal totally

real, tame extension of Q that is ramified only at p. In doing so, we need only

consider Galois extensions; a non-Galois counterexample would provide a Galois

12



counterexample by taking the Galois closure. So, suppose for contradiction that the

claim is false. Let K be a Galois extension of Q of minimal degree that contradicts

it. By Corollary 2.1.2, G = Gal (K/Q) is non-solvable. Let e denote the ramification

index of the primes above p. Since the extension is tame and p ≤ 53, by Theorem

1.3.6 the root discriminant of K/Q is at most

p1+vp(e)− 1
e = p1+0− 1

e = p1− 1
e ≤ 531− 1

e < 53.

By [7], any totally real extension of Q of degree 500 or larger has root discriminant

bigger than 53. Hence, [K : Q] < 500. By the minimality of [K : Q], every

proper quotient of G must be solvable. By Corollary 2.1.2, every proper quotient is

therefore abelian. By Lemma 2.5 in [10], we conclude that e ≤ 14. Thus, the root

discriminant is at most

531− 1
14 < 40.

By [7] again, we now get [K : Q] ≤ 84. The only non-solvable group of order at

most 84 is A5. Thus, G ∼= A5. Once more by Lemma 2.5 in [10], e ≤ 5 and so the

root discriminant is at most

531− 1
5 < 24.

Finally, [7] tells us that the root discriminant must be at least 36 for degree 60

totally real extensions of Q. This is a contradiction.
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2.1.2 Extensions Ramified at a Small Prime

We now present some results about extensions of Q ramified at a single, small,

integral prime. We begin by adapting a result of Hoelscher in [12] to more suitably

apply to our needs.

Proposition 2.1.5. Suppose K/Q is a nontrivial, solvable Galois extension ram-

ified only at a single, odd finite prime p and possibly ∞. Let G = Gal (K/Q).

Then, either G is a cyclic p-group, G/p(G) is isomorphic to a nontrivial subgroup

of Z/(p − 1)Z, or G has a cyclic quotient of order pt where Q(ζpt+1) is the first

p-power cyclotomic field with nontrivial class group.

Proof. Let K and G satisfy the hypotheses above. Let K0/Q be the maximal p-

power, Galois sub-extension of K/Q and set N = Gal(K/K0). By Theorem 2.11 in

[10], N is cyclic. So,

Gal (K0/Q) ∼= Z/pnZ for some n.

Furthermore, by Kronecker-Weber, K0 is the cyclic sub-extension of degree pn in

Q(ζpn+1).

14



K Q(ζpn+1)

K0

Q

N

G/N ∼= Z/pnZ

.

Suppose now that G is not a cyclic p-group and that G/p(G) is not isomorphic to a

nontrivial subgroup of Z/(p−1)Z. We must show that Q(ζpn+1) has nontrivial class

group; this then shows that n ≥ t, and so G has a cyclic quotient of order pt. We

first show that N/p(N) is not isomorphic to a nontrivial subgroup of Z/(p− 1)Z.

Suppose for contradiction that N/p(N) is isomorphic to a nontrivial subgroup

of Z/(p− 1)Z. Then,

N/p (N) ∼= Z/mZ for some m > 1 dividing p− 1.

Letting F denote the fixed field of K under p(N), we obtain the following diagram:

15



K

F

K0

Q

p (N)

N

N/p (N) ∼= Z/mZ

G/N ∼= Z/pnZ

.

Since N is normal in G and p (N) is characteristic in N , p (N) is also normal in G.

Hence, F/Q is a Galois extension with

Gal (F/Q) ∼= G/p (N) .

Because m | p−1 and gcd(p−1, p) = 1, the Schur-Zassenhaus theorem tells us that

Gal (F/Q) ∼= G/p (N) ∼= Z/mZ o Z/pnZ.

However, the automorphism group Aut(Z/mZ) has order φ(m) which is prime to

p. Thus, there is no nontrivial homomorphism from Z/pnZ to Aut(Z/mZ). Hence,

the above semidirect product is in fact a direct product. We conclude that

Gal (F/Q) ∼= G/p (N) ∼= Z/mZ× Z/pnZ.

16



Noting that p (G) /p (N) ∼= p (G/p (N)) and applying the third isomorphism theo-

rem, we obtain

G/p (G) ∼= (G/p (N)) / (p (G) /p (N)) ∼= (G/p (N)) /p (G/p (N))

∼= (Z/mZ× Z/pnZ) / (Z/pnZ) ∼= Z/mZ.

This contradicts our assumption that G/p (G) is not isomorphic to a nontrivial

subgroup of Z/(p−1)Z. We conclude that N/p(N) is not isomorphic to a nontrivial

subgroup of Z/(p− 1)Z.

By Theorem 1.1 and Lemma 1.4 of [12], there is a nontrivial, abelian, unramified

sub-extension L/K0 (ζp) of K (ζp) /K0 (ζp) of degree prime to p with L Galois over

Q:

K (ζp)

K L

K0 (ζp)

K0 Q (ζp)

Q

N

G/N ∼= Z/pnZ

.

Since K0 ≤ Q(ζpn+1) and [K0 : Q] = pn, it must be the case that K0(ζp) = Q(ζpn+1).

17



Since L is a nontrivial, abelian, unramified extension of Q (ζpn+1), the class number

of Q (ζpn+1) is not 1.

Corollary 2.1.6. Let p < 23 be an odd prime and let K/Q be a nontrivial, solvable

Galois extension ramified only at p and possibly ∞ with G = Gal(K/Q). One of

the following holds:

1. G/p(G) is a nontrivial subgroup of Z/(p− 1)Z.

2. G has a cyclic quotient of order p.

Proof. Apply Proposition 2.1.5 while noting that the pth cyclotomic field has class

number 1 for p < 23 a prime.

[10] obtains results about extensions in which the only finite prime that ramifies

is 2, and then [12] obtains further results about extensions in which the only finite

prime that ramifies is 3. For the remainder of this section, we focus on the special

case in which the only finite prime that ramifies is 5.

Corollary 2.1.7. Let G be the Galois group of a nontrivial, solvable extension

ramified only at 5 and possibly ∞. One of the following holds:

1. G is a cyclic 5-group.

2. G/p (G) ∼= Z/2Z.

3. G/p (G) ∼= Z/4Z.

18



4. G has a cyclic quotient of order 25.

Proof. The 125th cyclotomic field is the first 5-power cyclotomic field with nontrivial

class group. Apply Proposition 2.1.5.

We conclude this section by dropping the solvable assumption and considering

arbitrary extensions of Q in which only 5 and ∞ may ramify.

Proposition 2.1.8. If K/Q is a nontrivial, Galois extension ramified only at 5 and

possibly ∞ with Galois group G, then one of the following holds:

1. G ∼= Z/5Z.

2. G/p (G) ∼= Z/4Z.

3. G/p (G) ∼= Z/2Z.

4. e ≡ 0 (mod 5) and e ≥ 10 , where e is the ramification index of the primes

above 5.

Proof. If G is solvable, then one of the conditions in Corollary 2.1.7 holds. If

the second or third condition holds, then we are done. If the fourth condition

holds, then, by Kronecker-Weber, the cyclic quotient of order 25 produces a totally

ramified sub-extension. So, 25 | e. Finally, if the first condition holds, either

G ∼= Z/5Z and we are done, or G ∼= Z/5lZ for some l ≥ 2. Again by Kronecker-

Weber, the Z/5lZ extension is totally ramified, and, since 25 | 5l, we get 25 | e.
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Suppose now that G is not solvable. Then, by the proposition in [12], |G| >

300. Let n = |G| be the degree of the corresponding extension and let ∆ be the

discriminant. By [7], we know that |∆| 1n ≥ 19.2 since the degree of the extension

is at least 300. But, since only 5 is ramified, we have from Theorem 1.3.6 that

|∆| 1n ≤ 51+v5(e)− 1
e . Thus,

19.2 ≤ 51+v5(e)− 1
e .

v5(e) 6= 0 for otherwise the right hand side above is at most 5. So, e ≡ 0 (mod 5).

If v5(e) = 1 then e still cannot be 5; if it were, the right hand side above is at most

18.12. Thus, e ≥ 10.

Remark 2.1.9. The fourth condition in Proposition 2.1.8 can be replaced by 25 | e

if one is willing to assume the generalized Riemann hypothesis. The proof showed

that in the solvable case we can unconditionally replace the fourth condition with

25 | e. By Theorem 2.1.10, if G is non-solvable we actually have |G| ≥ 660. Under

assumption of the generalized Riemann hypothesis, we have from Table 1 in [22]

that the Odlyzko lower bound on the root discriminant for fields of degree at least

340 is 25.09. This forces v5(e) ≥ 2 and so 25 | e. Furthermore, for a totally real

extension of degree at least 300 we get that the root discriminant is at least 50 by

[7], and so we can unconditionally replace the fourth condition with 25 | e in the

totally real case. Also note that by Table 2 in [22], once the extension has degree

107 or more, the root discriminant is at least 22.3 and so we must have that e ≥ 15

in this scenario since the inequality 19.2 ≤ 51+v5(e)− 1
e becomes 22.3 ≤ 51+v5(e)− 1

e .
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2.1.3 Non-solvable Extensions

Harbater showed in [10] that if G ∈ πA(U2) and |G| ≤ 300, then G is solvable. In

[12], Hoelscher strengthened this result and proved that if 2 ≤ p < 23 is prime and

G ∈ πA(Up) with |G| ≤ 300, then G is solvable. In this section we further improve

upon this result and obtain the following:

Theorem 2.1.10. If 2 ≤ p < 37 is a prime number and G ∈ πA(Up) with |G| < 660,

then G is solvable.

To prove this, we will first extend Hoelscher’s result to hold for any prime p < 37.

We will then systematically rule out the remaining non-solvable groups of order less

than 660 from being elements of πA(Up) for all primes p < 37.

Example 2.1.11. Theorem 4.1 in [14] shows that if p < 37, then S5 /∈ πA(Up) and

A5 /∈ πA(Up).

We now show that PSL(2, 7) /∈ πA(Up) for 23 ≤ p < 37. Suppose for contradic-

tion there is an extension K/Q with Gal(K/Q) ∼= PSL(2, 7) such that 23 ≤ p < 37

is the only ramified finite prime. This group has order 168 = 23 · 3 · 7. Hence, the

ramification in K/Q must be tame as p - 168. Thus, the inertia group for any prime

lying over p must be cyclic. PSL(2, 7) has cyclic subgroups of orders 1, 2, 3, 4, and 7.

Thus, the corresponding ramification indices satisfy e ≤ 7 and the root discriminant

satisfies

|∆|
1

168 ≤ p1+vp(e)− 1
e .
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By [7], we know that |∆| 1
168 ≥ 17.95. Thus,

17.95 ≤ p1+vp(e)− 1
e ≤ p1+0− 1

7 = p
6
7 .

Hence,

p ≥ 17.95
7
6 > 29,

and so p = 31.

If e 6= 7, then e ≤ 4. But then the root discriminant is at most 311+0− 1
4 <

17.95 which is a contradiction. So, e = 7. Because the ramification is tame, the

inertia group for any prime embeds into the multiplicative group of the residue field.

Letting f denote the residue degree, we have 31f ≡ 1 (mod e). Furthermore, if r

is the number of primes that p splits into, we know ref = 168 and so rf = 168
e

=

168
7

= 24. From 31f ≡ 1 (mod e) and f | 24 we conclude that f ∈ {6, 12, 24}. Note

now that ef is equal to the order of the decomposition group which is a subgroup

of PSL(2, 7). Since PSL(2, 7) has neither a subgroup of order 42 nor a subgroup of

order 84, we conclude that f = 24 and that the decomposition group has order 168.

This means that the decomposition group is all of PSL(2, 7). This is a contradiction

because the decomposition group must be solvable, whereas PSL(2, 7) is not.

We can now extend Hoelscher’s result to include all primes less than 37:

Proposition 2.1.12. If 2 ≤ p < 37 is a prime number and G ∈ πA(Up) and

|G| ≤ 300, then G is solvable.
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Proof. We already know by the proposition in [12] that the above statement holds

for 2 ≤ p < 23. An analogous proof now works for 23 ≤ p < 37. That is, suppose

for contradiction that 23 ≤ p < 37 and that there is a non-solvable G ∈ πA(Up)

with |G| ≤ 300. Let G be such a group with smallest possible order. If N is

any nontrivial, normal subgroup of G, then G/N is also in πA(Up). Since G/N

has smaller order than G, the minimality assumption on G implies that G/N is

solvable. Since G itself is not solvable, N cannot be solvable. Thus, |N | ≥ 60 and

so |G/N | ≤ 5 and G/N is abelian. By Lemma 2.5 in [10], G is isomorphic to one

of S5, A5, or PSL(2, 7). This is impossible by Example 2.1.11 and yields the desired

contradiction.

The following examples now examine the remaining possible non-solvable groups

of order less than 660, and demonstrate that none of them appear in πA(Up) for

p < 37.

Example 2.1.13. After 300, the next non-solvable groups have order 336. There

are three such groups. Two of them have a normal subgroup isomorphic to Z/2Z.

For each of them, the quotient by this group is a non-solvable group of order 168.

Since Proposition 2.1.12 says there are no non-solvable groups of order 168 in πA(Up)

for p < 37, neither of these two groups can be in πA(Up) for p < 37.

The third group is isomorphic to PGL(2, 7). Suppose there is a K/Q which

realizes PGL(2, 7) in πA(Up). PGL(2, 7) has a subgroup of order 42. The fixed

field for this subgroup would yield a non-Galois, degree 8 extension of Q. Since
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the normal subgroups in PGL(2, 7) have indices 1, 2, and 336, the Galois closure of

the degree 8 sub-extension must be all of K. Thus, the largest power of 2 dividing

the Galois closure is 24 = 16. By Corollary 2.3 in [13], p 6= 2. If p were 3, the

root discriminant would be at most 31+v3(e)− 1
e ≤ 31+1−0 = 9; but by [7], the root

discriminant is at least 19.47. By Theorem 4.1 in [16], p 6= 7.

Primes larger than 7 do not divide 336, and so the extension must be tamely

ramified. Therefore, the inertia group corresponding to any prime is cyclic. The

cyclic subgroups of PGL(2, 7) have orders 1, 2, 3, 4, 6, 7, and 8. Thus, the ramifica-

tion indices satisfy e ≤ 8. This means the root discriminant is at most p1+vp(e)− 1
e ≤

p1+0− 1
8 = p

7
8 . Since it is also at least 19.47, we get p ≥ 19.47

8
7 > 29.

Lastly, we consider p = 31. If e ≤ 7, then the root discriminant is not large

enough; so, e = 8. The polynomial x6 +2x5 +94x4 +126x3 +2947x2 +1736x+30691

generates an S3-extension of Q in which 31 is the only finite prime that ramifies; it

is the Hilbert class field of Q(
√
−31). Call this extension HQ(

√
−31). Since PGL(2, 7)

has no index 6 normal subgroup, K ∩HQ(
√
−31) 6= HQ(

√
−31). Thus, K ∩HQ(

√
−31) =

Q(
√
−31). So,

[KHQ(
√
−31) : Q] =

336 · 6
2

= 1008.

Gal
(
KHQ(

√
−31)/Q

)
is a subgroup of PGL(2, 7)× S3. Suppose (g, h) is an element

of this Galois group that generates an inertia group for some prime over 31. Then,

under the quotient maps, g maps to an element of some inertia group in PGL(2, 7)

and h maps to an element of some inertia group in S3. Since these inertia groups
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have order 8 and 2 respectively, we get that the order of (g, h) is at most 8. Thus,

the ramification indices for KHQ(
√
−31)/Q are at most 8. This means that the root

discriminant is at most 31
7
8 < 20.2. However, by [7], the root discriminant is at

least 20.9 for degree 1008 extensions. So, PGL(2, 7) /∈ πA(U31).

Example 2.1.14. The next possible order of a non-solvable group is 360. There

are 6 such groups. Five of them have a normal subgroup isomorphic to Z/3Z. In

each case, the quotient group is non-solvable of order 120. But, by Proposition

2.1.12, there are no non-solvable groups of order 120 in πA(Up) for 2 ≤ p < 37.

The last remaining group is A6. By Theorem 4.2 in [14], A6 /∈ πA(Up) for

2 ≤ p < 37.

Example 2.1.15. The next candidate non-solvable group has order 420. There is

one non-solvable group of order 420. It has a normal subgroup isomorphic to Z/7Z.

The quotient yields a non-solvable group of order 60. But, Proposition 2.1.12 tells

us there is no non-solvable group of order 60 in πA(Up) for 2 ≤ p < 37, and so the

same is true of the non-solvable group of order 420.

Example 2.1.16. There are 26 non-solvable groups of order 480. Each of them

has a normal subgroup isomorphic to Z/2Z. In each case, the quotient group is

non-solvable of order 240. Applying Proposition 2.1.12 now tells us that no such

group appears in πA(Up) for 2 ≤ p < 37.

Example 2.1.17. There are two non-solvable groups of order 504. One has a

normal subgroup isomorphic to Z/3Z. The quotient group is non-solvable of order
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168, and so the group cannot appear in πA(Up) for 2 ≤ p < 37 by Proposition

2.1.12.

The other group is the simple group PSL(2, 8). Suppose K ∈ πA(Up) with

Gal(K/Q) ∼= PSL(2, 8). PSL(2, 8) has a subgroup of order 56, and the fixed field

would yield a degree 9 sub-extension of Q. Because PSL(2, 8) is simple, the Galois

closure of this subfield is K. Corollary 4.2 in [17] now tells us that p ≥ 11. Since 7

is the largest prime dividing 504, the ramification is tame and so the inertia groups

are cyclic. The largest size of a cyclic subgroup is 9, and so the ramification indices

satisfy e ≤ 9. The root discriminant is at most p1+vp(e)− 1
e ≤ p

8
9 . By [7], the root

discriminant is at least 20.114. Thus, p
8
9 ≥ 20.114 and so p > 29.

We now consider p = 31. If e 6= 9, then e ≤ 7 and the root discriminant is not

large enough; thus, e = 9. Since ef is the order of the decomposition groups, it must

also be the order of some subgroup of PSL(2, 8). Examining the possible orders of

subgroups of PSL(2, 8), we get that f ∈ {1, 2, 56}. If f = 56, the decomposition

groups are all of PSL(2, 8), which is impossible since the decomposition groups must

be solvable. Thus, f = 2. But, the inertia groups embed into the multiplicative

groups of the residue fields, and so 31f ≡ 1 (mod e). That is, 31 ≡ 1 (mod 9) or

312 ≡ 1 (mod 9). This is a contradiction, and so PSL(2, 8) /∈ πA(U31).

Example 2.1.18. There are two non-solvable groups of order 540. Both have a

normal subgroup isomorphic to Z/3Z. The quotient in both cases is a non-solvable

group of order 180. Proposition 2.1.12 now rules out either of these groups from
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appearing in πA(Up) for 2 ≤ p < 37.

Example 2.1.19. There are five non-solvable groups of order 600. Each has a

normal subgroup isomorphic to Z/5Z. The quotients are non-solvable of order 120.

Proposition 2.1.12 shows that none of these groups appear in πA(Up) for 2 ≤ p < 37.

We conclude by remarking that 2.1.12, 2.1.13, 2.1.14, 2.1.15, 2.1.16, 2.1.17,

2.1.18, and 2.1.19, along with the fact that the next smallest non-solvable group

has order 660, provide a proof for Theorem 2.1.10 stated at the beginning of this

section.

2.1.4 Miscellaneous Examples

We now provide some more examples of certain groups that can and cannot appear

in πA(Un) for various choices of n.

Example 2.1.20. In Theorem 2.6 in [10], Harbater shows that for p < 23, πt1(Up)

is cyclic of order p− 1. He then shows that πt1(U23) is not cyclic by examining the

Hilbert class field of Q(ζ23). So, 23 is the first prime number for which there exists

a tame, non-cyclic Galois extension of Q in which that is the only finite prime that

ramifies. However, there is also a smaller, tame S3-extension of Q in which 23 is

the only finite ramified prime. It is HQ(
√
−23), the Hilbert class field of Q(

√
−23).

Letting HQ(ζ23) denote the Hilbert class field of Q(ζ23), and e, f, and r denote rami-

fication indices, residue degrees, and the number of primes a given prime splits into,
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we get the following diagram:

HQ(ζ23)

Q (ζ23)

Q
(
ζ23 + ζ−1

23

)

HQ(
√
−23)

Q
(√
−23

)

Q

r = 3, e = 1, f = 1

r = 1, e = 11, f = 1
r =1, e = 2, f =1

r = 1, e = 11, f = 1

r = 1, e = 11, f = 1

r = 1, e = 2, f = 1

r = 3, e = 1, f=1

.

A generating polynomial for HQ(
√
−23)/Q is x6 − 3x5 + 5x4 − 5x3 + 5x2 − 3x+ 1.

The Boston-Markin conjecture suggests that each Sn and An should appear as

the Galois group of an extension of Q in which only a single finite prime ramifies.

We provide examples verifying the validity of this for some small n.

Example 2.1.21. The following table gives polynomials for which the splitting

field is an Sn-extension of Q ramified at only one finite prime. Each is a polynomial

of the form xn + axk + b. The formula for the discriminant of this polynomial,

not necessarily equal to the discriminant of an integral basis for the splitting field,

was evaluated in Sage for various choices of n, k, a, and b with n and k coprime;
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it was then examined to determine if it is divisible by only a single prime. The

Galois group of the polynomial was then calculated in Magma to ensure it is the

symmetric group.
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Group Polynomial Prime Discriminant of Polynomial
S2 x2 + x+ 1 −3
S3 x3 + x+ 1 −31
S4 x4 + x+ 1 229
S5 x5 + x+ 3 253381
S6 x6 + x+ 2 −1489867
S7 x7 + x+ 5 −12867906031
S8 x8 + x+ 8 35184371265289
S9 x9 + 5x+ 7 2266170022407689
S10 x10 + x+ 5 −19531249612579511
S11 x11 + x+ 9 −994820282519684939011
S12 x12 + x+ 3 1579460160795535021
S13 x13 + 3x+ 7 4192195551520877139504541
S14 x14 + x+ 15 −21626132883476724237124893407747
S15 x15 + x+ 5 −2672692202042724403065792391
S16 x16 + x+ 2 604462471913424206493713
S17 x17 + 4x+ 15 5433651848673246939542243143983794941969
S18 x18 + 7x+ 5 1317070364135311900300962735277185473
S19 x19 + 5x+ 19 −20600759652196488327169355385743583989034909

4339
S20 x20 + 9x+ 5 −24050964311140697418472492072854195764819179
S21 x21 + 17x+ 11 7248744969863716719559194920641449610043275485

797621
S22 x22 + 7x+ 8 −31262728669811611065470364315685876809464412

11243
S23 x23 + 7x+ 9 −20571821763536694126790714014166957272330432

031886839
S24 x24 + 5x+ 1 −12445728778748446499098430732220758644866423

90599
S25 x25 + 7x+ 5 1793925153177395820430876827813937668967144393

557092857
S26 x26 + x3 + 1 −6155555807571161417171746702511618467
S27 x27 − 13x7 − 1 1029809053699266537369847627225673776464156517

50369380850107197
S28 x28 − 3x+ 10 3314552311325336471839698768518557702207158282

3276489404417644454317
S29 x29 + 3x− 5 9565376543345428133647515729457874276472855792

5108094289378013
S30 x30 + 13x23 + 1 4505334882432123699160911130088336058142612625

2802016361384529386738169

Table 1: Sn-extensions of Q Ramified at a Single Finite Prime
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Example 2.1.22. The splitting fields of the following polynomials are Galois ex-

tensions of Q ramified at only one finite prime with Galois groups A7, A8, A9, and

A10.

1. Group: A7.

Polynomial: x7 − 2x6 − 5x5 − x4 − 3x3 − x2 − x− 5.

Discriminant of polynomial (factored): 5542932.

2. Group: A8.

Polynomial: x8 − 4x7 + 4x6 + 4x5 − 5x4 − 4x3 + 2x2 + 3x+ 1.

Discriminant of polynomial (factored): 58692.

3. Group: A9.

Polynomial: x9 − x8 − 3x7 + 3x6 + 3x5 − x4 + 3x3 + 4x2 + x− 2.

Discriminant of polynomial (factored): 70894612.

4. Group: A10.

Polynomial: x10 + 2x9 + x8 − 4x7 − 2x6 + 2x5 − 2x4 − 4x3 + x2 + 3x+ 1.

Discriminant of polynomial (factored): 3880992.

Remark 2.1.23. Unlike in Theorem 1.4.6, the above primes are not necessarily the

smallest primes for which Sn or An is in πA(Up).

Theorem 2.1.11 in [11] shows that if G is a length 2 solvable group and K/Q is

a tame extension ramified only at a single finite prime p with Gal(K/Q) = G, then
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K is contained in the Hilbert class field of Q(ζp). The following example shows that

this trend does not continue.

Example 2.1.24. The splitting field of x24−6x22 +x20 +91x18 +118x16−157x14−

360x12 + 17x10 + 312x8 + 253x6 + 95x4 + 17x2 + 1 is a tame extension of Q in which

59 is the only finite ramified prime. Its Galois group is a length 3 solvable group. It

is not in Hilbert class field tower of Q(ζp). This is because the ramification indices

are 4, which does not divide the ramification indices of Q(ζp), which are 58.

2.2 Extensions Ramified at Arbitrary Sets of

Primes

We now explore the situation in which more than a single finite prime is allowed to

ramify.

Proposition 2.2.1. Let m ∈ N>1 be a natural number and let n ∈ N>1 be a square-

free natural number.

1. If gcd
(
m,
∏

p|n p− 1
)

= 1, then no groups of order m are in πtA(Un).

2. If gcd
(
m,
∏

p|n p(p− 1)
)

= 1, then no groups of order m are in πA(Un).

Proof. Because of root discriminant bounds, there are no tame extensions of Q in

which 2 is the only finite prime that ramifies; so, both statements above hold when

n = 2.
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Now let n have at least one odd prime factor. Suppose for contradiction that

G ∈ πtA(Un) is a group of order m satisfying the hypothesis of 1. Because we have

gcd
(
m,
∏

p|n p− 1
)

= 1, we get that m is odd. By Feit-Thompson, G is solvable.

So, G has a nontrivial, abelian quotient, A. Since G ∈ πtA(Un), we also have that

A ∈ πtA(Un). By Kronecker-Weber, A is the Galois group of a sub-extension of

Q(ζn)/Q, and so the order of A divides
∏

p|n p − 1. Since also |A| | |G| = m, this

contradicts gcd
(
m,
∏

p|n p− 1
)

= 1.

Suppose now that G ∈ πA(Un) is a group of order m satisfying the hypothesis of

2. Again, m must be odd and an application of Feit-Thompson yields a nontrivial,

abelian quotient, A. Kronecker-Weber tells us that A is the Galois group of a sub-

extension of Q(ζnt+1)/Q for some t ∈ N. Thus, the order of A divides
∏

p|n p
t(p−1).

Since also |A| | |G| = m, this contradicts gcd
(
m,
∏

p|n p(p− 1)
)

= 1.

Example 2.2.2. A Fermat prime is a prime number of the form 2k + 1 for some

k ∈ N. As a consequence of Proposition 2.2.1, no group of odd order can be the

Galois group of a tame extension of Q in which only Fermat primes ramify.

We now show that if n1 6= n2, then πA(Un1) 6= πA(Un2).

Proposition 2.2.3. Let n ∈ N be square-free. Then, πA(Un) determines n.

Proof. We show that p | n if and only if ∀m ∈ N,Z/pmZ ∈ πA(Un). This then shows

that πA(Un) determines the prime factors of n, which then determines n since n is

square-free.
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So suppose p | n. Then, ∀m ∈ N,Q(ζpm+1) has a sub-extension Km/Q with

Gal(Km/Q) ∼= Z/pmZ. Since Km ≤ Q(ζpm+1), the only finite prime that ramifies in

Km/Q is p. Hence, Z/pmZ ∈ πA(Un).

Now suppose that ∀m ∈ N,Z/pmZ ∈ πA(Un). Write the prime factorization

of n as n = q1 . . . qk where each qi is prime. Our goal is to show that one of the

qi is really p. By Kronecker-Weber, each Z/pmZ-extension is contained in some

cyclotomic field. So, ∀m ∈ N,∃tm ∈ N such that the extension providing witness

to the fact that Z/pmZ ∈ πA(Un) is a sub-extension of Q(ζtm)/Q. Furthermore,

since only primes dividing n may ramify, tm may be chosen so that its set of prime

factors is contained in {q1, . . . qk}. That is, tm = q
em,1

1 . . . q
em,k

k where each em,i is

a nonnegative integer. Notice now that pm divides φ(tm) = [Q(ζtm) : Q] since

Q(ζtm)/Q has a sub-extension with Galois group isomorphic to Z/pmZ . However,

φ(tm) = q
em,1−1
1 (q1 − 1) . . . q

em,k−1

k (qk − 1). If p were not equal to one of the qi,

the maximal power of p dividing φ(tm) would be the maximal power of p dividing

(q1− 1) . . . (qk − 1). This expression is independent of m, and so we may choose an

m ∈ N large enough so that pm does not divide it. Hence, p must equal one of the

qi.

The following shows that if we only consider tame extensions, we can no longer

recover n from πtA(Un).

Proposition 2.2.4. πtA(U6) = πtA(U2) ∪ πtA(U3) = πtA(U3) and πtA(U10) = πtA(U2) ∪

πtA(U5) = πtA(U5)
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Proof. First note that πtA(U2) consists only of the trivial group and so the final

equality in both assertions holds.

Now consider πtA(U6). Any extension tamely ramified only at 2 and 3 has root

discriminant at most 6. By [7], the degree of the extension is therefore at most

9. So, let G ∈ πtA(U6). We will show it is in πtA(U3). Suppose not. Then 2

must be ramified in the extension that realizes G. Since the extension is tame, its

degree is not a power of 2. Since πtA(U2) contains only the trivial group, 3 must

also be ramified. Since 3 is tamely ramified, the degree is not 3 or 9. This leaves

5, 6, and 7 as possibilities for the degree. Any group of order 5 or 7 is cyclic, and

by Kronecker-Weber neither Z/5Z nor Z/7Z is in πtA(U6). Hence the degree is 6

and G is Z/6Z or S3. Again by Kronecker-Weber, G is not Z/6Z. Thus, G is S3.

S3 has A3 as an index 2 subgroup. The fixed field for A3 would be a quadratic

extension of Q. Since it is tamely ramified only at 2, 3 and possibly ∞, it must be

Q(
√
−3). The S3-extension of Q is degree 3 over Q(

√
−3) so is abelian over it. It is

tamely ramified, so only 2 can be ramified (∞ cannot ramify as Q(
√
−3) is totally

imaginary already). So, the extension is in the ray class field for the modulus (2).

But the ray class number for the modulus (2) for Q(
√
−3) is 1, and so there is

no degree 3 abelian extension ramified only at 2. This is a contradiction. Thus

πtA(U6) = πtA(U2) ∪ πtA(U3) = πtA(U3). Note also that even the set of number fields

tamely ramified only at 2 and 3 is just the set of number fields tamely ramified only

at 3.
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Now consider πtA(U10). We show that any G ∈ πtA(U10) is in πtA(U5). Suppose

not and consider an extension realizing such a G. By [7], the degree of any extension

in which 2 and 5 are the only finite primes that may ramify is at most 21. Note

also that if the extension is of odd degree, it is totally real and so again by [7],

the degree is at most 7. Also, as above, any such extension cannot have degree a

power of 2 or 5. This leaves 3, 6, 7, 10, 12, 14, 18, 20 as possibilities. Since groups of

order 3 and 7 are cyclic, they are ruled out by Kronecker-Weber. We now consider

degrees 6, 10, 12, 14, 18, 20. As above, a degree 6 extension cannot be Z/6Z so is

S3. As above, it would have Q(
√

5) as a subfield. The degree 3 abelian extension

would be in the ray class group for the modulus (2)(5) = (10) (we do not need to

worry about ∞ since that only adds powers of 2 to the order of the ray class group

which is irrelevant for a degree 3 extension). But the ray class number for (10) is

1. For degree 10, it cannot be Z/10Z by Kronecker-Weber. This leaves only D10.

This has the rotations as an index 2 subgroup, so has Q(
√

5) as a subfield. The

whole extension would be degree 5 over Q(
√

5), but above we mentioned that the

ray class group for (10) has order 1, so this does not happen. For degree 12, the

ramification indices for primes above 2 are at most 3 and for primes above 5 are at

most 12 on account of the extension being tame. The discriminant is therefore at

most 212−4 · 512−1, and so the root discriminant is less than 7. This is impossible by

[7]. For degree 14, Kronecker-Weber prohibits Z/14Z and the only other group is

D14. The same argument as for D10 rules out D14. For degree 18, the ramification
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indices for primes above 2 are at most 9 and for primes above 5 are at most 18. The

discriminant is at most 218−2 · 518−1, and so the root discriminant is less than 8.5.

This is impossible by [7]. Finally, for degree 20, the ramification indices for primes

above 2 are at most 5 and for primes above 5 are at most 20. The discriminant is at

most 220−4 · 520−1, and so the root discriminant is less than 8.5. This is impossible

by [7]. Thus πtA(U10) = πtA(U2) ∪ πtA(U5) = πtA(U5). Note also that even the set of

number field tamely ramified only at 2 and 5 is just the set of number fields tamely

ramified only at 5.

Example 2.2.5. πtA(U22) 6= πtA(U2)∪πtA(U11). To see this, note that S3 /∈ πtA(U2)∪

πtA(U11). However, the polynomial x6 − x5 + 2x4 − 3x3 + 2x2 − x + 1 generates a

tame S3-extension of Q ramified only at 2 and 11; the ramification indices for the

primes above 2 are 3 and for those above 11 are 2. Thus, S3 ∈ πtA(U22).

We now restrict out attention to tame, solvable extensions. In particular, we

produce a bound on the maximal degree of a tame extension with length i solvable

Galois group unramified outside of a predetermined set of primes. In what follows

we will use the multichoose notation:


n
k


 =

(
n+k−1

k

)
.

Proposition 2.2.6. Let n be a square-free natural number. Let d1 = max{3, φ(n)}

and for i ≥ 1,
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di+1 = di ·





⌈
6n

di−1

2

⌉

⌈
log2(n

di−1

2 )
⌉



 · (2n)di .

If G ∈ πtA(Un) is a length i solvable group, then |G| ≤ ni.

Proof. πtA(U2) is trivial and so we will assume that n ≥ 3. Notice also that for all i,

we have di ≥ 3. We proceed by induction on i. The base case of i = 1 corresponds

to abelian extensions, and the maximal tame, abelian extension unramified outside

of primes dividing n and ∞ is Q(ζn), which has degree d1 = φ(n).

Now, any tame extension with length i + 1 solvable Galois group is in a ray

class field for a tame extension with length i solvable Galois group. We first use

Minkowski’s bound to estimate the ideal class group of a tame, length i solvable

extension. By the induction hypothesis, its degree is at most di. Since it is tame,

the absolute value of the discriminant is at most ndi−1. Thus, the Minkowski bound

is

n
di−1

2 ·
(

4

π

) di
2

·
(
di!

ddii

)
.

By [28], this is bounded above by

n
di−1

2 ·
(

4

π

) di
2

·
(

1

ddii

)
·
√

2πdi ·ddii ·e−di ·e
1

12di = n
di−1

2 ·
(

4

eπ

) di
2

·
(

1

e
di
2

)
·
√

2πdi ·e
1

12di .

Since di > 1, we have
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(
4

eπ

) di
2

·
(

1

e
di
2

)
·
√

2πdi · e
1

12di < 1,

and so the Minkowski bound is bounded above by

n
di−1

2 .

Any prime ideal has norm at least 2. Thus, the product of log2(n
di−1

2 ) many prime

ideals has norm at least n
di−1

2 , and so is equivalent to an ideal of smaller norm in

the ideal class group. Hence, every element in the ideal class group is expressible as

a product of at most log2(n
di−1

2 ) many prime ideals, each with norm at most n
di−1

2 .

By [29], the prime counting function satisfies π(x) < 1.3 · x
log(x)

, and so the number

of integral primes less than n
di−1

2 is at most

1.3 · n
di−1

2

di−1
2

log(n)
.

Since each integral prime has at most di prime ideals lying above it, noting that

di
(di−1) log(n)

< 2 for n ≥ 3 and di ≥ 2, this gives at most

1.3 · n
di−1

2

di−1
2

log(n)
· di < 5.2 · n

di−1

2

many prime ideals. We can count all products of at most log2(n
di−1

2 ) many prime

ideals using multichoose. Since we can also choose the trivial ideal, we are actually
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choosing from at most 5.2 · n
di−1

2 + 1 < 6n
di−1

2 many ideals. So, the class number,

h, satisfies

h <





⌈
6n

di−1

2

⌉

⌈
log2(n

di−1

2 )
⌉



 .

By V.1.7 in [20], the order of the ray class group for tame extensions ramifying

at primes dividing n is h · 2r0 ·N(n) ·
∏

Q|n(1− 1
N(Q)

) · (U : Un,1)−1 where r0 is the

number of real places. Since N(n) = ndi and
∏

Q|n(1− 1
N(Q)

) · (U : Un,1)−1 < 1, This

is at most h · (2n)di . By the tower law, the maximal degree over Q for an extension

with length i+ 1 solvable Galois group is at most

di · h · (2n)di < di ·





⌈
6n

di−1

2

⌉

⌈
log2(n

di−1

2 )
⌉



 · (2n)di = di+1.

Remark 2.2.7. There are only finitely many tame extensions of Q with length i

solvable Galois group unramified outside of a fixed set of primes. Proposition 2.2.6

bounds the degree of such an extension, and hence bounds the discriminant of

all such extensions. Since there are only finitely many number fields of bounded

discriminant, there are only finitely many such extensions.

Remark 2.2.8. The bound in Proposition 2.2.6 is by no means sharp. It uses
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Minkowski’s bound to estimate the size of the class group of number fields. If one

is willing to assume the generalized Riemann hypothesis, much stronger bounds are

available instead.
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Chapter 3

The Minimal Number of

Generators of Galois Groups

Harbater originally posed Conjecture 1.2.1 in [10]. In this chapter we study how the

minimal number of generators of a Galois group relates to the ramification in the

corresponding extension, and prove the validity of Harbater’s conjecture in some

special situations.

3.1 The Nilpotent Case

We first consider nilpotent extensions of Q.

Proposition 3.1.1. If G ∈ πtA(Un) is nilpotent, then d(G) ≤ log(n).

Proof. Because G is nilpotent, d(G) = max{d(P )|P is a Sylow subgroup of G}.
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Since each Sylow subgroup is isomorphic to some quotient of G, each Sylow sub-

group is also in πtA(Un). Thus, we may restrict our attention to the case in which

G is a p-group.

Since G is a p-group, by the Burnside basis theorem

G/φ(G) ∼= (Z/pZ)d(G) .

Hence, (Z/pZ)d(G) ∈ πtA(Un) as well. By the Kronecker-Weber theorem, if 2 is

ramified in an abelian extension, then it is wildly ramified. Again by the Kronecker-

Weber theorem, each odd prime that ramifies in an abelian extension can increase

the minimal size of a generating set of the Galois group by at most 1. Hence, at least

d
(

(Z/pZ)d(G)
)

= d(G) many odd primes must ramify in the extension providing

witness to the fact that (Z/pZ)d(G) ∈ πtA(Un). Thus, at least d(G) many odd primes

divide n, and so d(G) ≤ log(n).

Remark 3.1.2. In the nilpotent case, we may drop the tameness assumption in

Harbater’s conjecture as long as we use C = 2 instead of C = 0. That is, if

G ∈ πA(Un) is nilpotent, then d(G) ≤ log(n) + 2. The proof would proceed as in

Proposition 3.1.1, except now 2 may ramify. If 2 ramifies, the Kronecker-Weber

theorem tells us that this contributes at most 2 to the minimal size of a generating

set of the Galois group. This is offset by the fact that we place the constant C = 2

on the right side of the inequality.
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3.2 Groups with an Index 2 or Index 3 Nilpotent

Subgroup

In this section we prove the validity of Harbater’s conjecture if we restrict to Galois

groups having an index 2 or index 3 nilpotent subgroup.

3.2.1 The Index 2 Case

We start with the index 2 case by examining nilpotent extensions of quadratic

number fields.

Lemma 3.2.1. There is a constant C such that if F is any quadratic extension of

Q with discriminant d and class number h, then log2(h) < C + .8 · log
(
|d|
4

)
.

Proof. List the quadratic number fields, F1, F2, . . . , Fi, . . . , ordered by increasing

size of the absolute value of their discriminants, |di|. Let hi and Ri denote the class

number of Fi and the regulator of Fi respectively. By the Brauer-Siegel theorem,

for all ε > 0, there is an N ∈ N such that if i > N ,

log (hiRi)

log
(
|di|

1
2

) < (1 + ε).

Let ε = .1. Then for i > N we have

log(hiRi) < 1.1 · log
(
|di|

1
2

)
.
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Since there are only finitely many number fields of bounded discriminant, we may

also choose N large enough so that if i > N , then |di| > 4.

Let

C1 = max{log2(hi)}1≤i≤N +

∣∣∣∣log

(
1

4

)∣∣∣∣ .
Then, for 1 ≤ i ≤ N , we get

log2(hi) < C1 + .8 · log

(
|di|
4

)
.

For i > N , we said

log(hiRi) < 1.1 · log
(
|di|

1
2

)
.

Hence,

hiRi < |di|
1.1
2

and so

hi <
1

Ri

· |di|
1.1
2 .

Taking the base 2 logarithm of both sides of this inequality, we get
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log2(hi) < log2

(
1

Ri

)
+

1.1

2
· log2 (|di|)

= log2

(
1

Ri

)
+

1.1

2 log(2)
· log (|di|)

< log2

(
1

Ri

)
+ .8 · log (|di|)

= log2

(
1

Ri

)
+ .8 · log(4) + .8 · log

(
|di|
4

)
.

However, by [1], Ri > .48 for quadratic fields. Hence, there is a constant C2 such

that

log2

(
1

Ri

)
+ .8 · log(4) < C2.

Thus,

log2(hi) < C2 + .8 · log

(
|di|
4

)
.

Letting C = max{C1, C2} completes the proof of the lemma.

Remark 3.2.2. By Lemma 3.2.1, there is a constant such that that for any Galois

extension K/Q with a quadratic sub-extension over which it is abelian and unrami-

fied, d (Gal (K/Q)) is bounded above by the sum of the constant and the logarithm

of the product of the ramified primes in K/Q.

Any unramified, abelian extension, K, of a quadratic number field, F , is con-

tained in, E, the Hilbert class field of F . In particular, since the Hilbert class field

has degree 2h over Q, where h is the class number of F , any subfield has degree at
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most 2h. So, the corresponding Galois group, G, satisfies

d(G) ≤ log2(|G|) ≤ log2(2h) = 1 + log2(h).

E

K

F

Q

Degree 2h Unramified

Degree 2

G = Gal(K/Q)

.

Letting C be 2 larger than the constant in Lemma 3.2.1, for any unramified, abelian

extension of any quadratic number field with discriminant d, the product of the

ramified primes is at least |d|
4

and

d(G) ≤ 1 + log2(h) < C + log

(
|d|
4

)
.

We now consider the case where the index 2 subgroup is abelian.

Lemma 3.2.3. There is a constant C such that if K/Q is any extension of Q with a

quadratic sub-extension, F , over which K is abelian Galois and tamely ramified and

if K/Q is unramified outside of primes dividing n and ∞, then d (Gal(K/F )) + 1 ≤

log(n) + C.
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Proof. Let K be a number field satisfying the hypotheses of the lemma. We will

construct a constant, independent of K, for which the above inequality holds.

Let F be the quadratic sub-extension of K/Q. Since K/F is abelian, K is a

subfield of some ray class field of F for some modulus m.

Ray class field for the modulus m

K

F

Q

Abelian

Degree 2

.

Since K/F is a tame extension, we may assume that the highest power of each

prime ideal dividing m is 1. Furthermore, we may assume that each prime ideal

P | m ramifies in K/F , for otherwise we can replace m with m
P

. Let m be the

square-free integer obtained by multiplying together all the integral primes lying

under some prime ideal P | m. Since each prime ideal P | m ramifies in K/F , each

prime integer p | m ramifies in K/Q.

Let Clm(F ) denote the ray class group for the modulus m and let Cl(F ) denote

the ideal class group of F . By Proposition 3.2.3 in [5], Cl(F ) is isomorphic to

Clm(F ) modulo some homomorphic image of (OF/m)∗. Hence,
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d (Clm(F )) ≤ d ((OF/m)∗) + d (Cl(F )) .

Letting h be the class number, we have

d (Cl(F )) ≤ log2(h).

Write m = m0m∞ where m0 denotes the finite part of m and m∞ denotes the infinite

part of m. By the Chinese remainder theorem and the fact that each prime ideal

P | m0 only does so to the first power,

(OF/m)∗ = (OF/m0)∗ × (Z/2Z)|m∞|

∼=
∏
P|m0

(OF/P)∗ × (Z/2Z)|m∞| .

Since each P is a prime ideal, each (OF/P)∗ is isomorphic to the multiplicative

group of some finite field and so is cyclic. Because a quadratic number field has at

most two infinite places, (Z/2Z)|m∞| is the product of at most two cyclic groups.

Moreover, each p | m can split into at most two prime ideals in F , and so the

number of prime ideals P | m0 is at most twice the number of prime integers p | m.

Letting ω(m) denote the number of prime factors of m, we obtain
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d (Clm(F )) ≤ d

∏
P|m0

(OF/P)∗ × (Z/2Z)|m∞|

+ d (Cl(F ))

≤ 2 · ω(m) + 2 + log2(h).

Because K is a subfield of the ray class field, Gal(K/F ) is a quotient of Clm(F ).

Thus,

d (Gal(K/F )) ≤ d (Clm(F )) ,

and so

d (Gal(K/F )) + 1 ≤ 2 · ω(m) + 2 + log2(h) + 1.

Let π(·) denote the prime counting function. Note that

2 · ω(m) ≤ 2 · π
(
320
)

+ .1 · log(m).

This is because each prime p | m with p ≤ 320 contributes 2 to the left hand side

of the above inequality which is canceled out by the 2 · π (320) on the right hand

side. Each prime p | m with p > 320 still only contributes 2 to the left hand side

but contributes .1 · log(p) > .1 · log(320) > 2 to the right hand side. Letting

C1 = 2 · π
(
320
)

+ 2,

we obtain that

2 · ω(m) + 2 ≤ C1 + .1 · log(m).
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Denoting the discriminant of F/Q by d, by Lemma 3.2.1 there is a constant C2,

independent of F , such that

log2(h) + 1 < C2 + .8 · log

(
|d|
4

)
.

Hence,

d (Gal(K/F )) + 1 < C1 + .1 · log (m) + C2 + .8 · log

(
|d|
4

)
.

Let C = C1 + C2 + 2 and A = gcd (|d|,m). Note that C is independent of K and

that

d (Gal(K/F )) + 1 < (C1 + C2) + .1 · log (m) + .8 · log

(
|d|
4

)
= (C1 + C2) + .1 · log (A) + .1 · log

(m
A

)
+ .8 · log(A) + .8 · log

(
|d|
4A

)
< (C1 + C2 + 1) + .9 · log(A) + .9 · log

(
|d|
4A

)
+ .9 · log

(m
A

)
= (C1 + C2 + 1) + .9 · log

(
A · |d|

4A
· m
A

)
< (C1 + C2 + 2) + log

(
A · |d|

4A
· m
A

)
= C + log

(
|d|
4
·m

gcd (|d|,m)

)
.

Noting that the product of the ramified primes in K/Q is at least
|d|
4
·m

gcd(|d|,m)
completes

the proof of the lemma.

Finally, we now allow K to be any nilpotent, tamely ramified extension over the
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quadratic sub-extension.

Theorem 3.2.4. There is a constant C such that for every positive square-free

integer n, if G ∈ πtA(Un) has a nilpotent subgroup of index 2, then d(G) ≤ log(n)+C.

Proof. Let C be the constant from Lemma 3.2.3. Let G ∈ πtA(Un) have a nilpotent

subgroup H with [G : H] = 2. Let K be an extension providing witness to the

fact that G ∈ πtA(Un). We must show that d(G) ≤ log(n) + C. Without loss of

generality, we may assume that all primes dividing n ramify in K/Q, since we can

otherwise replace n with the product of the ramified primes in K/Q. Let F be the

quadratic number field corresponding to the fixed field for H.

K

F

Q

H

G

.

Note now that

d(H) = max{d(P ) | P is a Sylow subgroup of H}.

So, choose some Sylow subgroup P ≤ H such that d(H) = d(P ). Letting S denote
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the product of the remaining Sylow subgroups, we get

H ∼= P × S.

Let E denote the fixed field under S of K/F . Hence,

Gal(E/F ) ∼= P.

Finally, take the fixed field, L, for the Frattini subgroup of P . Hence, L/F is a

sub-extension of E/F with Gal(L/F ) ∼= P/Φ(P ).

K

E

L

F

Q

S

Φ(P )

P/Φ(P )

G P

H

.
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By the Burnside basis theorem, P/Φ(P ) is abelian. By Lemma 3.2.3,

d (P/Φ(P )) + 1 ≤ log(n) + C.

Thus,

d(G) ≤ d(H) + 1

= d(P ) + 1

= d (P/Φ(P )) + 1

≤ log(n) + C.

3.2.2 The Index 3 Case

We now consider the index 3 situation; the proofs are similar to the index 2 case.

For an integer d, we will let rad(d) =
∏

p|d,p prime p.

Lemma 3.2.5. There is a constant C such that if F/Q is any cubic extension of

Q with discriminant d, then d (Cl(F )) < C + .95 · log (rad(d)).

Proof. Let F be a number field with [F : Q] = 3. Cl(F ) is abelian and so d (Cl(F ))

is equal to the maximal rank of the p-Sylow subgroups of Cl(F ). We first consider

the 2-Sylow subgroup. By the remark following Theorem 1.1 in [2], there is a con-

stant C1, independent of F , such that the 2-rank is bounded above by
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log2

(
C1 · |d|.2785

)
= log2(C1) +

2 · .2785

log(2)
· log

(
|d|

1
2

)
.

Letting C2 = log2(C1) and noting that 2·.2785
log(2)

< .85, we get that the 2-rank is less

than

C2 + .85 · log
(
|d|

1
2

)
.

For the ranks of the other Sylow subgroups we will consider the class group as

a whole. An application of the Brauer-Siegel theorem, with ε = .01, along with the

fact that the regulator is at least .28 by [1], allows us to conclude that there is a

C3, independent of F , such that

|Cl(F )| < C3 · |d|
1+.01

2 .

Hence, the p-rank for p ≥ 3 is at most

log3(C3) + 1.01 · log3

(
|d|

1
2

)
.

Letting C4 = log3(C3) and noting that 1.01
log(3)

< .95, we get that the above is at most

C4 + .95 · log
(
|d|

1
2

)
.

Finally, setting C5 = max{C2, C4} gives
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d (Cl(F )) < C5 + .95 · log
(
|d|

1
2

)
.

Note that if p /∈ {2, 3}, then vp(d) ≤ 2. By section 6 of chapter 3 in [30], v2(d) ≤ 3

and v3(d) ≤ 5. So, |d| 12 ≤ 2 · 33 · rad(d). Letting C = C5 + log (2 · 33) , we conclude

that

d (Cl(F )) < C + .95 · log (rad(d)) .

Remark 3.2.6. By Lemma 3.2.5, there is a constant such that if K/Q is Galois with

a cubic sub-extension over which K is abelian and unramified, then d (Gal (K/Q))

is bounded above by the sum of the constant and the logarithm of the product of

the ramified primes in K/Q.

If F is a cubic number field with K/F abelian and unramified and K Ga-

lois over Q, then d (Gal (K/F )) ≤ d(Cl(F )). Since Gal(K/F ) is of index 3 in

Gal(K/Q), d (Gal (K/Q)) is at most 2 + d(Cl(F )). Note now that rad(d) is the

product of the ramified primes in K/Q and so applying Lemma 3.2.5 verifies the

claim at the start of the remark.

Lemma 3.2.7. There is a constant C such that if K/Q is any Galois extension of

Q with a cubic sub-extension, F , over which K is abelian and tamely ramified and

if K/Q is unramified outside of primes dividing n and ∞, then d (Gal(K/F )) + 1 ≤

log(n) + C.
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Proof. As in Lemma 3.2.3 we consider ray class fields. Let F be the cubic sub-

extension and let m be the smallest modulus admissible for K and m be the square-

free product of integral primes lying under primes dividing m. We may assume

that each P | m only does so to the first power and that each such prime ideal also

ramifies in K/F . An analogous argument as in Lemma 3.2.3 shows that 3 · ω(m) +

3 + d (Cl(F )) is an upper bound for d (Gal(K/F )). Letting C1 = 3 · π(3300) gives

3 · ω(m) ≤ C1 + .01 · log(m). If C2 = C1 + 3 + 1, C3 is the constant from Lemma

3.2.5, and d is the discriminant of F , then

d (Gal(K/F )) + 1 < C2 + .01 · log(m) + C3 + .95 · log (rad(d)) .

Let C = C2 + C3 + 2 and A = gcd(rad(d),m). Then,

d (Gal(K/F )) + 1

< (C2 + C3) + .01 · log
(m
A

)
+ .01 · log(A) + .95 · log

(
rad(d)

A

)
+ .95 · log(A)

< (C2 + C3 + 2) + .96 · log
(m
A

)
+ .96 · log

(
rad(d)

A

)
+ .96 · log(A)

= C + .96 · log

(
m · rad(d)

A

)
< C + log

(
m · rad(d)

gcd(rad(d),m)

)
.

Note now that m·rad(d)
gcd(rad(d),m)

is precisely the product of the ramified primes in K/Q,

and so is at most n. This completes the proof of the lemma.
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Theorem 3.2.8. There is a constant C such that for every positive square-free

integer n, if G ∈ πtA(Un) has a nilpotent subgroup of index 3, then d(G) ≤ log(n)+C.

Proof. The proof is identical to Theorem 3.2.4 except replace Lemma 3.2.3 with

Lemma 3.2.7 and let [G : H] = 3 instead of 2.

3.2.3 Wild Ramification

Remark 3.2.9. Theorem 3.2.4 and Theorem 3.2.8 still hold if we expand our at-

tention to extensions of Q in which primes larger than or equal to 5 are wildly

ramified. Furthermore, if 3 is unramified in the quadratic or cubic sub-extension

of Q, then 3 may be wildly ramified in the nilpotent extension of the quadratic or

cubic. Additionally, the above proofs still hold as written if 2 or 3 is wildly ramified

in the quadratic or cubic sub-extension of Q.

The only place that tameness was used was in bounding the number of generators

of the ray class group by bounding the number of generators of

(OK/m)∗ ∼= (OK/m0)∗ × (Z/2Z)|m∞| ∼=
∏
P|m0

(OK/P)∗ × (Z/2Z)|m∞|

in the proofs of Lemma 3.2.3 and Lemma 3.2.7. If instead we no longer consider

only tame moduli for primes lying above integral primes larger than 3, or lying

above 3 when 3 is unramified in the quadratic or cubic, we now get
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(OK/m)∗ ∼= (OK/m0)∗ × (Z/2Z)|m∞| ∼=
∏
P|m0

(
OK/PkP

)∗ × (Z/2Z)|m∞|

where kP can be larger than 1 if it lies over an integral prime larger than 3 or above

3 when 3 is unramified in the quadratic or cubic. By Corollary 4.2.11 in [5], since

p ≥ min{e+ 2, kP} by assumption, we get that

(
OK/PkP

)∗ ∼= (Z/(pf − 1)Z
)
× (Z/pqZ)(r+1)f ×

(
Z/pq−1Z

)(e−r−1)f

where kP + e − 2 = eq + r, 0 ≤ r < e. Note for a quadratic extension that

(r + 1)f ≤ ef ≤ 2, and(e− r − 1)f ≤ (e− 1)f ≤ ef ≤ 2, and for a cubic extension

that (r + 1)f ≤ ef ≤ 3, and(e− r − 1)f ≤ (e− 1)f ≤ ef ≤ 3. So,
(
OK/PkP

)∗
is a

product of at most 5 cyclic groups in the quadratic case, and 7 cyclic groups in the

cubic case. If we still let m be the product of the integral primes lying under those

dividing the modulus, adjusting the proof of Lemma 3.2.3 for the current situation,

we now have

d (Gal (K/F )) + 1 ≤ 5 · (2 · ω(m)) + 2 + log2(h) + 1

instead of

d (Gal (K/F )) + 1 ≤ 2 · ω(m) + 2 + log2(h) + 1.

If we let C1 = 10 · π(3100) + 2 instead of 2 · π(320) + 2, we get
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10 · ω(m) + 2 ≤ C1 + .1 · log(m)

and the rest of the proof is the same. Adjusting the proof of Lemma 3.2.7 for the

current situation, we get that 7 · (3 · ω(m)) + 3 + d (Cl(F )) + 1 is an upper bound

for d (Gal(K/F )) + 1. Now let C1 = 21 · π(32100) instead of 3 · π(3300) and the rest

of the proof is the same. The proofs of Theorem 3.2.4 and Theorem 3.2.8 still work

even in this new situation.

3.3 Modular Forms

Let f =
∑

n≥1 anq
n ∈ Sk(N, ε) be a newform and let K = Q(. . . , an, . . . ). For each

nonzero prime λ in OK , there is a representation of the absolute Galois group of

Q that takes values in GL(2,OK). Reducing modulo λ and letting F = OK/λ and

l = Z ∩ λ, we obtain a mod l representation

ρf,λ : Gal(Q/Q)→ GL(2,F).

For more details, see 21.1 in [27].

Proposition 3.3.1. If l is a regular prime and f is of level a power of l, then

conjecture 2.1 in [10] holds for the field corresponding to the image of ρf,λ with a

constant C = 4.
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Proof. Let ρprojf,λ be the projectivized representation, which is the composition ρf,λ

with the map from GL(2,F) → PGL(2,F) which is just modding out by scalar

matrices. Let E be the field corresponding to the image of ρprojf,λ . By Theorem

21.1.1 in [27], E is ramified only at l. By [8] and also by [32], the Galois group of

E/Q requires at most 3 generators, or is otherwise an elementary abelian l−group

semidirect a cyclic group of order prime to l. In the first case the conjecture is

satisfied with C = 3, so we consider the latter where the Galois group is G ∼=

(Z/lZ)r o Z/tZ. This gives the following tower:

E

E(Z/lZ)r

Q

(Z/lZ)r

Z/tZ

.

Since E(Z/lZ)r is an abelian extension of Q ramified only at l and of order prime

to l, it is contained in Q(ζl) and so is totally ramified. Since E/E(Z/lZ)r is also

abelian, ramified only at primes over l, it is contained ray class field of Q(ζl) for

some modulus (ls). Notice that there is only one prime lying over l in E(Z/lZ)r

since it is totally ramified over Q. Hence, this is the only prime that can ramify in

E/E(Z/lZ)r . If it is not totally ramified in this extension, then since the extension

is abelian, taking the fixed field for the inertia group would give an unramified,
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abelian subextension of E/E(Z/lZ)r of order dividing [E : E(Z/lZ)r ] = lr. Taking the

compositum of this subextension with Q(ζl) would then give an abelian, unramified

extension of Q(ζl) of order a power of l. This would contradict l being regular, and

so E/E(Z/lZ)r must be totally ramified at the prime over l. In particular, this also

means that E/Q is totally ramified at l. Since the extension is tame, this means

r = 0 and so G is cyclic and generated by one element.

So, the conjecture holds for the image of the projectivized representation with

C = 3. However, the image of the projectivized representation is just the a quotient

of the image of the original representation by a cyclic group, (the scalar matrices

form a cyclic group isomorphic to F∗), and so requires at most one more generator.

Hence, the conjecture holds for the image of the original representation with C =

4.

3.4 Consequences and Examples

Proposition 3.4.1. If Harbater’s conjecture holds, then for all n, πt1(Un) is topo-

logically finitely generated.

Proof. By assumption of Harbater’s conjecture, every group in the inverse system

whose limit is πt1(Un) is generated by at most C + log(n) elements. Now apply

Lemma 2.5.3 in [26].

Proposition 3.4.2. If Harbater’s conjecture holds with a constant C, then for any

62



tame extension K/Q, if m is the product of the ramified primes we have that the

class group of K has a generating set of size at most 1 + [K : Q] (log(m) + C − 1).

Proof. Any group G that can be generated by d elements is a quotient of the free

group on d elements, Fd. So, G ∼= Fd/N . By the correspondence theorem, any

subgroup of G is of the form H/N for N ≤ H ≤ Fd. Also, [Fd : H] = [G : H/N ].

Let this index be n. By the Nielsen-Schreier theorem, we know that H is free of

rank 1 + n(d− 1). So, H/N can be generated by 1 + n(d− 1) elements.

Let K be a tame extension of Q and let m be the product of the ramified primes.

Let n = [K : Q], HK be the hilbert class field of K, and M be the Galois closure of

HK over Q.

M

HK

K

Q

n

.

By assumption of Harbater’s conjecture, we get that Gal(M/Q) has at most

log(m) + C generators. Since Gal(M/K) is an index n subgroup, it has at most

1+n(log(m)+C−1) generators. Since Gal(HK/K), which is isomorphic to the class

group of K, is a quotient of Gal(M/K), it also has at most 1 +n(log(m) +C−1) =
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1 + [K : Q](log(m) + C − 1) generators.

Example 3.4.3. As a consequence of Theorem 3.2.4 and Theorem 3.2.8, if p is a

prime number and n is a square-free natural number, then there are only finitely

many groups of the form (Z/pZ)i oZ/2Z or (Z/pZ)i oZ/3Z in πtA(Un). If we also

assume that n is coprime to 2 and 3, then the same is true for πA(Un).

These groups are of interest because they are potential cases in which Harbater’s

conjecture could have clashed with the Boston-Markin conjecture. They include all

generalized dihedral groups, of which elementary abelian p-groups semidirect Z/2Z

by inversion for p ≥ 3 are a special case. These groups have Z/2Z abelianization, so

the Boston-Markin conjecture predicts there should exist extensions ramified at a

single prime that realize each of them. The groups themselves also require as many

generators as the rank of the elementary abelian p-group, so Harbater’s conjecture

suggests that the product of the primes in the extensions realizing them would have

to be quite large.

Remark 3.4.4. The arguments of section 3.2 actually show that for the corresponding

extensions, d(G) < C + .97 · log(n) where n is the product of the ramified primes.

This means that when n is large, d(G) < log(n) without the aid of the constant.

Since each prime can only divide the discriminant a bounded number of times for

quadratic and cubic extensions, this means that if the discriminant is large, then n is

also large. Since there are only finitely many number fields of bounded discriminant,

n is small for only finitely many such extensions and so the constant is necessary
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for only finitely many such extensions. This provides evidence that the constant

should be small, and perhaps even 0.

Proposition 3.4.5. Let K/Q be a tame Galois extension with Galois group G. For

a prime p ∈ Z, let rp be the number of primes it splits into in K/Q. Let n be the

product of the ramified primes in K/Q. If for some prime 2 + log2(rp) < log(n),

then d(G) < log(n).

Proof. Since the extension is tame, the ramification group is cyclic for each prime.

Also, since the quotient of the decomposition group by the ramification group is

cyclic for each prime, the decomposition group can be generated by at most 2

elements for each prime. For any prime, the decomposition group, Dp, has index rp.

If Dp does not generate all of G = Gal(K/Q), then pick some element, g1 ∈ G−D.

This generates a larger subgroup < D, g1 >. Since it contains D as a subgroup,

we get |D| divides the order of this group and so it must have order at least 2|D|

and hence index at most rp
2

. If < D, g1 >6= G, pick a g2 not in its span. This then

generates a subgroup at least twice as large cardinality and half as large index.

Continuing in this fashion, we need only choose at most log2(rp) many elements

until we generate a subgroup of index at most 1, and hence is all of G. So, G can

be generated by the two elements generating Dp as well as log2(rp) many other

elements. So, if 2+ log2(rp) < log(n), then d(G) < log(n). Note that for unramified

primes, the inertia groups are trivial and so the decomposition groups are cyclic.

So if the prime is unramified, we only need 1 + log2(rp) < log(n).
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3.5 Extensions of Other Number Fields

In this section we examine how the number of generators of the Galois group relates

to the number of ramified primes in nilpotent extensions of a fixed base number

field.

3.5.1 Tame Extensions

Proposition 3.5.1. Let K be a number field with class group C. Suppose E/K is a

tame, nilpotent extension in which t prime ideals in K ramify. Let G = Gal (E/K).

Then, d(G) ≤ d(C)+ t. Note that in the case that K is totally real, we do not allow

ramification at the infinite places.

Proof. Noting that d(G) = max{d(P ) | P is a Sylow subgroup of G} and applying

the Burnside basis theorem, it suffices to prove the proposition in the situation where

E/K is abelian. Let P1,P2, . . . ,Pt be the primes that ramify. E is then contained

in the ray class field for modulus that is the product of these primes. By Proposition

3.2.3 in [5], C is isomorphic to the ray class group modulo some homomorphic image

of (Ok/P1 . . .Pt)
∗ ∼= (OK/P1)∗× · · · × (OK/Pt)

∗. Each (OK/Pi)
∗ is cyclic, so any

homorphic image of (Ok/P1 . . .Pt)
∗ requires at most t generators. Thus, the ray

class group can be generated using at most d(C)+ t elements. Since G is a quotient

of the ray class group, we have d(G) ≤ d(C) + t.

Example 3.5.2. As a consequence of Proposition 3.5.1, if K has class number 1,

then any tame, nilpotent extension ramified only at a single prime is cyclic. Suppose
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instead now that K has a cyclic class group, C, of order h. Let p ∈ Z be a prime

and P ∈ OK be a prime lying over it with residue degree f . If gcd(h, pf − 1) = 1,

then any tame, nilpotent extension E/K in which P is the only ramified prime is

cyclic. As in Proposition 3.5.1, the ray class group for P modulo some homomorphic

image of (OK/P)∗ ∼= Z/(pf − 1)Z is isomorphic to C. Any homomorphic image is

cyclic of order dividing pf − 1, and so, by Schur-Zassenhaus, the ray class group is

a semidirect product of a cyclic group of order dividing pf − 1 and C. Since the

ray class group is abelian, this is actually a direct product. Since h is coprime to

pf − 1 and C is cyclic, the Chinese remainder theorem tells us this direct product

is a cyclic group.

3.5.2 Arbitrary Extensions

Proposition 3.5.3. Let K be a number field with [K : Q] = n. Let E/K be a

nilpotent extension. Suppose the primes in K that are ramified in E/K do not lie

over 2 or any integral prime that ramifies in K/Q. Let C be the class group of K

and a the number of primes that ramify in E/K. Then, the number of generators

of the Galois group of E/K is at most d(C) + n+ a.

Proof. Since the number of generators required in a nilpotent group is the maximum

of the number of generators of one of its Sylow subgroups, it suffices to prove this for

p-groups. By the Burnside basis theorem, it then suffices to prove this for abelian

p-groups. Let m be the product of the primes ramifying in E/K. Any abelian
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p-power extension ramified only at primes dividing m is in a ray class field for mk

for some k. If some prime P over p divides m, then by Corollary 4.2.11 in [5],

(
OK/Pk

)∗ ∼= (Z/(pf − 1)Z
)
× (Z/pqZ)(r+1)f ×

(
Z/pq−1Z

)(e−r−1)f

where k + e− 2 = eq + r, 0 ≤ r < e. Since p is unramified by assumption,

(
OK/Pk

)∗ ∼= (Z/(pf − 1)Z
)
×
(
Z/pk−1Z

)f ∼= (Z/(pk−1)(pf − 1)Z
)
×
(
Z/pk−1Z

)f−1
.

This contributes at most 1 + f − 1 = f generators to
(
OK/mk

)∗
. If g is the number

of primes p splits into in K, even if all of them divide m, this contributes at most

gf = n generators to
(
OK/mk

)∗
. For the primes L over l that divide m but do not

lie over p, we have

(
OK/Lk

)∗ ∼= (Z/(lf − 1)Z
)
× (Z/lqZ)(r+1)f ×

(
Z/lq−1Z

)(e−r−1)f
.

This contributes to the p-part of
(
OK/mk

)∗
if and only if p divides lf − 1, in which

case it contributes at most one generator since
(
Z/(lf − 1)Z

)
is cyclic. Hence, the

number of generators of the p-part of
(
OK/mk

)∗
is at most n + a, where a is the

number of primes dividing m. By Proposition 3.2.3 in [5], C is isomorphic to the

ray class group modulo some homomorphic image of
(
OK/mk

)∗
, which implies that

the p-part of the ray class group requires at most d(C)+n+a generators. Note that
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in the case p = 2, we do not allow primes lying over 2 to ramify, so we can subtract

n from this bound. However, the potentially n infinite places can each contribute a

Z/2Z factor to the ray class group and so we need to add n back to the bound.

Remark 3.5.4. Proposition 3.5.3 in the case of K = Q says that for nilpotent

extensions, the number of generators required for the Galois groups is at most 1

plus the number of ramified primes. If we allow 2 to ramify and only count finite

primes, this upper bound is realized as demonstrated by the example of Q (ζ8) /Q,

in which 2 is the only ramified finite prime, with Galois group Z/2Z× Z/2Z.

Example 3.5.5. Let K be a number field with a cyclic class group C. Let p ≥ 3

be a prime that splits completely in K/Q with gcd (|C|, p · (p− 1)) = 1. Let P be

any prime in OK lying over p. Then, any nilpotent extension E/K ramified only

at P is cyclic. Note here that if K is totally real, then we do not allow any infinite

place to ramify in E/K.

First consider an abelian extension E/K ramified only at P. Then it is in the

ray class group corresponding to the modulus Pk for some k ∈ N. By Proposition

3.2.3 in [5], C is isomorphic to this ray class group modulo some homomorphic

image of
(
OK/Pk

)∗
. By Corollary 4.2.11 in [5],

(
OK/Pk

)∗ ∼= (Z/(pf − 1)Z
)
× (Z/pqZ)(r+1)f ×

(
Z/pq−1Z

)(e−r−1)f
.

where k + e − 2 = eq + r, 0 ≤ r < e. By assumption, f = e = 1 since p splits
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completely in K/Q. So, r = 0 as well since r < e and q = k−1. Hence, (e−r−1)f =

0, (r + 1)f = 1, and

(
OK/Pk

)∗ ∼= (Z/(p− 1)Z)×
(
Z/pk−1Z

) ∼= Z/
(
(p− 1) · pk−1

)
Z.

Any homomorphic image, say N , of
(
OK/Pk

)∗
is a quotient of

(
OK/Pk

)∗
and so

is also cyclic of order dividing (p − 1) · pk−1. Thus, the ray class group modulo a

cyclic group of order dividing (p− 1) · pk−1, N , is isomorphic to C, a cyclic group of

order prime to (p−1) ·p. By Schur-Zassenhaus, the ray class group is isomorphic to

some semidirect product, NoC. Since the ray class group is abelian, the semidirect

product must be a direct product, N×C. Since N and C are both cyclic of coprime

order, N × C is also cyclic.

Now suppose that E/K is a nilpotent extension ramified only at P. By the

Burnside basis theorem, if we take the quotient of the Galois group by the Frattini

subgroup, we obtain an abelian extentsion of K ramified only at P. By the above

argument, this extension is cyclic. Hence, the original Galois group must also be

cyclic.

As an application of the above, consider a quadratic extension of Q with class

number 1. Determining whether an unramified prime p ≥ 3 splits completely

amounts to determining if it is a quadratic residue. If it is, then it splits and

so the above applies to both primes above p in the quadratic field.
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