
1. Let {ai}, {bi} be Cauchy sequences of real numbers. Show that the following
conditions are equivalent:

i) The sequence {ai − bi} approaches 0.

ii) The sequence a1, b1, a2, b2, . . . is Cauchy.

Solution.

(i) ⇒ (ii): Let ε > 0. Since {ai} and {bi} are each Cauchy, there exists N1 such
that |ai − aj| < ε/2 and |bi − bj| < ε/2 for i, j > N1. Since {ai − bi} → 0, there
exists N2 such that |aj − bj| < ε/2 for i, j > N2. So if i, j > N := max(N1, N2)
then |ai−bj| ≤ |ai−aj|+|aj−bj| < ε/2+ε/2 = ε. Since also |ai−aj|, |bi−bj| < ε,
(ii) follows.

(ii) ⇒ (i): Let ε > 0. Since a1, b1, a2, b2, . . . is Cauchy, there exists N such that
|ai − bj| < ε for i, j > N . In particular, |ai − bi| < ε for i > N . So (i) follows.
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2. Let A be the 3× 3 real matrix

2 −3 −1
0 3 2
2 3 3

 and let T : R3 → R3 be defined

by T (v) = Av (viewing elements of R3 as column vectors). Find a basis for the
kernel of T , and find a basis for the image of T .

Solution.

Applying row reduction, we obtain the sequence of matrices1 −3/2 −1/2
0 3 2
0 6 4

 ,

1 −3/2 −1/2
0 1 2/3
0 0 0

 ,

1 0 1/2
0 1 2/3
0 0 0

 .

So the kernel is the one dimensional subspace spanned by (3, 4,−6), and the
image is the two dimensional space spanned by the columns of the given matrix.
Since neither of the first two columnns is a multiple of the other, a basis for the
image is {(2, 0, 2), (−3, 3, 3)}.
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3. Just from the definition, derive the formula for the derivative of the function
f(x) = 1/x.

Solution.

f ′(x) = lim
h→0

1/(x + h)− 1/x

h
= lim

h→0

x− (x + h)

hx(x + h)
= lim

h→0
−1/x(x + h) = −1/x2.
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4. (a) Which of the following ideals in R[x] are prime? maximal? the unit ideal?
(x2 − 1), (x2 + 1), (5), (3, x− 1)

(b) Do the same with R[x] replaced by Z[x].

Justify your assertions.

Solution.

(a) Since x2 − 1 = (x + 1)(x− 1), the ideal (x2 − 1) is not prime in R[x] and so
it is not maximal. Since non-zero multiples of x2− 1 have degree at least 2, the
ideal (x2 − 1) does not contain 1 and so is not the unit ideal.

The polynomial x2 + 1 is irreducible in the PID R[x], and so the ideal (x2 + 1)
is prime and maximal. It is not the unit ideal for the same reason as (x2 − 1).

The ideals (5) and (3, x − 1) are each the unit ideal in R[x], since they each
contain a non-zero constant, which is a unit.

(b) In Z[x], the ideal (x2− 1) is again not prime, not maximal, and not the unit
ideal, by the same reasoning as in R[x].

The ideal (x2 + 1) is prime because it is irreducible in the UFD Z[x] (or because
Z[x]/(x2 + 1) is isomorphic to the integral domain Z[i]). It is not maximal
because Z[i] is not a field. It is not the unit ideal for the same reason as in R[x].

The ideal (5) is prime but not maximal, because Z[x]/(5) is isomorphic to
Z/5Z[x], which is an integral domain but not a field. It is not the unit ideal
because 5 is not a unit in Z[x].

The ideal (3, x−1) is a maximal ideal in Z[x] because Z[x]/(3, x−1) is isomorphic
to Z/3Z, which is a field. It is therefore not the unit ideal.
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5. Let f : R → R be a differentiable function. Suppose that f ′′(x) > 0 for all
x ∈ R. Suppose also that f(0) = 0 and that f ′(0) = 1.

a) Prove that f(1) > 0.

b) Find an explicit value of a > 0 such that f(a) > 10.

Justify your assertions carefully.

Solution.

(a) Since f ′′ > 0, the function f ′ is increasing (this follows from the Mean Value
Theorem applied to f ′). So f ′(x) > f ′(0) = 1 > 0 for x > 0. Therefore f is
increasing on x ≥ 0, and so f(1) > f(0) = 0.

(b) For every a > 0 we have f(a) = f(a) − f(0) =
´ a
0
f ′(x) dx ≥

´ a
0

1 dx = a,
since f(0) = 0 and f ′(x) > 1 for x > 0. So we may take any a > 10; e.g., a = 11.
(One could also take a = 10, by using that f ′ is continuous and that f ′(x) > 1
for x > 0 to get a strict inequality between the integrals.)
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6. Let Ω be a non-empty connected open subset of R2. Suppose that ∂f/∂x =
∂f/∂y = 0 at all points (x, y) ∈ Ω. Prove that f is a constant function on Ω.
[Hint: What if Ω is an open disc?]

Solution.

Since Ω is connected and is a union of open discs, it suffices to show that f is
constant on every open disc in Ω. In a disc U of center (a, b), the function f
is constant on each horizontal line segment and on every vertical line segment,
because fx = fy = 0 on U (using that a one-variable function on an open interval
is constant if its derivative is identically 0, by the Mean Value Theorem). Given
any point (x0, y0) ∈ U , the horizontal line segment connecting (a, b) to (x0, b)
and the vertical line segment connecting (x0, b) to (x0, y0) are contained in U .
Hence f(a, b) = f(x0, b) = f(x0, y0). Thus f is constant on U .
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7. (a) Give an example of an open subsetR ⊆ R2; two C∞ functions f(x, y), g(x, y)

on R; and a loop (simple closed curve) C in R such that ∂f/∂y = ∂g/∂x

on R but
¸
C
f dx+ g dy 6= 0.

(b) Explain why there cannot be such an example if R = R2.

Solution.

(a) Let R be the complement of the origin in R2, and let C be the unit circle

x2+y2 = 1, oriented counterclockwise. Take f(x, y) = −y/(x2+y2) and g(x, y) =

x/(x2+y2). Then ∂f/∂y = (y2−x2)/(x2+y2)2 = ∂g/∂x. We can parametrize C

by x = cos θ, y = sin θ, for 0 ≤ θ ≤ 2π. Thus dx = − sin θ dθ and dy = cos θ dθ,

and so the given integral I is equal to
´ 2π
θ=0

(
sin2 θ + cos2 θ

)
dθ = 2π 6= 0. (Here

the differential form f dx + g dy is equal to dθ, which is not defined at (0, 0);

and 1
2π
I computes the winding number of the unit circle around (0, 0).)

(b) There cannot be such an example if R = R2, because R2 is simply connected

and the integral would equal 0 by Green’s Theorem.
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8. Let V be a vector space such that dim(V ) = 3. Let T : V → V be a linear

transformation.

(a) Show that if the dimension of the image of T ◦ T is equal to 2, then the

dimension of the kernel of T is equal to 1.

(b) Show by example that the converse to (a) is false.

Solution.

(a) If dim(ker T ) = 0, then T is an isomorphism, hence so is T ◦ T , which

is then surjective, contradicting the assumption that dim(im T ◦ T ) = 2. If

dim(ker T ) ≥ 2, then dim(im T ) ≤ 3 − 2 = 1. But im T ◦ T ⊆ im T , again

contradicting dim(im T ) = 2. So dim(ker T ) = 1.

(b) Define T by T (x, y, z) = (0, x, y). Then ker T is the span of (0, 0, 1), of

dimension 1. But T ◦T takes (x, y, z) to (0, 0, x), and so its image has dimension

1, not 2.
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9. Let f be a continuously differentiable increasing function on R, with f(0) = 1,

f(1) = 2, and f(2) = 6. For each x ∈ R let g(x) be the non-negative square root

of f ′(x). Let R be the solid region swept out by rotating the graph of y = g(x),

from x = 0 to x = 2, about the x-axis. Compute the volume of R. Explain your

assertions.

Solution.

Since f is increasing, f ′(x) ≥ 0, and so g(x) is defined (and continuous). The

volume of R is
´ 2
0
πg(x)2 dx =

´ 2
0
πf ′(x) dx = πf(x)|20 = π(6 − 1) = 5π, by the

Fundamental Theorem of Calculus.
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10. Let G be a group, and let S ⊆ G be the set of elements g ∈ G such that g = g−1.

(a) Give an example to show that S is not necessarily a subgroup of G.

(b) Let H ⊆ G be the smallest subgroup of G that contains S. Show that H

is a normal subgroup of G.

Solution.

(a) Take G = S3. Then S consists of the identity and the three transpositions.

This set has four elements, and so is not a subgroup of G (which has order six).

(b) The group H consists of all finite products of elements of S. (Inverses of

elements in S are already in S.) If s ∈ S and g ∈ G, then gsg−1 ∈ S because

(gsg−1)−1 = gs−1g−1 = gsg−1. So given an element h = s1 · · · sn ∈ H with

si ∈ S, and given an element g ∈ G, the element ghg−1 = (gs1g
−1) · · · (gsng−1)

is also in H. Thus gHg−1 = H for all g ∈ G. That is, H is normal.
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11. Consider the series
∑∞

n=0(1− x)xn = (1− x) + (1− x)x+ (1− x)x2 + · · · .

(a) Prove that the series converges pointwise on [0, 1] and find its limit.

(b) Does the series converge uniformly on [0, 1]? Justify your answer.

Solution.

(a) For every x ∈ [0, 1], if 0 ≤ x < 1, then as n→∞, the partial sum

Sn(x) =
n−1∑
k=0

(1− x)xk = (1− x)
1− xn

1− x
= 1− xn → 1.

If x = 1, then it is direct to see that Sn = 0. Hence the series converges pointwise

on [0, 1] to the function

S(x) =

{
1, 0 ≤ x < 1;

0, x = 1.

(b) For every n the function Sn(x) is continuous on [0, 1], but the limiting

function S(x) is not continuous on [0, 1]. Therefore, the series doesn’t converge

uniformly to S on [0, 1].
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12. For n ≥ 1, let Pn[x] be the real vector space of polynomials f(x) ∈ R[x] having

degree at most n, and let D be the differential operator D(f) = f ′ on Pn[x].

(a) Explain why D is a linear transformation, and find its characteristic poly-

nomial.

(b) Prove that D is not given by a diagonal matrix with respect to any basis

of Pn[x].

Solution.

(a) Since (f + g)′ = f ′ + g′ for f, g ∈ Pn[x], and since (cf)′ = cf ′ for c ∈ R
and f ∈ Pn[x], the operator D is a linear transformation. To find its charac-

teristic polynomial, consider the basis {1, x, · · · , xn} of Pn[x], a vector space of

dimension n+ 1. The matrix of D with respect to this basis is

D =


0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

...
0 0 0 · · · n
0 0 0 · · · 0

 .

It has the characteristic polynomial

det(λI−D) = λn+1.

(b) Note that the only eigenvalue of D is 0, and 0·I−D = −D has rank n. Hence,

the eigenspace associated to 0 is one dimensional. Therefore, D cannot have a

diagonal matrix with respect to any basis, as otherwise it should have n + 1

linearly independent eigenvectors. (Alternatively, if it were diagonalizable, then

the associated diagonal matrix would have all zeroes along the diagonal, since 0

is the only eigenvalue. But any matrix that is similar to the zero matrix is itself

the zero matrix, whereas D is not the zero matrix. So D is not diagonalizable.)
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