1. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of non-negative real numbers such that $\sum_{n=1}^{\infty} a_{n}$ converges.
(a) Prove that

$$
\sum_{n=1}^{\infty} a_{n} x^{n}
$$

converges uniformly on the closed interval $[-1,1]$.
(b) Given an example to show that this series need not converge uniformly on $[-2,2]$.

Solution. (a) Given an $\epsilon>0$, pick n_{0} such that $\sum_{n \geq n_{0}} a_{n}<\epsilon$. Then for any $x \in[-1,1]$, we have $\sum_{n \geq n_{0}}\left|a_{n} x^{n}\right|<\epsilon$.
(b) Let $a_{n}=(2 / 3)^{n}$ for all $n \in \mathbb{N}$, then the series $\sum_{n=1}^{\infty} a_{n} x^{n}$ diverges for $|x| \geq 3 / 2$.
2. For each of the following, either give an example or explain why no such example exists.
(a) An abelian (i.e. commutative) group with 30 elements which is not cyclic.
(b) A non-commutative group with $217=31 \times 7$ elements.

Solution. (a) According to the structure of finite abelian groups, every commutative group with 30 elements is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 3 \mathbb{Z}) \times(\mathbb{Z} / 5 \mathbb{Z}) \cong \mathbb{Z} / 30 \mathbb{Z}$. The last isomorphism is a special case of the Chinese remainder theorem.
(b) No. By Sylow's theorem, every group G with 127 elements has a normal subgroup N with 31 elements and a subgroup H with 7 elements. The number of 7 -Sylow subgroups divides 31 and is congruenet to 1 modulo 7 , so H is also a normal subgroup. Therefore G is isomorphic to a $(\mathbb{Z} / 31 \mathbb{Z}) \times(\mathbb{Z} / 7 \mathbb{Z})$.
3. Let $f(x)$ be an infinitely differentiable real-valued function on the real line such that $-x^{2} \leq f(x) \leq x^{2}$ for all non-zero real numbers x.
(a) Show that $f(0)=0$.
(b) Show directly from the definition of derivative that $f^{\prime}(0)=0$.

Solution. (a) We have $f(0)=\lim _{x \rightarrow 0} f(x)=0$ because f is smooth, and for every $\epsilon>0$, $|f(x)| \leq \epsilon / 2<\epsilon$ for all x with $|x| \leq \min (1, \epsilon / 2)$.
(b) For every $\epsilon>0$ and every non-zero real number x with $|x|<\epsilon$, we have $\left|\frac{f(x)-f(0)}{x}\right| \leq$ $\frac{x^{2}}{|x|}<\epsilon$.
4. Let V, W be finite dimensional vector spaces over \mathbb{R} and consider their dual spaces $V^{*}:=\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R})$ and $W^{*}:=\operatorname{Hom}_{\mathbb{R}}(W, \mathbb{R})$. For any linear transformation $T: V \rightarrow W$, and for any $f \in W^{*}$, let $T^{*}(f):=f \circ T$.
(a) Prove that for T and f as above, $T^{*}(f)$ is an element of V^{*}.
(b) Prove that T^{*} defines a linear transformation from W^{*} to V^{*}.
(c) Prove that if T is injective then T^{*} is surjective.

Solution. (a) For any $a, b \in \mathbb{R}$ and any $v, v^{\prime} \in V$, we have

$$
T^{*}(f)\left(a v+b v^{\prime}\right)=f\left(T\left(a v+b v^{\prime}\right)\right)=f\left(a T(v)+b T\left(v^{\prime}\right)\right)=a T^{*}(f)(v)+b T^{*} f\left(v^{\prime}\right)
$$

(b) For any $a, b \in \mathbb{R}$ and any $\lambda, \mu \in W^{*}$, we have $T^{*}(a \lambda+b \mu)=a T^{*}(\lambda)+b T^{*}(\mu)$ because when evaluated at any $v \in V$ we get the same output $a \lambda(T(v))+b \mu(T(v))$.
(c) Let U be a vector subspace of W such that $W=T(V) \oplus W$. Given $\lambda \in V^{*}$, define $\mu \in W^{*}$ by $\mu(T(v)+u):=\mu(v)$ for all $v \in V$ and all $u \in U$. Then $T^{*}(\mu)=\lambda$.
5. Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of positive real numbers such that $a_{i}>a_{i+1}$ for all i. For all $n \geq 0$, let $s_{n}=\sum_{i=0}^{n}(-1)^{i} a_{i}$.
(a) Prove that the sequence $s_{0}, s_{2}, s_{4}, \ldots$ converges.
(b) Prove that the sequence $s_{1}, s_{3}, s_{5}, \ldots$ converges.
(c) Determine whether the sequence $s_{0}, s_{1}, s_{2}, s_{3}, \ldots$ must converge. Give either a proof or a counter-example.

Solution. Note that $s_{0}, s_{2}, s_{4}, \ldots$ is a strictly decreasing sequence, while $s_{1}, s_{3}, s_{5}, \ldots$ is a strictly increasing sequence, and $s_{2 i+1}<s_{2 j}$ for all $i, j \in \mathbb{N}$. Assertions (a), (b) follow. For any strictly decreasing sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ of positive real numbers such that $\lim _{i \rightarrow \infty} a_{i}>0$, we get a counter-example for (c), e.g. $a_{i}=1+\frac{1}{i+1}$.
6. Give \mathbb{Q} the topology defined by the standard metric on \mathbb{R}.
(a) Does there exist a non-empty subset $Z \varsubsetneqq \mathbb{Q}$ which is both open and closed in \mathbb{Q} ? Either give such an example, or show that no such subset exists.
(b) Let S be a connected subset of \mathbb{Q} which contains 0 . Prove that $S=\{0\}$, i.e. S is a singleton.

Solution. (a) $Z=\mathbb{Q} \cap(\sqrt{2}, \infty)$ is such a subset: it is open, and its complement is $\mathbb{Q} \cap(-\infty, \sqrt{2}]=\mathbb{Q} \cap(-\infty, \sqrt{2})$ is also open.
(b) Suppose that S contains a non-zero rational a. Let c be an irrational number between 0 and a. Then S is the disjoint union of two non-empty open subsets $S \cap(c, \infty)$ and $S \cap(-\infty, c)$, a contradiction.
7. Let C be the oriented closed curve in \mathbb{R}^{2} given by the parametrization

$$
t \mapsto(3 \cos t, 4 \sin t), \quad t \in[0,2 \pi] .
$$

Compute the line integral

$$
\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}}
$$

(Hint: you can use without proof the fact that $\operatorname{curl}\left(\frac{y}{x^{2}+y^{2}} \vec{i}-\frac{x}{x^{2}+y^{2}} \vec{j}\right)=0$.)

Solution. Let C^{\prime} be the circle $\left\{(a, b) \in \mathbb{R}^{2} \mid a^{2}+b^{2}=1\right\}$ on the (x, y)-plane, oriented counter-clockwise. By Stokes/Green theorem,

$$
\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}}=\int_{C^{\prime}} \frac{y d x-x d y}{x^{2}+y^{2}}=\int_{C^{\prime}} y d x-x d y=-\int_{0}^{2 \pi} d \theta=-2 \pi .
$$

8. Let J be the matrix $\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$ in $\mathrm{M}_{4}(\mathbb{R})$.
(a) Does there exist a matrix $A \in \mathrm{M}_{4}(\mathbb{R})$ such that $A^{2}=J$? Either give an example, or prove that such a matrix A does not exist.
(b) Does there exist a symmetric matrix $B \in \mathrm{M}_{4}(\mathbb{R})$ such that $B^{2}=J$? Either give an example, or prove that such a matrix B does not exist.

Solution. (a) $A=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0\end{array}\right)$ satisfies $A^{2}=J$.
(b) No such B exists: if $B \in \mathrm{M}_{4}(\mathbb{R})$ is symmetric and $B \cdot B^{t}=B^{2}=J$, then $-4=$ $\operatorname{tr}(J)=\operatorname{tr}\left(B \cdot B^{t}\right) \geq 0$. Alternatively, by the spectral theorem B is diagonalizable with real eigenvalues.
9. Let f be a continuous real valued function on \mathbb{R}^{2}. Let D be the set of all points on \mathbb{R}^{2} having distance at most 1 from the origin, and let $f(D) \subseteq \mathbb{R}$ be the set consisting of all values of f taken on at points of D. Prove that there exist real numbers a, b with $a \leq b$ such that $f(D)$ is equal to the closed interval $[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}$.

Solution. Since f is continuous and D is compact, there exists points $x_{1}, x_{2} \in D$ such that $f\left(x_{1}\right)=\min \{f(x) \mid x \in D\}=: a$ and $f\left(x_{1}\right)=\min \{f(x) \mid x \in D\}=: b$. On the other hand D is connected, because it is the union of line segments in D passing through the origin, so $f(D)$ is also connected. Therefore $f(D)=[a, b]$.
10. Let \vec{v} be the column vector $(1,2,2)^{t}$ in \mathbb{R}^{3}. Find an orthogonal matrix $A \in \mathrm{M}_{3}(\mathbb{R})$ such that $A \cdot \vec{v}=\vec{v}, A^{4}=\mathrm{I}_{3}$ and $A^{2} \neq \mathrm{I}_{3}$, where I_{3} is the identity matrix in $\mathrm{M}_{3}(\mathbb{R})$.
(Recall that a 3×3 matrix B is orthogonal if $B \cdot B^{t}=B^{t} \cdot B=\mathrm{I}_{3}$. If your answer is a product of matrices, you do not have to carry out the multiplication explicitly.)

Solution. Let $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ be an orthonormal basis of \mathbb{R}^{3} with $\vec{v}_{1}=\frac{1}{3} \vec{v}$. The linear operator U on \mathbb{R}^{3} whose matrix representation with respect to the above orthonormal basis is

$$
D:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

has the required property. Note that there is another orthogonal opertor S on \mathbb{R}^{3} with $S(\vec{v})=\vec{v}, S^{4}=\mathrm{Id}_{\mathbb{R}^{3}}$ and $S^{2} \neq \mathrm{Id}_{\mathbb{R}^{3}}$, namely $S=U^{-1}=U^{3}$. Clearly U and S are the two rotations by angles $\pm \pi / 2$ about the line $\mathbb{R} \cdot \vec{v}$, and they are the only two orthogonal operators on \mathbb{R}^{3} satisfying the required properties. Note also that there are infinitely many orthogonal operators T on \mathbb{R}^{3} such that $T(\vec{v})=\vec{v}$ and $T^{2}=\operatorname{Id}_{\mathbb{R}^{3}}$, namely all reflections on \mathbb{R}^{3} about a plane which contains $\mathbb{R} \cdot \vec{v}$.

To be more explicit, let $C=\left(\begin{array}{ccc}1 & -2 & -2 \\ 2 & 2 & -1 \\ 2 & -1 & 2\end{array}\right)$, a 3×3 matrix such that $C \cdot C^{t}=C^{t} \cdot C=9 \mathrm{I}_{3}$, whose first column is \vec{v}. Let $A=C \cdot D \cdot C^{-1}=\frac{1}{9} C \cdot D \cdot C^{t}$, then $A^{4}=\mathrm{I}_{3}$ and $A^{2} \neq \mathrm{I}_{3}$.
11. Let f be a \mathbb{R}-valued infinitely differentiable function on \mathbb{R} such that $f^{\prime \prime}(x) \leq 0$ for all $x \in[0,1]$, and $f(0)=f(1)=0$. Show that $f(x) \geq 0$ for all $x \in[0,1]$. (Hint: Suppose that $f(a)<0$ for some $a \in[0,1]$, and apply the mean value theorem to get a contradiction.)

Solution. Suppose that $f(a)<0$ for some $a \in[0,1]$. By the mean value theorem there exist $b \in[0, a]$ with $f^{\prime}(b)<0$ and $c \in[a, 1]$ with $f(c)>0$. Applying the mean value theorem to f^{\prime}, one sees that there exists $d \in[b, c]$ such that $f^{\prime \prime}(d)>0$, a contradiction.
12. Consider the polynomial $f(x)=x^{6}+x^{3}+1$ in $\mathbb{Q}[x]$.
(a) Is $f(x)$ irreducible in $\mathbb{R}[x]$?
(b) Is $f(x)$ irreducible in $\mathbb{Q}[x]$? (Hint: Consider $f(x+1)$.)

Solution. (a) $f(x)$ is reducible, for every irreducible polynomial in $\mathbb{R}[x]$ has degree 1 or 2 .
(b) $f(x+1) \equiv\left(x^{3}+1\right)^{2}+\left(x^{3}+1\right)+1 \equiv x^{6}(\bmod 3)$, and the constant term of $f(x+1)$ is 3. So $f(x+1)$ is irreducible by Eisenstein's criterion.

Note that $f(x)$ is the ninth cyclotomic polynomial:

$$
x^{9}-1=\left(x^{3}-1\right)\left(x^{6}+x^{3}+1\right)=(x-1)\left(x^{2}+x+1\right)\left(x^{6}+x^{3}+1\right) .
$$

The roots of $f(x)$ are the 6 primitive ninth roots of unity. Note also that $(x+1)^{9}-1 \equiv x^{9}$ $(\bmod 3)$, and $(x+1)^{3}-1 \equiv x^{3}(\bmod 3)$, so we get again that $f(x+1) \equiv x^{6}(\bmod 3)$.

