- 1. Let $\{a_i\}, \{b_i\}$ be Cauchy sequences of real numbers. Show that the following conditions are equivalent:
 - i) The sequence $\{a_i b_i\}$ approaches 0.
 - ii) The sequence $a_1, b_1, a_2, b_2, \ldots$ is Cauchy.

(i) \Rightarrow (ii): Let $\varepsilon > 0$. Since $\{a_i\}$ and $\{b_i\}$ are each Cauchy, there exists N_1 such that $|a_i - a_j| < \varepsilon/2$ and $|b_i - b_j| < \varepsilon/2$ for $i, j > N_1$. Since $\{a_i - b_i\} \rightarrow 0$, there exists N_2 such that $|a_j - b_j| < \varepsilon/2$ for $i, j > N_2$. So if $i, j > N := \max(N_1, N_2)$ then $|a_i - b_j| \le |a_i - a_j| + |a_j - b_j| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Since also $|a_i - a_j|, |b_i - b_j| < \varepsilon$, (ii) follows.

(ii) \Rightarrow (i): Let $\varepsilon > 0$. Since $a_1, b_1, a_2, b_2, \ldots$ is Cauchy, there exists N such that $|a_i - b_j| < \varepsilon$ for i, j > N. In particular, $|a_i - b_i| < \varepsilon$ for i > N. So (i) follows.

2. Let A be the 3 × 3 real matrix $\begin{pmatrix} 2 & -3 & -1 \\ 0 & 3 & 2 \\ 2 & 3 & 3 \end{pmatrix}$ and let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined

by T(v) = Av (viewing elements of \mathbb{R}^3 as column vectors). Find a basis for the kernel of T, and find a basis for the image of T.

Solution.

Applying row reduction, we obtain the sequence of matrices

$$\begin{pmatrix} 1 & -3/2 & -1/2 \\ 0 & 3 & 2 \\ 0 & 6 & 4 \end{pmatrix}, \begin{pmatrix} 1 & -3/2 & -1/2 \\ 0 & 1 & 2/3 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 2/3 \\ 0 & 0 & 0 \end{pmatrix}.$$

So the kernel is the one dimensional subspace spanned by (3, 4, -6), and the image is the two dimensional space spanned by the columns of the given matrix. Since neither of the first two columns is a multiple of the other, a basis for the image is $\{(2, 0, 2), (-3, 3, 3)\}$.

3. Just from the definition, derive the formula for the derivative of the function f(x) = 1/x.

Solution.

$$f'(x) = \lim_{h \to 0} \frac{1/(x+h) - 1/x}{h} = \lim_{h \to 0} \frac{x - (x+h)}{hx(x+h)} = \lim_{h \to 0} -1/x(x+h) = -1/x^2.$$

- 4. (a) Which of the following ideals in $\mathbb{R}[x]$ are prime? maximal? the unit ideal? $(x^2-1), (x^2+1), (5), (3, x-1)$
 - (b) Do the same with $\mathbb{R}[x]$ replaced by $\mathbb{Z}[x]$.

Justify your assertions.

Solution.

(a) Since $x^2 - 1 = (x + 1)(x - 1)$, the ideal $(x^2 - 1)$ is not prime in $\mathbb{R}[x]$ and so it is not maximal. Since non-zero multiples of $x^2 - 1$ have degree at least 2, the ideal $(x^2 - 1)$ does not contain 1 and so is not the unit ideal.

The polynomial $x^2 + 1$ is irreducible in the PID $\mathbb{R}[x]$, and so the ideal $(x^2 + 1)$ is prime and maximal. It is not the unit ideal for the same reason as $(x^2 - 1)$.

The ideals (5) and (3, x - 1) are each the unit ideal in $\mathbb{R}[x]$, since they each contain a non-zero constant, which is a unit.

(b) In $\mathbb{Z}[x]$, the ideal $(x^2 - 1)$ is again not prime, not maximal, and not the unit ideal, by the same reasoning as in $\mathbb{R}[x]$.

The ideal $(x^2 + 1)$ is prime because it is irreducible in the UFD $\mathbb{Z}[x]$ (or because $\mathbb{Z}[x]/(x^2 + 1)$ is isomorphic to the integral domain $\mathbb{Z}[i]$). It is not maximal because $\mathbb{Z}[i]$ is not a field. It is not the unit ideal for the same reason as in $\mathbb{R}[x]$.

The ideal (5) is prime but not maximal, because $\mathbb{Z}[x]/(5)$ is isomorphic to $\mathbb{Z}/5\mathbb{Z}[x]$, which is an integral domain but not a field. It is not the unit ideal because 5 is not a unit in $\mathbb{Z}[x]$.

The ideal (3, x-1) is a maximal ideal in $\mathbb{Z}[x]$ because $\mathbb{Z}[x]/(3, x-1)$ is isomorphic to $\mathbb{Z}/3\mathbb{Z}$, which is a field. It is therefore not the unit ideal.

- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Suppose that f''(x) > 0 for all $x \in \mathbb{R}$. Suppose also that f(0) = 0 and that f'(0) = 1.
 - a) Prove that f(1) > 0.
 - b) Find an explicit value of a > 0 such that f(a) > 10.

Justify your assertions carefully.

Solution.

(a) Since f'' > 0, the function f' is increasing (this follows from the Mean Value Theorem applied to f'). So f'(x) > f'(0) = 1 > 0 for x > 0. Therefore f is increasing on $x \ge 0$, and so f(1) > f(0) = 0.

(b) For every a > 0 we have $f(a) = f(a) - f(0) = \int_0^a f'(x) \, dx \ge \int_0^a 1 \, dx = a$, since f(0) = 0 and f'(x) > 1 for x > 0. So we may take any a > 10; e.g., a = 11. (One could also take a = 10, by using that f' is continuous and that f'(x) > 1for x > 0 to get a strict inequality between the integrals.) 6. Let Ω be a non-empty connected open subset of \mathbb{R}^2 . Suppose that $\partial f/\partial x = \partial f/\partial y = 0$ at all points $(x, y) \in \Omega$. Prove that f is a constant function on Ω . [Hint: What if Ω is an open disc?]

Solution.

Since Ω is connected and is a union of open discs, it suffices to show that f is constant on every open disc in Ω . In a disc U of center (a, b), the function fis constant on each horizontal line segment and on every vertical line segment, because $f_x = f_y = 0$ on U (using that a one-variable function on an open interval is constant if its derivative is identically 0, by the Mean Value Theorem). Given any point $(x_0, y_0) \in U$, the horizontal line segment connecting (a, b) to (x_0, b) and the vertical line segment connecting (x_0, b) to (x_0, y_0) are contained in U. Hence $f(a, b) = f(x_0, b) = f(x_0, y_0)$. Thus f is constant on U.

- 7. (a) Give an example of an open subset $R \subseteq \mathbb{R}^2$; two C^{∞} functions f(x, y), g(x, y)on R; and a loop (simple closed curve) C in R such that $\partial f/\partial y = \partial g/\partial x$ on R but $\oint_C f \, dx + g \, dy \neq 0$.
 - (b) Explain why there cannot be such an example if $R = \mathbb{R}^2$.

(a) Let R be the complement of the origin in \mathbb{R}^2 , and let C be the unit circle $x^2+y^2 = 1$, oriented counterclockwise. Take $f(x,y) = -y/(x^2+y^2)$ and $g(x,y) = x/(x^2+y^2)$. Then $\partial f/\partial y = (y^2-x^2)/(x^2+y^2)^2 = \partial g/\partial x$. We can parametrize C by $x = \cos \theta$, $y = \sin \theta$, for $0 \le \theta \le 2\pi$. Thus $dx = -\sin \theta \, d\theta$ and $dy = \cos \theta \, d\theta$, and so the given integral I is equal to $\int_{\theta=0}^{2\pi} (\sin^2 \theta + \cos^2 \theta) \, d\theta = 2\pi \ne 0$. (Here the differential form $f \, dx + g \, dy$ is equal to $d\theta$, which is not defined at (0,0); and $\frac{1}{2\pi}I$ computes the winding number of the unit circle around (0,0).)

(b) There cannot be such an example if $R = \mathbb{R}^2$, because \mathbb{R}^2 is simply connected and the integral would equal 0 by Green's Theorem.

- 8. Let V be a vector space such that $\dim(V) = 3$. Let $T : V \to V$ be a linear transformation.
 - (a) Show that if the dimension of the image of $T \circ T$ is equal to 2, then the dimension of the kernel of T is equal to 1.
 - (b) Show by example that the converse to (a) is false.

(a) If dim(ker T) = 0, then T is an isomorphism, hence so is $T \circ T$, which is then surjective, contradicting the assumption that dim(im $T \circ T$) = 2. If dim(ker T) ≥ 2 , then dim(im T) $\leq 3 - 2 = 1$. But im $T \circ T \subseteq \text{im } T$, again contradicting dim(im T) = 2. So dim(ker T) = 1.

(b) Define T by T(x, y, z) = (0, x, y). Then ker T is the span of (0, 0, 1), of dimension 1. But $T \circ T$ takes (x, y, z) to (0, 0, x), and so its image has dimension 1, not 2.

9. Let f be a continuously differentiable increasing function on \mathbb{R} , with f(0) = 1, f(1) = 2, and f(2) = 6. For each $x \in \mathbb{R}$ let g(x) be the non-negative square root of f'(x). Let R be the solid region swept out by rotating the graph of y = g(x), from x = 0 to x = 2, about the x-axis. Compute the volume of R. Explain your assertions.

Solution.

Since f is increasing, $f'(x) \ge 0$, and so g(x) is defined (and continuous). The volume of R is $\int_0^2 \pi g(x)^2 dx = \int_0^2 \pi f'(x) dx = \pi f(x)|_0^2 = \pi (6-1) = 5\pi$, by the Fundamental Theorem of Calculus.

- 10. Let G be a group, and let $S \subseteq G$ be the set of elements $g \in G$ such that $g = g^{-1}$.
 - (a) Give an example to show that S is not necessarily a subgroup of G.
 - (b) Let $H \subseteq G$ be the smallest subgroup of G that contains S. Show that H is a normal subgroup of G.

(a) Take $G = S_3$. Then S consists of the identity and the three transpositions. This set has four elements, and so is not a subgroup of G (which has order six).

(b) The group H consists of all finite products of elements of S. (Inverses of elements in S are already in S.) If $s \in S$ and $g \in G$, then $gsg^{-1} \in S$ because $(gsg^{-1})^{-1} = gs^{-1}g^{-1} = gsg^{-1}$. So given an element $h = s_1 \cdots s_n \in H$ with $s_i \in S$, and given an element $g \in G$, the element $ghg^{-1} = (gs_1g^{-1}) \cdots (gs_ng^{-1})$ is also in H. Thus $gHg^{-1} = H$ for all $g \in G$. That is, H is normal.

- 11. Consider the series $\sum_{n=0}^{\infty} (1-x)x^n = (1-x) + (1-x)x + (1-x)x^2 + \cdots$.
 - (a) Prove that the series converges pointwise on [0, 1] and find its limit.
 - (b) Does the series converge uniformly on [0, 1]? Justify your answer.

(a) For every $x \in [0, 1]$, if $0 \le x < 1$, then as $n \to \infty$, the partial sum

$$S_n(x) = \sum_{k=0}^{n-1} (1-x)x^k = (1-x)\frac{1-x^n}{1-x} = 1 - x^n \to 1.$$

If x = 1, then it is direct to see that $S_n = 0$. Hence the series converges pointwise on [0, 1] to the function

$$S(x) = \begin{cases} 1, & 0 \le x < 1; \\ 0, & x = 1. \end{cases}$$

(b) For every *n* the function $S_n(x)$ is continuous on [0, 1], but the limiting function S(x) is not continuous on [0, 1]. Therefore, the series doesn't converge uniformly to S on [0, 1].

- 12. For $n \ge 1$, let $P_n[x]$ be the real vector space of polynomials $f(x) \in \mathbb{R}[x]$ having degree at most n, and let \mathcal{D} be the differential operator $\mathcal{D}(f) = f'$ on $P_n[x]$.
 - (a) Explain why \mathcal{D} is a linear transformation, and find its characteristic polynomial.
 - (b) Prove that \mathcal{D} is not given by a diagonal matrix with respect to any basis of $P_n[x]$.

(a) Since (f + g)' = f' + g' for $f, g \in P_n[x]$, and since (cf)' = cf' for $c \in \mathbb{R}$ and $f \in P_n[x]$, the operator \mathcal{D} is a linear transformation. To find its characteristic polynomial, consider the basis $\{1, x, \dots, x^n\}$ of $P_n[x]$, a vector space of dimension n + 1. The matrix of \mathcal{D} with respect to this basis is

$$D = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & n \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

It has the characteristic polynomial

$$\det(\lambda \mathbf{I} - D) = \lambda^{n+1}.$$

(b) Note that the only eigenvalue of D is 0, and $0 \cdot \mathbf{I} - D = -D$ has rank n. Hence, the eigenspace associated to 0 is one dimensional. Therefore, \mathcal{D} cannot have a diagonal matrix with respect to any basis, as otherwise it should have n + 1 linearly independent eigenvectors. (Alternatively, if it were diagonalizable, then the associated diagonal matrix would have all zeroes along the diagonal, since 0 is the only eigenvalue. But any matrix that is similar to the zero matrix is itself the zero matrix, whereas D is not the zero matrix. So D is not diagonalizable.)