1. Let $\left\{a_{i}\right\},\left\{b_{i}\right\}$ be Cauchy sequences of real numbers. Show that the following conditions are equivalent:
i) The sequence $\left\{a_{i}-b_{i}\right\}$ approaches 0 .
ii) The sequence $a_{1}, b_{1}, a_{2}, b_{2}, \ldots$ is Cauchy.

Solution.

(i) \Rightarrow (ii): Let $\varepsilon>0$. Since $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are each Cauchy, there exists N_{1} such that $\left|a_{i}-a_{j}\right|<\varepsilon / 2$ and $\left|b_{i}-b_{j}\right|<\varepsilon / 2$ for $i, j>N_{1}$. Since $\left\{a_{i}-b_{i}\right\} \rightarrow 0$, there exists N_{2} such that $\left|a_{j}-b_{j}\right|<\varepsilon / 2$ for $i, j>N_{2}$. So if $i, j>N:=\max \left(N_{1}, N_{2}\right)$ then $\left|a_{i}-b_{j}\right| \leq\left|a_{i}-a_{j}\right|+\left|a_{j}-b_{j}\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon$. Since also $\left|a_{i}-a_{j}\right|,\left|b_{i}-b_{j}\right|<\varepsilon$, (ii) follows.
(ii) \Rightarrow (i): Let $\varepsilon>0$. Since $a_{1}, b_{1}, a_{2}, b_{2}, \ldots$ is Cauchy, there exists N such that $\left|a_{i}-b_{j}\right|<\varepsilon$ for $i, j>N$. In particular, $\left|a_{i}-b_{i}\right|<\varepsilon$ for $i>N$. So (i) follows.
2. Let A be the 3×3 real matrix $\left(\begin{array}{ccc}2 & -3 & -1 \\ 0 & 3 & 2 \\ 2 & 3 & 3\end{array}\right)$ and let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(v)=A v$ (viewing elements of \mathbb{R}^{3} as column vectors). Find a basis for the kernel of T, and find a basis for the image of T.

Solution.

Applying row reduction, we obtain the sequence of matrices

$$
\left(\begin{array}{ccc}
1 & -3 / 2 & -1 / 2 \\
0 & 3 & 2 \\
0 & 6 & 4
\end{array}\right),\left(\begin{array}{ccc}
1 & -3 / 2 & -1 / 2 \\
0 & 1 & 2 / 3 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 1 / 2 \\
0 & 1 & 2 / 3 \\
0 & 0 & 0
\end{array}\right) .
$$

So the kernel is the one dimensional subspace spanned by $(3,4,-6)$, and the image is the two dimensional space spanned by the columns of the given matrix. Since neither of the first two columnns is a multiple of the other, a basis for the image is $\{(2,0,2),(-3,3,3)\}$.
3. Just from the definition, derive the formula for the derivative of the function $f(x)=1 / x$.

Solution.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1 /(x+h)-1 / x}{h}=\lim _{h \rightarrow 0} \frac{x-(x+h)}{h x(x+h)}=\lim _{h \rightarrow 0}-1 / x(x+h)=-1 / x^{2}
$$

4. (a) Which of the following ideals in $\mathbb{R}[x]$ are prime? maximal? the unit ideal? $\left(x^{2}-1\right),\left(x^{2}+1\right),(5),(3, x-1)$
(b) Do the same with $\mathbb{R}[x]$ replaced by $\mathbb{Z}[x]$.

Justify your assertions.

Solution.

(a) Since $x^{2}-1=(x+1)(x-1)$, the ideal $\left(x^{2}-1\right)$ is not prime in $\mathbb{R}[x]$ and so it is not maximal. Since non-zero multiples of $x^{2}-1$ have degree at least 2 , the ideal $\left(x^{2}-1\right)$ does not contain 1 and so is not the unit ideal.
The polynomial $x^{2}+1$ is irreducible in the PID $\mathbb{R}[x]$, and so the ideal $\left(x^{2}+1\right)$ is prime and maximal. It is not the unit ideal for the same reason as $\left(x^{2}-1\right)$.
The ideals (5) and ($3, x-1$) are each the unit ideal in $\mathbb{R}[x]$, since they each contain a non-zero constant, which is a unit.
(b) In $\mathbb{Z}[x]$, the ideal $\left(x^{2}-1\right)$ is again not prime, not maximal, and not the unit ideal, by the same reasoning as in $\mathbb{R}[x]$.
The ideal $\left(x^{2}+1\right)$ is prime because it is irreducible in the UFD $\mathbb{Z}[x]$ (or because $\mathbb{Z}[x] /\left(x^{2}+1\right)$ is isomorphic to the integral domain $\left.\mathbb{Z}[i]\right)$. It is not maximal because $\mathbb{Z}[i]$ is not a field. It is not the unit ideal for the same reason as in $\mathbb{R}[x]$. The ideal (5) is prime but not maximal, because $\mathbb{Z}[x] /(5)$ is isomorphic to $\mathbb{Z} / 5 \mathbb{Z}[x]$, which is an integral domain but not a field. It is not the unit ideal because 5 is not a unit in $\mathbb{Z}[x]$.
The ideal $(3, x-1)$ is a maximal ideal in $\mathbb{Z}[x]$ because $\mathbb{Z}[x] /(3, x-1)$ is isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$, which is a field. It is therefore not the unit ideal.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Suppose that $f^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$. Suppose also that $f(0)=0$ and that $f^{\prime}(0)=1$.
a) Prove that $f(1)>0$.
b) Find an explicit value of $a>0$ such that $f(a)>10$.

Justify your assertions carefully.

Solution.

(a) Since $f^{\prime \prime}>0$, the function f^{\prime} is increasing (this follows from the Mean Value Theorem applied to f^{\prime}). So $f^{\prime}(x)>f^{\prime}(0)=1>0$ for $x>0$. Therefore f is increasing on $x \geq 0$, and so $f(1)>f(0)=0$.
(b) For every $a>0$ we have $f(a)=f(a)-f(0)=\int_{0}^{a} f^{\prime}(x) d x \geq \int_{0}^{a} 1 d x=a$, since $f(0)=0$ and $f^{\prime}(x)>1$ for $x>0$. So we may take any $a>10$; e.g., $a=11$. (One could also take $a=10$, by using that f^{\prime} is continuous and that $f^{\prime}(x)>1$ for $x>0$ to get a strict inequality between the integrals.)
6. Let Ω be a non-empty connected open subset of \mathbb{R}^{2}. Suppose that $\partial f / \partial x=$ $\partial f / \partial y=0$ at all points $(x, y) \in \Omega$. Prove that f is a constant function on Ω. [Hint: What if Ω is an open disc?]

Solution.

Since Ω is connected and is a union of open discs, it suffices to show that f is constant on every open disc in Ω. In a disc U of center (a, b), the function f is constant on each horizontal line segment and on every vertical line segment, because $f_{x}=f_{y}=0$ on U (using that a one-variable function on an open interval is constant if its derivative is identically 0 , by the Mean Value Theorem). Given any point $\left(x_{0}, y_{0}\right) \in U$, the horizontal line segment connecting (a, b) to $\left(x_{0}, b\right)$ and the vertical line segment connecting $\left(x_{0}, b\right)$ to $\left(x_{0}, y_{0}\right)$ are contained in U. Hence $f(a, b)=f\left(x_{0}, b\right)=f\left(x_{0}, y_{0}\right)$. Thus f is constant on U.
7. (a) Give an example of an open subset $R \subseteq \mathbb{R}^{2}$; two C^{∞} functions $f(x, y), g(x, y)$ on R; and a loop (simple closed curve) C in R such that $\partial f / \partial y=\partial g / \partial x$ on R but $\oint_{C} f d x+g d y \neq 0$.
(b) Explain why there cannot be such an example if $R=\mathbb{R}^{2}$.

Solution.

(a) Let R be the complement of the origin in \mathbb{R}^{2}, and let C be the unit circle $x^{2}+y^{2}=1$, oriented counterclockwise. Take $f(x, y)=-y /\left(x^{2}+y^{2}\right)$ and $g(x, y)=$ $x /\left(x^{2}+y^{2}\right)$. Then $\partial f / \partial y=\left(y^{2}-x^{2}\right) /\left(x^{2}+y^{2}\right)^{2}=\partial g / \partial x$. We can parametrize C by $x=\cos \theta, y=\sin \theta$, for $0 \leq \theta \leq 2 \pi$. Thus $d x=-\sin \theta d \theta$ and $d y=\cos \theta d \theta$, and so the given integral I is equal to $\int_{\theta=0}^{2 \pi}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) d \theta=2 \pi \neq 0$. (Here the differential form $f d x+g d y$ is equal to $d \theta$, which is not defined at $(0,0)$; and $\frac{1}{2 \pi} I$ computes the winding number of the unit circle around $(0,0)$.)
(b) There cannot be such an example if $R=\mathbb{R}^{2}$, because \mathbb{R}^{2} is simply connected and the integral would equal 0 by Green's Theorem.
8. Let V be a vector space such that $\operatorname{dim}(V)=3$. Let $T: V \rightarrow V$ be a linear transformation.
(a) Show that if the dimension of the image of $T \circ T$ is equal to 2 , then the dimension of the kernel of T is equal to 1 .
(b) Show by example that the converse to (a) is false.

Solution.

(a) If $\operatorname{dim}(\operatorname{ker} T)=0$, then T is an isomorphism, hence so is $T \circ T$, which is then surjective, contradicting the assumption that $\operatorname{dim}(\operatorname{im} T \circ T)=2$. If $\operatorname{dim}(\operatorname{ker} T) \geq 2$, then $\operatorname{dim}(\operatorname{im} T) \leq 3-2=1$. But $\operatorname{im} T \circ T \subseteq \operatorname{im} T$, again contradicting $\operatorname{dim}(\operatorname{im} T)=2$. So $\operatorname{dim}(\operatorname{ker} T)=1$.
(b) Define T by $T(x, y, z)=(0, x, y)$. Then ker T is the span of $(0,0,1)$, of dimension 1. But $T \circ T$ takes (x, y, z) to $(0,0, x)$, and so its image has dimension 1 , not 2 .
9. Let f be a continuously differentiable increasing function on \mathbb{R}, with $f(0)=1$, $f(1)=2$, and $f(2)=6$. For each $x \in \mathbb{R}$ let $g(x)$ be the non-negative square root of $f^{\prime}(x)$. Let R be the solid region swept out by rotating the graph of $y=g(x)$, from $x=0$ to $x=2$, about the x-axis. Compute the volume of R. Explain your assertions.

Solution.

Since f is increasing, $f^{\prime}(x) \geq 0$, and so $g(x)$ is defined (and continuous). The volume of R is $\int_{0}^{2} \pi g(x)^{2} d x=\int_{0}^{2} \pi f^{\prime}(x) d x=\left.\pi f(x)\right|_{0} ^{2}=\pi(6-1)=5 \pi$, by the Fundamental Theorem of Calculus.
10. Let G be a group, and let $S \subseteq G$ be the set of elements $g \in G$ such that $g=g^{-1}$.
(a) Give an example to show that S is not necessarily a subgroup of G.
(b) Let $H \subseteq G$ be the smallest subgroup of G that contains S. Show that H is a normal subgroup of G.

Solution.

(a) Take $G=S_{3}$. Then S consists of the identity and the three transpositions. This set has four elements, and so is not a subgroup of G (which has order six).
(b) The group H consists of all finite products of elements of S. (Inverses of elements in S are already in S.) If $s \in S$ and $g \in G$, then $g s g^{-1} \in S$ because $\left(g s g^{-1}\right)^{-1}=g s^{-1} g^{-1}=g s g^{-1}$. So given an element $h=s_{1} \cdots s_{n} \in H$ with $s_{i} \in S$, and given an element $g \in G$, the element $g h g^{-1}=\left(g s_{1} g^{-1}\right) \cdots\left(g s_{n} g^{-1}\right)$ is also in H. Thus $g H g^{-1}=H$ for all $g \in G$. That is, H is normal.
11. Consider the series $\sum_{n=0}^{\infty}(1-x) x^{n}=(1-x)+(1-x) x+(1-x) x^{2}+\cdots$.
(a) Prove that the series converges pointwise on $[0,1]$ and find its limit.
(b) Does the series converge uniformly on [0, 1]? Justify your answer.

Solution.

(a) For every $x \in[0,1]$, if $0 \leq x<1$, then as $n \rightarrow \infty$, the partial sum

$$
S_{n}(x)=\sum_{k=0}^{n-1}(1-x) x^{k}=(1-x) \frac{1-x^{n}}{1-x}=1-x^{n} \rightarrow 1 .
$$

If $x=1$, then it is direct to see that $S_{n}=0$. Hence the series converges pointwise on $[0,1]$ to the function

$$
S(x)= \begin{cases}1, & 0 \leq x<1 \\ 0, & x=1\end{cases}
$$

(b) For every n the function $S_{n}(x)$ is continuous on $[0,1]$, but the limiting function $S(x)$ is not continuous on $[0,1]$. Therefore, the series doesn't converge uniformly to S on $[0,1]$.
12. For $n \geq 1$, let $P_{n}[x]$ be the real vector space of polynomials $f(x) \in \mathbb{R}[x]$ having degree at most n, and let \mathcal{D} be the differential operator $\mathcal{D}(f)=f^{\prime}$ on $P_{n}[x]$.
(a) Explain why \mathcal{D} is a linear transformation, and find its characteristic polynomial.
(b) Prove that \mathcal{D} is not given by a diagonal matrix with respect to any basis of $P_{n}[x]$.

Solution.

(a) Since $(f+g)^{\prime}=f^{\prime}+g^{\prime}$ for $f, g \in P_{n}[x]$, and since $(c f)^{\prime}=c f^{\prime}$ for $c \in \mathbb{R}$ and $f \in P_{n}[x]$, the operator \mathcal{D} is a linear transformation. To find its characteristic polynomial, consider the basis $\left\{1, x, \cdots, x^{n}\right\}$ of $P_{n}[x]$, a vector space of dimension $n+1$. The matrix of \mathcal{D} with respect to this basis is

$$
D=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 2 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & n \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

It has the characteristic polynomial

$$
\operatorname{det}(\lambda \mathbf{I}-D)=\lambda^{n+1}
$$

(b) Note that the only eigenvalue of D is 0 , and $0 \cdot \mathbf{I}-D=-D$ has rank n. Hence, the eigenspace associated to 0 is one dimensional. Therefore, \mathcal{D} cannot have a diagonal matrix with respect to any basis, as otherwise it should have $n+1$ linearly independent eigenvectors. (Alternatively, if it were diagonalizable, then the associated diagonal matrix would have all zeroes along the diagonal, since 0 is the only eigenvalue. But any matrix that is similar to the zero matrix is itself the zero matrix, whereas D is not the zero matrix. So D is not diagonalizable.)

