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ABSTRACT

ANCIENT SOLUTIONS OF THE RICCI FLOW ON COMPACT HOMOGENEOUS

SPACES

Sammy Sbiti

Wolfgang Ziller

Renato G. Bettiol

We investigate the behaviour of the Ricci flow for homogeneous metrics on spheres and

on general compact homogeneous spaces. In particular we complete the classification of

ancient homogeneous solutions on spheres and discover a new 1-parameter family of ancient

solutions. These solutions can be described in terms of shrinking the fibers of the Hopf

fibration S1 → S4n+3 → CP2n+1 while varying the metric on the CP2n+1 base. Precisely

one solution collapses along the backwards flow to the Fubini-Study metric while the rest

collapse to Ziller’s second Einstein metric on CP2n+1. We then proceed to determine a

general criterion for the existence of collapsed ancient solutions on compact homogeneous

spaces. In particular, we show that whenever G/H is the total space of a homogeneous

fibration Tn → G/H → G/K where Tn is a maximal torus in a compact complement

of H in NG(H), then for every Einstein metric on the base G/K there exists a family of

ancient solutions on G/H which collapse to the given Einstein metric under the backwards

flow. This construction generalizes all previously known examples of collapsed homogeneous

ancient solutions in the literature, and also leads to many new families of examples.
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CHAPTER 1

Introduction

Hamilton’s Ricci flow is given by the geometric PDE

∂

∂t
gt = −2Ric(gt).

Up to a time-dependent family of diffeomorphisms, the Ricci flow is equivalent to a parabolic

PDE, and so similar to the heat equation, the Ricci flow has regularizing properties for

Riemannian metrics, making it useful for proving classification-type theorems in geometry.

In general, the hope is that one can run the Ricci flow to simplify the metric of a Riemannian

manifold so that one can eventually conclude information about its topology. It was used,

for example, to prove that simply connected 3-manifolds with positive Ricci curvature are

spheres [25], as well as simply connected n-manifolds with positive curvature operators [14]

and those with quarter-pinched metrics [17].

Typically the Ricci flow develops singularities in finite time, and hence for many applications

one must perform surgeries along the flow. That is, one must excise neighborhoods of the

singularities and then reattach suitable components. The Ricci flow with surgery was used

in Perelman’s celebrated proof of the Poincaré conjecture [33], and was also used in recent

work by S. Brendle to classify manifolds with positive isotropic curvature in dimensions

n ≥ 12 [16]. Of course, in order to perform surgeries it is important to understand the

geometry near a singularity.

The only way a finite-time singularity can develop is if there is a sequence of points xi ∈ Mn

and times ti → T such that Ki := |Rm(g(ti))(xi, ti)| → ∞, where T is the singular time

and |Rm(g(ti))(xi, ti)| is the norm of the curvature tensor of g(ti) evaluated at xi [23]. As

a consequence of Hamilton’s compactness theorem, one can always pick such a sequence of

points and times so that the sequence of parabolically-rescaled solutions
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gi(t) := Kig

(
ti +

t

Ki

)
subconverges (in a suitable sense) to a limit solution g∞(t), called a singularity model, on a

complete n-dimensional manifold Mn
∞ defined on the time interval (−∞, 0] (e.g. cite CLN).

Solutions defined on (−∞, 0] are called ancient, and hence, by the above, ancient solutions

are important for understanding the Ricci flow near its singular times.

Similar to the heat equation, the backwards Ricci flow is generally ill-posed and hence

ancient solutions are rare. On a homogeneous space Mn = G/H however, the Ricci flow is

equivalent to an ODE and in particular the backwards flow exists for short time intervals.

In fact if G/H is compact, then the normalized Ricci flow, which preserves volume and is

equivalent to the Ricci flow up to rescaling and reparametrization, is the gradient flow for

the scalar curvature functional on the space of homogeneous metrics and fixed points of the

flow are precisely the homogeneous Einstein metrics. The global behaviour of the scalar

curvature functional on the space of homogeneous metrics was studied in [13] and is closely

related to the structure of the set of intermediate subgroups between H and G.

From now on we will let Mn = G/H be a compact homogeneous space. Since fixed points

of the normalized flow are homogeneous Einstein metrics, it turns out that non-collapsed

ancient solutions exist whenever there M admits an unstable G-invariant Einstein metric

(see [12]). On the other hand, collapsed solutions have been constructed on a case by case

basis and up til now there have been few general existence theorems.

We begin this thesis by studying the behaviour of the Ricci flow on homogeneous spheres

as in [44]. Besides the left-invariant metrics on S3, homogeneous metrics on spheres can be

described in terms of the Hopf fibrations [48]

S1 → S2n+1 → CPn S7 → S15 → S8 S3 → S4n+3 → HPn. (1.0.1)
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Associated to each fibration, there is a 2-parameter family of homogeneous metrics gt,s which

can be obtained by starting with the round metric and scaling the fiber by t and the base

by s. The behaviour of the Ricci flow for these metrics was studied in [21] and [6], and we

indicate their behaviour in Chapter 2.1. See also [26] and [22] for the case of left-invariant

metrics on S3. There exists, however, a larger class of homogeneous metrics associated to the

fibration S3 → S4n+3 → HPn by allowing the metric on S3 to be an arbitrary left-invariant

metric. It can be shown that, up to isometry, this left-invariant metric can be diagonalized

with eigenvalues x ≤ y ≤ z. Hence, we obtain a 4-parameter family of metrics, which we

denote by gx,y,z,s. This is the only family of homogeneous metrics on spheres for which the

Ricci flow has not yet been studied, and is the main object of the Chapter 2 and [44].

First we determine the forwards behaviour of solutions. Then we classify the ancient so-

lutions and exhibit a new one-parameter family. The main theorem of Chapter 2 is the

following.

Theorem A. Let gt be an Sp(n+ 1)-invariant solution of the Ricci flow or the normalized

Ricci flow on S4n+3 with initial condition g0 = gx,y,z,s, where x ≤ y ≤ z. Then gt is ancient

if and only if x ≤ y = z ≤ s.

These (non-isometric) ancient solutions all have positive sectional curvature and a larger

isometry group, namely Sp(n + 1)Sp(1), Sp(n + 1)U(1), or U(2n + 2) (see Lemma 2.3.1).

Two ancient solutions converge, under the backwards flow, to Jensen’s second Einstein metric

and are non-collapsed (see [6]). All the remaining ones are collapsed and can be viewed as

shrinking the fiber of the Hopf fibration S1 → S4n+3 → CP2n+1 and simultaneously letting

the metric on the base vary. One solution parametrizes the well known Berger metrics and,

under a rescaling of the backwards flow, converges in the Gromov-Hausdorff topology to the

Fubini-Study metric on CP2n+1. The rest of the solutions are new. Under a rescaling of the

backwards flow, these solutions converge to Ziller’s second homogeneous Einstein metric on

CP2n+1 [48]. Similar to the ancient solutions found in [12], the limit solitons do not depend

continuously on the initial metric. Figure 1.1 illustrates the behaviour of the backwards
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flow for the volume-normalized solutions, which can be obtained by setting x = (y2s4n)−1.

The y-axis represents the ratio y/s and the x-axis represents the value of s. See also Figure

2.1 and Figure 2.2 for the graph of the scalar curvature functional on the set of volume 1

metrics. The reader may also compare the behaviour of the Ricci flow on S4n+3 with that

of the Ricci iteration studied in [20].

s

y/s

y/s = 1

y/s = 1
1+n

Round metric

Jensen's second Einstein metric

Sp(n+1)Sp(1)-invariant metrics

Stable manifold for second Einstein metric

Ancient solutions

Fubini-Study metric on CP2n+1

Ziller's second Einstein metric on CP2n+1

1

Figure 1.1: Backwards flow of Sp(n+ 1)U(1)-invariant metrics

It is interesting to note that the ancient solutions above are in some sense attracted to

Ziller’s second Einstein metric on the CP2n+1 base. Indeed, Ziller’s second Einstein metric

is a local minimum among homogeneous metrics on CP2n+1 and the Fubini-Study metric is

a local maximum, hence the single ancient solution converging to the Fubini-Study metric

and the family of solutions converging to Ziller’s second Einstein metric. The formula for

the scalar curvature of a homogeneous fibration with shrinking fibers (see 2.1.4) indicates
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that as the flat fiber shrinks, the scalar curvature is dominated by the scalar curvature of

the metric on the base. Hence when the fiber is small, one might expect that along the

backwards Ricci flow the fiber will continue to shrink while the metric on the base evolves

approximately according to the negative gradient flow of the scalar curvature functional

restricted to homogeneous metrics on the base.

It is thus natural to hypothesize that a collapsed ancient solution should exist whenever

G/H is the total space of a homogeneous torus fibration

Tn = K/H → G/H → G/K

and the base K/H admits a homogeneous Einstein metric. Furthermore, as in the case of

spheres, the dimension of the family of ancient solutions collapsing to the given Einstein

metric should be controlled by the coindex.

Chapter 3 consists of joint work with Francesco Pediconi from [39] where we confirm this

hypothesis. In particular we show the following.

Theorem B. Let H ⊊ TH ⊊ G be compact, connected Lie groups, where T is a maximal

torus of a compact complement of H in the normalizer NG(H) with d = dim(T) ≥ 1. For

any G-invariant, unit volume Einstein metric g on N = G/TH of coindex q, there exists a(d(d+1)
2 + q − 1

)
-parameter family of collapsed ancient solutions to the homogeneous Ricci

flow on M = G/H that, under a suitable rescaling, shrink the fibers of T → M → N and

converge to (N, g) in the Gromov-Hausdorff topology as t → −∞.

Here, the coindex of the Einstein metric g is defined as its coindex as a critical point of the

scalar curvature functional on the space MG
N,1 of unit volume G-invariant metrics on N (see

Section 3.1.2). We mention that all the ancient solutions obtained by means of Theorem B

are of submersion type with respect to the homogeneous torus fibration T → M → N , and

we expect this property to be true in general (see e.g. [44]). Furthermore we stress that,

along the solutions obtained by our theorem, the metric on the fibers T and the base N will

5



in general change. Notice also that Theorem B holds true even when g has coindex q = 0,

i.e. it is a local maximum of scalar curvature on MG
N,1 (compare with [12, Lemma 5.4]).

We illustrate Theorem B with a series of examples.

Corollary A.

a) On SU(3), SU(3)/S1, SU(4), SU(4)/S1, SU(4)/T2, G2 and G2/S
1 there exists a 3,

respectively, 1, 7, 4, 2, 3 and 1-parameter family of ancient solutions to the Ricci

flow collapsing, under a suitable rescaling, to a Kähler-Einstein metric on a full flag

manifold.

b) On SU(n)/Tn−1−k, with n ≥ 3 and 1 ≤ k ≤ n − 1, there exists a
(k(k+1)

2 + n − 2
)
-

parameter family of ancient solutions to the Ricci flow collapsing to the normal Einstein

metric on SU(n)/Tn−1.

c) On SO(4) and SO(4)/S1 there exists a 3, respectively, 1-parameter family of ancient

solutions to the Ricci flow collapsing to the normal Einstein metric on SO(4)/T2.

Notice that the the circles S1 ⊂ SO(4) in Corollary A can be chosen with arbitrary slope

and that the manifolds SO(4)/S1 are diffeomorphic to S3 × S2 (see e.g. [47]). In particular

we obtain infinitely many families of ancient solutions on S3 × S2 that are homogeneous

under inequivalent group actions. Moreover, let us also observe that in [9] it was shown that

under the assumptions of Theorem B most homogeneous spaces G/TH admit homogeneous

Einstein metrics with large coindex plus nullity (see also [46, 13, 11]), to which Theorem B

can be applied.

We remark that Theorem B allows us to reconstruct all known examples of collapsed ho-

mogeneous ancient solutions to the Ricci flow, such as those in [44, 21, 12, 6, 32], which we

will now discuss. In [6] and [32], the authors construct ancient solutions which consist of

submersion metrics F → M → B where one assumes either that F,M,B admit Einstein

metrics, F is a torus, or B is a product of Kähler-Einstein metrics. In these constructions

6



the metric on the base remains fixed, or in the latter case stays within the set of products of

Kähler-Einstein metrics. On the contrary, along the ancient solutions provided by Theorem

B, the induced metric on the base N varies and does not necessarily remain Einstein, as

opposed to the solutions constructed in [6] and those constructed in [32]. Furthermore in our

situation M need not admit an invariant Einstein metric and g need not be Kähler-Einstein.

This thesis is organized as follows. Chapter 2 is based on the paper [44]. In section 2.1 we

discuss known properties of the Ricci flow on homogeneous spaces and describe the relevant

homogeneous metrics on spheres in more detail. In section 2.2 we relate the existence-time of

the Ricci flow on any compact homogeneous space with that of the normalized flow. Here we

prove that being ancient for the Ricci flow is equivalent to being ancient for the normalized

flow, and that the normalized flow develops a finite-time singularity unless it converges to

an Einstein metric. In section 2.3 we study the dynamics of the forwards Ricci flow for

Sp(n+1)-invariant metrics. In section 2.4 we study the backwards flow and prove Theorem

A. Chapter 3 is based on the paper [39] which is joint work with Francesco Pediconi. In

section 3.1, we recall some facts about compact homogeneous spaces, toral H-subalgebras

and ancient solutions to the Ricci flow. In section 3.2, we introduce the fundamental tools for

proving Theorem B, namely the space of generalized submersion metrics and the projected

Ricci flow. In section 3.3 we prove Theorem B. In section 3.4 we construct examples of

collapsed ancient solutions and prove Corollary A. Both Chapter 2 and Chapter 3 retain the

original text from [44] and [39].
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CHAPTER 2

Ricci flow on spheres

2.1. Preliminaries

In the remainder of the paper we alternate between the notation gt and g(t) for a solution

of the Ricci flow, and between g̃t and g̃(t) for a solution of the normalized flow, whenever

convenient. All manifolds and homogeneous spaces are assumed to be compact.

We denote by M the space of Riemannian metrics on the manifold Mn and MG ⊂ M the

space of G-invariant metrics, where G is a Lie group acting on M . Likewise, we denote the

space of volume-1 metrics on M by M1 and the space of G-invariant volume-1 metrics by

MG
1 ⊂ MG.

The space M can be endowed with the L2 inner product, which assigns to any symmetric

2-tensor field h (viewed as a tangent vector to a metric g ∈ M) the length

||h||2g =

∫
M

g(h, h)dµg,

where dµg is the volume element for g. From now one we denote the corresponding metric

on M by dL2 .

We denote by S the total scalar curvature functional on M:

S(g) =
∫
M

S(g)dµg,

where S(g) is the scalar curvature of g.

It is well known that, restricted to M1, the L2 gradient of S is given by the negative traceless

Ricci tensor ∇S = −Ric0(g) = −(Ric(g) − S(g)
n g) (e.g. [7], p.120). In particular, Einstein

metrics are the critical points of S.
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Let M = G/H be a homogeneous space where H ≤ G are compact Lie groups with Lie

algebras h ⊂ g. Since G is compact we can fix an AdG-invariant inner product Q on g. Let

p be the Q-orthogonal complement of h in g so that g = h⊕ p. Then via action fields there

is an isomorphism p ≃ TpM : X 7→ d
dt |t=0 exp(tX) · p where p ∈ M is the identity coset.

Moreover, there is a one-to-one correspondence between AdH -invariant inner products on p

and G-invariant metrics on G/H, and hence MG is a finite-dimensional manifold.

Note also that for homogeneous metrics, scalar curvature and Ricci curvature are constant,

so, in particular, on MG
1 , the functional S just assigns to each metric its scalar curvature

at a point. From now on, we restrict to MG
1 and identify S(g) with S(g), so that the L2

gradient of S is ∇S(g) = −Ric0(g).

Recall that a solution of the Ricci flow is a smooth family of metrics gt ∈ M satisfying

∂

∂t
gt = −2Ric(gt).

Since the Ricci tensor is diffeomorphism invariant, isometry groups are preserved under the

Ricci flow. That is, if g0 ∈ MG, then gt ∈ MG for all t.

The normalized Ricci flow, which we denote by g̃t, is given by the equation

∂

∂t
g̃t = 2

(
−Ric(g̃t) +

S(g̃t)

nVolg̃t(M)
g̃t

)
.

The normalized Ricci flow preserves volume and can be obtained from the Ricci flow as

follows. Let g(t) be a solution of the Ricci flow and let S(t) := S(g(t)). The corresponding

solution of the normalized flow is given by g̃(f(t)) = r(t)g(t) where

r(t) = exp

(
2

n

∫ t

0
S(τ)dτ

)
, f ′(t) = exp

(
2

n

∫ t

0
S(τ)dτ

)
,

and f(0) = 0 (see for instance [23]). Hence we can restrict the normalized flow to MG
1 where

9



it becomes an ODE given by

∂

∂t
g̃t = 2

(
−Ric(g̃t) +

S(g̃t)

n
g̃t

)
= 2∇S(g̃t).

In particular, the normalized Ricci flow coincides, up to the factor 2, with the L2 gradient

flow for S. For the remainder of the paper, we denote by (Tmin, Tmax) the maximal time

interval on which the Ricci flow exists, as well as (T̃min, T̃max) for the normalized flow.

In [13], the authors studied the global behaviour of S on MG
1 with the goal of determining

sufficient conditions for the existence of a G-invariant Einstein metric. In particular, they

proved that, for any fixed ϵ > 0, the functional S satisfies the Palais-Smale compactness

condition on the set (MG
1 )ϵ = {g ∈ MG

1 : S(g) ≥ ϵ}. That is, every sequence of metrics

{gi}∞i=1 in (MG
1 )ϵ with |S(gi)| bounded and |∇S(gi)| = |Ric0(gi)| → 0 has a convergent

subsequence, which, in particular, converges to an Einstein metric. As a consequence, the

set of G-invariant Einstein metrics has only finitely many components, and each of them is

compact. They also noted that this result is optimal in the sense that it is impossible to

have a convergent sequence of metrics in MG
1 with S(gi) < 0 and |Ric0| → 0 since the limit

would have to be an Einstein metric of negative scalar curvature, or would have to be Ricci

flat. The first possibility is ruled out by Bochner’s theorem, and the second can only occur

if M is flat by Alekseevsky-Kimel’fel’d [1]. On the other hand, there may exist sequences

{gi}∞i=1 with S(gi) > 0, S(gi) → 0 and |Ric0(gi)| → 0, so-called 0-Palais Smale sequences,

which do not converge unless M is a torus.

From now on, we will assume that M is a compact homogeneous space which is not a torus.

By Theorem 1 and Theorem 2 in [10], a homogeneous solution gt to the Ricci flow on M

develops a Type-1 singularity in finite time. Recall that a finite-time singularity of the Ricci

flow is said to be Type-1 if the curvature tensor blows up at most linearly, that is, there

exists some C > 0 so that |Rm(gt)|(Tmax − t) ≤ C for t near Tmax < ∞, where |Rm| is the

norm of the curvature tensor. By [30], this implies that the scalar curvature goes to +∞

near the singular time. In particular, by starting the flow at a later time, we can assume
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S(g0) > 0.

Since ∂
∂t g̃t = 2∇S(g̃t) = −2Ric0(g̃t), we have

dL2(g̃t, g̃0) ≤ 2

∫ t

0
|Ric0(g̃s)|ds ≤ 2t1/2

(∫ t

0
|Ric0(g̃s)|2ds

)1/2

, (2.1.1)

and

S(g̃t)− S(g̃0) = 2

∫ t

0
|Ric0(g̃s)|2ds,

Thus, there are two possibilities for solutions g̃t of the normalized Ricci flow on MG
1 . The

first possibility is that S(g̃t) → ∞ as t → T̃max, and the second is that S(g̃t) ≤ C for all

t ∈ (0, T̃max), in which case (2.1.1) implies that T̃max = ∞. Similarly, (2.1.1) implies that

if S is bounded from below then T̃min = −∞. In the case that S(g̃t) ≤ C, Palais-Smale

further implies that g̃t converges to an Einstein metric as t → ∞.

We will also examine solutions of the Ricci flow as t → −∞. As remarked above, a lower

bound on S already implies that g̃t is ancient. If gt is an ancient solution of the Ricci flow

then it is an easy consequence of the maximum principle applied to the evolution equation

for S,
∂

∂t
S(gt) = ∆S(gt) + 2|Ric(gt)|2, (2.1.2)

that gt either has positive scalar curvature for all time, or is Ricci flat (e.g. [23] p. 102).

Since G/H is not a torus, the latter is ruled out. Hence, the corresponding solution g̃t of the

normalized flow has S(g̃t) > 0 for all t, which implies that T̃min = −∞ and |Ric0(g̃t)| → 0 as

t → −∞. Thus there are two possibilities for the corresponding solution g̃t of the normalized

flow. The first possibility is that S(g̃t) > ϵ > 0 for all time, in which case it follows from

Palais-Smale and the fact that the gradient flow of S is analytic that g̃t converges to an

Einstein metric as t → −∞ (see e.g. Theorem 4.2 in [12]). The second possibility is that

S(g̃t) → 0, i.e., g̃t is 0-Palais-Smale. 0-Palais-Smale sequences were studied in [13] where the

authors showed that if one exists, then there exists an intermediate subgroup H ≤ K ≤ G
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such that K/H is a torus. In [36], F. Pediconi further proved that every divergent sequence

of metrics in MG
1 with |Rm| bounded has a subsequence which asymptotically approaches

a submersion metric for a torus fibration with shrinking fibers as in (2.1.3). By the Gap

Theorem for compact homogeneous spaces, |Rm(g)| ≤ C|Ric(g)| (see [Bö2] Theorem 4), and

hence 0-Palais Smale sequences are special examples of divergent sequences of metrics with

bounded curvature.

Let us recall the definition of submersion metrics. If h ⊂ k ⊂ g is an intermediate Lie

subalgebra with k = Lie(K), then we can further decompose p = pk + p⊥k where pk = p ∩ k.

We say that an AdH -invariant inner product g on p is a k-submersion metric provided that

p = pk + p⊥k is orthogonal with respect to g and that the restriction of g to p⊥k is AdK-

invariant.

Note that in this language, Te(K/H) = pk and Te(G/K) = p⊥k . The orthogonality assump-

tion and AdK-invariance imply that the homogeneous fibration

K/H → G/H → G/K (2.1.3)

is a Riemannian submersion, where the induced metric on G/K is G-invariant (see [7] p.

257). As in [7], such a submersion, in addition, has totally geodesic fibers.

If we start with a k-submersion metric, scale the metric on the fiber by t, and normalize

volume to be 1, we obtain a “divergent” path of metrics in MG
1 , whose scalar curvature is

given by the formula

tf/n
(
1

t
S(K/H) + S(G/K)− t||A||2

)
, (2.1.4)

where f = dim(K/H), S(K/H) is the scalar curvature of g restricted to K/H, S(G/K) is

the scalar curvature of the metric induced by g on G/K, and ||A|| is the norm of the O’Neill

tensor computed with respect to g (see [7] p. 253). Hence if K/H is not a torus (and g is

chosen so that S(K/H) > 0), then S → ∞ as t → 0. On the other hand, if K/H is a torus,

then S → 0 as t → 0 (see [46], [13]). Conversely, the existence of a path with S → ∞, or a
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path with S → 0 and |Ric0| → 0, implies the existence of such subgroups ([46],[13]).

We now describe the Ricci flow on the two-parameter families of homogeneous metrics on

spheres as studied in [21] and [6]. When the volume is normalized, they become one-

parameter families, and the normalized flow can be understood in terms of the gradient flow

for the single-variable function S(t) on MG
1 , where t is the scale of the fiber in the Hopf

fibration (1.0.1). Figure 2.1 depicts the graph of S as a function of t.

SS

t t

gE2

grd grd

1

Figure 2.1: Scalar curvature of two-parameter families of metrics as fiber is scaled by t. The
graph on the left describes Spin(9) and Sp(n+ 1)× Sp(1)-invariant metrics, and the graph
on the right describes U(n+ 1)-invariant metrics.

For the graph on the left, there are exactly two G-invariant Einstein metrics, the round

metric, which we denote by grd, and a second Einstein metric (see [28],[15]), which we

denote in each case by gE2 (although these are not isometric for different G). It follows from

our remarks above that there are exactly two ancient solutions g̃t, both converging to gE2

under the backwards flow.

For the graph on the right, every solution converges to grd. There is one solution g̃s with

S → 0 as the S1 fiber shrinks to a point under the backwards flow, and hence by (2.1.1)

this solution is ancient. In [6], it was shown in both cases that these conclusions also hold

for the Ricci flow, although the arguments are more involved. Note also that in Theorem

2.2.2, we prove that a solution to the Ricci flow is ancient if and only if the corresponding

solution for the normalized flow is also ancient.

For the case of left-invariant metrics on S3, in [26] the authors showed that the normalized
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flow always converges to the round metric. In [22], the authors further proved that the only

ancient solutions for the Ricci flow are the Berger spheres, i.e., metrics satisfying x ≤ y = z

where x, y and z are the eigenvalues of the metric.

The only remaining family of homogeneous metrics on spheres are the Sp(n + 1)-invariant

metrics, which we now describe.

2.1.1. Sp(n+ 1)-invariant metrics on spheres

We view S4n+3 as the unit sphere in Hn+1 = R4n+4 with the standard Euclidean inner prod-

uct. The group of quaternionic-linear isometries Sp(n + 1) acts transitively on S4n+3 with

stabilizer Sp(n) at the point p = (1, 0, ..., 0), so that S4n+3 ≃ Sp(n+1)/Sp(n). With respect

to the AdSp(n+1)-invariant inner product Q on sp(n + 1), Q(A,B) = −1
2 Re(trace(AB)),

we have the orthogonal decompositions sp(n + 1) = sp(n) ⊕ p and p = p0 ⊕ p1, where

p0 ≃ sp(1) = ⟨i, j, k⟩ is the Lie algebra embedded diagonally as

sp(1) 0

0 0

 ,

and p1 ≃ Hn via

X 7→

 0 −X
t

X 0

 .

Notice that i, j, k have length 1
2 and are Q-orthogonal. The representation of AdSp(n) on

p is trivial on p0 and acts by usual matrix multiplication on p1. Hence, by Schur’s lemma

any AdSp(n)-invariant inner product on p is of the form σ + s⟨·, ·⟩Hn where ⟨·, ·⟩Hn is the

Euclidean inner product on Hn and σ is any inner product on p0 ≃ R3. As observed in [48],

via right translations, the normalizer N(Sp(n))/Sp(n) = SO(3) acts by diffeomorphisms on

G/H and induces the usual linear action of SO(3) on p0 = R3. Moreover, this linear action

is by Q-isometries, so we can diagonalize σ with respect to the Q-orthogonal basis ⟨i, j, k⟩.
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Henceforth, we write an Sp(n+ 1)-invariant metric on S4n+3 as

g = x⟨, ⟩|(i) + y⟨, ⟩|(j) + z⟨, ⟩|(k) + s⟨, ⟩|Hn , (2.1.5)

where ⟨, ⟩ is the standard metric on Hn+1 = R4n+4 and (i), (j), and (k) are the subspaces

spanned by i, j, and k respectively. Furthermore, we can use the action of SO(3) to switch

the signs of i, j, k ∈ TpS
4n+3, two at a time. These are only isometries if the metric is of

the form (2.1.5). Since isometries are always preserved under the Ricci flow, metrics of the

form (2.1.5) are preserved as well.

In order to study the Ricci flow, it will often be convenient to consider the Ricci endomor-

phism. We denote the Ricci endomorphism by ric and the Ricci curvature tensor by Ric,

i.e., Ric(X,Y ) = g(ric(X), Y ).

For the above metrics, the Ricci endomorphism decomposes as

ric = ri Id |(i) + rj Id |(j) + rk Id |(k) + rh Id |Hn ,

where

ri = 2

(
x2 − y2 − z2

xyz

)
+

4

x
+

4nx

s2

rj = 2

(
y2 − x2 − z2

xyz

)
+

4

y
+

4ny

s2
(2.1.6)

rk = 2

(
z2 − x2 − y2

xyz

)
+

4

z
+

4nz

s2

rh = −2

(
x+ y + z

s2

)
+

4n+ 8

s

(see [48]). Thus, the scalar curvature is given by the formula

S =
4

x
+

4

y
+

4

z
+

16n(n+ 2)

s
− 4n

(
x+ y + z

s2

)
− 2

(
x2 + y2 + z2

xyz

)
. (2.1.7)
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As in [48], for any T ∈ Hn we have the sectional curvatures K(i, T ) = x
s2

, K(j, T ) = y
s2

, and

K(k, T ) = z
s2

. From this and the fact that an isometry preserves eigenspaces of the Ricci

tensor, it is not difficult to see that there are no further isometries among metrics of the

form (2.1.5), besides permuting the variables x, y and z using the normalizer N(H).

Our work is closely related to the examples of homogeneous Einstein metrics on spheres and

projective spaces. These were classified by Ziller in [48] and can be obtained by scaling the

fibers in the Hopf fibrations

S1 → S4n+3 → CP2n+1 S3 → S4n+3 → HPn S7 → S15 → S8.

In [48] it was shown that the only Sp(n+ 1)-invariant Einstein metrics on S4n+3 are, up to

scaling, the round metric grd, given by x = y = z = s = 1, and Jensen’s second Einstein

metric gE2 , given by x = y = z = 1 and s = 2n+ 3.

If we view ⟨i⟩ = u(1) as tangent to the Hopf action, then Sp(n + 1)-invariant metrics

on CP2n+1 are precisely the metrics induced by u(1)-submersion metrics on S4n+3. Since

U(1) ⊂ N(H) acts by fixing i and rotating the j, k plane, u(1)-submersion metrics on S4n+3

satisfy y = z and are hence of the form

g = x⟨, ⟩|(i) + y⟨, ⟩|(j) + y⟨, ⟩|(k) + s⟨, ⟩|Hn . (2.1.8)

On CP2n+1, these induce metrics of the form

y⟨, ⟩|(j) + y⟨, ⟩|(k) + s⟨, ⟩|Hn ,

and Ziller showed that the only two Einstein metrics in this family are given by y = s (the

Fubini-Study metric), which we denote by gFS
CP2n+1 , and y/s = 1/(n + 1), which we denote

by g2CP2n+1 . Note that metrics of this form can be obtained by scaling the fibers and base of

the Hopf fibration S2 → CP2n+1 → HPn as in [48].
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2.2. General Results

In this section, we discuss some results that hold for all compact homogeneous spaces,

relating properties of solutions of the Ricci flow to those of the normalized flow. We first

prove that, as in the case of the Ricci flow, the normalized flow develops a singularity in

finite time, unless it converges to an Einstein metric. Our proof is similar to the proof of

Theorem 4.1 in [10].

Theorem 2.2.1. Let g̃t be a solution to the normalized Ricci flow on a compact homogeneous

space. Then T̃max = ∞ if and only if g̃t converges to an Einstein metric. Furthermore, if

T̃max < ∞ then S(g̃t) → ∞ as t → T̃max.

Proof. Böhm showed that on a compact homogeneous space that is not a torus, the Ricci flow

develops a Type-1 singularity in finite time [10], and hence, by results of Naber [34], Enders,

Müller, Topping [24], Petersen and Wylie [42], along any sequence of times ti → Tmax, a

parabolic sequence of rescaled solutions

gi(t) := S(g(ti))g

(
ti +

t

S(g(ti))

)

subconverges to a soliton g∞(t) on Ek
∞ × Rn−k, where Ek

∞ is a compact homogeneous

Einstein manifold and Rn−k is endowed with the flat metric. Furthermore, the dimension

of the Euclidean factor depends only on the initial metric, not on the sequence ti [10]. As

we will see, the presence of a Euclidean factor in the limit determines whether or not the

normalized flow converges to an Einstein metric. We then use the dimension of the Euclidean

factor to control the growth of S near the extinction time.

Since the normalized flow is the L2 gradient flow for S, we can derive an evolution equation
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for S under the normalized flow:

∂

∂t
S(g̃t) = ⟨∇S,∇S⟩L2 =

〈
−2

(
Ric(g̃t)−

S(g̃t)

n
g̃t

)
,−2

(
Ric(g̃t)−

S(g̃t)

n
g̃t)

)〉
L2

= 4

(
|Ric(g̃t)|2 −

S2(g̃t)

n

)
.

Let g(t) = S(g(t))g(t). We claim that the eigenvalues of Ric(g(t)) all converge to r∞ = 1
k

or 0. If not, there would exist a δ > 0 and a sequence of times ti such that Ric(g(ti)) =

Ric(gi(0)) has an eigenvalue in (−∞,−δ) ∪ (δ, r∞ − δ) ∪ (r∞ + δ,∞). But then the same

would be true for any subsequence of gi(0) and hence also for the limit soliton, which is

a contradiction since S(g∞(0)) = limi→∞ S(g(ti)) = 1 and the dimension of the Einstein

factor depends only on the initial metric.

Let r1(t), ..., rk(t) be the eigenvalues of Ric(g(t)) which converge to r∞. Then for t sufficiently

close to Tmax,

|Ric(g(t))|2 − S2(g(t))

n
= S2(g(t))

(
|Ric(g(t))|2 − 1

n

)
≥ S2(g(t))

(
k∑

i=1

r2i (t)− ϵ− 1

n

)

≥ S2(g(t))

(
kr2∞ − 2ϵ− 1

n

)
= S2(g(t))

(
1

k
− ϵ− 1

n

)

Since both sides of the above inequality scale the same way, the same is true for g̃t. Hence

if t is sufficiently large and k < n, ∂S(g̃t)
∂t ≥ CS2(g̃t), which implies that S(g̃t) → ∞ in finite

time.

On the other hand, if the dimension of the Euclidean factor in the limit is zero, then

g(t) converges to a G-invariant Einstein metric, and hence the volume-normalized solution

converges to an Einstein metric and T̃max = ∞.
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For the main example of our paper, we would also like to classify the ancient solutions for

the Ricci flow on MG
1 . Before doing so we first show that on homogeneous spaces, being

ancient for the Ricci flow is equivalent to being ancient for the normalized flow.

Theorem 2.2.2. A solution gt of the Ricci flow on a compact homogeneous space is ancient

if and only if the corresponding solution g̃t of the normalized flow is also ancient. Fur-

thermore, if g̃t is ancient and does not converge to an Einstein metric as t → −∞, then

S(g̃t) → 0 and |Ric0(g̃t)| → 0 as t → −∞ and hence g̃t is a 0-Palais Smale solution.

Proof. If gt is ancient then since S(g̃t) > 0 for all t (see Section 2), and since g̃t is the

gradient flow for S, g̃t is ancient as well.

In order to prove that if g̃t is ancient then gt is also ancient, we first prove that an ancient

solution of the normalized flow on a compact homogeneous space has positive scalar curva-

ture. Since a theorem of Lafuente (see [30]) states that a homogeneous solution of the Ricci

flow with finite backwards singular-time must have S(gt) → −∞ as t → Tmin, it follows that

gt must be ancient as well.

Now, suppose we have an ancient solution of the normalized flow with S(g̃0) ≤ 0. Then, since

G/H is not a torus, and hence is not Ricci flat, S(g̃t) < 0 for all t < 0. By Bochner’s theorem,

the Ricci tensor of a compact homogeneous space has at least one positive eigenvalue. In

particular, if {ri}ni=1 are the eigenvalues of Ric and r1, ..., rn−k are all the positive eigenvalues

(where k ≤ n− 1), then by Cauchy-Schwarz and the fact that S < 0,

|S|2 ≤

∣∣∣∣∣
n∑

i=n−k+1

ri

∣∣∣∣∣
2

≤ k

n∑
i=n−k+1

r2i ≤ k|Ric|2.

For the backwards normalized flow, the evolution equation for S is ∂S
∂t = 4

(
S2

n − |Ric|2
)
,

and hence

∂S

∂t
= 4

(
S2

n
− |Ric|2

)
≤ 4

(
k

n
|Ric|2 − |Ric|2

)
≤ 4(k − n)

n
|Ric|2 ≤ 4(k − n)

n2
S2.
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Thus ∂S
∂t = −CS2 for some C > 0 and hence S(t) → −∞ in finite time, contradicting the

assumption that g̃t is ancient.

2.3. Ricci flow on Spheres

We now study the Ricci flow of Sp(n+ 1)-invariant metrics on spheres. Recall that metrics

of the form (2.1.5) are preserved under the Ricci flow. We can thus view x, y, z, and s as

functions of time.

Recall also that the normalized Ricci flow on MG
1 is given by the ODE

∂

∂t
g̃t = −2

(
Ric − S(g̃t)

dim(M)
g̃t

)

and hence satisfies

x′ = −2x

(
ri −

S

4n+ 3

)
y′ = −2y

(
rj −

S

4n+ 3

)
(2.3.1)

z′ = −2z

(
rj −

S

4n+ 3

)
s′ = −2s

(
rh −

S

4n+ 3

)
,

where ri, rj , rk, rh and S are as in (2.1.6) and (2.1.7). Since the normalized Ricci flow

preserves volume, we can restrict these ODE’s to MG
1 , the space of volume-1 metrics, i.e.

those satisfying xyzs4n = 1. We parametrize these metrics by setting s = 1

(xyz)
1
4n

. Hence

the normalized Ricci flow is equivalent to an ODE in R3
>0. For later convenience, we include

the formula for scalar curvature in the above coordinates:

S =
4

x
+

4

y
+

4

z
− 2z

xy
− 2y

xz
− 2x

yz
+ 16n(n+ 2)(xyz)

1
4n − 4n(x+ y + z)(xyz)

1
2n . (2.3.2)

Lemma 2.3.1. The metrics where two of the variables agree, i.e. x = y, y = z, or x = z are

precisely those which are Sp(n+ 1)× U(1)-invariant, and the metrics where x = y = z are
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precisely those which are Sp(n+1)×Sp(1)-invariant, and hence these metrics are preserved

by the Ricci flow. The metrics where y = z = s are U(2n + 2)-invariant, and hence also

preserved by the Ricci flow.

Proof. If K ⊂ Sp(1), we view the action of Sp(n + 1) ×K on S4n+3 as (g, k) · p = gpk−1.

Note that since p = (1, 0, ..., 0) is totally real, kpk−1 = p for all k ∈ K. Invariant metrics

under this larger group can then be viewed as the subset of G-invariant metrics that are also

invariant under the adjoint action of K ⊂ Sp(1) on p0 = sp(1). If K = U(1) = {eiθ}θ∈[0,2π)

for example, then a metric is invariant if and only if rotation in the j, k plane is an isometry,

and hence if and only if y = z. If K = Sp(1) then a metric is invariant if and only if its

restriction to sp(1) is a multiple of the bi-invariant metric and hence if and only if x = y = z.

The action of U(2n + 2) on S4n+3 is by isometries if and only if the adjoint action of the

stabilizer U(2n + 1) acting on ⟨p, ip⟩⊥ = (jp) ⊕ (kp) ⊕ Hn is by isometries. But this is the

case if and only if the metric on (jp)⊕ (kp)⊕Hn is a multiple of the Euclidean metric, i.e.,

if y = z = s.

Lemma 2.3.2. The only fixed points of the normalized flow are the round metric, where

x = y = z = 1 and Jensen’s second Einstein metric x = y = z = (2n+ 3)−
4n

4n+3 . The round

metric is a stable node and Jensen’s second Einstein metric is a saddle node. The tangent

space of the unstable manifold at Jensen’s metric is given by x = y = z, and the tangent

space of the stable manifold is given by x+ y + z = 3(2n+ 3)−
4n

4n+3 .

Proof. By symmetry, the Hessian of the system when x = y = z must be of the form

a b b
b a b
b b a

 ,

which has eigenvectors (1, 1, 1), (2,−1,−1), and (−1, 2,−1) with corresponding eigenvalues
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a+ 2b, a− b, and a− b. A direct calculation shows that at x = y = z = (2n+ 3)−
4n

4n+3 ,

a = −8
(
2n2 + 7n+ 5

)
(2n+ 3)−

4n+6
4n+3

b = 16(n+ 1)(n+ 2)(2n+ 3)−
4n+6
4n+3 .

Thus a− b < 0 and a+ 2b > 0.

At the round metric, a direct calculation shows

a = −8(1 + n) and b = 0,

and hence the round metric is a stable node.

By symmetry in the three variables, it suffices to understand the Ricci flow on the set

Ω = {(x, y, z) ∈ R3 : 0 < x ≤ y ≤ z},

which is preserved by the Ricci flow since the boundary consists of invariant sets (see Lemma

2.3.1).

As in Section 1, there are two possibilities for the long time behavior of g̃t. Either g̃t

converges to an Einstein metric or S(g̃t) → ∞ as t → T̃max < ∞. If S(g̃t) → ∞, then since

the Ricci flow preserves metrics of the form (2.1.5), we can apply Theorem 4.6 in [10] (see

also Remark 5.4 on p. 557), which in this case implies that S(g̃t)g̃t converges to an isometric

product S3 × R4n where S3 and R4n are endowed with the round metric and flat metric,

respectively. We offer an elementary proof along with a monotonicity lemma that is useful

for our classification of ancient solutions.

Theorem 2.3.3. Any Sp(n + 1)-invariant solution to the normalized Ricci flow on S4n+3
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either converges to the round metric, Jensen’s second Einstein metric, or S → ∞ in such a

way that S(g̃t)g̃t converges in the pointed C∞ topology to S3 × R4n, where S3 and R4n are

endowed with 6grd and the flat metric respectively. Furthermore, in the last case, x, y, z → 0

in such a way that x/z and y/z monotonically converge to 1.

Proof. The structure of our proof is as follows. First, we will show that the ratios x/z and

y/z are monotonic along any solution of the normalized flow. Then we will see that S → ∞

only if all the variables go to zero. Lastly, we will show that when all the variables tend to

zero, their ratios tend to 1.

Lemma 2.3.4. For any solution of the normalized Ricci flow in Ω, the ratios y/z and x/z

are non-decreasing. In particular, if x → 0 as t → T̃max, then z → 0 and y → 0 as well.

Proof. The derivative of (y/z) is given by

(y
z

)′
=

y′z − z′y

z2
= (yz)

−rj + rk
z2

. (2.3.3)

In particular, (y/z)′ has the same sign as

rk − rj =
−4(y − z)

(
n(xyz)

1
2n

+1 − x+ y + z
)

xyz
. (2.3.4)

Since we assumed x ≤ y ≤ z, we see that (y/z)′ ≥ 0, with equality if and only if y = z.

Similarly, x/z is also non-decreasing.

Assume from now on that g̃t does not converge to an Einstein metric, i.e., that S(g̃t) → ∞.

Since S is continuous on Ω the only way for S → ∞ is if g̃t approaches the boundary of Ω,

that is if x → 0, or if z → ∞.

If z → ∞ and x remains bounded away from zero, then the only way we can have S → ∞
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in (2.3.2) is if (xyz) → ∞. However, if (xyz) is sufficiently large then (xyz)
1
2n > (xyz)

1
4n , in

which case the −4nz(xyz)
1
2n term dominates all the positive terms, and thus we can assume

that x → 0 and hence also that y → 0 and z → 0 as well by Lemma 2.3.4.

Since the ratios x/z and y/z are less than or equal to 1 and non-decreasing they each

converge to some finite positive constant. Let lim
t→T̃max

x/z = C, lim
t→T̃max

y/z = D. Since

the ratio x/z is scale invariant, the limit is the same for the Ricci flow and the normalized

flow. Suppose for the moment that for the Ricci flow, limt→Tmax x
′/z′ and limt→Tmax y

′/z′

exist, and hence that

lim
t→Tmax

x

z
= lim

t→Tmax

x′

z′
= lim

t→Tmax

x

z

ri
rk

Since limt→Tmax
x
z is some positive constant, this implies limt→Tmax

ri
rk

= 1. The same rea-

soning implies limt→Tmax
rj
rk

= 1 as well. A quick computation shows that as s → ∞ the

ratio ri/rk tends to −(x + y − z)/(x − y − z), and hence (−x − y + z)/(x − y − z) → 1 as

t → Tmax, and hence also as t → T̃max. From this and the corresponding limit for the other

quotient it follows that x/z → 1 and y/z → 1, and hence also x/y → 1.

Now we show the limits limt→Tmax x
′/z′ and limt→Tmax y

′/z′ exist. We remark, that for the

Ricci flow as well limt→Tmax x/s = limt→Tmax z/s = 0 since this is true for the normalized

flow.

From (2.1.6),

xri = 2

(
x2 − y2 − z2

yz

)
+ 4 + 4n

x2

s2
→ 2C2D−1D − 2D − 2D−1 + 4

zrk = 2

(
z2 − x2 − y2

xy

)
+ 4 + 4n

z2

s2
→ 2C−1D−1 − 2CD−1 − 2C−1D + 4,

and hence limt→Tmax
x′

z′ = limt→Tmax
x
z
ri
rk

exists. The calculation for the other ratios is

similar.

One can see from the formula (2.1.7) that S(g̃t) → ∞ at a rate of 6/x and hence if

x(t), y(t), z(t), s(t) are the eigenvalues of S(g̃t)g̃t, then x(t), y(t), z(t) → 6 and s(t) → ∞.
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To see directly that S(g̃t)g̃t converges in the pointed C∞ topology to a standard metric

on S3 × R4n, let ϵ > 0 be any lower bound for the injectivity radius of the Fubini-Study

metric on HPn. Then, since s(t) → ∞, the collection of open sets {S3 ×Bϵs(t)(0)}t∈[0,T̃ max )

exhausts S3×R4n. Let ft : S3×Bϵs(t)(0) → S4n+3 be defined by ft(g, v) = g ·γ v
s(t)

(1) where

γ v
s(t)

(r) is a geodesic in S4n+3 beginning at p with horizontal initial velocity v
s(t) ∈ Hn. Then,

since the fibers of S3 → S4n+3 → HPn are embedded, ft is a diffeomorphism onto its image.

Moreover, it is not difficult to see using Jacobi fields that f∗
t (S(g̃t)g̃t) → 6grd + ⟨, ⟩R4n .

We can say slightly more about the qualitative behaviour of the Ricci flow on MG
1 . Recall

that by definition of the stable manifold, all metrics in it converge to gE2 . Recall also that

stable manifolds are always smooth manifolds (see e.g. [18] p.122).

Theorem 2.3.5. The stable manifold for the second Einstein metric separates the space

of metrics into two connected, invariant components, namely into the set of metrics which

converge to the round metric and the set of metrics where S → ∞ under the normalized

flow.

Proof. First we prove that the set of metrics in MG
1 with S → ∞ under the normalized flow

is open. Recall that the normalized flow is the L2 gradient flow for S on MG
1 . By [13], the

set of Einstein metrics in MG
1 is compact, and hence has bounded scalar curvature, say, by

α. Now let g̃t be a solution of the normalized flow with S(g̃t) → ∞. Then there exists a

time t0 such that S(g̃t0) > α. By continuous dependence on initial conditions, there is an

open set U around g̃0 so that for every metric h ∈ U , the solution h̃t of the normalized flow

with h̃0 = h satisfies S(h̃t0) > α. But by Palais-Smale, if the scalar curvature of a solution

h̃t surpasses α, then in fact S(h̃t) → ∞.

Now, recall that any solution g̃t either converges to an Einstein metric, or has S(g̃t) → ∞ in

finite time. Let γ(t) be a path in MG
1 with γ(0) converging to the round metric and γ(1) a
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metric with S → ∞ under the normalized flow. For each t ∈ [0, 1] define F (t) ∈ R∪{∞} so

that [0, F (t)) is the maximal interval of existence of the normalized flow with initial condition

γ(t). Note that F (0) = ∞ and F (1) is finite by Theorem 2.2.1. Let t0 = inf({t ∈ [0, 1] :

F (t) = ∞}). Then we claim γ(t0) must lie in the stable manifold of the second Einstein

metric. On the one hand, γ(t0) cannot converge to the round metric, since, as an attractor,

the set of metrics converging to the round metric is open. On the other hand, since the set

of metrics with finite extinction time for the normalized flow is open, F (γ(t0)) = ∞ (finite

extinction time is equivalent to S(g̃t) → ∞). In particular, the solution of the normalized

flow with initial condition γ(t0) must converge to an Einstein metric which is not the round

metric, and hence must converge to the second Einstein metric.

2.4. Ancient Solutions

We now turn to classifying the ancient solutions for the Ricci flow in MG. Recall that

given an ancient solution gt, there are two possibilities as t → −∞ for the corresponding

normalized solution g̃t in MG
1 . Either g̃t converges to an Einstein metric or S(g̃t) → 0

and |Ric0(g̃t)| → 0, i.e., g̃t is 0-Palais-Smale. In [36], Pediconi proved that a 0-Palais-

Smale sequence asymptotically approaches a submersion metric for a homogeneous fibration

K/H → G/H → G/K where K is some intermediate subgroup with K/H a torus. We

will use this result, together with our monotonicity result, to argue that any such solution is

actually a submersion metric for all time with respect to the Hopf fibration U(1) → S4n+3 →

CP2n+1. Besides these 0-Palais-Smale solutions, there are two more ancient solutions which

converge to gE2 as t → −∞. These arise by starting with the round metric and scaling the

fibers and base of the Hopf fibration S3 → S4n+3 → HPn (see Section 1).

By Lemma 2.3.1 we can assume, up to isometry, that our solutions g̃t satisfy x ≤ y ≤ z for

all t.

Lemma 2.4.1. Let g̃t be an ancient solution for the normalized flow with x ≤ y ≤ z and

S(g̃t) → 0 as t → −∞. Then for all t ∈ (−∞, Tmax), y = z. In particular, g̃t is invariant

under the larger group U(1)Sp(n+ 1).
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Proof. Since limt→−∞ |Ric0(g̃t)| = 0, it follows that for any sequence of times ti → −∞, the

sequence of metrics g̃(ti) must diverge in MG
1 , otherwise there would exist a subsequence

converging to a flat metric, contrary to our assumption.

Each metric in MG
1 can be written uniquely in the form

gv,s := esv1⟨, ⟩(i) + esv2⟨, ⟩(j) + esv3⟨, ⟩(k) + esv4⟨, ⟩Hn

where v21 + v22 + v23 + v24 = 1 and v1 + v2 + v3 + v4 = 0.

Define the sequences v(i) ∈ S3, s(i) ∈ R by g̃(ti) = gv(i),s(i) . Then, since S3 is compact, there

exists a subsequence v(i) → v(∞) and s(i) → ∞. By Theorem 4.1 in [36], v(∞) is a so-called

submersion direction for some toral H-subalgebra k, that is, a subalgebra k = Lie(K) where

K is connected, H ⊂ K ⊂ G, and the quotient K/H is a torus. Moreover, k∩ p is generated

by the AdH -irreducible summands of p corresponding to the most shrinking eigenvalue. By

Proposition 3.10 in [36], if v is a submersion direction for an H-subalgebra k, then gv,s is a

k-submersion metric for all s ∈ R and moving along the path γv(s) = gv,s is equivalent to

shrinking the fibers of the homogeneous fibration K/H → G/H → G/K.

In our case v(∞) is a submersion direction for some toral Sp(n)-subalgebra. On the other

hand, the only toral subalgebras containing sp(n) are isomorphic to sp(n)⊕u(1), where u(1)

is the Lie algebra of some circle subgroup of Sp(1) (the only Lie subgroups of Sp(n + 1)

containing Sp(n) are isomorphic to Sp(n), U(1)Sp(n) and Sp(1)Sp(n)). Since we assumed

x ≤ y ≤ z, it follows that x is the most shrinking eigenvalue, and hence k = sp(n)⊕ (i).

Let (v(∞)
1 , v

(∞)
2 , v

(∞)
3 , v

(∞)
4 ) be the components of v(∞). Since γv(∞)(s) is invariant under the

larger isometry group U(1)Sp(n + 1) where U(1) = {eiθ}θ∈[0,2π) ⊂ Sp(1), we can conclude

that v
(∞)
2 = v

(∞)
3 and v

(∞)
1 < 0. Moreover, since Q([j, k], i) = 1 ̸= 0, Theorem 4.1 in [36]

further implies that y(ti)/z(ti) → 1 as ti → −∞.

On the other hand, by Lemma 2.3.4, along the backwards flow y/z is non-increasing. Hence
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limt→−∞ y/z exists and equals 1. But again, since y/z is non-increasing and y/z ≤ 1, this

is only possible if y = z for all t.

Hence for the purpose of classifying ancient solutions, it suffices to consider metrics in MG
1

of the form
1

y2s4n
⟨, ⟩(i) + y⟨, ⟩(j) + y⟨, ⟩(k) + s⟨, ⟩Hn . (2.4.1)

Moreover, referring to the above proof, since v
(∞)
1 < 0, we can assume that 1

y2s4n
→ 0 for

ancient solutions that do not converge to an Einstein metric as t → −∞. Notice that in this

section our normalization differs from the one in Section 3. For metrics of the form (2.4.1),

the scalar curvature is given by

S =
16n2

s
− 8ny

s2
− 1

s4ny2

(
4n

s2
+

2

y2

)
+

32n

s
+

8

y
. (2.4.2)

We prove the following classification result.

Theorem 2.4.2. Let g̃0 = gx,y,z,s with x ≤ y ≤ z. Then g̃t is ancient if and only if

x ≤ y = z ≤ s.

Note that metrics with y = 1
y2s4n

are precisely the ones invariant under the larger group of

isometries Sp(1)Sp(n+1), and hence these converge to gE2 as t → −∞. Metrics with y = s

are invariant under the group U(2n + 2) by Lemma 2.3.1 and hence are preserved. These

two solutions were shown to be ancient in [6]. We begin with a lemma.

Lemma 2.4.3. For any ancient solution with limt→−∞ S(g̃t) = 0, the ratio y/s remains

bounded as t → −∞. Moreover, if limt→−∞ y/s exists and is non-zero, then the only possi-

bilities are limt→−∞ y/s = 1 or 1
1+n .
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Proof. We can bound (2.4.2) above by

S <
8n

s

(
2n+ 4− y

s

)
+

8

y
(2.4.3)

If y/s > M then we can further bound (2.4.3) above by

S <

(
8n(2n+ 4−M) +

8

M

)
1

s

which is negative if M is sufficiently large. But ancient solutions of the Ricci flow (and

hence also of the normalized flow) have non-negative scalar curvature, and hence y/s must

be bounded.

Now we examine the possible limits for y/s as t → −∞. Since 1
y2s4n

→ 0 and y/s is bounded

as t → −∞, s → ∞ as well.

Suppose that limt→−∞
y
s = C > 0. Then since s → ∞, y → ∞ as well. For the Ricci flow,

lim
t→−∞

y′

s′
= lim

t→−∞

y

s

rj
rh

.

From (2.1.6) we have

yrj = −2x

y
+ 4 +

4ny2

s2
and srh = 8 + 4n− 2x

s
− 4y

s
.

Since x/y → 0 and x/s → 0 under the normalized flow, the same is true for the Ricci flow.

Thus, since y, s → ∞ and since we assumed limt→−∞
y
s = C, both of the above quantities

tend to finite limits, and hence limt→−∞
y′

s′ exists. But then also

C = lim
t→−∞

y

s
= lim

t→−∞

y′

s′
=

4 + 4nC2

8 + 4n− 4C
.

Solving the above equation yields C = 1 or C = 1
1+n . Since the ratio y/s is scale-invariant,
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the same holds for the normalized flow.

Note that these two ratios correspond to the two homogeneous Einstein metrics gFS
CP2n+1 and

g2CP2n+1 on the base CP2n+1 (see Section 2 and [48]).

Lemma 2.4.4. Solutions with y/s > 1 are not ancient.

Proof. We will show that if y/s > 1 then (y/s)′ > 0 under the backwards flow. But since

y/s is bounded for any ancient solution, y/s would converge to a finite limit greater than 1,

which would contradict the previous lemma.

The derivative of y/s under the backwards flow is

(ys)
rj − rh

s2
,

which has the same sign as

rj − rh = −8 + 4n

s
− 2

y4s4n
+

2

y2s2+4n
+

4

y
+

(4 + 4n)y

s2
(2.4.4)

=
2(y − s)

(
s+ y + 2s4ny3((1 + n)y − s)

)
y4s2+4n

. (2.4.5)

which is positive since y > s.

Now to conclude the proof of Theorem 2.4.2 we only need to show that the remaining

solutions are ancient.

Lemma 2.4.5. Solutions satisfying 1
y2s4n

≤ y ≤ s are ancient for the normalized flow.

Furthermore, along such a solution y, s → ∞ and either y = s or y/s → 1
1+n .

Proof. We already saw that metrics satisfying y = 1
y2s4n

or y = s are preserved by the Ricci
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flow and are ancient. Hence, solutions which begin in the set Γ = { 1
y2s4n

≤ y ≤ s} remain

in that set, and we can assume from now on 1
y2s4n

< y < s.

Now, we prove that s → ∞ for any solution g̃t in the interior of Γ. Assume g̃t is not ancient.

Then one of the variables must go to 0 or ∞ as t → T̃min. We will show that in each possible

scenario, s → ∞. If s → 0 then since y/s < 1, y → 0 as well, but this contradicts y3 > 1
s4n

.

If y → ∞, then y/s < 1 implies s → ∞ as well. If y → 0 then y3 > 1
s4n

implies s → ∞.

Next, we look at the derivative of y/s under the backwards flow, which, as before, has the

same sign as (2.4.5), except now y − s < 0, since g̃t is in the interior of Γ. Hence it has the

same sign as

− s− y + 2s4ny3(s− (1 + n)y). (2.4.6)

Since s → ∞, we see further, that for fixed y/s, and for large enough s, (2.4.6) is positive if

y/s < 1
1+n and negative if y/s ≥ 1

1+n . Hence y/s does not return to the same value infinitely

many times. But this implies y/s → 1
1+n , for if y/s crosses 1

1+n , then one can argue that

y/s is eventually contained in any neighborhood of 1
1+n . If y/s > 1

1+n for all time, then

y/s must converge to inf
t∈(T̃min,T̃max)

{(y/s)(t)}, and hence by Lemma 2.4.3, must converge

to 1
1+n , and similarly if y/s < 1

1+n for all time. Thus y/s → 1
1+n and both y, s → ∞.

From the formula for the scalar curvature (2.4.2), it follows that S → 0, and, in particular,

S is bounded from below, and thus the solution is ancient.

Proposition 2.4.1. Solutions satisfying 1
y2s4n

< y ≤ s are collapsed. Moreover, if 1
y2s4n

<

y < s then a rescaling of g̃t converges in the Gromov-Hausdorff sense to g2CP2n+1 as t → −∞,

and if y = s then a rescaling of g̃t converges to gFS
CP2n+1 as t → ∞.

Proof. By Lemma 2.4.5, such solutions satisfy y, s → ∞, and limt→−∞ y/s = 1 or limt→−∞ y/s =

1
1+n . From equations (2.1.6), it follows that the eigenvalues of the Ricci tensor decay at a
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rate of O( 1y ) as t → −∞, and hence |Ric(g̃t)| decays at a rate of O( 1y ). By the Gap theorem

[12], this implies |Rm(g̃t)| decays at a rate of O( 1y ) as t → −∞ as well. Thus the length of

i goes to zero for the curvature normalized solution |Rm(g̃t)|g̃t. Since the U(1) fibers are

totally-geodesic, this implies the injectivity radius tends to zero, and hence g̃t is collapsed.

In the proof of Lemma 2.4.5, we showed that if y < s then y
s → 1

1+n . In particular, for

every solution in our 1-parameter family (besides the one with y = s), the metric on the

base tends to the second Einstein metric on CP2n+1 (see [48]).

Remark 2.4.6. By Theorem B in [45], metrics with x ≤ y = z ≤ s have positive sectional

curvature. This fact and Lemma 2.3.1 already imply these solutions are ancient.

1

Figure 2.2: The graph of S over metrics with y = z when n = 1 (compare with Figure 1.1).
The green line represents the Sp(n+1)Sp(1)-invariant metrics, and the black line represents
the line y = s, or the U(2n+2)-invariant metrics. The diamonds represent the round metric,
which is a local maximum, and Jensen’s second Einstein metric, which is a saddle point.
Ancient solutions with y < s asymptotically approach the red line, which represents the
stable manifold for Jensen’s second Einstein metric.

32



CHAPTER 3

Ancient solutions on compact homogeneous spaces

3.1. Preliminaries on compact homogeneous spaces

3.1.1. The space of invariant metrics

Let M = G/H be a compact, connected and almost-effective m-dimensional homogeneous

space, where G is a compact Lie group and H a closed subgroup. Furthermore assume that

M is not a torus. Notice that neither G nor H are assumed to be connected.

Fix an Ad(G)-invariant Euclidean inner product Q on the Lie algebra g = Lie(G) and

denote by m the Q-orthogonal complement of h = Lie(H) in g. By means of the canonical

identification m ≃ TeHM given by the evaluation map

V 7→ V ∗
eH = d

ds exp(sV )H
∣∣
s=0

,

we identify any G-invariant tensor field on M with the corresponding Ad(H)-invariant tensor

on m. The restriction Qm = Q|m⊗m defines a normal G-invariant Riemannian metric on M .

We denote by MG
M the set of G-invariant Riemannian metrics on M , which is identified with

the linear space of Qm-symmetric, Ad(H)-invariant, positive-definite endomorphisms of m,

i.e.

MG
M = Sym+(m, Qm)

Ad(H) , (3.1.1)

by means of the correspondence

g 7→ Pg , Qm(Pg.V1, V2) = g(V1, V2) for any V1, V2 ∈ m . (3.1.2)

From now on, we will always identify a metric with the associated endomorphism via (3.1.2).

We recall that (3.1.1) provides the set MG
M with a structure of finite-dimensional smooth
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manifold. Moreover, the natural L2-metric defined by

⟨B1, B2⟩P = det(P )
1
2 Tr(P−1.B1.P

−1.B2) for any B1, B2 ∈ TPM
G
M = Sym(m, Qm)

Ad(H)

turns MG
M into a Riemannian symmetric space of non-compact type and the subset

MG
M,1 = {P ∈ Sym+(m, Qm)

Ad(H) : det(P ) = 1}

of unit volume G-invariant Riemannian metrics into a totally geodesic submanifold.

For any Riemannian metric P ∈ MG
M , we consider the Ad(H)-invariant map

SM (P ) : m → End(m)

defined by (see [29, Thm 3.3, Ch X])

− 2Qm(SM (P )(V1).V2, V3) = Qm([V1, V2]m, V3)

+Qm([P
−1.V3, V1]m, P.V2) +Qm([P

−1.V3, V2]m, P.V1) . (3.1.3)

Here, the symbol [V1, V2]m denotes the Q-orthogonal projection of [V1, V2] on m. The map

SM (P ) corresponds to the G-invariant (1, 2)-tensor field on M given by the difference be-

tween the canonical Ambrose-Singer connection and the Levi-Civita connection (see e.g.

[38]). It is worth mentioning that this tensor encodes all the geometric information about

the metric P . Indeed, following [29, Thm 2.3, Ch X], the Riemannian curvature tensor

RmM (P ) of P is explicitly expressed in terms of SM (P ) by

RmM (P )(V1, V2) = ad([V1, V2]h)− [SM (P )(V1), SM (P )(V2)]− SM (P )([V1, V2]m) , (3.1.4)

where again the [V1, V2]h denotes the Q-orthogonal projection of [V1, V2] on h. Consequently,
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the Ricci curvature RicM (P ) of P is

Qm(RicM (P ).V1, V2) = Tr
(
RmM (P )(V1, · ).V2

)
(3.1.5)

and the scalar curvature scalM (P ) of P

scalM (P ) = Tr(P−1.RicM (P )) . (3.1.6)

Notice that, according to (3.1.5), we denote by RicM the endomorphism obtained by raising

an index of the Ricci bilinear form by means of the background metric Q. Therefore, the

standard “Ricci endomorphism” corresponds in our notation to P−1.RicM (P ).

We also denote by

Ric0M (P ) = RicM (P )− scalM (P )

m
P (3.1.7)

the traceless Ricci curvature of P and we recall that P is said to be Einstein if Ric0M (P ) = 0.

We finally mention that Einstein metrics are the critical points of the normalized scalar

curvature functional

s̃calM : MG
M → R , s̃calM (P ) = det(P )

1
m scalM (P ) .

Indeed, following [7, Ch 4] the differential of s̃calM at P ∈ MG
M in the direction of B ∈ TPM

G
M

is

d s̃calM |P (B) = −det(P )
2−m
2m ⟨Ric0M (P ), B⟩P (3.1.8)

and so d s̃calM |P = 0 if and only if P is Einstein.

3.1.2. Homogeneous torus bundles and the coindex of Einstein metrics

Let us consider a toral H-subalgebra k of g, that is, an Ad(H)-invariant Lie subalgebra of

g which lies properly between h and g such that [k, k] ⊂ h. Then, if we denote by Ko the

connected Lie subgroup of G with Lie algebra equal to k, it turns out that the subgroup K
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generated by H and Ko is a (not necessarily closed) Lie subgroup of G and T = K/H is a

(immersed) torus in M . This gives rise to a (locally defined) homogeneous torus fibration

T = K/H → M = G/H → N = G/K . (3.1.9)

For more details on this construction, see e.g. [9, Sect 4], [36, Sect 3] and [37, Prop 6.1].

At the Lie algebra level, we get the Q-orthogonal decomposition

g = h+ t︸ ︷︷ ︸
k

+

m︷︸︸︷
n , with t = Lie(T) , n ≃ TeKN . (3.1.10)

We recall that a metric P ∈ MG
M is called k-submersion metric if it preserves the decom-

position m = t + n and its restriction to the subspace n is Ad(K)-invariant. We denote by

MG
M (k) the subset of all the k-submersion metrics and observe that it naturally splits as

MG
M (k) = Sym+(t, Qt)

Ad(H) ⊕ Sym+(n, Qn)
Ad(K) , P = Pt ⊕ Pn (3.1.11)

where Qt = Q|t⊗t and Qn = Q|n⊗n. Notice that any P ∈ MG
M (k) turns the (locally) homoge-

neous torus fibration (3.1.9) into a Riemannian submersion with totally geodesic fibers (see

e.g. [36, Sect 3.2]). Notice that all the metrics in MG
M (k) are invariant under the action of

the larger group G×T, which acts on M = G/H via (a, n) · bH = abn−1H with isotropy at

the origin H∆T = {(hn, n) : h ∈ H, n ∈ T}.

Let us consider now a maximal toral H-subalgebra of g, i.e. a toral H-subalgebra k of g such

that T = K/H is a maximal torus of a compact complement of Ho in NG(H
o)o. Here, we

denote by Ho the identity component of H and by NG(H
o)o the identity component of the

normalizer of Ho in G. Notice that this condition implies that K is closed in G and hence

N = G/K is a compact homogeneous space. Moreover, it also implies the following

Lemma 3.1.1. The complement n in (3.1.10) does not contain any Ad(K)-invariant sub-

module on which Ad(Ko) acts trivially.
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Proof. Let ñ ⊂ n be an Ad(K)-invariant submodule such that Ad(Ko).X = {X} for any

X ∈ ñ. Then, this implies that k̃ = k + ñ is a toral H-subalgebra of g. Since k is assumed

to be maximal, it follows that k̃ = k and so ñ ⊂ k. Since k and n are Q-orthogonal, we get

ñ = {0}.

Let now P n ∈ MG
N,1 be a unit volume Einstein metric on N . Then Ric0N (P n) = 0 and so, by

(3.1.8), it follows that

Hess
(
scalN |MG

N,1

)∣∣
P n

(B1, B2) = −
〈
d
(
Ric0N |MG

N,1

)∣∣
P n

(B1), B2

〉
P n

(3.1.12)

for any B1, B2 ∈ TP n
MG

N,1. Therefore, in virtue of (3.1.12) and [31, Def 3.14], we recall the

following notion of coindex for invariant Einstein metrics on N .

Definition 3.1.2. The coindex of a unit volume Einstein metric P n ∈ MG
N,1 is its coindex

as a critical point of the restricted scalar curvature functional scalN |MG
N,1

, i.e. the number

of negative eigenvalue of the linear map d
(
Ric0N |MG

N,1

)∣∣
P n

.

We refer to [31, 27] for a detailed treatment on stability and non-degeneracy of invariant

Einstein metrics on homogeneous spaces.

3.1.3. Ancient solutions to the Ricci flow

We recall that a solution to the Ricci flow on M is a smooth 1-parameter family of metrics

that evolve in the direction of their Ricci tensors. By diffeomorphism invariance of the

Ricci tensor, isometries are preserved by the Ricci flow, and hence one can restrict it to a

dynamical system on the space of G-invariant metrics MG
M , i.e.

P ′(t) = −2RicM (P (t)) , P (0) = Po .

If Po ∈ MG
M,1, then the normalized Ricci flow on M starting at Po takes the form

P̃ ′(t) = −2Ric0M (P̃ (t)) , P̃ (0) = Po
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where the traceless Ricci tensor has been defined in (3.1.7). It is well known that the

normalized Ricci flow preserves the submanifold MG
M,1 and that it is equivalent to the Ricci

flow up to rescaling and time reparametrization. Moreover, by (3.1.8), the normalized Ricci

flow coincides, up to a positive constant, with the L2-gradient flow of the restricted scalar

curvature functional on MG
M,1.

In [13], the authors studied the global behaviour of the restricted scalar curvature functional

on MG
M,1 in order to prove the existence of Einstein metrics using variational techniques. In

particular, the authors proved that for any ϵ > 0, the scalar curvature functional satisfies

the Palais-Smale compactness condition on the set

(MG
M,1)ϵ = {P ∈ MG

M,1 : scalM (P ) > ϵ} ,

that is, if (P (n)) ⊂ MG
M,1 is a sequence with

scalM (P (n)) → ϵ and
〈
Ric0M (P (n)),Ric0M (P (n))

〉
P (n) → 0 as n → +∞ ,

M M scal then there exists a subsequence of (P (n)) converging in the C∞-topology to an

Einstein metric P (∞) ∈ MG
M,1, as n → +∞, with scalM (P (∞)) = ϵ. In general, the Palais-

Smale compactness condition does not hold on the full space MG
M,1 due to the existence of

the so called 0-Palais-Smale sequences, that are (P (n)) ⊂ MG
M,1 such that scalM (P (n)) → 0

and
〈
Ric0M (P (n)),Ric0M (P (n))

〉
P (n) → 0 as n → +∞. Notice that such sequences cannot

admit convergent subsequences since M is not a torus. In fact, the limit of any convergent

subsequence would be a Ricci-flat, and hence flat (see [2]), G-invariant metric. By [13, Thm

2.1], the existence of such a solution implies that Go/Ho is the total space of a homoge-

neous torus bundle, where Go (resp. Ho) denotes the identity component of G (resp. H).

More precisely, since 0-Palais-Smale sequences have bounded sectional curvature by the Gap

theorem [12], by [36] we know that the sum of the eigenspaces associated to the shrinking

eigenvalues of any 0-Palais-Smale sequence converges to a reductive complement of h into a
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toral H-subalgebra k of g and that such sequences collapse along the fibers of the induced

(locally) homogeneous torus fibration (3.1.9) while asymptotically approaching, in a precise

sense, a k-submersion metric.

Now let P (t) be the solution to the Ricci flow starting from Po ∈ MG
M,1 and P̃ (t) the

corresponding solution to the normalized Ricci flow. We recall that P (t) (resp. P̃ (t)) is said

to be ancient if it exists on the time interval (−∞, 0]. It is a well known consequence of

the maximum principle that if P (t) is ancient, then it must have monotonic non-negative

scalar curvature (see e.g. [23, p. 102]). Since the two flows are equivalent up to rescaling

and time reparametrization, the same is true for the solution P̃ (t). Furthermore, by [44],

P (t) is ancient if and only if P̃ (t) is ancient. In particular there are exactly two possibilities

for the behaviour of the normalized Ricci flow as t → −∞.

The first possibility is that there exists an ϵ > 0 such that scalM (P̃ (t)) > ϵ for any t ≤ 0,

in which case P̃ (t) (and hence P (t)) is non-collapsed and, by [12, Thm 5.2], P̃ (t) converges

to an Einstein metric as t → −∞. Since the traceless Ricci tensor is the negative L2-

gradient of the functional scalM |MG
M,1

, such ancient solutions are known to exist whenever

M admits a G-unstable, G-invariant Einstein metric (see e.g. [3, 12]). The second possibility

is that scalM (P̃ (t)) → 0 as t → −∞. In this case, one can always find a sequence of times

t(n) → −∞ such that P (t(n)) is a 0-Palais-Smale sequence and so P̃ (t) (and hence P (t)) is

collapsed. Indeed, for the sake of the reader, we recall the following

Remark 3.1.1. A 1-parameter family {P (t)}t∈I of G-invariant metrics, I ⊂ R an interval,

is said to be non-collapsed if there exists δ > 0 such that

inj(P (t))
(
|RmM (P (t))|P (t)

) 1
2 ≥ δ for any t ∈ I ,

where inj(P ) denotes the injectivity radius of the metric P at the origin eH and | · |P denotes

the norm on m, and hence on the tensor space over m, induced by P . Accordingly, {P (t)}t∈I

is said to be collapsed if it is not non-collapsed, i.e. if there exists a sequence (t(n)) ⊂ I such
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that

inj(P (t(n)))
(
|RmM (P (t(n)))|P (t(n))

) 1
2 → 0 as n → +∞ .

These properties are invariant under time-dependent rescaling and time reparametrization.

We also give a proof of the following known result (see e.g. [12, Rem 5.3]).

Proposition 3.1.3. Let P (t) be an ancient solution to the homogeneous Ricci flow on

M = G/H starting from Po ∈ MG
M,1 and P̃ (t) the corresponding solution to the normalized

Ricci flow. Then, P (t) is collapsed if and only if scalM (P̃ (t)) → 0 as t → −∞.

Proof. By [12], there exists a constant C > 0, depending on the starting metric Po, such

that

−t|RmM (P (t))|P (t) < C for any t ≤ 0 .

In particular, by means of Remark 3.1.1 and the Cheeger-Gromov compactness theorem, it

follows that P (t) is non-collapsed if and only if for any sequence t(n) → −∞ there exists

a subsequence (t(ni)) ⊂ (t(n)) such that P (t(ni)) converges in the C1,α-topology to a limit

metric on M as i → +∞. Moreover, the limit metric is necessarily invariant with respect

to the same action of G on M and the convergence is G-equivariant. As in the proof of

[13, Thm 1.1], we notice that G-equivariant convergence actually takes place in the C∞-

topology (see also [38]). Moreover, since P̃ (t) coincides, up to time reparametrization, to

the volume-normalized family det(P (t))−
1
mP (t), it follows that: P (t) is non-collapsed if and

only if for any sequence t(n) → −∞ there exists a subsequence (t(ni)) ⊂ (t(n)) such that

P̃ (t(ni)) converges in the C∞-topology to a limit G-invariant metric in MG
M,1 as i → +∞.

This concludes the proof.

Notice that, as a byproduct of Proposition 3.1.3 and [36], M admits a collapsed ancient

solution to the Ricci flow only if it is the total space of a homogenous torus bundle (see also

[12, Rem 5.3]).
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3.2. The projected Ricci flow

In this section, we introduce two important tools that will be fundamental for the proof of

our main results, namely the space of generalized submersion metrics and the projected Ricci

tensor. In the following, we consider a compact homogeneous space M = G/H and we use

the same notation introduced in Section 3.1.

3.2.1. The space of generalized submersion metrics

Consider a maximal toral H-subalgebra k of g and the associated homogeneous torus fibration

(3.1.9). We introduce the space of generalized k-submersion metrics on M as

M̂G
M (k) = Sym(t, Qt)

Ad(H) ⊕ Sym+(n, Qn)
Ad(K) , (3.2.1)

i.e. we allow the metric on t to be degenerate, and we prove the following crucial result.

Proposition 3.2.1. The Ricci curvature RicM can be extended analytically to the space

M̂G
M (k) of generalized k-submersion metrics on M .

Proof. We write P = Pt ⊕ Pn for any P ∈ MG
M (k) and we observe that [ad(T ), Pn](X) = 0

for any T ∈ t, X ∈ n. Hence, a straightforward computation shows that the tensor SM (P )

defined by (3.1.3) is explicitly given by

SM (P )(T ).T̃ = 0 ,

SM (P )(T ).Y = − ad(T ).Y + 1
2P

−1
n . ad(Pt.T ).Y ,

SM (P )(X).T̃ = −1
2P

−1
n . ad(X).Pt.T̃ ,

SM (P )(X).Y = −1
2πm. ad(X).Y − 1

2P
−1
n .πn.(ad(X).Pn − ad(Pn.X)).Y ,

(3.2.2)

where X,Y ∈ n and T, T̃ ∈ t. Here, we denote by πm : g → m and πn : g → n the Q-

orthogonal projections onto m and n, respectively. In particular, (3.2.2) implies that SM (P )

can be defined for any generalized metric P ∈ M̂G
M (k) and that it depends analytically on

41



P . Therefore, formulas (3.1.4) and (3.1.5) can be used to define RmM (P ) and RicM (P ) for

any P ∈ M̂G
M (k).

Moreover, by using Schur’s Lemma, we get

Lemma 3.2.1. For any P ∈ M̂G
M (k), it holds that

RicM (P ) ∈ Sym(t, Qt)
Ad(H) ⊕ Sym(n, Qn)

Ad(K) . (3.2.3)

Proof. Notice that, by hypothesis, the submodule t is Ad(K)-invariant and the representation

Ad(Ko)|t is trivial. Moreover, by Lemma 3.1.1, n does not contain any Ad(K)-invariant

submodule on which Ad(Ko) acts trivially. Fix now P ∈ M̂G
M (k) and notice that, since

K = HKo, both P and the decomposition (3.1.10) are Ad(K)-invariant. By (3.1.3) it follows

that SM (P ) is Ad(K)-invariant and so RicM (P ) is Ad(K)-invariant as well. Therefore, the

claim follows from Schur’s Lemma.

We are going to use (3.2.2) to compute the differential of the tensor SM defined in (3.1.3). In

order to do this, fix a generalized metric P ∈ M̂G
M (k) and a tangent direction B ∈ TP M̂G

M (k).

Since

d
ds(Pn + sBn)

−1
∣∣
s=0

= −P−1
n .Bn.P

−1
n , (3.2.4)

it follows that the differential dSM |P (B) at P in the direction of B is given by

dSM |P (B)(T ).T̃ = 0 ,

dSM |P (B)(T ).Y = −1
2P

−1
n .Bn.P

−1
n . ad(Pt.T ).Y + 1

2P
−1
n . ad(Bt.T ).Y ,

dSM |P (B)(X).T̃ =
1

2
P−1
n .Bn.P

−1
n . ad(X).Pt.T̃ − 1

2P
−1
n . ad(X).Bt.T̃ ,

dSM |P (B)(X).Y = 1
2P

−1
n .Bn.P

−1
n .πn.(ad(X).Pn − ad(Pn.X)).Y

− 1
2P

−1
n .πn.(ad(X).Bn − ad(Bn.X)).Y ,

(3.2.5)

where X,Y ∈ n and T, T̃ ∈ t. Moreover, by differentiating (3.1.4) and (3.1.5) at P in the
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direction of B, we get

dRmM|P (B)(V1, V2) = −[dSM |P (B)(V1), SM (P )(V2)]− [SM (P )(V1), dSM |P (B)(V2)]

− dSM |P (B)([V1, V2]m) ,

Q(dRicM|P (B).V1, V2) = Tr(m ∋ Z 7→ dRmM|P (B)(V1, Z).V2) .

(3.2.6)

Therefore, we obtain the following.

Proposition 3.2.2. Fix a metric on the base space Pn ∈ MG
N . Then, the extended Ricci

curvature satisfies

RicM (0⊕ Pn) = 0⊕ RicN (Pn) ,

dRicM|0⊕Pn(0⊕Bn) = 0⊕ dRicN|Pn(Bn)

(3.2.7)

for any horizontal direction Bn ∈ Sym(n, Qn)
Ad(K), and

dRicM|0⊕Pn(Bt ⊕ 0).T = 0 (3.2.8)

for any vertical direction Bt ∈ Sym(t, Qt)
Ad(H) and for any T ∈ t.

Proof. Fix Bn ∈ Sym(n, Qn)
Ad(K) and let X,Y, Z ∈ n, T, T̃ ∈ t. Then, from (3.2.5), it follows

that the operators SM (0⊕ Pn) and dSM |0⊕Pn(0⊕Bn) satisfy

SM (0⊕ Pn)(T ).T̃ = 0 , SM (0⊕ Pn)(T ).Y = − ad(T ).Y , SM (0⊕ Pn)(X).T̃ = 0 ,

SM (0⊕ Pn)(X).Y = −1
2πm. ad(X).Y − 1

2P
−1
n .πn.(ad(X).Pn − ad(Pn.X)).Y

(3.2.9)

and

dSM |0⊕Pn(0⊕Bn)(T ).T̃ = 0 , dSM |0⊕Pn(0⊕Bn)(T ).Y = 0 ,

dSM |0⊕Pn(0⊕Bn)(X).T̃ = 0 ,

dSM |0⊕Pn(0⊕Bn)(X).Y = 1
2P

−1
n .Bn.P

−1
n .πn.(ad(X).Pn − ad(Pn.X)).Y

− 1
2P

−1
n .πn.(ad(X).Bn − ad(Bn.X)).Y .

(3.2.10)
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On the other hand, by using (3.1.3) and (3.2.4), it follows that the operators SN (Pn) and

dSN |Pn(Bn) satisfy

SN (Pn)(X).Y = −1
2πn. ad(X).Y − 1

2P
−1
n .πn.(ad(X).Pn − ad(Pn.X)).Y ,

dSN |Pn(Bn)(X).Y = 1
2P

−1
n .Bn.P

−1
n .πn.(ad(X).Pn − ad(Pn.X)).Y

− 1
2P

−1
n .πn.(ad(X).Bn − ad(Bn.X)).Y .

(3.2.11)

A straightforward computation based on (3.1.4), (3.2.6), (3.2.9) and (3.2.10) shows that

RmM (0⊕ Pn)(T, ·).T̃ = dRmM|0⊕Pn(0⊕Bn)(T, ·).T̃ = 0

and so, by using (3.1.5) and (3.2.6), we get

RicM (0⊕ Pn)(T ) ∈ n and dRicM|0⊕Pn(0⊕Bn)(T ) ∈ n .

Therefore, (3.2.3) implies that

RicM (0⊕ Pn)(T ) = dRicM|0⊕Pn(0⊕Bn)(T ) = 0 . (3.2.12)

Again, using (3.1.4), (3.2.6), (3.2.9) and (3.2.10) one can directly check that

RmM (0⊕ Pn)(X, ·).T̃ = dRmM|0⊕Pn(0⊕Bn)(X, ·).T̃ = 0

and so (3.1.5) and (3.2.6) imply that

RicM (0⊕ Pn)(X) ∈ n and dRicM|0⊕Pn(0⊕Bn)(X) ∈ n . (3.2.13)

Finally, another direct computation based on (3.1.4), (3.2.6), (3.2.9), (3.2.10) and (3.2.11)

shows that
πn(RmM (0⊕ Pn)(X,Y ).Z) = RmN (Pn)(X,Y ).Z ,

πn(dRmM|0⊕Pn(0⊕Bn)(X,Y ).Z) = dRmN|Pn(Bn)(X,Y ).Z .

(3.2.14)
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Notice now that (3.2.7) follows from (3.2.12), (3.2.13) and (3.2.14). In order to prove

(3.2.8), fix Bt ∈ Sym(t, Qt)
Ad(H) and observe that, from (3.2.5), it follows that the oper-

ator dSM |0⊕Pn(Bt ⊕ 0) satisfies

dSM |0⊕Pn(Bt ⊕ 0)(T ).T̃ = 0 ,

dSM |0⊕Pn(Bt ⊕ 0)(T ).Y = +1
2P

−1
n . ad(Bt.T ).Y ,

dSM |0⊕Pn(Bt ⊕ 0)(X).T̃ = −1
2P

−1
n . ad(X).Bt.T̃ ,

dSM |0⊕Pn(Bt ⊕ 0)(X).Y = 0 .

(3.2.15)

Again, by using (3.1.4), (3.1.5), (3.2.6), (3.2.9) and (3.2.15), one can show that

dRicM|0⊕Pn(Bt ⊕ 0)(T ) ∈ n

and so, using (3.2.3), we get (3.2.8).

3.2.2. The P n-projected Ricci tensor

Fix a unit volume Einstein metric P n ∈ MG
N,1 on N , i.e. RicN (P n) = λP n for some λ ∈ R.

Since N is compact, Bochner’s Theorem implies that λ is non-negative (see [8]). Moreover,

since M = G/H is not a torus, then also N is not a torus and so λ > 0.

We introduce the Euclidean inner product ⟨⟨·, ·⟩⟩(P n) on the linear space Sym(m, Qm)
Ad(H)

defined by

⟨⟨B1, B2⟩⟩(P n) = dim(N)−1Tr
(
(Idt⊕(P n)

−1).B1.(Idt⊕(P n)
−1).B2

)
(3.2.16)

and the P n-projected Ricci curvature

R(P n)
M : M̂G

M (k) → Sym(t, Qt)
Ad(H) ⊕ Sym(n, Qn)

Ad(K) ,

R(P n)
M (P ) = RicM (P )− ⟨⟨RicM (P ), P ⟩⟩(P n)

⟨⟨P, P ⟩⟩(P n)
P .

(3.2.17)
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We remark that, for any P ∈ M̂G
M (k), the image R(P n)

M (P ) lies in

Sym(t, Qt)
Ad(H) ⊕ Sym(n, Qn)

Ad(K)

by means of (3.2.3). As a consequence of Proposition 3.2.2, we get the following

Corollary 3.2.2. The P n-projected Ricci curvature R(P n)
M satisfies

R(P n)
M (0⊕ P n) = 0⊕ Ric0N (P n) ,

dR(P n)
M

∣∣
0⊕P n

(0⊕Bn) = 0⊕ dRic0N |P n
(Bn)

(3.2.18)

for any Bn ∈ Sym(n, Qn)
Ad(K), and

dR(P n)
M

∣∣
0⊕P n

(Bt ⊕ 0).T = −λBt.T (3.2.19)

for any Bt ∈ Sym(t, Qt)
Ad(H), T ∈ t.

Proof. Notice that (3.2.18) follows from a direct computation based on (3.1.3), (3.1.4),

(3.1.5) and (3.2.7). Moreover, from (3.2.7) and (3.2.8), we get

dR(P n)
M |0⊕P n

(Bt ⊕ 0).T = −d

(
⟨⟨RicM (P ), P ⟩⟩(P n)

⟨⟨P, P ⟩⟩(P n)
P

)∣∣∣∣
0⊕P n

(Bt ⊕ 0).T

= −d

(
⟨⟨RicM (P ), P ⟩⟩(P n)

⟨⟨P, P ⟩⟩(P n)

)∣∣∣∣
0⊕P n

(Bt ⊕ 0) · (0⊕ P̃n).T

−
(
⟨⟨RicM (0⊕ P n), 0⊕ P n⟩⟩(P n)

⟨⟨0⊕ P n, 0⊕ P n⟩⟩(P n)

)
· (Bt ⊕ 0).T

= 0− scalN (P n)

dim(N)
Bt.T

= −λBt.T

for any Bt ∈ Sym(t, Qt)
Ad(H) and T ∈ t, which proves (3.2.19).

In virtue of Proposition 3.2.1 and (3.2.2), the Ricci flow preserves the subspace MG
M (k)
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of k-submersion metrics and can be extended to the larger space M̂G
M (k) of generalized k-

submersion metrics. Moreover, since the Ricci curvature RicM is scale invariant, we may

project the Ricci flow on the unit sphere

Σ(P n) =
{
P ∈ M̂G

M (k) : ⟨⟨P, P ⟩⟩(P n) = 1
}

of M̂G
M (k) with respect to the inner product ⟨⟨·, ·⟩⟩(P n). Hence up to rescaling, the Ricci flow

is equivalent to the flow on Σ(P n) defined by

P ′(t) = −2R(P n)
M (P (t)) , (3.2.20)

which we call the P n-projected Ricci flow.

3.3. Proof of Theorem B

This section is devoted to the proof of our main result. In the following, we consider a

compact homogeneous space M = G/H, a fixed maximal toral H-subalgebra k of g and we

use the same notation as in Section 3.1 and Section 3.2.

3.3.1. Two preparatory results

Take a sequence (P (n)) ⊂ MG
M (k) of k-submersion metrics P (n) = P

(n)
t ⊕ P

(n)
n such that

P
(n)
t → 0 and P

(n)
n → P

(∞)
n ∈ MG

N as n → +∞. The first result that we need for proving

Theorem B is the following.

Proposition 3.3.1. The scalar curvature of P (n) converges to the scalar curvature of P (∞)
n ,

that is

scalM (P (n)) → scalN (P
(∞)
n ) as n → +∞ . (3.3.1)

Proof. Since the fibers of (3.1.9) are totally geodesic and flat along the sequence, by O’Neill’s
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Formula (see [7, Eq (9.37)]) we get

scalM (P (n)) = scalN (P
(n)
n )−

(∣∣A(n)
∣∣
P (n)

)2
,

where A(n) : m⊗m → m is the O’Neill’s tensor of the metric P (n).

Since the scalar curvature functional is continuous, it follows that scalN (P
(n)
n ) → scalN (P

(∞)
n ).

Therefore, in order to prove (3.3.1), it is sufficient to show that
∣∣A(n)

∣∣
P (n) → 0 as n → +∞.

For any n ∈ N, we consider a Qm-orthogonal, Ad(H)-invariant, irreducible decomposition

m = m
(n)
1 + . . .+m

(n)
ℓ (3.3.2)

with respect to which P (n) is diagonal, i.e.

P (n) = x
(n)
1 Id

m
(n)
1

⊕. . .⊕ x
(n)
ℓ Id

m
(n)
ℓ

, x
(n)
k > 0 for any 1 ≤ k ≤ ℓ .

By hypothesis, we can assume that:

the dimension mi = dim(m
(n)
i ) is constant along the sequence for any 1 ≤ i ≤ ℓ;

the decomposition (3.3.2) converges to a well defined Ad(H)-invariant, irreducible,

limit decomposition m = m
(∞)
1 + . . .+m

(∞)
ℓ ;

there exists 1 ≤ r ≤ ℓ such that

t = m
(n)
1 + . . .+m(n)

r , n = m
(n)
r+1 + . . .+m

(n)
ℓ for any n ∈ N ;

P
(∞)
n is diagonal with respect to n = m

(∞)
r+1 + . . .+m

(∞)
ℓ , i.e.

P
(∞)
n = x

(∞)
r+1 Idm(∞)

r+1

⊕. . .⊕ x
(n)
ℓ Id

m
(∞)
ℓ

, x
(∞)
j > 0 for any r + 1 ≤ j ≤ ℓ .
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We consider now a sequence of adapted bases, i.e. for any n ∈ N we consider a Qm-

orthonormal basis (e
(n)
α )1≤α≤m for m such that

e
(n)
1 , . . ., e(n)m1

∈ m
(n)
1 , e

(n)
m1+1, . . ., e

(n)
m1+m2

∈ m
(n)
2 , . . . , e

(n)
m1+...+mℓ−1+1, . . ., e

(n)
m ∈ m

(n)
ℓ ,

and we define the coefficients

[ijk](n) =
∑

e
(n)
α ∈m(n)

i

∑
e
(n)
β ∈m(n)

j

∑
e
(n)
γ ∈m(n)

k

Q
(
[e(n)α , e

(n)
β ], e(n)γ

)2
. (3.3.3)

Notice that [ijk](n) is symmetric in all its entries and does not depend on the choice of

(e
(n)
α ). Moreover, we can assume that (e

(n)
α ) converges to a limit adapted basis (e

(∞)
α ) for

m and, as a consequence, [ijk](n) converges to the coefficient [ijk](∞) related to the limit

decomposition. For more information about the diagonalization of invariant metrics on

compact homogeneous spaces, we refer to [46, 9].

For the sake of shortness, we set

A
(n)
ij =

∑
e
(n)
α ∈m(n)

i

∑
e
(n)
β ∈m(n)

j

(∣∣A(n)
(
e(n)α , e

(n)
β

)∣∣
P (n)

)2
.

Notice that by [35, Lemma 2] and (3.3.3), it follows that

A
(n)
j1j2

=
1

4

∑
1≤i≤r

[ij1j2]
(n)x

(n)
i → 0 for any r + 1 ≤ j1, j2 ≤ ℓ . (3.3.4)

Moreover, since O’Neill’s tensor is horizontal (see [35, p. 460]), it follows that

A
(n)
ik = 0 for any 1 ≤ i ≤ r , 1 ≤ k ≤ ℓ . (3.3.5)
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Finally, by [35, Cor 1] and [36, Eq (4.5) and (4.7)], we obtain

A
(n)
ji = 1

4

∑
1≤k≤ℓ

[ijk](n)
x
(n)
i

x
(n)
j x

(n)
k

+ 1
4

∑
1≤k≤ℓ

[ijk](n)
(
x
(n)
j

x
(n)
k

− 1
)(

− 2
x
(n)
i

x
(n)
j

+ 1 + 3
x
(n)
k

x
(n)
j

)
1

x
(n)
i

(3.3.6)

for any 1 ≤ i ≤ r, r + 1 ≤ j ≤ ℓ. Since each P (n) is a k-submersion metric and t is abelian,

it follows that

[i1i2k]
(n) = 0 for any 1 ≤ i1, i2 ≤ r , 1 ≤ k ≤ ℓ , for any n ∈ N ,

[ij1j2]
(n)
(
x
(n)
j2

x
(n)
j1

− 1
)
= 0 for any 1 ≤ i ≤ r , r + 1 ≤ j1, j2 ≤ r , for any n ∈ N .

(3.3.7)

Therefore, by (3.3.6) and (3.3.7) we get

A
(n)
ji = 1

4

∑
r+1≤j′≤ℓ

[ijj′](n)
x
(n)
i

x
(n)
j x

(n)

j′
→ 0 for any 1 ≤ i ≤ r , r + 1 ≤ j ≤ ℓ (3.3.8)

and so the claim follows from (3.3.4), (3.3.5) and (3.3.8).

Let us denote now by d
(n)
M the Riemannian distance induced by P (n) on M and by d

(n)
N (resp.

d
(∞)
N ) the Riemannian distance induced by P

(n)
n (resp. P (∞)

n ) on N . We recall that, since N

is compact and P
(n)
n → P

(∞)
n in the C∞-topology, it follows that the metric spaces (N, d

(n)
N )

converge to (N, d
(∞)
N ) in the Gromov-Hausdorff topology as n → +∞ (see e.g. [41, p. 415]).

For a detailed treatment on Gromov-Hausdorff convergence, we refer to [19, 43].

Proposition 3.3.2. The sequence of compact metric spaces (M, d
(n)
M ) converges to (N, d

(∞)
N )

in the Gromov-Hausdorff topology as n → +∞.

Proof. In order to prove the statement, it is sufficient to show that

∣∣d(n)M (a0H, a1H)− d
(∞)
N (a0K, a1K)

∣∣ n→+∞−−−−−→ 0 uniformly in a0, a1 ∈ G .

Fix a0, a1 ∈ G and consider for any n ∈ N a d(n)N -geodesic γ(n) : [0, 1] → N such that γ(n)(0) =
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a0K, γ(n)(1) = a1K, which realizes the d(n)N -distance between a0K and a1K. Consider now the

horizontal lift γ(n)↑ : [0, 1] → M of γ(n) to M starting from a0H and pick c(n) ∈ T such that

γ(n)↑(1) = a1c
(n)H. Since P (n) is a k-submersion metric, it follows that d(n)M (a0H, a1c

(n)H) =

d
(n)
N (a0K, a1K). Then, by the reverse triangle inequality, we get

∣∣d(n)M (a0H, a1H)−d
(∞)
N (a0K, a1K)

∣∣ ≤ d
(n)
M (a1H, a1c

(n)H)+
∣∣d(n)N (a0K, a1K)−d

(∞)
N (a0K, a1K)

∣∣ .
(3.3.9)

Notice now that both the terms on the right hand side of (3.3.9) converge uniformly to 0 as

n → +∞, and this concludes the proof.

Let us finally remark that both (3.3.1) and Proposition 3.3.2 hold true for any (not neces-

sarily maximal) toral H-subalgebra k.

3.3.2. The existence theorem

Consider again a unit volume Einstein metric P n ∈ MG
N,1 on N with RicN (P n) = λP n for

some λ > 0. We also set

ν = dim
(
Sym(t, Qt)

Ad(H)
)
.

Notice that, if H is connected, then Ad(H)|t is trivial and so ν = d(d+1)
2 , where d = dim(T).

However, in the general case it may happen that 1 ≤ ν < d(d+1)
2 .

The main result of this section is the following

Theorem 3.3.1. If P n has coindex q, then there exists a (ν + q − 1)-parameter family

of ancient solutions to the P n-projected Ricci flow on MG
M (k) which converge to 0 ⊕ P n

as t → −∞ and such that the corresponding solutions to the Ricci flow are ancient and

collapsed.

Proof. Let us observe that the P n-projected Ricci tensor (3.2.17) is defined on an open
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neighborhood of 0⊕ P n inside Σ(P n). Moreover, from (3.2.16) it holds that

T0⊕P n
Σ(P n) = Sym(t, Qt)

Ad(H) ⊕ TP n
MG

N,1 (3.3.10)

and, by (3.2.18) and (3.2.19), it follows that

R(P n)
M (0⊕ P n) = 0 , dR(P n)

M

∣∣
0⊕P n

=

 −λ IdSym(t,Qt)Ad(H) 0

∗ dRic0N |P n

 . (3.3.11)

By (3.3.10), (3.3.11) and the Center Manifold Theorem [40, p. 116], it follows that there

exists a stable manifold Ŵ (P n) for R(P n)
M at 0⊕P n of dimension dim Ŵ (P n) = ν+q, where q is

the coindex of P n (see Definition 3.1.2). We remark that Ŵ (P n) is a submanifold of M̂G
M (k)

and that, being eventually interested in the positive-definite solutions to the Ricci flow, we

need to compute the dimension of the manifold W (P n) = Ŵ (P n) ∩MG
M (k). For this purpose

let us observe that, restricting to the sphere Σ(P n), the eigenvectors of dR(P n)
M

∣∣
0⊕P n

consist

of two families of endomorphisms inside T0⊕P n
Σ(P n), namely:

those coming from the upper left block of (3.3.11), spanned by a basis of the form

B1 =
(
(Bt)i ⊕ (Bn)i

)
, 1 ≤ i ≤ ν ;

those coming from the lower right block of (3.3.11), spanned by a basis of the form

B2 =
(
0⊕ (Cn)j

)
, 1 ≤ j ≤ p− 1 ,

where p is the number of Ad(K)-invariant, irreducible summands of n.

We claim that the endomorphisms (Bt)i must be linearly independent inside Sym(t, Qt)
Ad(H).
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If not, then there is a non-trivial linear combination

∑
i

µi

(
(Bt)i ⊕ (Bn)i

)
= 0⊕B⋆

n for some non-zero B⋆
n ∈ TP n

MG
N,1 .

Since (Cn)j forms a basis for TP n
MG

N,1, there is another linear combination

∑
j

µ̃j(Cn)j = B⋆
n ,

but this contradicts the fact that B1∪B2 is a basis for T0⊕P n
Σ(P n). This shows in particular

that W (P n) has dimension dimW (P n) = dim Ŵ (P n) = ν + q.

Let now P (t) = Pt(t)⊕ Pn(t) be an ancient solution to the P n-projected Ricci flow lying on

W (P n). It remains to prove that the corresponding solution to the Ricci flow is still ancient.

Notice that by (3.3.1) it holds that

scalM (P (t)) → λdim(N) as t → −∞ .

Thus for large times scalM (P (t)) > 0, and hence the same is true for the corresponding

solution to the Ricci flow. However, a solution to the Ricci flow whose scalar curvature

stays positive is necessarily ancient by [30, Thm 1.1]. Furthermore, as in the proof of

Proposition 4.2 in [47], P (t) has bounded curvature and is hence collapsed as the injectivity

radius tends to zero.

Notice now that Theorem B is a direct consequence of Theorem 3.3.1 and Proposition 3.3.2.

We finally mention that we do not know, expect in some special cases, whether the solutions

found by means of Theorem B are isometric or not.

3.4. Proof of Corollary A

In this section, we produce explicit examples of collapsed homogeneous ancient solutions. As

a byproduct, we prove Corollary A. For a detailed study of Einstein equations on generalized
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flag manifolds, we refer e.g. to [4]. In the following examples, the group G will always be

semisimple and so we choose its negative Cartan-Killing form as background metric.

3.4.1. A Kähler-Einstein metric on SU(3)/T2

Let G = SU(3), T2 = {diag(eit1 , eit2 , e−i(t1+t2))} its maximal torus and consider the real

root spaces decomposition

su(3) = t2 + n1 + n2 + n3 .

Then, any G-invariant Riemannian metric Pn on the flag manifold N = SU(3)/T2 takes the

form

Pn = λ1 Idn1 ⊕λ2 Idn2 ⊕λ3 Idn3

and its normalized scalar curvature is given by (see e.g. [4, Prop. 4])

s̃calN (Pn) = (λ1λ2λ3)
1
3

(
1
λ1

+ 1
λ2

+ 1
λ3

− 1
6

(
λ1

λ2λ3
+ λ2

λ1λ3
+ λ3

λ1λ2

))
.

Take the unit volume Kähler-Einstein metric PKE
n corresponding to the values

(λ1, λ2, λ3) =
1
3(

27
2 )

1
3 (1, 1, 2)

and one can compute that

spectrum
(
Hess

(
s̃calN

)∣∣
PKE
n

)
=
{
−1

3 , 0,
4
3

}
.

Here, the zero eigenvalue corresponds to scaling the metric by a constant and so PKE
n has

coindex q = 1. Now consider the homogeneous fibration

T2 → SU(3) → SU(3)/T2 . (3.4.1)

By Theorem 3.3.1, there is a 3-parameter family of ancient solutions to the Ricci flow on

SU(3) which, under the rescaling introduced in Section 3.2, collapse the fibers of (3.4.1)
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and converge to 0⊕ PKE
n as t → −∞. Similarly if S1p,q = {( eipt, eiqt, e−i(p+q)t)}, we get the

homogeneous fibration

S1 = T2/S1p,q → SU(3)/S1p,q → SU(3)/T2 , (3.4.2)

where SU(3)/S1p,q is an Aloff-Wallach space. By Theorem 3.3.1, there is a 1-parameter family

of ancient solutions on SU(3)/S1p,q converging to 0⊕ PKE
n as above.

Remark 3.4.1. In [32], Lu and Wang produce a two-parameter family of ancient solutions

on SU(3) and a single ancient solution on SU(3)/S1p,q both collapsing to PKE
n as t → −∞.

Our families are slightly larger, which can be explained by the fact that the metric restricted

to the base is allowed to vary.

3.4.2. A Kähler-Einstein metric on SU(4)/T3

Let G = SU(4), T3 = {diag(eit1 , eit2 , eit3 , e−i(t1+t2+t3))} its maximal torus and consider the

real root spaces decomposition

su(3) = t2 + n1 + n2 + n3 + n4 + n5 + n6 .

Then, any G-invariant Riemannian metric Pn on the flag manifold N = SU(4)/T3 takes the

form

Pn = λ1 Idn1 ⊕. . .⊕ λ6 Idn3

and its normalized scalar curvature is given by (see e.g. [4, Prop. 4])

s̃calN (Pn) = (λ1λ2λ3λ4λ5λ6)
1
6

(
1
λ1

+ 1
λ2

+ 1
λ3

+ 1
λ4

+ 1
λ5

+ 1
λ6

− 1
8

(
λ1

λ2λ4
+ λ1

λ3λ5
+ λ2

λ1λ4
+ λ2

λ3λ6

+ λ3
λ1λ5

+ λ3
λ2λ6

+ λ4
λ1λ2

+ λ4
λ5λ6

+ λ5
λ1λ3

+ λ5
λ4λ6

+ λ6
λ2λ3

+ λ6
λ4λ5

))
.
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Take the unit volume Kähler-Einstein metric PKE
n corresponding to the values

(λ1, λ2, λ3, λ4, λ5, λ6) =
1
4(

1024
3 )

1
6 (3, 2, 1, 1, 2, 1).

One can compute that the matrix Hess
(
s̃calN

)∣∣
PKE
n

has two distinct positive eigenvalues,

three negative eigenvalues and one zero eigenvalue, corresponding to the scaling direction.

Therefore, PKE
n has coindex q = 2. By Theorem 3.3.1, on SU(4) there is a 7-parameter family

of ancient solutions to the Ricci flow collapsing, under rescaling, to 0 ⊕ PKE
n as t → −∞.

Similarly on SU(4)/S1 there is a 4-parameter family of ancient solutions, and on SU(4)/T2

there is a 2-parameter family of ancient solutions.

Notice that, as in the previous example, the construction of Lu and Wang again provides

ancient solutions on SU(4) but their family is two dimensions smaller, due to the fact that

in their construction the metric on the base remains fixed.

3.4.3. A Kähler-Einstein metric on G2/T
2

Let G = G2, T2 a maximal torus inside G2 and consider the real root spaces decomposition

su(3) = t2 + n1 + n2 + n3 + n4 + n5 + n6 .

Then, any G-invariant Riemannian metric Pn on the flag manifold N = G2/T
2 takes the

form

Pn = λ1 Idn1 ⊕. . .⊕ λ6 Idn6

and its normalized scalar curvature is given by

s̃calN (Pn) = (λ1λ2λ3λ4λ5λ6)
1
6

(
1
λ1

+ 1
λ2

+ 1
λ3

+ 1
λ4

+ 1
λ5

+ 1
λ6

− 1
6

(
λ1

λ3λ4
+ λ3

λ1λ4
+ λ4

λ1λ3

)
− 1

8

(
λ1

λ2λ3
+ λ1

λ4λ5
+ λ2

λ1λ3
+ λ2

λ5λ6
+ λ3

λ1λ2
+ λ3

λ4λ6
+ λ4

λ1λ5
+ λ4

λ3λ6
+ λ5

λ1λ4
+ λ5

λ2λ6
+ λ6

λ2λ5
+ λ6

λ3λ4

))
.

For more information about homogeneous Einstein metrics on N = G2/T
2, see [5]. Take the
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unit volume Kähler-Einstein metric PKE
n corresponding to the values

(λ1, λ2, λ3, λ4, λ5, λ6) =
1
12(

4608
5 )

1
6 (1, 3, 4, 5, 6, 9)

and one can compute that the matrix Hess
(
s̃calN

)∣∣
PKE
n

has one positive eigenvalue, four neg-

ative eigenvalues and one zero eigenvalue, corresponding to the scaling direction. Therefore,

PKE
n has coindex q = 1. By Theorem 3.3.1, on G2 there is a 3-parameter family of ancient

solutions to the Ricci flow collapsing, under rescaling, to PKE
n as t → −∞. Similarly on

G2/S
1 there is a 1-parameter family of ancient solutions.

3.4.4. The normal Einstein metric on SU(n)/Tn−1

Let G = SU(n), with n ≥ 3, and Tn−1 ⊂ SU(n) the diagonally embedded maximal torus.

Then for any 1 ≤ k ≤ n − 1 and any subtorus Tn−1−k ⊂ Tn−1 we have a homogeneous

fibration

Tk → SU(n)/Tn−1−k → SU(n)/Tn−1 ,

where Tk is a complement of Tn−1−k in Tn−1. By [31], the normal metric on SU(n)/Tn−1

induced by the biinvariant metric on SU(n) is Einstein with coindex q = n − 1. Hence

by Theorem 3.3.1, there exists a
(k(k+1)

2 + n− 2
)
-parameter family of ancient solutions on

SU(n)/Tn−1−k which collapse, under rescaling, to the normal metric on the base as t → −∞.

3.4.5. The normal Einstein metric on SO(4)/T2 = S2 × S2

Let G = SO(4), T2 ⊂ SO(4) be a maximal torus and consider the Ad(T2)-irreducible de-

composition

so(4) = t2 + n1 + n2.

Then, any G-invariant Riemannian metric Pn on N = SO(4)/T2 takes the form

Pn = λ1 Idn1 ⊕λ2 Idn2
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and its normalized scalar curvature is given by

s̃calN (Pn) = (λ1λ2)
1
2

(
1
λ1

+ 1
λ2

)
.

The normal metric PE
n induced by the biinvariant metric on SO(4) is Einstein and given by

(λ1, λ2) = (1, 1) .

One can compute that the matrix Hess
(
s̃calN

)∣∣
PE
n

has one positive eigenvalue and one zero

eigenvalue, corresponding to the scaling direction. Therefore, PE
n has coindex q = 1. Hence

by Theorem 3.3.1 on SO(4) there is a 3-parameter family of ancient solutions which collapse,

under rescaling, to PE
n as t → −∞. Similarly, if S1p,q ⊂ T2 is a diagonally embedded circle

with rational slope p
q , then on SO(4)/S1p,q ≃ S3×S2 there is a 1-parameter family of ancient

solutions which collapse, under rescaling, to PE
n as t → −∞.
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