1. Let {a;}, {b;} be Cauchy sequences of real numbers. Show that the following
conditions are equivalent:

i) The sequence {a; — b;} approaches 0.

ii) The sequence ay, by, ag, by, ... is Cauchy.

Solution.

(i) = (ii): Let € > 0. Since {a;} and {b;} are each Cauchy, there exists /Ny such
that |a; — a;| < /2 and |b; — b;| < e/2 for 4,5 > N;. Since {a; — b;} — 0, there
exists Ny such that |a; — b;| < ¢/2 for 4,5 > Ny. Soif i,j > N := max(Ny, N)
then |a;—b;| < |a;—a;|+|a;—b;| < €/24€/2 = €. Since also |a;—ajl, |b;—b;| < &,
(ii) follows.

(ii) = (i): Let € > 0. Since ay, by, ag, by, ... is Cauchy, there exists N such that
la; — bj| < e for i,j > N. In particular, |a; — b;| < ¢ for i > N. So (i) follows.



2 -3 —1

2. Let Abethe3 x3real matrix |0 3 2 | and let T : R?® — R3 be defined

2 3 3
by T'(v) = Av (viewing elements of R? as column vectors). Find a basis for the
kernel of T', and find a basis for the image of 7.

Solution.

Applying row reduction, we obtain the sequence of matrices

1 —3/2 —1/2 1 —3/2 —1/2 10 1/2
0 3 2 |, (o 1 2/3 |, 01 2/3
0 6 4 0 0 0 00 0

So the kernel is the one dimensional subspace spanned by (3,4, —6), and the
image is the two dimensional space spanned by the columns of the given matrix.

Since neither of the first two columnns is a multiple of the other, a basis for the
image is {(2,0,2),(—3,3,3)}.



3. Just from the definition, derive the formula for the derivative of the function

flz) =1/m.

Solution.

f'(z) = lim V(e +h)—1/z _ 5 z—(z+h)

—_ M _ _ 2
h—0 h _hlg(l) hxz(x + h) _}lblg(l) 1/z(x + h) 1/22.



4.

(a) Which of the following ideals in R[z]| are prime? maximal? the unit ideal?
(‘7;2 - 1)7 (IQ + 1)7 (5)7 (37 T — 1)
(b) Do the same with R[z] replaced by Z|[z].

Justify your assertions.

Solution.

(a) Since 2 — 1 = (x + 1)(x — 1), the ideal (z* — 1) is not prime in R[z] and so
it is not maximal. Since non-zero multiples of 2 — 1 have degree at least 2, the
ideal (22 — 1) does not contain 1 and so is not the unit ideal.

The polynomial z? + 1 is irreducible in the PID R[z], and so the ideal (22 + 1)
is prime and maximal. It is not the unit ideal for the same reason as (z? — 1).

The ideals (5) and (3,2 — 1) are each the unit ideal in R[z], since they each
contain a non-zero constant, which is a unit.

(b) In Z[z], the ideal (z* — 1) is again not prime, not maximal, and not the unit
ideal, by the same reasoning as in R|x].

The ideal (z%+ 1) is prime because it is irreducible in the UFD Z[z] (or because
Zlx]/(x* + 1) is isomorphic to the integral domain Z[i]). It is not maximal
because Z[i] is not a field. It is not the unit ideal for the same reason as in R[z].
The ideal (5) is prime but not maximal, because Z[z]|/(5) is isomorphic to
Z/5Z|x], which is an integral domain but not a field. It is not the unit ideal
because 5 is not a unit in Z[z]|.

The ideal (3,z—1) is a maximal ideal in Z[z] because Z[x]/(3,x—1) is isomorphic
to Z/37, which is a field. It is therefore not the unit ideal.



5. Let f : R — R be a differentiable function. Suppose that f”(x) > 0 for all
x € R. Suppose also that f(0) = 0 and that f'(0) = 1.

a) Prove that f(1) > 0.
b) Find an explicit value of @ > 0 such that f(a) > 10.

Justify your assertions carefully.

Solution.

(a) Since f” > 0, the function f’ is increasing (this follows from the Mean Value
Theorem applied to f'). So f'(x) > f'(0) =1 > 0 for z > 0. Therefore f is
increasing on x > 0, and so f(1) > f(0) = 0.

(b) For every a > 0 we have f(a) = f(a) — f(0) = [ f'(z) dz > []'1 dz = q,
since f(0) = 0 and f'(z) > 1 for x > 0. So we may take any a > 10; e.g., a = 11.
(One could also take a = 10, by using that f’ is continuous and that f'(z) > 1
for x > 0 to get a strict inequality between the integrals.)



6. Let © be a non-empty connected open subset of R%. Suppose that 0f/dz =
Jdf /0y = 0 at all points (z,y) € Q. Prove that f is a constant function on .
[Hint: What if Q is an open disc?]

Solution.

Since € is connected and is a union of open discs, it suffices to show that f is
constant on every open disc in . In a disc U of center (a,b), the function f
is constant on each horizontal line segment and on every vertical line segment,
because f, = f, = 0 on U (using that a one-variable function on an open interval
is constant if its derivative is identically 0, by the Mean Value Theorem). Given
any point (xg,yp) € U, the horizontal line segment connecting (a,b) to (x¢,b)
and the vertical line segment connecting (xg,b) to (xg, o) are contained in U.
Hence f(a,b) = f(xo,b) = f(z0,90). Thus f is constant on U.



7.

(a) Give an example of an open subset R C R?; two C*™ functions f(x,v), g(z, y)
on R; and a loop (simple closed curve) C' in R such that 0f /0y = 0g/0x
on R but ¢, fdx+ gdy # 0.

(b) Explain why there cannot be such an example if R = R?

Solution.

(a) Let R be the complement of the origin in R? and let C' be the unit circle
x?+y? = 1, oriented counterclockwise. Take f(z,y) = —y/(2?+y?) and g(z,y) =
z/(z*4y?). Then 0f /0y = (y*—a?)/(x*+y*)* = dg/dx. We can parametrize C
by x = cosf, y =sinf, for 0 < 6 < 2x. Thus dx = —sinf df and dy = cos 6 db,
and so the given integral I is equal to f;:o (Sin2 0 + cos? 8) df = 2w # 0. (Here
the differential form fdx + gdy is equal to df, which is not defined at (0,0);
and 5-1 computes the winding number of the unit circle around (0,0).)

(b) There cannot be such an example if R = R?, because R? is simply connected
and the integral would equal 0 by Green’s Theorem.



8. Let V' be a vector space such that dim(V) = 3. Let T': V. — V be a linear
transformation.

(a) Show that if the dimension of the image of T o T' is equal to 2, then the
dimension of the kernel of T is equal to 1.

(b) Show by example that the converse to (a) is false.

Solution.

(a) If dim(ker T') = 0, then 7' is an isomorphism, hence so is 7 o T, which
is then surjective, contradicting the assumption that dim(im 770 7T) = 2. If
dim(ker T') > 2, then dim(im 7) < 3 -2 = 1. But im To T C im 7, again
contradicting dim(im 7°) = 2. So dim(ker T") = 1.

(b) Define T by T'(z,y,2) = (0,z,y). Then ker T" is the span of (0,0,1), of
dimension 1. But T'oT takes (z,y, z) to (0,0, x), and so its image has dimension
1, not 2.



9. Let f be a continuously differentiable increasing function on R, with f(0) = 1,
f(1) =2, and f(2) = 6. For each = € R let g(z) be the non-negative square root
of f'(z). Let R be the solid region swept out by rotating the graph of y = g(x),
from x = 0 to x = 2, about the z-axis. Compute the volume of R. Explain your
assertions.

Solution.

Since f is increasing, f'(xz) > 0, and so g(z) is defined (and continuous). The
volume of R is f02 mg(z)? dx = f02 7 f(z)dx = 7 f(x)]3 = 7(6 — 1) = 57, by the
Fundamental Theorem of Calculus.



10. Let G be a group, and let S C G be the set of elements g € G such that g = g 1.

(a) Give an example to show that S is not necessarily a subgroup of G.

(b) Let H C G be the smallest subgroup of G that contains S. Show that H
is a normal subgroup of G.

Solution.

(a) Take G = S3. Then S consists of the identity and the three transpositions.
This set has four elements, and so is not a subgroup of G' (which has order six).

(b) The group H consists of all finite products of elements of S. (Inverses of
elements in S are already in S.) If s € S and g € G, then gsg~' € S because
(gsg™") " = gs™!
s; € S, and given an element g € G, the element ghg™' = (gs197") -+ (9s,97")
is also in H. Thus gHg™' = H for all g € G. That is, H is normal.

g ' = gsg~!. So given an element h = s;---s, € H with



11. Consider the series > 2 (1 —z)z"=(1—z)+ (1 —2)z+ (1 —z)2* + - - -.
(a) Prove that the series converges pointwise on [0, 1] and find its limit.

(b) Does the series converge uniformly on [0, 1]? Justify your answer.

Solution.

(a) For every z € [0,1], if 0 < x < 1, then as n — oo, the partial sum

n—1
1 — ™
Su(x) =Y (1 —2)a* = (1 - z) 1_‘7; —1-a" 1.
k=0

If x = 1, then it is direct to see that .S, = 0. Hence the series converges pointwise
on [0, 1] to the function

1, 0<z<1;
Sy=4" "~ ~T°7
0, z=1.
(b) For every n the function S,(x) is continuous on [0, 1], but the limiting
function S(x) is not continuous on [0, 1]. Therefore, the series doesn’t converge
uniformly to S on [0, 1].



12. For n > 1, let P,[z] be the real vector space of polynomials f(z) € R[z] having
degree at most n, and let D be the differential operator D(f) = f’ on P,[z].

(a) Explain why D is a linear transformation, and find its characteristic poly-
nomial.

(b) Prove that D is not given by a diagonal matrix with respect to any basis

of P,[z].

Solution.

(a) Since (f +g) = f'+ ¢ for f,g € P,[z], and since (cf) = c¢f’ for ¢ € R
and f € P,[z], the operator D is a linear transformation. To find its charac-
teristic polynomial, consider the basis {1, x,--- ,2"} of P,[z], a vector space of
dimension n + 1. The matrix of D with respect to this basis is

010 -0
002 -0
D=|: : : :
0 0 0 n
00 0 0

It has the characteristic polynomial

det(AI — D) = A"+,

(b) Note that the only eigenvalue of D is 0, and 0-I—D = —D has rank n. Hence,
the eigenspace associated to 0 is one dimensional. Therefore, D cannot have a
diagonal matrix with respect to any basis, as otherwise it should have n + 1
linearly independent eigenvectors. (Alternatively, if it were diagonalizable, then
the associated diagonal matrix would have all zeroes along the diagonal, since 0
is the only eigenvalue. But any matrix that is similar to the zero matrix is itself
the zero matrix, whereas D is not the zero matrix. So D is not diagonalizable.)
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