1. Let (an)n oy e a sequence of non-negative real numbers such that )7, a,, converges.

(a) Prove that
oo
5
n=1

converges uniformly on the closed interval [—1,1].

(b) Given an example to show that this series need not converge uniformly on [—2,2].

Solution. (a) Given an € > 0, pick ng such that
we have > -, laz™| < e

ap < €. Then for any x € [-1,1],

nz=ng

n>n

(b) Let a, = (2/3)™ for all n € N, then the series Y - | a,z™ diverges for |z| > 3/2.

2. For each of the following, either give an example or explain why no such example exists.

(a) An abelian (i.e. commutative) group with 30 elements which is not cyclic.

(b) A non-commutative group with 217 = 31 x 7 elements.

Solution. (a) According to the structure of finite abelian groups, every commutative group
with 30 elements is isomorphic to (Z/2Z) x (Z/3Z) x (Z/5Z) = Z/30Z. The last isomorphism
is a special case of the Chinese remainder theorem.

(b) No. By Sylow’s theorem, every group G with 127 elements has a normal subgroup N
with 31 elements and a subgroup H with 7 elements. The number of 7-Sylow subgroups
divides 31 and is congruenet to 1 modulo 7, so H is also a normal subgroup. Therefore G
is isomorphic to a (Z/31Z) x (Z/7Z).

3. Let f(z) be an infinitely differentiable real-valued function on the real line such that
—22 < f(x) < 2? for all non-zero real numbers .

(a) Show that f(0) = 0.

(b) Show directly from the definition of derivative that f’(0) = 0.
Solution. (a) We have f(0) = lim,_,o f(z) = 0 because f is smooth, and for every € > 0,
|f(x)] <e€/2 < e for all z with |z| < min(1,€e/2).
(b) For every € > 0 and every non-zero real number z with |z| < €, we have ’

2
X
T < €.
||



4. Let V,W be finite dimensional vector spaces over R and consider their dual spaces
V* := Homg(V,R) and W* := Homg(W,R). For any linear transformation 7' : V. — W,
and for any f € W* let T*(f):= foT.

(a) Prove that for T" and f as above, T#(f) is an element of V*.

(b) Prove that T* defines a linear transformation from W* to V*.

(¢) Prove that if T is injective then T™ is surjective.

Solution. (a) For any a,b € R and any v,v’ € V, we have

T (f)(av + ') = f(T(av + ")) = f(aT (v) + bT(V")) = aT*(f)(v) + bT* f ().
(b) For any a,b € R and any A\, € W*, we have T*(a\ + bu) = aT*(\) + bT™(u) because
when evaluated at any v € V' we get the same output aA(T'(v)) + bu(T(v)).

(c) Let U be a vector subspace of W such that W = T(V) @ W. Given \ € V*, define
we W* by u(T(v) 4+ u) := p(v) for all v € V and all w € U. Then T%(u) = A.

5. Let ag, a1, as,... be a sequence of positive real numbers such that a; > a;41 for all 4. For
alln >0, let s, =Y 1" ((—1)"a;.

(a) Prove that the sequence sg, $2, S4, . . . converges.
(b) Prove that the sequence sy, s3, S5, ... converges.
(¢) Determine whether the sequence sg, s1, S2, s3, ... must converge. Give either a proof

or a counter-example.

Solution. Note that sg, s2, s4, ... is a strictly decreasing sequence, while si, s3, s5,... is a
strictly increasing sequence, and sg;11 < sg; for all 7,5 € N. Assertions (a), (b) follow. For
any strictly decreasing sequence (a;);en of positive real numbers such that lim; o a; > 0,
we get a counter-example for (c), e.g. a; =1+ H%

6. Give Q the topology defined by the standard metric on R.

(a) Does there exist a non-empty subset Z ;Cé Q which is both open and closed in Q7
Either give such an example, or show that no such subset exists.



(b) Let S be a connected subset of Q which contains 0. Prove that S = {0}, i.e. Sis a
singleton.

Solution. (a) Z = Q N (v/2,00) is such a subset: it is open, and its complement is
QN (—00,v2] = QN (—00,v?2) is also open.

(b) Suppose that S contains a non-zero rational a. Let ¢ be an irrational number between
0 and a. Then S is the disjoint union of two non-empty open subsets S N (¢,00) and
SN (—o0,c), a contradiction.

7. Let C be the oriented closed curve in R? given by the parametrization

t — (3cost,4sint), te[0,2n].

/ydx—:cdy
c ¥?+y?

(Hint: you can use without proof the fact that curl(ﬁf— ﬁj) =0.)

Compute the line integral

Solution. Let C’ be the circle {(a,b) € R? | a®> + b> = 1} on the (z,y)-plane, oriented
counter-clockwise. By Stokes/Green theorem,

do —ad dz — zd o
/W:/ W:/ yda:—a:dyz—/ 0= —2r.
c r2+y? r a2 4 y? c 0

-1 0 0 O
. 0 -1 0 © .
8. Let J be the matrix 0 0 -1 0 in My (R).
o 0 0 -1

(a) Does there exist a matrix A € My(R) such that A% = J? Either give an example, or
prove that such a matrix A does not exist.

(b) Does there exist a symmetric matrix B € My(R) such that B2 = J? Either give an
example, or prove that such a matrix B does not exist.

-1
0
0

satisfies A2 = J.

0
. 0
Solution. (a) A = 1
0

o O O

-1

(b) No such B exists: if B € My(R) is symmetric and B - B! = B? = J, then —4 =
tr(J) = tr(B- B') > 0. Alternatively, by the spectral theorem B is diagonalizable with real
eigenvalues.



9. Let f be a continuous real valued function on R%. Let D be the set of all points on R?
having distance at most 1 from the origin, and let f(D) C R be the set consisting of all
values of f taken on at points of D. Prove that there exist real numbers a,b with a < b
such that f(D) is equal to the closed interval [a,b] = {x € R|a < z < b}.

Solution. Since f is continuous and D is compact, there exists points x1, s € D such that
f(xz1) = min{f(z)|x € D} =: a and f(z1) = min{f(z)|z € D} =: b. On the other hand D
is connected, because it is the union of line segments in D passing through the origin, so
f(D) is also connected. Therefore f(D) = [a, b].

10. Let @ be the column vector (1,2,2)! in R®. Find an orthogonal matrix A € M3(R) such
that A- 7 = v, A* = I3 and A% # I3, where I3 is the identity matrix in M3(R).

(Recall that a 3 x 3 matrix B is orthogonal if B - B! = B! - B = I3. If your answer is a
product of matrices, you do not have to carry out the multiplication explicitly.)

Solution. Let @y, i, U3 be an orthonormal basis of R® with #} = %17. The linear operator
U on R? whose matrix representation with respect to the above orthonormal basis is

10 O
D=0 0 -1
01 0
has the required property. Note that there is another orthogonal opertor S on R3 with
S(¥) = ¥, S* = Idgs and S? # Idgs, namely S = U~! = U3. Clearly U and S are the
two rotations by angles £7/2 about the line R - ¥, and they are the only two orthogonal
operators on R? satisfying the required properties. Note also that there are infinitely many
orthogonal operators T on R? such that T(7) = @ and T? = Idgs, namely all reflections on
R3 about a plane which contains R - 7.

1 -2 -2
To be more explicit, let C = [ 2 2 —1], a3 x 3 matrix such that C-C? = C*-C = 913,
2 -1 2

whose first column is ¥. Let A=C-D-C~! = %C’ -D-Ct then A* =13 and A? #13.

11. Let f be a R-valued infinitely differentiable function on R such that f”(x) < 0 for all
€ [0,1], and f(0) = f(1) = 0. Show that f(x) > 0 for all z € [0,1]. (Hint: Suppose that
f(a) < 0 for some a € [0, 1], and apply the mean value theorem to get a contradiction.)

Solution. Suppose that f(a) < 0 for some a € [0,1]. By the mean value theorem there
exist b € [0,a] with f/(b) < 0 and ¢ € [a, 1] with f(c) > 0. Applying the mean value theorem
to f', one sees that there exists d € [b, ¢] such that f”(d) > 0, a contradiction.



12. Consider the polynomial f(z) = 2% + 2% + 1 in Q[x].

(a) Is f(x) irreducible in R[z|?
(b) Is f(z) irreducible in Q[z]? (Hint: Consider f(x + 1).)

Solution. (a) f(z) is reducible, for every irreducible polynomial in R[x] has degree 1 or 2.

(b) f(x+1)= (23 +1)2+ (22 +1)+1 =25 (mod 3), and the constant term of f(z + 1) is
3. So f(x + 1) is irreducible by Eisenstein’s criterion.

Note that f(z) is the ninth cyclotomic polynomial:
1= -+ + 1) =@ - D)@ +2+ 1)@ +23+1).

The roots of f(z) are the 6 primitive ninth roots of unity. Note also that (z +1)? — 1 = 2”
(mod 3), and (x + 1) — 1 = 2® (mod 3), so we get again that f(z + 1) = 2% (mod 3).



