
1. Let
(
an
)
n∈N be a sequence of non-negative real numbers such that

∑∞
n=1 an converges.

(a) Prove that
∞∑
n=1

anx
n

converges uniformly on the closed interval [−1, 1].

(b) Given an example to show that this series need not converge uniformly on [−2, 2].

Solution. (a) Given an ε > 0, pick n0 such that
∑

n≥n0
an < ε. Then for any x ∈ [−1, 1],

we have
∑

n≥n0
|anxn| < ε.

(b) Let an = (2/3)n for all n ∈ N, then the series
∑∞

n=1 anx
n diverges for |x| ≥ 3/2.

2. For each of the following, either give an example or explain why no such example exists.

(a) An abelian (i.e. commutative) group with 30 elements which is not cyclic.

(b) A non-commutative group with 217 = 31× 7 elements.

Solution. (a) According to the structure of finite abelian groups, every commutative group
with 30 elements is isomorphic to (Z/2Z)×(Z/3Z)×(Z/5Z) ∼= Z/30Z. The last isomorphism
is a special case of the Chinese remainder theorem.

(b) No. By Sylow’s theorem, every group G with 127 elements has a normal subgroup N
with 31 elements and a subgroup H with 7 elements. The number of 7-Sylow subgroups
divides 31 and is congruenet to 1 modulo 7, so H is also a normal subgroup. Therefore G
is isomorphic to a (Z/31Z)× (Z/7Z).

3. Let f(x) be an infinitely differentiable real-valued function on the real line such that
−x2 ≤ f(x) ≤ x2 for all non-zero real numbers x.

(a) Show that f(0) = 0.

(b) Show directly from the definition of derivative that f ′(0) = 0.

Solution. (a) We have f(0) = limx→0 f(x) = 0 because f is smooth, and for every ε > 0,
|f(x)| ≤ ε/2 < ε for all x with |x| ≤ min(1, ε/2).

(b) For every ε > 0 and every non-zero real number x with |x| < ε, we have
∣∣∣f(x)−f(0)x

∣∣∣ ≤
x2

|x| < ε.
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4. Let V,W be finite dimensional vector spaces over R and consider their dual spaces
V ∗ := HomR(V,R) and W ∗ := HomR(W,R). For any linear transformation T : V → W ,
and for any f ∈W ∗, let T ∗(f) := f ◦ T .

(a) Prove that for T and f as above, T ∗(f) is an element of V ∗.

(b) Prove that T ∗ defines a linear transformation from W ∗ to V ∗.

(c) Prove that if T is injective then T ∗ is surjective.

Solution. (a) For any a, b ∈ R and any v, v′ ∈ V , we have

T ∗(f)(av + bv′) = f(T (av + bv′)) = f(aT (v) + bT (v′)) = aT ∗(f)(v) + bT ∗f(v′).

(b) For any a, b ∈ R and any λ, µ ∈ W ∗, we have T ∗(aλ + bµ) = aT ∗(λ) + bT ∗(µ) because
when evaluated at any v ∈ V we get the same output aλ(T (v)) + bµ(T (v)).

(c) Let U be a vector subspace of W such that W = T (V ) ⊕W . Given λ ∈ V ∗, define
µ ∈W ∗ by µ(T (v) + u) := µ(v) for all v ∈ V and all u ∈ U . Then T ∗(µ) = λ.

5. Let a0, a1, a2, . . . be a sequence of positive real numbers such that ai > ai+1 for all i. For
all n ≥ 0, let sn =

∑n
i=0(−1)iai.

(a) Prove that the sequence s0, s2, s4, . . . converges.

(b) Prove that the sequence s1, s3, s5, . . . converges.

(c) Determine whether the sequence s0, s1, s2, s3, . . . must converge. Give either a proof
or a counter-example.

Solution. Note that s0, s2, s4, . . . is a strictly decreasing sequence, while s1, s3, s5, . . . is a
strictly increasing sequence, and s2i+1 < s2j for all i, j ∈ N. Assertions (a), (b) follow. For
any strictly decreasing sequence (ai)i∈N of positive real numbers such that limi→∞ ai > 0,
we get a counter-example for (c), e.g. ai = 1 + 1

i+1 .

6. Give Q the topology defined by the standard metric on R.

(a) Does there exist a non-empty subset Z $ Q which is both open and closed in Q?
Either give such an example, or show that no such subset exists.
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(b) Let S be a connected subset of Q which contains 0. Prove that S = {0}, i.e. S is a
singleton.

Solution. (a) Z = Q ∩ (
√

2,∞) is such a subset: it is open, and its complement is
Q ∩ (−∞,

√
2] = Q ∩ (−∞,

√
2) is also open.

(b) Suppose that S contains a non-zero rational a. Let c be an irrational number between
0 and a. Then S is the disjoint union of two non-empty open subsets S ∩ (c,∞) and
S ∩ (−∞, c), a contradiction.

7. Let C be the oriented closed curve in R2 given by the parametrization

t 7→ (3 cos t, 4 sin t), t ∈ [0, 2π].

Compute the line integral ∫
C

y dx− x dy
x2 + y2

.

(Hint: you can use without proof the fact that curl
( y
x2+y2

~i− x
x2+y2

~j
)

= 0.)

Solution. Let C ′ be the circle {(a, b) ∈ R2 | a2 + b2 = 1} on the (x, y)-plane, oriented
counter-clockwise. By Stokes/Green theorem,∫

C

y dx− x dy
x2 + y2

=

∫
C′

y dx− x dy
x2 + y2

=

∫
C′
y dx− x dy = −

∫ 2π

0
d θ = −2π.

8. Let J be the matrix


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 in M4(R).

(a) Does there exist a matrix A ∈ M4(R) such that A2 = J? Either give an example, or
prove that such a matrix A does not exist.

(b) Does there exist a symmetric matrix B ∈ M4(R) such that B2 = J? Either give an
example, or prove that such a matrix B does not exist.

Solution. (a) A =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 satisfies A2 = J .

(b) No such B exists: if B ∈ M4(R) is symmetric and B · Bt = B2 = J , then −4 =
tr(J) = tr(B ·Bt) ≥ 0. Alternatively, by the spectral theorem B is diagonalizable with real
eigenvalues.
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9. Let f be a continuous real valued function on R2. Let D be the set of all points on R2

having distance at most 1 from the origin, and let f(D) ⊆ R be the set consisting of all
values of f taken on at points of D. Prove that there exist real numbers a, b with a ≤ b
such that f(D) is equal to the closed interval [a, b] = {x ∈ R | a ≤ x ≤ b}.

Solution. Since f is continuous and D is compact, there exists points x1, x2 ∈ D such that
f(x1) = min{f(x)|x ∈ D} =: a and f(x1) = min{f(x)|x ∈ D} =: b. On the other hand D
is connected, because it is the union of line segments in D passing through the origin, so
f(D) is also connected. Therefore f(D) = [a, b].

10. Let ~v be the column vector (1, 2, 2)t in R3. Find an orthogonal matrix A ∈ M3(R) such
that A · ~v = ~v, A4 = I3 and A2 6= I3, where I3 is the identity matrix in M3(R).

(Recall that a 3 × 3 matrix B is orthogonal if B · Bt = Bt · B = I3. If your answer is a
product of matrices, you do not have to carry out the multiplication explicitly.)

Solution. Let ~v1, ~v2, ~v3 be an orthonormal basis of R3 with ~v1 = 1
3~v. The linear operator

U on R3 whose matrix representation with respect to the above orthonormal basis is

D :=

1 0 0
0 0 −1
0 1 0


has the required property. Note that there is another orthogonal opertor S on R3 with
S(~v) = ~v, S4 = IdR3 and S2 6= IdR3 , namely S = U−1 = U3. Clearly U and S are the
two rotations by angles ±π/2 about the line R · ~v, and they are the only two orthogonal
operators on R3 satisfying the required properties. Note also that there are infinitely many
orthogonal operators T on R3 such that T (~v) = ~v and T 2 = IdR3 , namely all reflections on
R3 about a plane which contains R · ~v.

To be more explicit, let C =

1 −2 −2
2 2 −1
2 −1 2

, a 3×3 matrix such that C ·Ct = Ct ·C = 9 I3,

whose first column is ~v. Let A = C ·D · C−1 = 1
9C ·D · C

t, then A4 = I3 and A2 6= I3.

11. Let f be a R-valued infinitely differentiable function on R such that f ′′(x) ≤ 0 for all
x ∈ [0, 1], and f(0) = f(1) = 0. Show that f(x) ≥ 0 for all x ∈ [0, 1]. (Hint: Suppose that
f(a) < 0 for some a ∈ [0, 1], and apply the mean value theorem to get a contradiction.)

Solution. Suppose that f(a) < 0 for some a ∈ [0, 1]. By the mean value theorem there
exist b ∈ [0, a] with f ′(b) < 0 and c ∈ [a, 1] with f(c) > 0. Applying the mean value theorem
to f ′, one sees that there exists d ∈ [b, c] such that f ′′(d) > 0, a contradiction.
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12. Consider the polynomial f(x) = x6 + x3 + 1 in Q[x].

(a) Is f(x) irreducible in R[x]?

(b) Is f(x) irreducible in Q[x]? (Hint: Consider f(x+ 1).)

Solution. (a) f(x) is reducible, for every irreducible polynomial in R[x] has degree 1 or 2.

(b) f(x+ 1) ≡ (x3 + 1)2 + (x3 + 1) + 1 ≡ x6 (mod 3), and the constant term of f(x+ 1) is
3. So f(x+ 1) is irreducible by Eisenstein’s criterion.

Note that f(x) is the ninth cyclotomic polynomial:

x9 − 1 = (x3 − 1)(x6 + x3 + 1) = (x− 1)(x2 + x+ 1)(x6 + x3 + 1).

The roots of f(x) are the 6 primitive ninth roots of unity. Note also that (x+ 1)9 − 1 ≡ x9
(mod 3), and (x+ 1)3 − 1 ≡ x3 (mod 3), so we get again that f(x+ 1) ≡ x6 (mod 3).
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