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ABSTRACT

TOPICS IN RANDOM CONFORMAL GEOMETRY:

SLE BUBBLE MEASURES, CONFORMAL WELDINGS OF LIOUVILLE QUANTUM

GRAVITY SURFACES, AND APPLICATIONS

Da Wu

Xin Sun

Robin Pemantle

In this dissertation, we showed that the SLEκ(ρ) bubble measure recently constructed by

Zhan arises naturally from the conformal welding of two Liouville quantum gravity (LQG)

disks. The proof of the main results relies on (1) a “quantum version” of the limiting con-

struction of the SLE bubble, (2) the conformal welding between quantum triangles and

quantum disks due to Ang, Sun and Yu, and (3) the uniform embedding techniques of Ang,

Holden and Sun. As a by-product of our proof, we obtained a decomposition formula of the

SLEκ(ρ) bubble measure. Furthermore, we provided two applications of our conformal weld-

ing results. First, we computed the moments of the conformal radius of the SLEκ(ρ) bubble

on H conditioning on surrounding i. The second application concerns the bulk-boundary

correlation function in the Liouville Conformal Field Theory (LCFT). Within probabilis-

tic frameworks, we derived a formula linking the bulk-boundary correlation function in the

LCFT to the joint law of left & right quantum boundary lengths and the quantum area of

the two-pointed quantum disk. This relation will be used by Ang, Remy, Sun and Zhu in a

concurrent work to verify the formula of two-pointed bulk-boundary correlation function in

physics predicted by Hosomichi (2001).
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CHAPTER 1

INTRODUCTION

The Schramm-Loewner evolution (SLE) and Liouville quantum gravity (LQG) are central

objects in Random Conformal Geometry and it was shown in [She10] and [DMS20] that SLE

curves arise naturally as the interfaces of LQG surfaces under conformal welding. Conformal

welding results in [She10, DMS20] mainly focus on the infinite volume LQG surfaces.

Recently, Ang, Holden and Sun [AHS20] showed that conformal weldings of finite-volume

quantum surfaces called two-pointed quantum disks can give rise to canonical variants of

SLE curves with two marked points. Later, it was shown by Ang, Holden and Sun [AHS22]

that another canonical variant of SLE called the SLEκ Loop is the natural welding interface

of two quantum disks. The resulting LQG surface is called the quantum sphere, which

describes the scaling limit of classical planar map models with spherical topology.

As will be reviewed in Section 3.3, the rooted SLEκ(ρ) bubble measure on H is an important

one parameter family of random Jordan curves constructed by Zhan [Zha22] for all κ > 0

and ρ > −2. When κ > 4 and ρ ∈ (−2, κ2 −4], the law of the bubble is a probability measure

on the space of rooted loops that satisfies conformal invariance property ([Zha22, Theorem

3.10]). When ρ > (−2) ∨ (κ2 − 4), the law of the bubble is a σ-finite infinite measure and

satisfies conformal covariance property ([Zha22, Theorem 3.16]). In both cases, an instance

η of SLEκ(ρ) bubble is characterized by the following Domain Markov Property (DMP):

suppose τ is a positive stopping time for η, then conditioning on the part of η before τ ,

i.e., η[0, τ ], and the event that η is not completed at τ , the rest of η is a chordal SLEκ(ρ)

process on H\η[0, τ ] ([Zha22, Theorem 3.16]). Moreover, it was shown that SLEκ(ρ) bubble

measures can be viewed as the weak limit of chordal SLEκ(ρ) on H from 0 to ε as ε → 0+

(with force point at 0−) after suitable rescaling ([Zha22, Theorem 3.20]).

On the other hand, it was shown in [ARS22, Section 4] that a particular SLEκ(ρ) bubble

curve can be obtained from conformally welding two Liouville quantum gravity surfaces of
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the disk topology. This was used to derive the Fateev-Zamolodchikov-Zamolodchikov (FZZ)

formula in Liouville theory, which serves as a crucial input to the proof of the imaginary

DOZZ formula for conformal loop ensemble (CLE) on the Riemann sphere [AS21]. This

paper generalizes the conformal welding result in [ARS22] to all ρ > −2; see Remark 1.1.2

for the precise relation between our result and the one in [ARS22].

1.1. Statements of the main results

1.1.1. SLE bubble measures via conformal welding of quantum disks

Let BubbleH(p) be the space of rooted simple loops on H with root p ∈ R. Precisely,

an oriented simple closed loop η is in BubbleH(p) if and only if p ∈ η and (η\{p}) ⊆

H. Throughout this thesis, for an instance η ∈ BubbleH(p), let Dη(p) be the connected

component of H\η which is encircled by η and let Dη(∞) be the domain H\(η ∪ Dη(p))

containing ∞. The point p corresponds to two pseudo boundary marked points p− and

p+ on Dη(∞). Let SLEbubble
κ,0 (ρ) denote the rooted SLEκ(ρ) bubble measure with root 0

constructed in [Zha22] (see Definition 3.3.7) and note that this is a σ-finite infinite measure

on BubbleH(0).

For each γ ∈ (0, 2), there is a family of Liouville quantum gravity surfaces with disk topology

called quantum disks. There is also a weight parameter W > 0 associated with the family of

quantum disks. Let Mdisk
0,2 (W ) denote the two-pointed, weight-W quantum disk, i.e., both

marked points are on the boundary, each with weight W ; see Definition 2.3.2 and 2.3.4 for

two regimes in terms of W . When W = 2, the two marked points on Mdisk
0,2 (2) are quantum

typical w.r.t. the quantum boundary length measure ([AHS20, Proposition A.8]) and we

denote the Mdisk
0,2 (2) by QD0,2. Let QD0,1 and QD1,1 denote the typical quantum disks with

one boundary marked point and with one bulk & one boundary marked point respectively;

see Definition 2.3.5 for the class of typical quantum disks and its variants.

Let QD0,1(ℓ) and QD1,1(ℓ) be the disintegration of QD0,1 and QD1,1 over its quantum

boundary length respectively, i.e., QD0,1 =
∫∞
0 QD0,1(ℓ)dℓ and QD1,1 =

∫∞
0 QD1,1(ℓ)dℓ,

and both QD0,1(ℓ) and QD1,1(ℓ) should be understood as QD0,1 and QD1,1 restricted to

2



having total boundary length ℓ respectively. Similarly, let Mdisk
0,2 (W ; ·, ℓ) be the disintegra-

tion of Mdisk
0,2 (W ) over its right boundary, i.e., Mdisk

0,2 (W ) =
∫∞
0 Mdisk

0,2 (W ; ·, ℓ)dℓ, and the

Mdisk
0,2 (W ; ·, ℓ) again represents the Mdisk

0,2 (W ) restricted to having the right boundary length

ℓ. Let
∫∞
0 Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ be the curve-decorated quantum surface obtained by

conformally welding the right boundary of Mdisk
0,2 (W ) and total boundary of QD0,1. Simi-

larly,
∫∞
0 Mdisk

0,2 (W ; ·, ℓ)×QD1,1(ℓ)dℓ is the quantum surface obtained by welding the right

boundary of Mdisk
0,2 (W ) and the total boundary of QD1,1.

In theoretical physics, the Liouville quantum gravity originated in A. Polyakov’s seminal

work [Pol81], where he proposed a theory of summation over the space of Riemannian

metrics on fixed two dimensional surface. The fundamental building block of his framework

is the Liouville Conformal Field Theory (LCFT), which describes the law of the conformal

factor of the metric tensor in a surface of fixed complex structure. The LCFT was made

rigorous in probability theory in various different topologies; see [DKRV16] and [HRV18]

for the cases of Riemann sphere and simply connected domains with boundary respectively,

and [DRV15, Rem17, GRV19] for the cases of other topologies.

To be precise, let PH be the probability measure corresponding to the law of the free-

boundary Gaussian free field (GFF) on H normalized to having average zero on the unit

circle in upper half plane unit circle ∂D∩H. The infinite measure LFH(dϕ) is defined by first

sampling (h, c) according to PH ×
[
e−Qcdc

]
and then letting ϕ(z) = h(z)− 2Q log |z|+ + c,

where Q = 2
γ +

γ
2 and |z|+ = max{|z|, 1}. We can further define the Liouville field with bulk

or/and boundary insertion(s), e.g., LF(β,p)
H and LF

(α,z),(β,p)
H , where p ∈ R and z ∈ H. To

make sense of LF(β,p)
H , where p ∈ ∂H, let LF

(β,p)
H := limε→0 ε

β2/4e
β
2
ϕε(p)LFH(dϕ), ϕε being a

suitable regularization at scale ε of ϕ. In terms of LF(α,z),(β,p)
H with z ∈ H and p ∈ ∂H, we

use the similar limiting procedure. Let LF
(β,p),(α,z)
H := limε→0 ε

α2/2eαϕε(z)LF
(β,p)
H (dϕ), ϕε(z)

being some suitable renormalization at scale ε. By Cameron-Martin shift (a.k.a. Girsanov’s

theorem), the LF
(β,p)
H represents a sample from LFH plus a β-log singularity at boundary

marked point p locally. Similarly, LF(α,z),(β,p)
H should be viewed as LFH plus one boundary

3



β-log singularity at p and one bulk α-log singularity at z.

For q ∈ H and p ∈ ∂H, let BubbleH(p, q) be the space of rooted simple loops on H rooted at p

and surrounding q. Precisely, an oriented simple closed loop η is in BubbleH(p, q) if and only

if p ∈ η, (η\{p}) ⊆ H and q ∈ Dη(p). Let SLEbubble
κ,0 (ρ)[dη|i ∈ Dη(0)] denote the conditional

law of SLEbubble
κ,0 (ρ) on surrounding i and this is a probability measure on BubbleH(0, i).

2

W

W

0

i

Dη(0)

η

Dη(∞)

W W

2
φ

=

Figure 1.1: Illustration of Theorem 1.1.1 when W ≥ γ2

2 : Suppose (ϕ, η) is sampled from
C · LF(γ,i),(β2W+2,0)

H (dϕ) × SLEbubble
κ,0 (ρ)[dη|i ∈ Dη(0)] as shown on the left above, then the

law of (Dη(0), ϕ, i, 0) and (Dη(∞), ϕ, 0−, 0+) viewed as a pair of marked quantum surfaces is
equal to

∫∞
0 Mdisk

0,2 (W ; ·, ℓ)×QD1,1(ℓ)dℓ, i.e., the quantum surface obtained by welding the
total boundary of a sample from QD1,1 with the right boundary of a sample from Mdisk

0,2 (W ).

Theorem 1.1.1. Fix γ ∈ (0, 2). For W > 0, let ρ = W − 2 and β2W+2 = γ − 2W
γ . There

exists some constant C ∈ (0,∞) such that suppose (ϕ, η) is sampled from

C · LF(γ,i),(β2W+2,0)
H (dϕ)× SLEbubble

κ,0 (ρ)[dη|i ∈ Dη(0)], (1.1)

then the law of (Dη(0), ϕ, i, 0) and (Dη(∞), ϕ, 0−, 0+) viewed as a pair of marked quantum

surfaces is equal to ∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD1,1(ℓ)dℓ. (1.2)

Remark 1.1.2. In [ARS22], the authors considered the same type of conformal welding with

W = γ2

2 − 2 ([ARS22, Theorem 4.1]). The particular conformal welding result was used to

obtained the so-called FZZ formula proposed in [FZZ00]. However in [ARS22, Theorem 4.1],
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the law of the welding interface was not explicitly specified. Here in the above Theorem

1.1.1, we generalized the [ARS22, Theorem 4.1] to all W > 0, and furthermore identified

the law of the welding interface to be the SLEκ(W − 2) bubble.

The proof of Theorem 1.1.1 is separated into two parts. In Section 4.1, we show that

the law of welding interface of curve-decorated quantum surface (1.2) is the SLEbubble
κ,0 (ρ)

conditioning on surrounding i and it is independent of the underlying random field. To

identify the law of the welding interface, we essentially use the “quantum version” of the

limiting construction of the SLEκ(ρ) bubble; see Corollary 3.3.8 for the statement on the

Euclidean case. More precisely, we first consider the conformal welding of Mdisk
0,2 (W ) and

QD1,2, i.e., the typical quantum disk with two boundary and one bulk marked points, whose

welding interface is the chordal SLEκ(ρ) conditioning on passing to the left of some fixed

point in H (Lemma 4.1.5). Then conditioning on the quantum boundary length of QD1,2

between two boundary marked points shrinks to zero, we can construct a coupling with

(1.2). Under such coupling, these two welding interfaces will match with high probability

(Lemma 4.1.6). The independence of curve with the underlying random field follows from the

coupling argument and Corollary 3.3.8 on the deterministic convergence of chordal SLEκ(ρ).

The proof of the law of the underlying random field after conformal welding of two quantum

disks, i.e., the quantum surface (1.2), is done in two steps. In Section 4.2, we first consider

(1.2) when 0 < W < γ2

2 , i.e., when the two-pointed quantum disk is thin. By Lemma 4.2.12,

the thin quantum disk of weight W with one additional typical boundary marked point

can be viewed as the concatenation of three independent disks: two thin disks of weight W

and one thick disk of weight γ2 −W with one typical boundary marked point. Therefore,

we can first sample one typical boundary marked point on Mdisk
0,2 (W ) and then sample

two typical boundary marked points on QD1,1(γ, α), i.e., the quantum disk with one generic

boundary insertion (Definition 4.2.9). The field law after conformally welding Mdisk
2,• (W ) and

QD1,3(γ, α) can be derived from conformal welding results for quantum triangles in [ASY22].

After de-weighting all the additional marked points, we solve the case when 0 < W < γ2

2 .
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To extend to the full range W > 0, we inductively weld thin disks outside QD1,1(γ, α). By

Theorem 3.2.2, a thick disk can be obtained by welding multiple thin disks. This concludes

the outline of the proof of Theorem 1.1.1.

Next, we use the techniques of uniform embedding of quantum surfaces from [AHS21] to

remove the bulk insertion in Theorem 1.1.1 so that the welding interface is the SLEκ(ρ)

bubble without conditioning. In order to introduce Theorem 1.1.3, we quickly recall the

setups of the uniform embedding of upper half plane H. Let conf(H) be the group of

conformal automorphisms of H where the group multiplication · is the function composition

f · g = f ◦ g. Let mH be a Haar measure on conf(H), which is both left and right invariant.

Suppose f is sampled from mH and ϕ ∈ C∞
0 (H)′, i.e., ϕ is a generalized function, then we

call the random function

f •γ ϕ = ϕ ◦ f−1 +Q| log(f−1)′| (1.3)

the uniform embedding of (H, ϕ) via mH. By invariance property of Haar measure, the law

of f •γ ϕ only depends on (H, ϕ) as quantum surface. We write

mH ⋉
(∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ

)
(1.4)

as the law of (f •γ h, f(η), f(r)), where (H, h, η, r) is an embedding of a sample from curve-

decorated quantum surface
∫∞
0 Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ, and f is sampled independently

from mH. Notice that here the mH does not fix our boundary marked point r, which initially

is the root of η.

The equation (1.3) also provides a natural equivalence relation ∼γ over curve-decorated

quantum surfaces; two curve-decorated quantum surfaces (D1, ϕ1, η1, ω1, . . . , ωn) with ωi ∈

D1∪∂D1 and (D2, ϕ2, η2, z1 . . . , zn) with zi ∈ D2∪∂D2 are equivalent as quantum surfaces,

denoted by (D1, ϕ1, η1, ω1, . . . , ωn) ∼γ (D2, ϕ2, η2, z1 . . . , zn), if there is a conformal map

ψ : D1 → D2 such that ϕ2 = ψ •γ ϕ1, η2 = ψ(η1), and ψ(ωi) = zi, 1 ≤ i ≤ n.

In addition, we also consider the case when the marked points are fixed under the ac-
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tion of Haar measure. For fixed p ∈ ∂H, let conf(H, p) be the subgroup of conf(H) fix-

ing p and let mH,p be a Haar measure on conf(H, p). The curve-decorated quantum sur-

face
∫∞
0 Mdisk

0,2 (W ; ·, ℓ) × QD0,1(ℓ)dℓ can be identified as a measure on the product space

(C∞
0 (H)′/conf(H, p))× BubbleH(p). Therefore, the measure

mH,p ⋉
(∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ

)
(1.5)

can be defined in the exact same way as mH ⋉
(∫∞

0 Mdisk
0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ

)
.

For any fixed p ∈ H, let SLEbubble
κ,p (ρ) denote the SLEκ(ρ) bubble measure rooted at p ∈ R.

It is easily defined as the image of SLEbubble
κ,0 (ρ) under the shifting map fp : z 7→ z + p.

Dη(∞)
Dη(p)

η

dp

Figure 1.2: Illustration of the welding equation (1.6) in Theorem 1.1.3: first sample a
root point p according to Lebesgue measure dp on R, then sample (ϕ, η) according to the
product measure LF

(β2W+2,p)
H (dϕ) × SLEbubble

κ,p (W − 2)(dη). The resulting quantum surface
(H, ϕ, η, p)/ ∼γ has the law of C

∫∞
0 Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ after uniform embedding.

Theorem 1.1.3. Fix γ ∈ (0, 2). For W > 0, let ρ = W − 2 and β2W+2 = γ − 2W
γ . There

exists some constant C ∈ (0,∞) such that

mH⋉
(∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ

)
= C ·LF(β2W+2,p)

H (dϕ)×SLEbubble
κ,p (ρ)(dη)dp, (1.6)

where mH is a Haar measure on conf(H), i.e., the group of conformal automorphisms of H.
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Furthermore, there exists some constant C ∈ (0,∞) such that

mH,0⋉
(∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ

)
= C ·LF(β2W+2,0)

H (dϕ)×SLEbubble
κ,0 (ρ)(dη), (1.7)

where mH,0 is a Haar measure on conf(H, 0), i.e., the group of conformal automorphisms of

H fixing 0.

The rigorous proof of Theorem 1.1.3 is presented in Section 4.3. The equation (1.7) should be

viewed as the disintegration of equation (1.6) over its boundary root point. Unlike the case of

Theorem 1.1.1, where there are two marked points:one in the bulk and one on the boundary,

there is only one marked point in curve-decorated quantum surface
∫∞
0 Mdisk

0,2 (W ; ·, ℓ) ×

QD0,1(ℓ)dℓ. Therefore, we do not have enough marked points to fix a conformal structure

of H. In this case, the LCFT describes the law of quantum surface
∫∞
0 Mdisk

0,2 (W ; ·, ℓ) ×

QD0,1(ℓ)dℓ after uniform embedding, whereas in Theorem 1.1.1, the LCFT describes the

law of the quantum surface (1.2) under a fixed embedding.

Another way of stating Theorem 1.1.3 without using uniform embedding is to fix a partic-

ular embedding on the right hand side of equations (1.6) and (1.7). For instance, we can

first sample (ϕ, η) from LF
(β2W+2,0)
H (dϕ)× SLEbubble

κ,0 (ρ)(dη) and then fix the embedding by

requiring νϕ(0, 1) = νϕ(1,∞) = νϕ(∞, 0), i.e., the quantum boundary lengths between 0, 1

and ∞ are all equal. By doing this, the law of (Dη(0), ϕ, 0) and (Dη(∞), ϕ, 0−, 0+) viewed

as a pair of marked quantum surfaces is equal to
∫∞
0 Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ up to some

multiplicative constant.

As a by-product of the uniform embedding, we also obtained the following decomposition

formula (Lemma 4.3.5 and Corollary 4.3.6) on the rooted SLE bubble measure SLEbubble
κ,p (ρ):

SLEbubble
κ,p (ρ)(dη)

= C · 1

|Dη(p)|

∫
H
|q − p|W− 2W (W+2)

γ2 (ℑq)
W (W+2)

γ2
−W

2 SLEbubble
κ,p (ρ)[dη|q ∈ Dη(p)]d

2q,
(1.8)

where C ∈ (0,∞), |Dη(p)| is the euclidean area of Dη(p), κ = γ2, and ρ =W − 2. Equation
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(1.8) also tells us that

SLEbubble
κ,p (ρ)[q ∈ Dη(p)] ∝ |q − p|W− 2W (W+2)

κ (ℑq)−
W
2
+
W (W+2)

κ . (1.9)

In other words, for fixed p ∈ R, the “probability” that SLEbubble
κ,p (ρ) surrounds q is pro-

portional to |q − p|W− 2W (W+2)
κ (ℑq)−

W
2
+
W (W+2)

κ . As we will see in Section 4.3.1, it is the

Haar measure together with “uniform symmetries” of the underlying Liouville field, or more

concretely, the conformal covariance property of LCFT, that give us equation (1.9). The

equation (1.8) provides a concrete relationship between the ordinary infinite bubble measure

SLEbubble
κ,p (ρ) and the probability measure SLEbubble

κ,p (ρ)[dη|i ∈ Dη(p)] after conditioning and

it builds the bridge between our two main theorems: Theorem 1.1.1 and Theorem 1.1.3.

Remark 1.1.4 (Scaling limits of random planar maps decorated by self-avoiding bubbles).

Motivated by [AHS22, Theorem 1.2], we conjecture that the scaling limit of the quadran-

gulated disk decorated by the self-avoiding discrete bubble converges in law to one-pointed

quantum disk decorated by SLE bubble, i.e., the
∫∞
0 Mdisk

0,2 (2; ·, ℓ) × QD0,1(ℓ)dℓ in Theo-

rem 1.1.3, for κ = γ2 = 8
3 in the so-called Gromov-Hausdorff-Prokhorov-Uniform topology

(GHPU topology). For the precise definition of GHPU topology, see [AHS22, Subsection

2.6]. The precise conjectures regarding the scaling limit of bubble-decorated quadrangulated

disks will be stated in Subsection 6.3.

1.1.2. SLE bubble zippers with a generic insertion and applications

Next, we consider the generalization of Theorem 1.1.1 to the case when the bulk insertion

of QD1,1 has generic weight.

Moments of the conformal radius of SLEκ(ρ) bubbles

To generalize Theorem 1.1.1, we need to define the twisted SLEκ(ρ) bubble measure on

BubbleH(0, i) corresponding to weight-α bulk insertion of the quantum disk. Given η ∈

BubbleH(0, i), let ψη : H → Dη(i) be the unique conformal map fixing i and 0. Let m

denote the law of SLEbubble
κ,0 (ρ)[dη|i ∈ Dη(0)] as in Theorem 1.1.1 and ∆α = α

2 (Q − α
2 ) is
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known as the scaling dimension. Define mα to be a non-probability measure on BubbleH(0, i)

such that
dmα

dm
(η) = |ψ′

η(i)|2∆α−2. (1.10)

Fix p ∈ R, q ∈ H and let LF
(β,p),(α,q)
H (ℓ) be the disintegration of LF

(β,p),(α,q)
H over its to-

tal boundary length, i.e., LF
(β,p),(α,q)
H =

∫∞
0 LF

(β,p),(α,q)
H (ℓ)dℓ. Like before, the measure

LF
(β,p),(α,q)
H (ℓ) represents the Liouville field LF

(β,p),(α,q)
H restricted to having total bound-

ary length ℓ. The quantum surface QD1,1(α, γ) is the simple generalization of QD1,1 and

has the LCFT description of LF
(α,i),(γ,0)
H under the particular embedding (H, ϕ, 0, i); see

Definition 4.2.7. Again, QD1,1(α, γ; ℓ) is the disintegration of QD1,1(α, γ) over its total

boundary length, i.e., QD1,1(α, γ) =
∫∞
0 QD1,1(α, γ; ℓ)dℓ. We generalize Theorem 1.1.1 to

Theorem 1.1.5 in order to compute the moments of conformal radius of the SLEκ(ρ) bubble

conditioning on surrounding i.

Theorem 1.1.5. For α ∈ R and W > 0, there exists some constant CW ∈ (0,∞) such that

the following holds: suppose (ϕ, η) is sampled from LF
(β2W+2,0),(α,i)
H (1)×mα, then the law of

(Dη(0), ϕ, i, 0) and (Dη(∞), ϕ, 0−, 0+) viewed as a pair of marked quantum surfaces is given

by CW ·
∫∞
0 QD1,1(α, γ; ℓ)×Mdisk

0,2 (W ; 1, ℓ)dℓ. In other words,

LF
(β2W+2,0),(α,i)
H (1)×mα = CW ·

∫ ∞

0
QD1,1(α, γ; ℓ)×Mdisk

0,2 (W ; 1, ℓ)dℓ. (1.11)

For technical convenience, we restrict the total boundary length of the curve-decorated

quantum surface (1.11) to 1. For simply connected domain Dη(0), ψ−1
η is the conformal

map from Dη(0) to H that fixes 0 and 1. Let g(z) = i z−iz+i be the uniformizing map from H

to D and let φη : Dη(0) 7→ D be such that φη := g ◦ ψ−1
η . Notice that φη maps i to 0 and 0

to 1 respectively. Under our setups, the conformal radius of Dη(0) viewed from i, denoted

by Rad(Dη(0), i), is defined as 1
|φ′
η(i)|

, i.e.,

Rad(Dη(0), i) :=
1

|φ′
η(i)|

. (1.12)
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Notice that our definition of conformal radius (1.12) differs slightly with the classical liter-

ature of complex analysis, where the conformal map is chosen so that it maps i to 0 and its

derivative at i is in R+. By simple computation,

φ′
η(i) =

[
g ◦ ψ−1

η

]′
(i) = g′(ψ−1

η (i)) · (ψ−1
η )′(i) = g′(i) · 1

ψ′
η(i)

. (1.13)

Therefore,

Rad(Dη(0), i) =
1

|φ′
η(i)|

=
|ψ′
η(i)|

|g′(i)|
= 2|ψ′

η(i)|. (1.14)

When η is sampled from SLEbubble
κ,0 (ρ)[dη|i ∈ Dη(0)], we are interested in the moments of

conformal radius Rad(Dη(0), i). Specifically, we want to compute E
[
Rad(Dη(0), i)

2∆α−2
]
,

which is the same as 22∆α−2 · E
[
|ψ′
η(i)|2∆α−2

]
. To clear up the constant in our conformal

welding equation (1.11), we further define the renormalized moments of conformal radius

CR(α,W ) to be

CR(α,W ) :=
Rad(Dη(0), i)

22∆α−2 · CW
=

E
[
|ψ′
η(i)|2∆α−2

]
CW

. (1.15)

Throughout this thesis, with a slight abuse of notation, when we talk about “the conformal

radius of SLEbubble
κ,0 (ρ)[dη|i ∈ Dη(0)]”, we really mean the conformal radius of the random

simply connected domain Dη(0) viewed from i when η is sampled from probability measure

SLEbubble
κ,0 (ρ)[dη|i ∈ Dη(0)].

Proposition 1.1.6 (Moments of conformal radius of SLEκ bubbles). Fix κ ∈ (0, 4), W =

2, ρ = 0 and γ
2 < α < Q + 2

γ . Suppose η is sampled from SLEbubble
κ,0 [dη|i ∈ Dη(0)], then we

have

E
[
|ψ′
η(i)|2∆α−2

]
=

Γ(2αγ )Γ( 8κ − 2α
γ + 1)

Γ( 8κ − 1)
. (1.16)

Consequently,

E
[
Rad(Dη(0), i)

2∆α−2
]
= 22∆α−2 ·

Γ(2αγ )Γ( 8κ − 2α
γ + 1)

Γ( 8κ − 1)
. (1.17)

Moments of the conformal radius of the general SLEbubble
κ,0 (ρ)[dη|i ∈ Dη(0)] bubbles are
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computed in Proposition 5.2.12. The key ingradients of the computation are the function

G(α, β) and the Liouville reflection coefficient R(β, µ1, µ2) in [RZ22, AHS21], which describe

the quantum boundary length laws of the two-pointed disk and the disk with one bulk and

one boundary marked points, respectively.

The bulk-boundary correlation function in LCFT

As an another important application of Theorem 1.1.5, we derived a formula for the bulk-

boundary correlation function in the LCFT within rigorous probabilistic frameworks. In

theoretical physics, the LCFT is defined by the formal path integral. The most basic ob-

servable of Liouville theory is the correlation function with N bulk marked points zi ∈ H

with weights αi ∈ R and M boundary marked points sj ∈ R with weights βj . Precisely, for

bulk insertions (zi)1≤i≤N with weights (αi)1≤i≤N and boundary insertions (sj)1≤j≤M with

weights (βj)1≤j≤M , the correlation function in the LCFT at these points is defined using

the following formal path integral:

〈
N∏
i=1

eαiϕ(zi)
M∏
j=1

e
βj
2
ϕ(sj)

〉
µ,µ∂

=

∫
X:H→R

DX

N∏
i=1

eαiX(zi)
M∏
j=1

e
βj
2
X(sj)e−S

L
µ,µ∂

(X), (1.18)

whereDX is the formal uniform measure on infinite dimensional function space and SLµ,µ∂ (X)

is the Liouville action functional given by

SLµ,µ∂ (X) :=
1

4π

∫
H

(
|∇gX|2 +QRgX + 4πµeγX

)
dλg +

1

2π

∫
R

(
QKgX + 2πµ∂e

γ
2
X
)
dλ∂g.

(1.19)

For background Riemannian metric g on H, ∇g, Rg,Kg, dλg, dλ∂g stand for the gradient,

Ricci curvature, Geodesic curvature, volume form and line segment respectively. The sub-

scripts µ, µ∂ emphasize the fact that both µ and µ∂ are positive.

As a conformal field theory (CFT), the bulk correlation function
〈
eαϕ(z)

〉
µ,µ∂

in the LCFT

takes the following form:

〈
eαϕ(z)

〉
µ,µ∂

=
U(α)

|ℑz|2∆α
for z ∈ H, (1.20)
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where U(α) is known as the structure constant and ∆α = α
2 (Q − α

2 ) is called the scaling

dimension as mentioned before. In [FZZ00], the following formula for U(α) was proposed:

UFZZ(α) :=
4

γ
2−

α2

2

 πµ

2γα

Γ
(
γ2

4

)
Γ(1− γ2

4 )


Q−α
γ

Γ

(
γα

2
− γ2

4

)
Γ

(
2α

γ
− 4

γ2
− 1

)
cos ((α−Q)πs) ,

(1.21)

where the parameter s is defined through the ratio of cosmological constants µ∂√
µ :

cos
πγs

2
=

µ∂√
µ

√
sin

πγ2

4
, with


s ∈ [0, 1γ ), when µ2∂

µ sin πγ2

4 ≤ 1,

s ∈ i[0,+∞), when µ2∂
µ sin πγ2

4 ≥ 1.

In [ARS22], the (1.21) was proved within rigorous probability theory frameworks. From now

on, for measure M on the space of distributions, let M [f ] :=
∫
f(ϕ)M(dϕ). For γ ∈ (0, 2)

and µ, µ∂ > 0, let

〈
eαϕ(z)

〉
µ,µ∂

:= LF
(α,z)
H

[
e−µµϕ(H)−µ∂νϕ(R) − 1

]
, for z ∈ H, (1.22)

where

µϕ(H) = lim
ε→0

ε
γ2

2

∫
H
eγϕε(z)d2z and νϕ(R) = lim

ε→0
ε
γ2

4

∫
R
e
γ
2
ϕε(z)dz.

Since |ℑz|2∆α
〈
eαϕ(z)

〉
µ,µ∂

does not depend on z ∈ H, define U(α) :=
〈
eαϕ(i)

〉
µ,µ∂

.

Theorem 1.1.7 ([ARS22, Theorem 1.1]). For γ ∈ (0, 2), α ∈ ( 2γ , Q) and µ, µ∂ > 0, we have

U(α) = UFZZ(α).

The above theorem is the first step towards rigorously solving the boundary LCFT. In this

paper, we consider the bulk-boundary correlation in the LCFT. For z ∈ H and s ∈ R, by the

conformal invariance property, the bulk-boundary correlation function in the LCFT takes

the following form: 〈
eαϕ(z)e

β
2
ϕ(s)
〉
µ,µ∂

=
Gµ,µ∂ (α, β)

|ℑz|2∆α−∆β |z − s|2∆β
. (1.23)
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Within probabilistic frameworks, define

〈
eαϕ(z)e

β
2
ϕ(s)
〉
µ,µ∂

:= LF
(α,z),(β,s)
H

[
e−µµϕ(H)−µ∂νϕ(R)

]
(1.24)

and

Gµ,µ∂ (α, β) := LF
(α,i),(β,0)
H

[
e−µµϕ(H)−µ∂νϕ(R)

]
(1.25)

since |ℑz|2∆α−∆β |z − s|2∆β
〈
eαϕ(z)e

β
2
ϕ(s)
〉
µ,µ∂

does not depend on z and s. The function

Gµ,µ∂ (α, β) is also called the structure constant in boundary Liouville theory.

So far in the literature, all the exact formulas in LCFT except FZZ (1.21) have been derived

by BPZ equations and the corresponding operator product expansion [BPZ84], including

[KRV17] for the DOZZ formula and [Rem20, RZ20, RZ22] for different cases of boundary

Liouville correlation functions with µ = 0 and µ∂ > 0; see also discussions in [ARS22,

Section 1.1]. In this thesis, from Theorem 1.1.5, we derive a formula linking the bulk-

boundary correlation function to the joint law of left & right quantum boundary lengths

and quantum area of Mdisk
0,2 (W ) when 0 < W < γ2

2 .

Proposition 1.1.8 (Bulk-boundary correlation function in the LCFT). Fix γ ∈ (0, 2) and

µ, µ∂ > 0. When β2W+2 and α satisfy 0 < β2W+2 < γ < Q and Q − β2W+2

2 < α < Q, we

have

Gµ,µ∂ (α, β2W+2) = CR(α,W )−1 2

γ
2−

α2

2 U0(α)
2

Γ( 2γ (Q− α))

(
1

2

√
µ

sin(πγ2/4)

) 2
γ
(Q−α)

×

Mdisk
0,2 (W )

[
e−µ∂RW−µAW ·K 2

γ
(Q−α)

(
LW

√
µ

sin(πγ2/4)

)]
,

(1.26)

where β2W+2 = γ − 2W
γ , LW , RW and AW denote the left, right quantum boundary length

and the total quantum area of Mdisk
0,2 (W ) respectively. The CR(α,W ) is the renormalized

moments of the conformal radius defined in (1.15) and takes an explicit formula (5.33). The
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U0(α) is defined in Theorem 5.2.17 and takes the following explicit formula:

U0(α) =

(
2−

γα
2 2π

Γ(1− γ2

4 )

) 2
γ
(Q−α)

Γ

(
γα

2
− γ2

4

)
for all α >

γ

2
. (1.27)

The Kν(x) is the modified Bessel function of second kind. Precisely,

Kν(x) :=

∫ ∞

0
e−x cosh t cosh(νt)dt for x > 0 and ν ∈ R.

The condition 0 < β2W+2 < γ in Proposition 1.1.8 is equivalent to 0 < W < γ2

2 , i.e., the

case when the two-pointed quantum disk is thin. By [HRV18, (3.5),(3.6),(3.7)], the Seiberg

bounds correspond to

α < Q, β2W+2 < Q, and α+
1

2
β2W+2 > Q, (1.28)

which hold if and only if

0 < Gµ,µ∂ (α, β2W+2) = LF
(α,i),(β2W+2,0)
H

[
e−µµϕ(H)−µ∂νϕ(R)

]
<∞. (1.29)

Notice that the range of α and β2W+2 in Proposition 1.1.8 are strictly contained in (1.28),

and therefore the Gµ,µ∂ (α, β2W+2) in (1.26) is nontrivial.

Remark 1.1.9. An explicit formula for the quantity

Mdisk
0,2 (W )

[
e−µ∂RW−µAW ·K 2

γ
(Q−α)

(
LW

√
µ

sin(πγ2/4)

)]
(1.30)

in (1.26) is derived in the concurrent work of [ARSZ23, Lemma 4.4]. Combined with Proposi-

tion 1.1.8, this verifies the formula for Gµ,µ∂ (α, β) proposed by Hosomichi [Hos01] in physics;

see [ARSZ23, Theorem 1.2] for more details.

The contents of this thesis are essentially identical to my paper [Wu23], with only a few

cosmetic changes.
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1.2. Organization of the thesis

The rest of the thesis is organized as follows:

• In Chapter 2, we review all the necessary backgrounds on Liouville quantum gravities

and the Liouville Conformal Field Theory.

• In Chapter 3, we review key concepts on Schramm-Loewner evolutions, conformal

weldings of quantum surfaces, and constructions of SLEκ(ρ) bubbles.

• In Chapter 4, we prove the main results of this thesis, including Theorem 1.1.1 and

Theorem 1.1.3.

• In Chapter 5, we prove Theorem 1.1.5, which generalizes Theorem 1.1.1 to the case

when the quantum bubble zipper has generic bulk insertions. As applications of The-

orem 1.1.5, we compute the conformal radius of SLEκ(ρ) bubbles on H conditioning

on surrounding i and derive an analytic formula linking the bulk-boundary correlation

function in LCFT to the joint law of left & right quantum boundary lengths and the

total quantum area of the two-pointed quantum disk.

• In Chapter 6, we discuss several conjectures that arise naturally from the contexts of

this thesis, including generalized SLEκ bubbles and scaling limits of bubble-decorated

quadrangulation disks.
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CHAPTER 2

LIOUVILLE QUANTUM GRAVITIES AND THE LIOUVILLE

CONFORMAL FIELD THEORY

The purpose of this chapter is to provide readers with all the necessary backgrounds on the

Liouville Conformal Field Theory and Liouville quantum gravities. The discussion will be

self-contained and centered around the main results of this thesis.

2.1. Notations and basic setups

Throughout this thesis, γ ∈ (0, 2) is the LQG coupling constant. Moreover,

Q =
2

γ
+
γ

2
and κ = γ2.

For weight W ∈ R, βW is always a function of W with βW = Q + γ
2 − W

γ = γ + 2−W
γ . We

will work with planar domains in C including the upper half plane H = {z ∈ C : ℑ(z) > 0},

horizontal strip S = R × (0, π) and unit disk D = {z ∈ C : |z| ≤ 1}. For a domain D ⊂ C,

we denote its boundary by ∂D. For instance, ∂H = R = R ∪ {∞}, ∂S = {z ∈ C : ℑ(z) =

0 or 1} ∪ {±∞} and ∂D = {z : |z| = 1}.

Fix a simply connected domain D ⊆ C. Let C∞
0 (D) be the space of test functions equipped

with the topology where a sequence (ϕk) satisfies ϕk → 0 in C∞
0 (D) if and only if there

exists a compact set K ⊆ D such that the support of ϕk is contained in K for every k ∈ N

and ϕk as well as all of its derivatives converges uniformly to 0 as k → ∞.

A distribution on D is a continuous linear functional from C∞
0 (D) to R with the aforemen-

tioned topology. Let C∞
0 (D)′ denote the space of distributions on D.

We will frequently consider non-probability measures and extend the terminology of prob-

ability theory to this setting. More specifically, suppose M is a measure on a measurable

space (Ω,F) with M(Ω) not necessarily 1 and X is a F-measurable function, then we say

(Ω,F) is a sample space and X is a random variable. We call the pushforward MX = X∗M

17



the law of X and we say that X is sampled from MX . We also write

MX [f ] :=

∫
f(x)MX(dx).

Weighting the law of X by f(X) corresponds to working with measure dM̃X with Randon-

Nikodym derivative dM̃X
dMX

= f . For some event E ∈ F with 0 < M [E] <∞, letM [·|E] denote

the probability measure M [E∩·]
M [E] over the measure space (E,FE) with FE = {A∩E : A ∈ F}.

For a finite positive measure M , we denote its total mass by |M | and let M# = |M |−1M

denote the corresponding probability measure.

2.2. The Liouville Conformal Field Theory

2.2.1. Overview

In 1981, Polyakov introduced a path integral theory of summation over Riemannian metrics

in the seminal paper “Quantum geometry of bosonic strings” [Pol81].

We start our discussion by recalling the Feynman path integral formulation of Brownian

motions in Rd. Let Σ be the space of simple continuous paths σ : [0, T ] → Rd with σ(0) = 0,

and the d-dimensional Brownian motion may be regarded as a probability measure P (a.k.a.

Wiener measure) on Σ. For t0 = 0 < t1 < . . . < tk−1 < tk = T and y0 = 0, we have

P (σ(t1) ∈ dy1, σ(t2) ∈ dy2, . . . , σ(tk) ∈ dyk) =
1

Zt1,...,tk
exp

{
−1

2

k∑
i=1

|yi − yi−1|2

ti − ti−1

}
, (2.1)

where

Zt1,...,tk =

k∏
i=1

(2π(ti − ti−1))
d/2 . (2.2)

Notice that if we choose a finer and finer partition 0 = t0 < t1 < . . . < tk−1 < tk = T , then

the energy function

1

2

k∑
i=1

|yi − yi−1|2

ti − ti−1
=

1

2

k∑
i=1

(ti − ti−1)

(
|yi − yi−1|
ti − ti−1

)2

≈ 1

2

∫ T

0
|σ̇(t)|2dt.
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Therefore, we define the Brownian action functional SBM (a.k.a. Dirichlet energy functional)

by

SBM(σ) :=
1

2

∫ T

0
|σ̇(t)|2dt. (2.3)

It is now well-known that the Brownian motion (Bs)s≥0 can be understood via the following

Feynman path integral representation:

E [F ((Bs)0≤s≤T )] =
1

Z

∫
Σ
F (σ)e−SBM(σ)Dσ, (2.4)

where Dσ stands for the formal “uniform” measure on Σ and Z is the renormalization

constant (a.k.a. partition function). The above path integral formulation came up frequently

in the contexts of Large deviation theory in order to obtain the rate function.

Due to the fact the Brownian motion is the scaling limit of simple random walk, it is often

be treated as the canonical random path in Rd. Now that we have the canonical random

path, what about the canonical random surface?

The answer is the Liouville Conformal Field Theory. In Polyakov’s framework [Pol81], the

Liouville Conformal Field Theory (LCFT hereafter) describes the conformal factor of the

metric chosen “uniformly at random” and is a two-dimensional version of a Feynman path

integral with an exponential interaction term. Mathematically, LCFT is an infinite measure

on some infinite-dimensional function space and we call the underlying random field ϕ the

Liouville field.

To be concrete, we consider the Riemann sphere (Ĉ, g) as our underlying Riemannian man-

ifold, where Ĉ = C ∪ {∞} and g(z) = 1
|z|4+

, |z|+ = max{1, |z|}. For z, α ∈ C, let

Vα(z) := eαϕ(z) (2.5)

be the vertex operator associated to ϕ.

The purpose of the LCFT (on Riemann sphere) is to study the vertex operator under some
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“uniform measure” Dφ twisted by e−SL(φ), where SL(·) is the so-called Liouville action

functional. Let us define these terms more carefully. For distinct (zk)1≤k≤N ∈ CN and

(αi)1≤i≤N ∈ CN , let

〈
N∏
k=1

Vαk(zk)

〉
γ,µ

:=

∫
{φ:Ĉ→R}

(
N∏
k=1

eαkϕ(zk)

)
e−SL(φ)Dφ, (2.6)

where “Dφ” is called the Free field measure in Physics literature and it should be understood

as the “Lebesgue or uniform” measure on some infinite-dimensional function space {φ : Ĉ →

R} and SL(·) is the Liouville action functional taking the following form:

SL(φ) :=
1

4π

∫
Ĉ

(
|∇gφ(x)|2 +Q ·Rg(x) · φ(x) + 4πµeγφ(x)

)
g(d2x), (2.7)

where Rg(x) = − 1
g(x)∆ ln g(x) is the Ricci curvature of metric g, γ ∈ (0, 2), Q = 2

γ + γ
2 and

µ > 0 is the so-called the cosmological constant.

Since, in rigorous mathematical sense, the “Lebesgue measure” on infinite-dimensional func-

tion space does not exist, the (2.6) is an illegal definition. How to make it rigorous? We

will represent the functions φ : Ĉ → R in terms of the eigenvector basis w.r.t. the Laplacian

operator −1
g∆ and make sense of the measure “e−SL(φ)Dφ” using the Gaussian free field

(cf. Sheffield’s Proceedings of the ICM contribution for 2022 notes titled “What is a random

surface?” [She22, Page 35]).

We will present the detailed computations regarding the above discussion in Section 2.2.3.

2.2.2. Gaussian Free Fields

Brownian motion can be viewed as a canonical random function from R to R. One general-

ization of Brownian motion is called the Gaussian free field (GFF hereafter), which can be

viewed as a random generalized function from Rd to R. In this thesis, we will only consider

the case when d = 2.
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The zero-boundary GFF

Let D ⊂ C be a proper open domain with harmonically non-trivial boundary (i.e., Brownian

motion starts from a point in D hits ∂D a.s.). If f and g are functions on D whose gradients

are square integrable, then we can write

⟨f, g⟩∇ =
1

2π

∫
D
∇f(z) · ∇g(z)d2z (2.8)

for the Dirichlet inner product between f and g. Let H0(D) be the Hilbert space closure of

the space of compactly supported smooth functions on D w.r.t. (2.8). The zero-boundary

GFF on D is the formal sum ∑
i≥1

αifi, (2.9)

where {fi}i≥1 is an orthonormal basis of H(D) and {αi}i≥1 is an sequence of i.i.d. standard

Gaussian variables. The formal sum (2.9) a.s. does not converge pointwise or in H0(D) but

one can check that for each f ∈ H0(D), the formal inner product ⟨h, f⟩∇ is a mean- zero

Gaussian variable and these random variables satisfy the following covariance structure:

E [⟨h, f⟩∇⟨h, g⟩∇] = ⟨f, g⟩∇ (2.10)

By integration by parts, we can define the ordinary L2 inner products

⟨h, f⟩ := −2π⟨h,∆−1
0 f⟩∇, (2.11)

where ∆−1
0 is the inverse Laplacian with zero boundary conditions, whenever ∆−1

0 f ∈ H0(D).

Then the random variables ⟨h, f⟩ are jointly centered Gaussian with covariances

Cov(⟨h, f⟩, ⟨h, g⟩) = 1

2π

∫
D
f(z)g(w)GD0 (z, w)d

2zd2w, (2.12)

Therefore, we can check that zero-boundary GFF lies in the negative Sobolev space H−ε(D)

for any ε > 0 [She07, Section 2.3] .
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The free-boundary/whole-plane GFF

From now on, assume D ⊆ C, i.e., we allow D = C. Let H(D) be the Hilbert space

completion of {
f ∈ C∞(D) : ⟨f, f⟩∇ <∞,

∫
D
f(z)d2z = 0

}
(2.13)

with respect to (2.8). Note that when
∫
D f(z)d

2z = 0, the inner product (2.8) is positive

definite.

The free-boundary GFF (if D ̸= C) or the whole-plane GFF (if D = C) is again defined by

the formal sum (2.9) but with the fi’s equal to orthonormal basis of H(D) instead of H0(D).

Same as the zero-boundary case, the formal inner products for ⟨h, f⟩∇ for f ∈ H(D) are

well-defined and are jointly centered Gaussian variables with covariance structures given by

E [⟨h, f⟩∇⟨h, g⟩∇] = ⟨f, g⟩∇.

Next, let ∆−1 be the inverse of the Laplacian restricted to the space of functions such that∫
D f(z)d

2z = 0, normalized so that
∫
D∆−1f(z)d2z = 0, with Neumann boundary conditions

when D ̸= C. Again, whenever ∆−1f ∈ H(D), we can define the L2 inner product

⟨h, f⟩ := −2π⟨h,∆−1f⟩∇

These L2 inner products are jointly centered Gaussians with covariances

Cov(⟨h, f⟩, ⟨h, g⟩) = 1

2π

∫
D
f(z)g(w)GD(z, w)d2zd2w, (2.14)

where GD is the Green’s function with Neumann boundary conditions if D ̸= C and GD =

−2π log |z − w| if D = C.

What about the case when ⟨∆−1f,∆−1f⟩∇ <∞ but
∫
D f(z)d

2z ̸= 0? We fix some f0 such

that ⟨∆−1f0,∆
−1f0⟩∇ < ∞ and

∫
D f0(z)d

2z = 1. Let ⟨h, f0⟩ := c for some c ∈ R. For any
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(whether generalized or not) function f , the function

f := f −
(∫

D
f(z)d2z

)
f0 (2.15)

has total integral zero and we let

⟨h, f⟩ := ⟨h, f⟩+ c ·
∫
D
f(z)d2z. (2.16)

Notice that the number c above is arbitrary. Therefore, free-boundary and whole-plane GFF

are only defined modulo a global additive constant. Precisely, we view h as an equivalence

class of distributions where two distributions are equivalent if and only if their difference is

constant.

In the typical case when D = C (resp. D = H), we fix the additive constant by requiring

the circular average of h over ∂D (resp. ∂D∩H) is zero, i.e., we consider the field h− h1(0)

(well-defined random field). Note that h1(0) will be defined as below.

Circular averages of GFF

LetD ⊂ C and suppose h is an instance of GFF (zero-boundary, whole-plane, free-boundary)

on D (with additive constants fixed in the two latter cases). Let z ∈ D and ε > 0 be such

that ∂B(z, ε) ⊂ D. Let ρz,ε be the uniform measure on ∂B(z, ε) and we define

hε(z) := ⟨h, ρz,ε⟩. (2.17)

We should think hε(z) as the random distribution h acting on the uniform measure on

∂B(z, ε) or average of h on the ∂B(z, ε).

2.2.3. The path integral construction of the LCFT on the Riemann sphere Ĉ

The materials presented in this section follow closely from Vargas’s lecture notes on DOZZ

formula [Var17, Lecture 3].
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Let Ĉ = C ∪ {∞} be the Riemann sphere and we consider the metric g(x) = 1
|x|4+

on Ĉ.

Notice that the Ricci curvature Rg of this metric g is a measure given (in generalized function

notation) by

Rg(x)g(x)d
2x = −∆ ln g(x)d2x = 4u(d2x), (2.18)

where u is the uniform measure on the circle of center 0 and radius 1 with normalization

such that
∫
Ĉm(d2x) = 2π. Let H(x) be the GFF with covariance kernel given by (with an

obvious abuse of notation since GFF is a generalized function)

E[H(x)H(y)] = KĈ(x, y) := log
1

|x− y|
+ log |x|+ + log |y|+.

Notice that the GFF H(x) has average 0 with respect to the curvature

∫
Ĉ
H(x)Rg(x)g(x)d

2x = 0. (2.19)

Let

L2(Ĉ, g) :=
{
φ :

∫
Ĉ
|φ(x)|2g(d2x) <∞

}
(2.20)

be the space of square integrable functions from Ĉ to R. The standard Sobolev space H1(Ĉ)

is given by

H1(Ĉ, g) :=
{
φ :

∫
Ĉ
|φ(x)|2g(d2x) +

∫
Ĉ
|∇φ(x)|2d2x <∞

}
,

where ∇ is the standard gradient in C (with respect to the Euclidean metric d2x). Let

(φj)j≥1 be the standard eigenvector basis for the operator −∆g := −1
g∆, i.e.,

− 1

g(x)
∆φj(x) = λjφj(x). (2.21)

We further renormalize them to have L2 norm equal to 1, i.e.,

∫
Ĉ
φj(x)

2g(d2x) = 1.
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Hence, every function φ in L2(Ĉ, g) can be written uniquely in the orthonormal basis ex-

pansion in terms of {1, φ1, φ2, . . . , φj , . . .}. Precisely,

φ = c+
∑
j≥1

cjφj , (2.22)

where

cj =

∫
Ĉ
φ(x)φj(x)g(d

2x)

for all j ≥ 1. It is well-known that the “uniform measure ”Dφ on the infinite-dimensional

function space does not exist mathematically. However, at the very formal level, for any

bounded continuous functional F : L2(Ĉ, g) → R, it is natural to write

∫
L2(Ĉ,g)

F (φ)Dφ =

∫
R

∫
RN∗

F

c+∑
j≥1

cjφj

 dc
∞∏
j=1

dcj , (2.23)

where dc and dcj , j ≥ 1 are standard Lebesgue measure on R. If φ has eigenvector decom-

position (2.22), then
1

4π

∫
Ĉ
|∇gφ(x)|2g(d2x) =

1

4π

∞∑
j=1

c2jλj . (2.24)

Hence, formally we have

∫
L2(Ĉ,g)

F (φ)e−
1
4π

∫
Ĉ |∇gφ(x)|2g(d2x)Dφ =

∫
R

∫
RN∗

F

c+∑
j≥1

cjφj

 dc

 ∞∏
j=1

e−
c2jλj

4π dcj


(2.25)

By simple change of variables uj =
cj
√
λj√

2π
, we have that

∫
R

∫
RN∗

F

c+∑
j≥1

cjφj

 dc

 ∞∏
j=1

e−
c2jλj

4π dcj


= C

∫
R

∫
RN∗

F

c+√
2π
∑
j≥1

uj
φj√
λj

 dc

 ∞∏
j=1

e−
u2j
2
duj√
2π

 ,

(2.26)
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where the constant C is defined formally as C :=
∏∞
j=1

(
2π(λj)

−1/2
)
. In probability theory,

we know that for i.i.d. standard Gaussian (εj)j≥1, the sum
√
2π
∑

j≥1 εj
φj√
λj

converges to

the GFF H in H−1(Ĉ, g), which is the dual space of H1(Ĉ, g).

Therefore, following many steps of formal calculation, we can rigorously define

∫
L2(Ĉ,g)

F (φ)e−
1
4π

∫
Ĉ |∇gφ(x)|2g(d2x)Dφ :=

∫
R
EH [F (H + c)] dc. (2.27)

Here the notation EH emphases the fact that we are taking expectations with respect to the

law of the GFF. By construction,

∫
Ĉ
H(x)Rg(x)g(d

2x) = 0 and
∫
Ĉ
Rg(x)g(d

2x) = 8π, (2.28)

which leads to the following definition

∫
F (φ)e−

1
4π

∫
Ĉ |∇gφ(x)|2g(d2x)− 1

4π

∫
ĈQRg(x)φ(x)g(d

2x)Dφ :=

∫
R
e−2QcE [F (H + c)] dc (2.29)

Let us again emphasize the fact that the Gaussian free field is defined in the sense of

distributions and should be viewed as random generalized functions.

Therefore, we have the following definition of the Liouville field on Riemann sphere Ĉ.

Definition 2.2.1 (Liouville field on Ĉ, [AHS21, Definition 2.6]). Let (H, c) be sampled

from PĈ × [e−2Qcdc] and let ϕ(z) = H(z) − 2Q log |z|+ + c. Let LFĈ denote the law of ϕ

and we call a sample from LFĈ a Liouville field on Ĉ. Here PĈ is the probability law of the

Gaussian free field H.

Here we remark that the above definition is a rigorous way of making sense of the expression

“e−SL(φ)Dφ” when µ = 0. When µ > 0, we simply weight the zero-µ Liouville measure by

e−µA, where A is the quantum area of the LQG surface (will be discussed in later section).
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2.2.4. The LCFT on the upper half plane H

Let g be a smooth metric on H such that the metric completion of (H, g) is a compact

Riemannian manifold. Let H1(H, g) be the standard Sobolev space with norm defined by

|h|H1(H,g) :=

(∫
H
|∇h(z)|2 + |h(z)|2g(d2z)

)1/2

.

Let H−1(H, g) be its dual space, which is defined as the completion of the set of smooth

functions on H with respect to the following norm:

|f |H−1(H,g) := sup
h∈H1(H,g),|h|H1(H,g)≤1

∣∣∣∣∫
H
f(z)h(z)g(z)d2z

∣∣∣∣ .
Here we remark that H−1(H) is a polish space and its topology does not depend on the

choice of g. In this thesis, all the random functions considered are in H−1(H).

Let h be the centered Gaussian process on H with covariance kernel given by

E[h(x)h(y)] = GH(x, y) := log
1

|x− y||x− y|
+ 2 log |x|+ + 2 log |y|+,

where |x|+ = max(|x|, 1). Notice that h ∈ H−1(H) and for test functions f, g ∈ H1(H),

(h, f) and (h, g) are centred Gaussian variables with covariance given by

E[(h, f), (h, g)] =
∫∫

f(x)GH(x, y)g(y)d
2xd2y.

Let PH denote the law of h. For smooth test functions f and g with mean 0 on H, i.e.,

∫
H
f(z)d2z =

∫
H
g(z)d2z = 0,

we have that

E[(h, f), (h, g)] =
1

2π

∫
H
∇f(z) · ∇g(z)d2z.

Notice that this characterizes the free boundary Gaussian free field, which is defined modulo
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an additive constant. We can fix a particular instance of field h by requiring the average

around the upper half plane unit circle to be zero.

Definition 2.2.2 (Liouville field on H, [AHS21, Definition 2.14]). Let (h, c) be sampled

from PH × [e−Qcdc] on the product space H−1(H) × R. Let ϕ(z) = h(z) − 2Q log |z|+ + c

and let LFH denote the law of ϕ(z) on H−1(H). We call the sample from LFH the Liouville

field on H.

Lemma 2.2.3 ([ARS22, Lemma 2.2]). For α ∈ R and z0 ∈ H, the limit

LF
(α,z0)
H := lim

ε→0
εα

2/2eαϕε(z0)LFH(dϕ)

exists in the vague topology. Moreover, sample (h, c) from (2ℑz0)−α
2/2|z0|−2α(Q−α)

+ PH ×[
e(α−Q)cdc

]
and let

ϕ(z) = h(z)− 2Q log |z|+ + αGH(z, z0) + c for z ∈ H,

then the law of ϕ is given by LF
(α,z0)
H . We call LF(α,z0)

H the Liouville field on H with α-

insertion at z.

Next, we introduce the definition of Liouville field with multiple boundary insertions. The

following definition is the combination of [AHS21, Definition 2.15] and [AHS21, Definition

2.17]:

Definition 2.2.4. Let (βi, si) ∈ R× ∂H for i = 1, . . . ,m, where m ≥ 0 and si are pairwise

distinct. Let (h, c) be sampled from C
(βi,si)i
H PH ×

[
e(

1
2

∑
i βi−Q)cdc

]
, where

C
(βi,si)i
H =


∏m
i=1 |si|

−βi(Q−βi
2
)

+ e
∑m
j=i+1

βiβj
4
GH(si,sj) if s1 ̸= ∞,∏m

i=2 |si|
−βi(Q−βi

2
−β1

2
)

+ e
∑m
j=i+1

βiβj
4
GH(si,sj) if s1 = ∞.
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Let

ϕ(z) =


h(z)− 2Q log |z|+ +

∑m
i=1

βi
2 GH(z, si) + c if s1 ̸= ∞,

h(z) + (β1 − 2Q) log |z|+ +
∑m

i=2
βi
2 GH(z, si) + c if s1 = ∞.

We write LF
(βi,si)i
H for the law of ϕ and call a sample from LF

(βi,si)i
H the Liouville field on H

with boundary insertions (βi, si)1≤i≤m.

Lemma 2.2.5 ([AHS21, Lemma 2.18]). We have the following convergence in the vague

topology of measures on H−1(H):

lim
r→+∞

rβ(Q−β
2
)LF

(β,r),(βi,si)i
H = LF

(β,∞),(βi,si)i
H .

Definition 2.2.6. Let (α, q) ∈ R × H and let (βi, pi) ∈ R × ∂H for 1 ≤ i ≤ m. Suppose

(h, c) is sampled from C
(βi,pi)i,(α,q)
H PH ×

[
e(

1
2

∑
i βi+α−Q)cdc

]
, where

C
(βi,pi)i,(α,q)
H

=


∏m
i=1 |pi|

−βi(Q−βi
2
)

+ e
∑m
j=i+1

βiβj
4
GH(pi,pj)(2ℑq)−

α2

2 |q|−2α(Q−α)
+ if p1 ̸= ∞,∏m

i=2 |pi|
−βi(Q−βi

2
−β1

2
)

+ e
∑m
j=i+1

βiβj
4
GH(pi,pj)(2ℑq)−

α2

2 |q|−2α(Q−α)
+ if p1 = ∞.

Let

ϕ(z) =


h(z)− 2Q log |z|+ + αGH(z, q) +

∑m
i=1

βi
2 GH(z, pi) + c if p1 ̸= ∞,

h(z) + (β1 − 2Q) log |z|+ + αGH(z, q) +
∑m

i=2
βi
2 GH(z, pi) + c if p1 = ∞.

We denote the law of ϕ(z) on H−1(H) by LF
(βi,pi)i,(α,q)
H .

Finally, we recall the definition of the LCFT on horizontal strip S = R × (0, π). It is

essentially the same procedure as defining LCFT on H. Let

GS(z, w) = − log |ez − ew| − log |ez − ew|+max(2ℜz, 0) + max(2ℜw, 0)
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be the Green function on S.

Definition 2.2.7 ([AHS21, Definition 2.19]). Let (h, c) be sampled from C
(β,±∞),(β3,s3)
S PS×[

e(β+
β3
2
−Q)cdc

]
, where β ∈ R and (β3, s3) ∈ R× ∂S, and

C
(β,±∞),(β3,s3)
S = e(−

β3
2
(Q−β3

2
)+

ββ3
2

)|ℜs3|.

Let ϕ(z) = h(z)− (Q− β)|ℜz|+ β3
2 GS(z, s3) + c and we denote the law of ϕ(z) on H−1(H)

by LF
(β,±∞),(β3,s3)
S .

Conformal symmetries of the Liouville Conformal Field Theory

Let conf(H) be the group of conformal automorphisms of H where group multiplication ·

is the function composition f · g = f ◦ g. The most results in this section can be directly

adapted to the sphere case Ĉ (see [AHS21] for details).

Proposition 2.2.8 ([AHS21, Proposition 2.16]). For β ∈ R, let ∆β = β
2 (Q − β

2 ). Let

f ∈ conf(H) and (βi, si) ∈ R× ∂H with f(si) ̸= ∞ for all 1 ≤ i ≤ m. Then LFH = f∗(LFH)

and

LF
(βi,f(si))i
H =

m∏
i=1

|f ′(si)|−∆βif∗

(
LF

(βi,si)i
H

)
.

Proposition 2.2.9. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let (αi, zi) ∈ R×H and (βj , sj) ∈ R×∂H

with f(sj) ̸= ∞ for all 1 ≤ j ≤ n. Let f ∈ conf(H) and we have

LF
(αi,f(zi))i,(βj ,f(sj))j
H =

m∏
i=1

n∏
j=1

|f ′(zi)|−2∆αi |f ′(sj)|−∆βjLF
(αi,zi)i,(βj ,sj)j
H .

Proof. The proof is exactly the same as that of [AHS21, Proposition 2.9], which describes

the case in Ĉ instead of H.

Lemma 2.2.10 ([ARS22, Lemma 3.14]). Let α ∈ R and u ∈ S with ℜ(u) = 0, then we have

exp∗ LF
(α,u)
S = LF

(α,eu)
H .
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Lemma 2.2.11 ([AHS21, Lemma 2.20]). Let β ∈ R and (β3, s3) ∈ R× ∂S, then we have

LF
(β,∞),(β,0),(β3,es3 )
H = e

β23
4
ℜs3 exp∗ LF

(β,±∞),(β3,s3)
S .

Similarly, if β1, β2, β3 ∈ R and f ∈ conf(H) satisfies f(0) = 0, f(1) = 1, and f(−1) = ∞,

then

LF
(β1,∞),(β2,0),(β3,1)
H = 2∆β1−∆β2+∆β3 · f∗LF(β1,−1),(β2,0),(β3,1)

H .

2.3. Liouville quantum gravities

The Liouville quantum gravity is a natural way to produce “random geometry” from the

Gaussian free field. The study of natural probability laws on the space of two-dimensional

Riemannian manifolds is called two-dimensional quantum gravity. By the Riemann uni-

formization theorem in complex analysis, every simply connected Riemann surface S is

conformally equivalent to one of three Riemann surfaces: the open unit disk D, the complex

plane C, or the Riemann sphere C∪{∞}. Therefore, S can be parametrized in coordinates

z = xi+ y in one of such domains such that the metric takes the form

eφ(z)(dx2 + dy2) (2.30)

for some real-valued function φ. Therefore, the random Riemann surface S can be studied

via the random function φ.

In Liouville quantum gravity, one views φ as the scalar multiple of the GFF and seeks to

define the measure

µh := eγh(z)d2z, (2.31)

where h is an instance of GFF on some simply connected domain D ⊆ C. Since h is a

distribution, certain regularization procedure is needed in order to make (2.31) precise. The
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most common choice is to let hε(z) be the circular average of h on ∂B(z, ε) and set

µh := lim
ε→0

εγ
2/2eγhε(z)d2z (2.32)

It was in [DS11, Men17] that the above limit exists a.s. in the vague topology of Borel mea-

sures on D. The pair (D,µh) is described as a random surface S conformally parametrized

by D with area measure µh. We can also parametrize S in a different domain D̃. If

ψ : D̃ → D is a conformal map, then we can write

h̃ = h ◦ ψ +Q log |ψ′|, (2.33)

where Q = 2
γ + γ

2 . The measure µ
h̃

on D̃ is a.s. equivalent to the pullback via ψ−1 of the

measure µh on D. It is shown in [Men17] that the (2.33) holds simultaneously for all possible

ψ. The quantum surface is defined to be equivalence class of pairs (D,h) under relationship

(2.33).

2.3.1. Quantum surfaces

Let γ ∈ (0, 2) and DH = {(D,h) : D ⊂ C open, h ∈ C∞
0 (D)′}. We define equivalence

relation on DH by letting (D,h) ∼γ (D̃, h̃) if there is a conformal map ψ : D → D̃ such

that h̃ = ψ •γ h, where

ψ •γ h := h ◦ ψ−1 +Q log |(ψ−1)′|. (2.34)

A γ-quantum surface (a.k.a. γ-LQG surface) is an equivalence class of pairs (D,h) ∈ DH

under the equivalence relation ∼γ . An embedding of a quantum surface is a choice of

representative (D,h). The transformation (2.34) is called the coordinate change. We can also

consider quantum surfaces with marked points (D,h, z1, . . . , zm, ω1, . . . , ωn) where zi ∈ D

and ωj ∈ ∂D. We say

(D,h, z1, . . . , zm, ω1, . . . , ωn) ∼γ (D̃, h̃, z̃1, . . . , z̃m, ω̃1, . . . , ω̃n)
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if there is a conformal map ψ : D → D̃ such that h̃ = ψ •γ h and ψ(zi) = z̃i, ψ(ωj) = ω̃j .

Let Dm,n denote the set of equivalence class of such tuples under ∼γ and let D = D0,0

for simplicity. We use (2.34) to define the equivalence relation because γ-LQG quantum

area and γ-LQG quantum length measure is invariant under pushforward •γ . Since we will

mainly work with H, we view the set Dm,n as the quotient space

{(H, h, z1, . . . , zm, ω1, . . . , ωn) : h is a distribution on H, z1 . . . , zm ∈ H, ω1, . . . , ωn ∈ R}/ ∼γ .

The Borel σ-algebra of Dm,n is induced by the Borel sigma algebra on H−1(H).

In this thesis, we will work with quantum surfaces whose distribution h looks like GFF

locally. The concrete definition is given as below.

Definition 2.3.1 ([GHS19, Definition 3.8]). Fix a simply connected domain D ⊆ C and let

h be a random distribution on D. For z ∈ D, we say the distribution h is GFF-like near z

if there exists a constant r > 0 such that the law of h|B(z,r) is absolutely continuous w.r.t.

that of (h̃+ g)|B(z,r), where (h̃, g) is a coupling of zero-boundary GFF h̃ on B(z, r) with a

random continuous function g on B(z, r). If z ∈ ∂D and ∂D is analytic near z, we similarly

call h GFF-like near z is h is locally absolutely continuous w.r.t. a free boundary GFF plus

a continuous function in a similar manner.

If h is a random distribution which is GFF-like near z, then the measure

µh := lim
ε→0

εγ
2/2eγhε(z)d2z

can be defined in B(z, r) for some r as in Definition 2.3.1. Similarly, if the domain D has

non-trivial boundary and the random distribution h is GFF-like near z ∈ ∂D, then the

random measure

νh := lim
ε→0

εγ
2/4e

γ
2
hε(z)dz

exists almost surely, where for z ∈ ∂D, hε(z) is the circular average of h on ∂B(z, ε) ∩ D
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(see [DS11]).

For some random distribution h, we call random measures µh and νh quantum area measure

and quantum boundary length measure respectively.

2.3.2. Quantum disks and quantum spheres

We recall the definitions of two-pointed quantum disk introduced in [AHS20]. It is a family

of measures on D0,2. It is initially defined on the horizontal strip S = R × (0, π). Let

exp : S → H be the exponential map z 7→ ez and let hS = hH ◦ exp where hH is sampled

from PH. We call hS the free boundary GFF on S. It is known that hS can be written as

the sum of hc and hℓ where hc is constant on u+ [0, iπ], u ∈ R and hℓ has mean zero on all

such vertical lines. We call hℓ the lateral component of free boundary GFF.

Definition 2.3.2 (Thick quantum disk). Let W ≥ γ2

2 , and let β = Q+ γ
2 − W

γ . Let

Yt =


B2t − (Q− β)t if t ≥ 0,

B̃−2t + (Q− β)t if t < 0,

where (Bs)s≥0, (B̃s)s≥0 are independent standard Brownian motions conditional on B2s −

(Q− β)s < 0 and B̃2s − (Q− β)s < 0 for all s > 0. Let h1(z) = Yt for all z with ℜ(z) = t.

Let h2(z) be the lateral component of free boundary GFF on S and let c be sampled from
γ
2e

(β−Q)cdc independent of h1 and h2. Let ĥ(z) = h1(z)+h2(z) and let ϕ(z) = ĥ(z)+c. Let

Mdisk
0,2 (W ) denote the infinite measure on D0,2 describing the law of (S, ϕ,−∞,+∞). We

call a sample from Mdisk
0,2 (W ) a weight-W quantum disk.

Definition 2.3.3 (Thick disk with one additional boundary marked point). For W ≥ γ2

2 ,

we first sample (S, ϕ,+∞,−∞) from νϕ(R)Mdisk
0,2 (W )[dϕ], then sample s ∈ R accord-

ing to the probability measure proportional to νϕ|R. We denote the law of the surface

(S, ϕ,+∞,−∞)/ ∼γ by Mdisk
2,• (W ).

Definition 2.3.4 (Thin quantum disk). Let 0 < W < γ2

2 and define the infinite mea-
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sure Mdisk
0,2 (W ) on two-pointed beaded surfaces as follows: first take T according to (1 −

2
γ2
W )−2LebR+ , then sample a Poisson point process {(u,Du)} according to Leb[0,T ] ×

Mdisk
0,2 (γ2 −W ) and concatenate the Du according to ordering induced by u.

When W = 2, the two marked points of Mdisk
0,2 (2) are typical w.r.t. the quantum boundary

length measure (see [AHS20, Proposition A.8]).

Definition 2.3.5. Let (S, ϕ,−∞,+∞) be an embedding of a sample from Mdisk
0,2 (2). Let

A = µϕ(S) denote the total quantum area and L = νϕ(∂S) denote the total quantum bound-

ary length. Let QD denote the law of (S, ϕ) under reweighted measure L−2Mdisk
0,2 (2), viewed

as a measure on D by forgetting two marked points. For non-negative integers m and n, let

(S, ϕ) be a sample from AmLnQD, then independently sample z1, . . . , zm and ω1, . . . , ωn ac-

cording to µ#ϕ and ν#ϕ , respectively. Let QDm,n denote the law of (S, ϕ, z1, . . . , zm, ω1, . . . , ωn)

viewed as a measure on Dm,n. We call a sample from QDm,n quantum disk with m bulk

and n boundary marked points.

Let C denote the horizontal cylinder obtained by identifying two boundaries of R × [0, 2π]

and let hC be the centered Gaussian process with covariance kernel given by

GC(z, w) := − log |ez − eω|+max(ℜz, 0) + max(ℜω, 0). (2.35)

Let H(C) be the Hilbert space closure of

{
f ∈ C∞(C) :

∫
C
f(z)d2z = 0

}

with respect to the Dirichlet inner product ⟨·, ·⟩∇ (2.8). For notational convenience, we write

the line segment {t} × [0, 2π] on C as [t, t + 2πi] for each t ∈ R. It is well-known that we

have the orthogonal decomposition of Hilbert space (see, e.g. [She07])

H(C) = H1(C)⊕H2(C),
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where H1(C) ⊂ H(C) (resp. H2(C) ⊂ H(C)) denotes the subspace consisting of functions

which are constant (resp. have mean zero) on [t, t+ 2πi] for each t ∈ R.

Definition 2.3.6 (Two-pointed quantum sphere, [AHS21, Definition 2.2]). For W > 0, let

α = Q− W
2γ < Q. Let

Yt =


Bt − (Q− α)t if t ≥ 0,

B̃−t + (Q− α)t if t < 0,

where (Bs)s≥0 is a standard Brownian motion conditioned on Bs − (Q − α)s < 0 for all

s > 0. The (B̃s)s≥0 is an independent copy of (Bs)s≥0. Let h1C(z) = Yℜz for z ∈ C and let h2C

be independent of h1C and have the projection of hC onto H2(C). Let ĥ = h1C + h2C and let c

be a real number sampled from γ
2e

2(α−Q)cdc independent of ĥ. Let ϕ = ϕ̂+c. Let Msph
2 (W )

be the infinite measure describing the law of (C, ϕ,−∞,+∞)/ ∼γ . We call a sample from

Msph
2 (W ) a two-pointed weight-W quantum sphere.

In the sphere case, the marked points are typical w.r.t. the quantum area measure when

W = 4− γ2 (see [DMS20, Proposition A.13]).

Definition 2.3.7. Let (C, ϕ,+∞,−∞)/ ∼γ be sampled from Msph
2 (4− γ2). Let QS be the

law of (C, ϕ)/ ∼γ under the re-weighted measure µϕ(C)−2Msph
2 (4 − γ2). For m ≥ 0, first

sample (C, ϕ) from µϕ(C)mQS, then sample m independent points z1, . . . , zm according to

µ#ϕ . Let QSm be the law of (C, ϕ, z1, . . . , zm)/ ∼γ . We call a sample from QSm a quantum

sphere with m marked points.

2.3.3. Relationships with the Liouville Conformal Field Theory

As reviewed in Section 2.2, the Liouville Conformal Field Theory is the Quantum Field

Theory (QFT) corresponding the Liouville action functional which originates in [Pol81]. For

each two dimensional Riemannian manifold, the LCFT associates it to a random field, which

altogether form a conformal field theory. As mentioned in Section 1.1.1, LCFT was made

rigorous in probability theory in [DKRV16] and [HRV18] for the case of Riemann sphere

and simply connected domain with boundary respectively and in [DRV15, Rem17, GRV19]
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for the case of other topologies.

The LCFT and quantum surfaces provide two perspectives on LQG surfaces. Their close

relationships has been demonstrated by Aru, Huang and Sun [AHS17] for the case of QS3

and by Cerclé [Cer21] for the case of QD0,3. Precisely, [AHS17, Theorem 1.1] showed

that, modulo some multiplicative constant, QS3 has the law of LF
(γ,z1),(γ,z2),(γ,z3)

Ĉ
under

the particular embedding of (Ĉ, z1, z2, z3). In the exact same spirit, [Cer21, Theorem 1.1]

showed that QD0,3 has the law of LF(γ,p1),(γ,p2),(γ,p3)
H , p1, p2, p3 ∈ ∂H when embedded into

(H, p1, p2, p3).

Notice that in all the cases above, we have enough marked points to fix the conformal

structure. Traditionally, in the context of LCFT, we tend to assume that there are enough

marked points since otherwise, we cannot properly define the Liouville correlation functions.

What about the case when there are not enough marked points on the surface to fix the

conformal structure?

The answer is given in [AHS21] and we should consider uniform embeddings of quantum

surfaces. In words, when there are not enough marked points, the LCFT describes the law

of quantum surfaces under uniform embeddings of marked points (maximal symmetries).

Now we set up the uniform embedding carefully. The discussion here is more general than

that in subsection 1.1.1 before Theorem 1.1.3 in the sense that we also allow the domain

D = Ĉ and more than one (bulk and/or boundary) marked points. Concretely, for simply

connected domain D conformally equivalently to either Ĉ or H, let conf(D) be the group

of conformal automorphisms of D where group multiplication · is the function composition

f · g = f ◦ g. Let mD be a Haar measure on conf(D), which is both left and right invariant.

Suppose f is sampled from mD and ϕ ∈ H−1(D), then we call the random function f •γ ϕ =

ϕ ◦ f−1 +Q| log(f−1)′| the uniform embedding of (D,ϕ) via mD. By invariance property of

Haar measure, the law of f •γ ϕ only depends on (D,ϕ) as quantum surface.

We write mĈ⋉QS as the law of f•γϕ, where f is sampled from mĈ and (Ĉ, ϕ) is an embedding
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of a sample from QS independent of mĈ. We call mĈ ⋉ QS the uniform embedding of QS

via Haar measure mĈ. The mD ⋉QD is defined in the exact same way.

Theorem 2.3.8 ([AHS21, Theorem 1.2]). There exist constants C1 and C2 such that

mĈ ⋉QS = C1 · LFĈ and mH ⋉QD = C2 · LFH. (2.36)

We can also consider the quantum surface with some (bulk and/or boundary) marked points

but not enough to fix a conformal structure. Fix a, b ∈ D ∪ ∂D and let conf(D, a, b) be the

subgroup of conf(D) fixing points a and b. Let mD,a,b be a Haar measure on conf(D, a, b).

The quantum surface with two (bulk and/or boundary) marked points can be identified

as a measure on C∞
0 (D)′/conf(D, a, b). Therefore, we can define, for instance, mD,a,b ⋉

(quantum surface with two marked points) in the exact same way as mĈ⋉QS and mD⋉QD.

Some other LCFT representations of the quantum surfaces without fixed conformal struc-

tures were also proved in [AHS21]. The below theorem describes the case the two-pointed

quantum disk.

Theorem 2.3.9 ([AHS21, Theorem 2.22]). Fix W > γ2

2 and βW = γ + 2−W
γ . If we in-

dependently sample T from LebR and (S, ϕ,+∞,−∞) from Mdisk
0,2 (W ), then the law of

ϕ̃ := ϕ(·+ T ) is γ
2(Q−βW )2

is γ
2(Q−βW )2

LF
(βW ,±∞)
S .

Notice that two points on the boundary are not sufficient to fix a conformal structure of S.

Therefore, we have one degree of freedom described by horizontal shifting under Lebesgue

measure. In the language of uniform embedding, Theorem 2.3.9 also tells us that the uniform

embedding of Mdisk
0,2 (W ) in (S,+∞,−∞) has the law of LCFT with two boundary marked

points module some multiplicative constant. Concretely speaking, we have

mS,+∞,−∞ ⋉Mdisk
0,2 (W ) =

γ

2(Q− βW )2
LF

(βW ,±∞)
S . (2.37)
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When W = 2, the equation (2.37) becomes

mS,+∞,−∞ ⋉QD0,2 =
γ

2(Q− γ)2
LF

(γ,±∞)
S . (2.38)

Similarly, in the sphere case, we have

mĈ,p,q ⋉QS2 = C · LF(γ,p),(γ,q)

Ĉ
(2.39)

for some finite constant C. Note that equations (2.38) and (2.39) should be viewed as the

disintegration of (2.36) over their marked points respectively.
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CHAPTER 3

SCHRAMM-LOEWNER EVOLUTIONS, CONFORMAL

WELDINGS OF QUANTUM SURFACES, AND SLEκ(ρ) BUBBLE

MEASURES

In this chapter, we review key results on Schramm-Loewner evolutions, conformal weldings

of quantum surfaces, and the construction of SLEκ(ρ) bubbles. Nothing substantial is proved

in this chapter except some simple variations of known results that cannot be found in the

literature.

3.1. Schramm-Loewner evolutions

3.1.1. Overview

In 1999, Schramm [Sch00] wanted to construct−for any simply connected domain D ⊆ C

with boundary points a and b−a random non-self-crossing fractal curve η connecting a and

b. He hoped that this η has the following two nice properties:

• The law of an SLE curve η is conformally invariant in the sense that if ψ is a conformal

map (by definition, analytic and one-to-one) taking D to some other domain ψ(D),

then the image of η under ψ is again an SLE curve in ψ(D) from ψ(a) to ψ(b) (up to

different time parametrizations).

• The SLE path η is Markovian in the sense that conditioning on η[0, τ ] for some positive

stopping time τ and the event that η is not completed at τ , the conditional law of the

rest of η is again an SLE in D\η[0, τ ].
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Figure 3.1: The gt(z) : H\η[0, t] → H is the Loewner evolution and gt(z) = z+ 2t
z + o(|z|−1)

as |z| → ∞ under capacity parametrizations.

Schramm [Sch00] showed that there is one and only one way of defining this family of

random fractal curves if one insists on these properties. This family of curves is indexed by

a parameter κ ∈ [0,∞). By conformal invariance property of SLE curves, it suffices to define

the law of η on the upper half plane H ⊆ C with a = 0 and b = ∞. Define the analytic

functions gt : H\η[0, t] → H by requiring that g0(z) = z and for any fixed z ∈ H, the ODE

∂tgt(z) =
2

gt −Wt
(3.1)

is satisfied up to the stopping time τ when z is first hit by the curve η[0, τ ], where Wt :=

√
κBt = Bκt is the standard Brownian motion scaled by a factor of

√
k (or sped up by a

factor of κ). This requirement uniquely determines the functions gt which in turn determine

the curve η.

Intuitively, the bigger κ is (the faster Brownian motion moves up and down) the “more

wildly ”the curve becomes. It was shown by Rohde and Schramm [RS05] that η is a.s. a

simple curve when κ ∈ [0, 4]. The η a.s. hits (but does not cross) itself when κ ∈ [4, 8] and

the η is a.s. space-filling when κ ≥ 8.

3.1.2. Chordal SLEκ(ρ) processes

In this subsection, we review the basic construction of chordal SLEκ(ρ) process. The chordal

SLEκ(ρ) process, which was first studied in [LSW03, RS05], is a natural variant of chordal

SLEκ where one keeps track of extra marked force points.
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First, we introduce some notations and terminologies that will be carried out throughout

this thesis. Let (E, dE) be a metric space and let C([0, T̂ ], E) be the space of continuous

functions from [0, T̂ ) to E. Let

ΣE =
⋃

0<T̂≤∞

C([0, T̂ ], E).

For each f ∈ ΣE , the lifetime T̂f of f is the extended number in (0,∞] such that [0, T̂f ) is

the domain of f . Let H = {z ∈ C : ℑz > 0} be the open upper half plane. A set K ⊂ H is

called an H-hull if K is bounded and H\K is a simply connected domain. For each H-hull

K, there is a unique conformal map gK from H\K onto H such that gK(z) − z = O(1/z)

as z → ∞. The number hcap(K) := limz→∞ z(gK(z)− z) is called H-capacity of K, which

satisfies hcap(∅) = 0 and hcap(K) > 0 if K ̸= ∅. Let

radω(K) := sup {|z − ω| : z ∈ K ∪ {ω}} (3.2)

for ω ∈ C and K ⊂ C. For W ∈ ΣR, the chordal Loewner equation driven by W is the

following differential equation in C:

∂tgt(z) =
2

gt(z)−Wt

with 0 ≤ t < T̂W and g0(z) = z. For each z ∈ C, let τ∗z be the biggest extended number in

[0, T̂W ] such that the solution t 7→ gt(z) exists on [0, τ∗z ). For 0 ≤ t < T̂W , let Kt = {z ∈

H : τ∗z ≤ t} and Ht = H\Kt. It turns out that each Kt is an H-hull with hcap(Kt) = 2t and

gt = gKt . We call gt and Kt the chordal Loewner maps and hulls respectively.
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Figure 3.2: The chordal SLEκ(ρ−, ρ+) process: initially, we have two force points at 0−

and 0+ with weights ρ− and ρ+ respectively. Correspondingly, we have two additional force
point processes V −

t and V +
t .

We now review the definition of multi-force-point SLEκ(ρ) process. Here, all the force points

lie on the boundary. Let κ > 0 and ρ = (ρ1, . . . , ρm) ∈ Rm. Let ω ∈ R and v1, . . . , vm be

such that ∑
j:vj=ω+

ρj > −2 and
∑

j:vj=ω−

ρj > −2. (3.3)

Consider the following system of SDE:

dWt =
m∑
j=1

1{Wt ̸=V jt }
ρj

Wt − V j
t

dt+
√
κdBt, W0 = ω;

dV j
t = 1{Wt ̸=V jt }

2

V j
t −Wt

dt, V j
0 = vj , 1 ≤ j ≤ m.

(3.4)

If some vj = ∞, then V j
t is ∞, and 1

V jt −W
j
t

is 0. It is known that a weak solution of the

system (3.4), in the integral sense, exists and is unique in law, and the Wt in the solution

a.s. generates a Loewner curve η, which we call SLEκ(ρ) curve starts from ω with force

points v = (v1, . . . , vm). The V j
t is called the force point process started from vj .

3.2. Conformal weldings of quantum surfaces

In this section, we review the key results in [AHS20] and [AHS22] regarding the conformal

welding of quantum disks and quantum spheres.

First we define for W > 0 and ℓ, ℓ′ > 0, the family of measures {Mdisk
0,2 (W ; ℓ, ℓ′)}ℓ,ℓ′>0 such
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that Mdisk
0,2 (W ; ℓ, ℓ′) is supported on quantum surfaces with left and right boundary arc

lengths ℓ and ℓ′ respectively. This family of measures satisfies the following disintegration

relation:

Mdisk
0,2 (W ) =

∫ ∞

0

∫ ∞

0
Mdisk

0,2 (W ; ℓ, ℓ′)dℓdℓ′. (3.5)

The disintegration (3.5) characterizes Mdisk
0,2 (W ; ℓ, ℓ′) modulo a Lebesgue measure zero set

of (ℓ, ℓ′). This ambiguity was removed by some suitable topology introduced in [AHS20,

Section 2.6 and 4] for which the measure Mdisk
0,2 (W ; ℓ, ℓ′) is continuous in (ℓ, ℓ′).

Theorem 3.2.1 (Conformal welding of two quantum disks, [AHS20, Theorem 2.2]). Let

W1,W2 > 0 and there exists some constant c = cW1,W2 such that

Mdisk
0,2 (W1 +W2; ℓ, ℓ

′)⊗ SLEκ(W1 − 2,W2 − 2) = c

∫ ∞

0
Mdisk

0,2 (W ; ℓ, r)×Mdisk
0,2 (W ; r, ℓ′)dr.

(3.6)

When W1 +W2 ≥ γ2

2 , the Mdisk
0,2 (W1 +W2; ℓ, ℓ

′) ⊗ SLEκ(W1 − 2,W2 − 2) in (3.6) denote

the measure on the curve-decorated quantum surfaces obtained by first sampling a quan-

tum disk (S, ψ,+∞,−∞) according to Mdisk
0,2 (W ; ℓ, ℓ′) with an arbitrary embedding then

independently sampling η according to SLEκ(W1 − 2,W2 − 2) on (S,+∞,−∞).

When W ∈ (0, γ
2

2 ), the measure Mdisk
0,2 (W1 +W2; ℓ, ℓ

′)⊗ SLEκ(W1 − 2,W2 − 2) corresponds

to sampling independent SLEκ(W1 − 2,W2 − 2) in each component of the thin quantum

disk.

Here we emphasize that for all W > 0, the Mdisk
0,2 (W1 +W2; ℓ, ℓ

′) ⊗ SLEκ(W1 − 2,W2 − 2)

is a measure on the curve-decorated quantum surface (equivalence class of surfaces), which

means it does not depend on the particular embedding. In this thesis, we will frequently

encounter this kind of measures (on different curve-decorated quantum surface) and they

are defined in the exact same manner.

The following theorem describes the conformal welding of n quantum disks, which is a
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natural generalization of Theorem 3.2.1.

Theorem 3.2.2 (Conformal welding of n disks, [AHS20, Theorem 2.2]). Fix W1, . . . ,Wn > 0

and W = W1 + . . .+Wn. There exists a constant C = CW1,...,Wn ∈ (0,∞) such that for all

ℓ, r > 0, the identity

Mdisk
0,2 (W ; ℓ, r)⊗ Pdisk(W1, . . . ,Wn)

= C

∫∫∫ ∞

0
Mdisk

0,2 (W1; ℓ, ℓ1)×Mdisk
0,2 (W2; ℓ1, ℓ2)× . . .×Mdisk

0,2 (Wn; ℓn−1, r)dℓ1 . . . dℓn−1

(3.7)

holds as measures on the space of curve-decorated quantum surfaces.

The measure Pdisk(W1, . . . ,Wn) is defined in [AHS20, Definition 2.25] on tuple of curves

(η1, . . . , ηn−1) in a domain (D,x, y). It was defined by the following induction procedure:

first sample ηn−1 from SLEκ(W1 + . . .+Wn−1 − 2;Wn − 2) then (η1, . . . , ηn−2) from

Pdisk(W1, . . . ,Wn−1)

on connected component (D′, x′, y′) on the left of D\ηn−1 where x′ and y′ are the first and

the last point hit by ηn−1.

As reviewed in Section 3.1.1, for simply connected domain (D, p, q) (D ̸= C) with two

marked boundary points. The chordal SLEκ is a family of conformally invariant random

curves from p to q. When 0 < κ < 4, SLEκ is a.s. simple and only intersects ∂D at {p, q}.

One can also construct a whole-plane variant of SLEκ: for (C, p, q) with p ̸= q and ρ > −2,

there is a SLE-like random curve connecting p and q called the whole-plane SLEκ(ρ). The

definition is not important for our presentation here so we simply omit it (check [MS17,

Section 2.1.3]).

For κ ∈ (0, 8), on (C, p, q), the two-sided whole-plane SLEκ, which is denoted by SLEp⇌q
κ , is

defined by first running a whole-plane SLEκ(2) curve η1 from p to q, then running a chordal
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SLEκ curve η2 on C\η1 from q to p. That being said, the SLEp⇌q
κ is a probability measure

on pairs of curves on C connecting p and q (form an oriented loop) and satisfying the bi-

chordal resampling property : conditioning on one arm, the other arm is a chordal SLEκ in

the complement.

It was shown in [Bef08] that SLEp⇌q
κ almost surely has Hausdorff dimension d = 1 + κ

8 . Its

d-dimensional Minkowski content measure Contd(η) exists [LR15]. The following unrooted

SLE Loop measure was constructed by Zhan in [Zha21]:

SLEloop
κ (dη) :=

1

Contd(η)2

∫
C

∫
C
|p− q|−2(2−d)SLEp⇌q

κ (dη)d2pd2q. (3.8)

The rooted version can be easily obtained by the disintegration on the outside integral

(
∫
C · · · dq2) in (3.8). The (3.8) is a rather constructive definition in the sense that it tells

us that the unrooted SLE loop measure SLEloop
κ (dη) can be sampled by the following three

steps:

1. Sample a pair of points (p, q) according to the measure

|p− q|−2(2−d)d2pd2q on C× C. (3.9)

2. Sample η = (η1, η2) according to the two-sided whole-plane SLEp⇌q
κ (dη).

3. Re-weight the η by the square of its Minkowski content measure Contd(η)
2.

For γ ∈ (0, 2), recall that the unmarked quantum disk QD is defined in Definition 2.3.5. Let

QD(ℓ) be the disintegration of QD over its total boundary length, i.e.,

QD =

∫ ∞

0
QD(ℓ)dℓ.

For ℓ > 0, let (D1,D2) be sampled from QD(ℓ) × QD(ℓ) and let Weld(D1,D2) be the

curve-decorated quantum surface obtained by first uniformly sampling points a and b on the
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boundaries of D1 and D2 respectively and then conformally welding D1 and D2 by identifying

a and b. Let Weld(QD(ℓ),QD(ℓ)) denote the distribution of Weld(D1,D2) and define

Weld(QD,QD) :=

∫ ∞

0
ℓ ·Weld(QD(ℓ),QD(ℓ))dℓ.

Theorem 3.2.3 ([AHS22, Theorem 1.1]). For γ ∈ (0, 2), we have

QS⊗ SLEloop
κ = C ·Weld(QD,QD) (3.10)

for some finite constant C.

The proof of above theorem relies on the uniform embedding of the three-pointed curve-

decorated sphere QS3 ⊗ SLEp⇋q
κ (see [AHS22, Figure 1] for a nice summary of the proof

pipeline).

3.3. SLEκ(ρ) bubble measures

In this section, we review the basic terminologies and limiting constructions of rooted

SLEκ(ρ) bubble measure in [Zha22].

3.3.1. Basic notations and terminologies

First, we introduce some basic notations and terminologies. Let f ∈ ΣE . For a continuous

and strictly increasing function θ on [0, T̂f ) with θ(0) = 0, the function g := f ◦ θ−1 ∈ ΣE

is called the time-change of f via θ, and we write f ∼ g. Let Σ̃E := ΣE/ ∼ and an element

of Σ̃E , denoted by [f ], where f ∈ ΣE , is called an MTC (module time-changes) function or

curve. Throughout this thesis, all the curves considered are MTC curve. Therefore, we will

simply write f instead of [f ] without confusion. The Σ̃E is a metric space with the distance

defined by

d
Σ̃E

:= inf
{
sup{dE(f ′(t), g′(t)) : 0 ≤ t < T̂f ′} : f ′ ∈ [f ], g′ ∈ [g], T̂f ′ = T̂g′

}
. (3.11)
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An element f ∈ ΣE is called a rooted loop if

lim
t→T̂f

f(t) = f(0)

and f(0) is called its root. If f ∈ ΣE is called a rooted loop, then [f ] ∈ Σ̃E is called a rooted

MTC loop. Notice that all the elements in BubbleH(p) are MTC loops.

3.3.2. Constructions of SLEκ(ρ) bubble measures via radial Bessel processes

We now review Zhan’s constructions on SLEκ(ρ) bubble measures via the Radial Bessel

Processes.

Let δ−, δ+ > 0 and Bt be a standard Brownian motion. A stochastic process (Zt)t≥0 with

Z0 = x ∈ [−1, 1] satisfying the following stochastic differential equation (SDE)

dZt =
√
1− Z2

t dBt −
δ+
4
(Zt + 1)dt− δ−

4
(Zt − 1)dt (3.12)

is called the Radial Bessel Process with dimension (δ+, δ−) starting from x. It has a unique

strong solution with infinite lifetime and we let νδ+,δ−x denote its (probability) law on the

path space C([0,∞),R). It stays in the interval [−1, 1] and behaves like a squared Bessel

process of dimension δ± near ±1. This process satisfies the Markov property in the sense

that for any stopping time τ w.r.t. the filtration F = (Ft)t≥0, conditioning on (Zt)0≤t≤τ ,

the rest of the process is a radial Bessel process with dimension (δ+, δ−) starting from Zτ .

Proposition 3.3.1 (Transition density of radial Bessel processes, [Zha22, Proposition 2.14]).

When δ−, δ+ > 0 and x ∈ [−1, 1], the solution of (3.12) has the following transition kernel:

pt(x, y) = ωα+,α−(y)

∞∑
n=0

P
(α+,α−)
n (x)P

(α+,α−)
n (y)e−βnt∫ 1

−1 ωα+,α−(s)P
(α+,α−)
n (s)2ds

, (3.13)

where α± = δ±
2 −1, ωα+,α−(s) = (1−s)α+(1+s)α− , βn = 1

2n(n+1+α++α−), and P (α+,α−)
n

are Jacobi polynomials with parameters (α+, α−), which is a class of orthogonal polynomials

w.r.t. 1(−1,1)ωα+,α− (cf. [KWKS]).
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Proposition 3.3.2 (Invariant probability density of radial Bessel processes, [Zha22, Propo-

sition 2.15]). Under the above settings, let

p∞(x) =
ωα+,α−(x)∫ 1

−1 ωα+,α−(s)ds
(3.14)

and we have that for y ∈ [−1, 1] and t > 0,

∫ 1

−1
p∞(x)pt(x, y)dx = p∞(y). (3.15)

Moreover, there exist constants C,L ∈ (0,∞) such that for any x, y ∈ [−1, 1],

|pt(x, y)− p∞(y)| < C · p∞(y) · e−
δ++δ−

4
t (3.16)

for t > L.

By standard arguments in SDE, there exists a stochastic process (Zt)t∈R such that for any

fixed τ ∈ R, Zτ follows the law of 1(−1,1)p∞(y)dy. Moreover, conditioning on (Zt)t≤τ , the

random process (Zt+t0)t≥0 is again a radial Bessel process with dimension (δ+, δ−) starting

from Zt0 . We call such process Zt the stationary radial Bessel process with dimension

(δ+, δ−). Let νδ+,δ−R denote its unique probability law on C(R,R).

In (3.12), when δ+ > 0, δ− < 2, and the initial value x ∈ (−1, 1]. The process Zt will never

visit (1,∞) but will visit −1 at some finite time. Let µδ+,δ−x denote the law of Zt killed once

it hits −1.

Lemma 3.3.3 ([Zha22, Lemma 3.6]). Let δ∗− = 4− δ− > 2 and we have that

dµ
δ+,δ−
x

dν
δ+,δ∗−
x

(Z)

∣∣∣∣∣
Fτ

=
MZ
τ

MZ
0

(3.17)
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for any stopping time τ and

MZ
t := e−

1
8
δ+(2−δ−)t

(
1 + Zt

2

) δ−
2
−1

. (3.18)

The relationship (3.17) allows us to show that there exists a σ-finite measure µδ+,δ−R [Zha22,

Lemma 3.7] on the space

ΣR :=
⋃

T̂∈(−∞,∞]

C((−∞, T̂ ),R)

such that
dµ

δ+,δ−
R

dν
δ+,δ∗−
R

(Z)

∣∣∣∣∣
Fτ

=MZ
τ . (3.19)

In fact, one can derive the radial Bessel process from the chordal SLEκ(ρ−, ρ+) process. Let

η be an instance of SLEκ(ρ−, ρ+) curve starting from 0 with force points v+ > 0 > v−. Let

Wt be the driving function and let V −
t and V +

t be the other two force point processes.

Define

Zt :=
2Wt − V +

t − V −
t

V +
t − V −

t

(3.20)

and let

p(t) =
κ

2
log

(
V +
t − V −

t

v+ − v−

)
. (3.21)

Let Ẑs := Zp−1(s) and Ẑs is a radial Bessel process with dimension (δ+, δ−), where δ± =

4
κ(ρ± + 2).

By SLE coordinate change [SW05], we are interested in the case when

ρ+ = ρ and ρ− = κ− 6− ρ.

The process is stopped when the curve swallows v−. This corresponds to the radial Bessel

process is stopped once hits −1. Recall that the truncated radial Bessel at −1 has the law

of µδ+,δ− .
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Let ρ∗− = κ − 6 − ρ− ≥ κ
2 − 2 and δ∗− = 4

κ(ρ
∗
− + 2) = 4 − δ− > 2. Next, we consider

the SLEκ(ρ+, ρ
∗
−) process starting from 0 with force points at 0+ and 0−. Let Zt and p(t)

be as in (3.20) and (3.21) respectively and let Ẑs = Zp−1(s). Then (Ẑs)s∈R has the law of

stationary Bessel with law ν
δ+,δ∗−
R .

Moreover, we can recover W from Ẑt from the following [Zha22, Lemma 3.14] :



V̂ ±
s =

∫ s
−∞

1
κ

(
1± Ẑr

)
e

4
κ
rdr

Ŵs =
1+Ẑs

2 V̂ +
s + 1−Ẑs

2 V̂ −
s

q(t) =
∫ s
−∞

1
4κ

(
1−

(
Ẑ2
r

))
e

4
κ
rdr

Wt = Ŵq−1(t)

(3.22)

Recall the measure µδ+,δ−R from the Randon-Nikodym derivative relationship (3.19). The

push-forward of µδ+,δ−R under the composition map Ẑt 7→ W 7→ η is an infinite measure on

BubbleH(0), which we denote by µ0. When κ ∈ (0, 4) and ρ > −2, under suitable capacity

parametrization, it is the measure that we want.

Theorem 3.3.4 (Existence of SLEκ(ρ) bubbles, [Zha22, Theorem 3.16]). Let 0 < κ < 4

and ρ > −2. Then there exists a non-zero σ-finite measure SLEbubble
κ,0 (ρ) on BubbleH(0)

such that the followings hold:

1. It satisfies the domain Markov property in the sense that conditioning on the initial

segment and the event that the curve is not completed, the rest of the curve has the

law of the chordal SLEκ(ρ) in the remaining domain.

2. The SLEbubble
κ,0 (ρ) has the law of µ0 under capacity parametrizaton map.

3. For any r > 0, the restriction of SLEbubble
k,0 (ρ) to the event that {η : rad0(η) > r} is a

finite measure.

Moreover, SLEbubble
k,0 (ρ) satisfies the conformal covariance with exponent α := (ρ+2)(2ρ+8)

2κ ,
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i.e., for any ψ ∈ conf(H) fixing 0,

ψ(SLEbubble
k,0 (ρ)) = ψ′(0)αSLEbubble

k,0 (ρ). (3.23)

The 1. and 3. characterize SLEbubble
k,0 (ρ) up to a multiplicative constant, i.e., any measure

on BubbleH(0) satisfies 1. and 3. equals some constant times SLEbubble
k,0 (ρ). Moreover,

• If ρ ≥ κ
2 − 2, SLEbubble

k,0 (ρ) is supported on the loops that intersect R only at 0.

• If ρ < κ
2 − 2, SLEbubble

k,0 (ρ) is supported on the loops whose intersection with R is a

compact subset of R, of which 0 is an accumulation point.

The explicit construction of the rooted SLEκ(ρ) bubble is carried out by taking the weak

limit of chordal SLEκ(ρ) measures under suitable rescaling. We use w−→ to denote the weak

convergence. Recall that for bounded measures µn, n ∈ N, and µ defined on some metric

space E, µn
w−→ µ if and only if for any f ∈ Cb(E,R), µn(f)

w−→ µ(f).

0 ε←

(ε+, ρ)

η ∼SLEκ(ρ) from ε to 0

Figure 3.3: Illustration of Theorem 3.3.5: SLEbubble
κ,0 (ρ) as the weak limit of chordal SLEκ(ρ)

with suitable rescaling.

Theorem 3.3.5 ([Zha22, Theorem 3.20]). Let 0 < κ < 4 and ρ > −2. There exists a

non-zero σ-finite measure SLEbubble
κ,0 (ρ) on BubbleH(0) such that the following holds: For

any fixed S > 0, let ES = {η : rad0(η) > S}. Then as ε→ 0+,

ε
(ρ+2)(κ−8−2ρ)

2κ 1ESSLE
H
κ,(ε;ε+)→0(ρ)

w−→ 1ESSLE
bubble
κ,0 (ρ) (3.24)
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in the space Σ̃C with distance defined by (3.11), where SLEH
κ,(ε;ε+)→0(ρ) denotes the law of

a single-force-point SLEκ(ρ) on H : (ε; ε+) → 0.

For general simply connected domain (D, a, b), let SLEDκ,(a,c)→b(ρ) denote the chordal SLEκ(ρ)

process on D from a to b with force point c. Throughout this thesis, c ∈ {a+, a−} in most

cases.

Remark 3.3.6. Notice that in [AHS21, Theorem 3.20], the author considered

SLEH
κ,(r,r+)→−r(ρ)

for r > 0 as the limiting sequence of measures. To get (3.24), first apply the shift map

fr : H → H such that fr(z) = z + r then let ε = 2r.

Definition 3.3.7 (Rooted SLEκ(ρ) bubble measure). For 0 < κ < 4 and ρ > −2, we define

the weak limit SLEbubble
κ,0 (ρ) in Theorem 3.3.5 as the rooted SLEκ(ρ) bubble measure with

root 0. More generally, for any p ∈ ∂H, let fp : H → H be such that fp(z) = z+p and define

SLEbubble
κ,p (ρ) := fp(SLE

bubble
κ,0 (ρ)).

If ρ = 0, then we omit the existence of ρ and write SLEbubble
κ,p for fixed p ∈ ∂R.

Corollary 3.3.8. Let Ẽi,0 be the set of curves on H starting from some point on [0,∞],

ending at 0, and surrounding i. Under the same settings as Theorem 3.3.5, we have

SLEH
κ,(ε;ε+)→0(ρ)[dη|Ẽi,0]

w−→ SLEbubble
κ,0 (ρ)[dη|Ẽi,0] as ε→ 0+ (3.25)

in the metric space Σ̃C with distance defined by (3.11).

Proof. Let E1 = {η : rad0(η) > 1}. It is clear that Ẽi,0 ⊂ E1. Moreover, Ẽi,0 is open in Σ̃C

and ∂Ẽi,0 contains the curves that end at 0 and pass through i. For 0 < δ < 1, let Eδ =

{η : rad0(η) ≥ δ} and τδ = inft>0{t : rad0(η[0, t]) = δ} be the first time that SLEbubble
κ,0 (ρ)
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curve has radius δ under capacity parametrization. For any η ∈ Eδ, let ηδ = η[0, τδ]. For

any fixed instance of ηδ, let ∂̃Ei,ηδ be the set of curves from η(τδ) to 0 on H\ηδ that pass

through i. By Domain Markov Property of SLEbubble
κ,0 (ρ) stated in [Zha22, Theorem 3.16],

we have that

SLEbubble
κ,0 (ρ)[∂Ẽi,0] =

∫
Eδ

SLE
H\ηδ
κ,(ηδ,v(ηδ))→0(ρ)[∂̃Ei,ηδ ]SLE

bubble
k,0 (ρ)(dηδ). (3.26)

By [Zha22, Theorem 3.20], SLEbubble
κ,0 (ρ)[Eδ] > 0. Moreover, it is well-known that when

0 < κ < 4, the probability that chordal SLEκ(ρ) passes through a fixed interior point is

zero (see, for instance, [Zha19]). Therefore, SLEbubble
κ,0 (ρ)[∂Ẽi,0] = 0. By (3.24) and [Zha22,

(F3)],

ε
(ρ+2)(κ−8−2ρ)

2κ 1E11Ẽi,0
SLEH

κ,(ε;ε+)→0(ρ)
w−→ 1E11Ẽi,0

SLEbubble
κ,0 (ρ). (3.27)

Equivalently,

ε
(ρ+2)(κ−8−2ρ)

2κ 1
Ẽi,0

SLEH
κ,(ε;ε+)→0(ρ)

w−→ 1
Ẽi,0

SLEbubble
κ,0 (ρ). (3.28)

In order to prove (3.25), it remains to show that 0 < SLEbubble
κ,0 (ρ)[Ẽi,0] < ∞. By [Zha22,

Theorem 3.16],

SLEbubble
κ,0 (ρ)[Ẽi,0] ≤ SLEbubble

κ,0 (ρ)[E1] <∞. (3.29)

For any η ∈ Eδ, let ηδ = η[0, τδ]. For any fixed instance of ηδ, let Ẽi,ηδ denote the set of

curves on H\ηδ from η(τδ) to 0 that surround i. Again, by Domain Markov Property of

SLEbubble
κ,0 (ρ) ([Zha22, Theorem 3.16]),

SLEbubble
κ,0 (ρ)[Ẽi,0] =

∫
Eδ

SLE
H\ηδ
κ,(ηδ,v(ηδ))→0(ρ)[Ẽi,ηδ ]SLE

bubble
k,0 (ρ)(dηδ), (3.30)

where the force point v(ηδ) is defined in [Zha22, (3.17)]. For each instance of ηδ, we claim

that

SLE
H\ηδ
κ,(ηδ,v(ηδ))→0(ρ)[Ẽi,ηδ ] > 0. (3.31)

Assume otherwise, i.e., SLEH\ηδ
κ,(ηδ,v(ηδ))→0(ρ)[Ẽi,ηδ ] = 0. By conformal invariance property of
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chordal SLEκ(ρ), we only need to consider the SLEκ(ρ) on H from 0 to ∞ conditional on

passing to the left of i. By scaling property of chordal SLEκ(ρ), the probability that SLEκ(ρ)

conditional on passing to the left of ai, a > 0 is zero, i.e., SLEκ(ρ) will almost surely stay

to the right of positive imaginary axis. This is impossible and leads to a contradiction.

Therefore, SLEbubble
κ,0 (ρ)[Ẽi,0] > 0 and this completes the proof.
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CHAPTER 4

SLEκ(ρ) BUBBLES VIA CONFORMAL WELDING OF QUANTUM

SURFACES

4.1. Law of welding interface via the limiting procedure

In this section, we prove Proposition 4.1.1, i.e., we show that under the same setups as

Theorem 1.1.1, the law of the welding interface is SLEκ(ρ) bubble measure conditioning on

surrounding i.

Proposition 4.1.1. Fix γ ∈ (0, 2). For W > 0, let ρ = W − 2. Let (H, ϕ, η, 0, i) be an

embedding of the quantum surface

∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD1,1(ℓ)dℓ. (4.1)

Let Mϕ denote the marginal law of ϕ in (H, ϕ, η, 0, i), then (ϕ, η) has the law of Mϕ ×

SLEbubble
κ,0 (ρ)[·|i ∈ Dη(0)].

4.1.1. The LCFT description of three-pointed quantum disks

We start with the definition of two-pointed quantum disk with one additional typical bulk

insertion.

Definition 4.1.2 ([ARS22, Definition 3.10]). For W ≥ γ2

2 , recall the definition of thick

quantum disk Mdisk
0,2 (W ) from Definition 2.3.2. Sample ϕ on H−1(H) such that (H, ϕ, 0,∞)

is an embedding of Mdisk
0,2 (W ). Let L denote the law of ϕ and let (ϕ, z) be sampled from

L(dϕ)µϕ(dz
2). We write Mdisk

1,2 (W ) for the law (H, ϕ, z, 0,∞) viewed as a marked quantum

surface.

Lemma 4.1.3. For γ ∈ (0, 2) and W ∈ R, let βW = γ + 2−W
γ . Suppose (ϕ,x) is sampled

from LF
(γ,i),(βW ,∞),(βW ,x)
H ×dx, then the law of (H, ϕ, η, i,∞,x) as a marked quantum surface

is equal to 2(Q−βW )2

γ Mdisk
1,2 (W ).
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Proof. By [ARS22, Lemma 3.13], if Mdisk
1,2 (W ) is embedded as (S, ϕ, iθ,+∞,−∞), then

(ϕ, θ) has the law of

γ

2(Q− βW )2
LF

(βW ,±∞),(γ,iθ)
S (dϕ)1

θ̃∈(0,π)dθ̃. (4.2)

Fix θ ∈ (0, π) and let exp : S → H be the map z 7→ ez. By [ARS22, Lemma 3.14] and

[AHS21, Lemma 2.20], we have

exp∗

(
LF

(βW ,±∞),(γ,iθ)
S

)
= LF

(γ,eiθ),(βW ,∞),(βW ,0)
H .

Let fθ(z) = z
sin θ − cot θ, which sends eiθ 7→ i, ∞ 7→ ∞, and 0 7→ x = − cot θ. By [AHS21,

Proposition 2.16], for any r ∈ R, we have

LF
(γ,i),(βW ,− cot θ),(βW , r

sin θ
−cot θ)

H = (sin θ)2∆γ+2∆β (fθ)∗LF
(γ,eiθ),(βW ,0),(βW ,r)
H ,

where ∆α = α
2 (Q− α

2 ). After multiplying both sides by
(

r
sin θ − cot θ

)2∆βW , we have

( r

sin θ
− cot θ

)2∆βW
LF

(γ,i),(βW ,− cot θ),(βW , r
sin θ

−cot θ)

H

= (sin θ)2∆γ+2∆βW

(
1

sin θ
− cot θ

r

)2∆βW
(fθ)∗

(
r2∆βW LF

(γ,eθi),(βW ,0),(βW ,r)
H

)
.

By [AHS21, Lemma 2.18], taking limit as r → ∞ yields

1

(sin θ)2
LF

(γ,i),(βW ,− cot θ),(βW ,∞)
H = (fθ)∗ LF

(γ,eθi),(βW ,0),(βW ,∞)
H .

Here the convergence is in the vague topology. When θ is sampled from 1(0,π)(θ̃)dθ̃, we have

1

(sin θ)2
LF

(γ,i),(βW ,− cot θ),(βW ,∞)
H = LF

(γ,i),(βW ,∞),(βW ,x)
H × dx

by change of variables x = − cot θ. This completes the proof.
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A direct consequence of [AHS20, Theorem 2.2] is the following.

Theorem 4.1.4. Let (H, ϕ, 0,∞) be the embedding of a sample from Mdisk
0,2 (W + 2). Let η

be sampled from SLEκ(W − 2, 0) on (H, 0,∞) independent of ϕ, then

Mdisk
0,2 (W + 2)⊗ SLEκ(W − 2, 0) = CW,2

∫ ∞

0
Mdisk

0,2 (W, ·, ℓ)×Mdisk
0,2 (2, ℓ, ·)dℓ (4.3)

for some constant CW,2 ∈ (0,∞).

For W > 0, let βW+2 = γ − W
γ . Let (ϕ,x) be sampled from LF

(γ,i),(βW+2,∞),(βW+2,x)
H × dx

and let η be sampled from the chordal SLEH
κ,(x;x−)→∞(W −2). Denote νϕ(a, b) the quantum

boundary length of (a, b) with respect to the random field ϕ. Fix δ ∈ (0, 12) and let Mδ

denote the law of (ϕ,x, η) restricted to the event that νϕ(x,∞) ∈ (δ, 2δ), νϕ(R) ∈ (1, 2) and

i is to the right of η. Let M#
δ = 1

|Mδ|Mδ be the corresponding probability measure.

∞

η

∞∞

i

x

νφ(x,∞) ∈ (δ, 2δ)

φ

νφ(−∞,∞) ∈ (1, 2)

W 2

W 2

Figure 4.1: Illustration of Mδ: first sample (ϕ,x) from LF
(γ,i),(βW+2,∞),(βW+2,x)
H × dx and

then sample η according to SLEH
κ,(x;x−)→∞(W − 2). The Mδ is the restriction (ϕ,x, η) to

the event that νϕ(x,∞) ∈ (δ, 2δ), νϕ(−∞,∞) ∈ (1, 2) and i is to the right of η.

Lemma 4.1.5. Fix W > 0. There exists some constant C ∈ (0,∞) such that for each δ ∈

(0, 12), if (ϕ,x, η) is sampled from Mδ, then the law of marked quantum surface (H, ϕ, η, i,x,∞)
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is

C ·
∫ 2δ

δ

∫ 2−ℓ′

1−ℓ′

∫ ∞

0
Mdisk

0,2 (W ; ℓ, ℓ1)×Mdisk
1,2 (2, ℓ1, ℓ

′)dℓ1dℓdℓ
′. (4.4)

Proof. By Lemma 4.1.3, if we sample (ϕ,x) from

LF
(γ,i),(βW+2,∞),(βW+2,x)
H × dx,

then (H, ϕ, i,x,∞) viewed as a marked quantum surface has the law of C · Mdisk
1,2 (W + 2)

for some constant C ∈ (0,∞). Furthermore, if we sample η from SLEH
κ,(x;x−)→∞(W −

2) conditioning on i is to the right of η, then by Theorem 4.1.4, the quantum surface

(H, ϕ, η, i,x,∞) has the law of

C ·
∫ ∞

0

∫ ∞

0

∫ ∞

0
Mdisk

0,2 (W ; ℓ, ℓ1)×Mdisk
1,2 (2; ℓ1, ℓ

′)dℓdℓ1dℓ
′. (4.5)

Conditioning on νϕ(x,∞) ∈ (δ, 2δ) and νϕ(R) ∈ (1, 2) gives the desired result.

4.1.2. Proof of Proposition 4.1.1 via coupling

Fix W > 0. Sample a pair of quantum surfaces (D1,D2) from

∫ 2

1

∫ ∞

0
Mdisk

0,2 (W ; a, p)×QD1,1(p)dpda (4.6)

and let D1 ⊕ D2 be the curve-decorated quantum surface obtained by conformally welding

the right boundary of D1 and total boundary of D2. Notice that D1 ⊕ D2 has a interior

marked point and a boundary marked point. Let (D, ϕD, ηD, 0, i) be the unique embedding

of D1⊕D2 on (D, 0, i) and let f : H → D be the conformal map with f(i) = 0 and f(∞) = i.

DenoteMD the joint law of (D, ϕD, ηD, 0, i) and letM#
D = 1

|MD|MD be the probability measure

obtained from MD.
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0

i

D1

D2

i x̃δ

D1,δ

D2,δ

0

Figure 4.2: Left: (ϕD, ηD) from M#
D is obtained by embedding D1⊕D2 into (D, 0, i). Right:

(ϕδ, ηδ) from M#
δ is obtained by embedding D1,δ ⊕D2,δ into (D, 0, i).

Next, we recall the definition of M#
δ . For 0 < γ < 2 and W > 0, let βW+2 = γ− W

γ . Sample

(ϕ,x) from LF
(γ,i),(βW+2,∞),(βW+2,x)
H × dx and let η be sampled from SLEH

κ,(x;x−)→∞(W − 2).

Fix δ ∈ (0, 12) and letMδ be the law of (ϕ,x, η) restricted to the event that νϕ(x,∞) ∈ (δ, 2δ),

νϕ(R) ∈ (1, 2) and i is to the right of η. Let M#
δ = 1

|Mδ|Mδ be the corresponding probability

measure.

Sample (ϕ,x, η) fromM#
δ and let D1,δ and D2,δ be the two components such that (H, ϕ, η, i,x)

is the embedding of the surface D1 δ ⊕ D2,δ after conformal welding. Let ϕδ = ϕ ◦ f−1 +

log |(f−1)′| and ηδ = f ◦ η be such that (D, ϕδ, ηδ, 0, i) is the embedding of D1,δ⊕D2,δ. Here

ηδ is the welding interface between D1,δ and D2,δ. Let x̃δ = f(x) be the image of x under f .

Lemma 4.1.6. There exists a coupling between M#
D and M#

δ such that the followings hold:

There exist random simply connected domains Uδ and Ũδ ⊂ D and a conformal map gδ :

Ũδ → Uδ satisfying the following properties: With probability 1− oδ(1), we have

1. ϕD(z) = ϕδ ◦ gδ(z) +Q log |g′δ(z)|, for z ∈ Ũδ.

2. diam(D\Uδ) = oδ(1) and diam(D\Ũδ) = oδ(1).

3. |x̃δ − i| = oδ(1).

4. supz∈K |gδ(z)− z| = oδ(1), for any compact set K ⊂ D.
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In order to prove Lemma 4.1.6, we need the following two basic coupling results on the

quantum disk. The first one is on QD1,1. Suppose D as a quantum surface has the law of

QD1,1 and it has emebdding (H, ϕ, i,−1). Let Dε := (Hε, ϕ, i,−1,−1− 2ε), where Hε =

H\Bε(−1− ε) with Bε(−1− ε) = {z ∈ C : |z + 1 + ε| ≤ ε}.

Lemma 4.1.7 ([ARS22, Lemma 5.17]). For ε > 0 and ℓ > 0, suppose D and D̃ are sampled

from QD1,1(ℓ)
# and QD1,1(ℓ̃)

# respectively, then the law of D̃ε converges in total variation

distance to Dε as ℓ̃→ ℓ.

The second coupling result is on Mdisk
0,2 (W ). Suppose D is sampled from Mdisk

0,2 (W ) and it

has embedding (D, ϕ,−i, i). With a slight abuse of notation, let Dε := (Dε, ϕ, αε, α′
ε, i,−i),

where Bε(i) = {z ∈ C : |z − i| ≤ ε}, Dε = D\Bε(i), and {αε, α′
ε} = ∂D ∩ ∂Bε(i).

Lemma 4.1.8. Fix W > 0. For ε, ℓ, r, ℓ̃, r̃ > 0, suppose D and D̃ are sampled from

Mdisk
0,2 (W ; ℓ, r)# and Mdisk

0,2 (W ; ℓ̃, r̃)# respectively, then D̃ε converges in total variation dis-

tance to D as (ℓ̃, r̃) → (ℓ, r).

Proof. The proof follows directly from [AHS20, Proposition 2.23].

Lemma 4.1.9. Suppose (ϕ,x, η) is sampled from M#
δ and let A = νϕ(−∞,x), B = νϕ(x,∞)

and P = νϕ(η), then as δ → 0, B converges to 0 in probability and the M#
δ -law of (A,P )

converges in total variation distance to a probability measure on (1, 2)×(0,∞) whose density

function is proportional to

fW (a, p)p
− 4
γ2

+1
dadp, (4.7)

where fW (a, p) = |Mdisk
0,2 (W ; a, p)|.

Proof. By Proposition 5.1 and [AHS21, Lemma 3.3], we have

|Mdisk
0,2 (W ; ℓ, r)| = fW (ℓ, r) and |Mdisk

1,2 (2; ℓ, r)| = C(ℓ+ r)
− 4
γ2

+1
. (4.8)
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By (4.4), the M#
δ -law of (A,P,B) is a probability measure on the space

Sδ =
{
(a, p, b) ∈ (0,∞)3 : b ∈ (δ, 2δ), a+ b ∈ (1, 2)

}
,

whose density function is proportional to

m(a, p, b) = fW (a, p)(p+ b)
− 4
γ2

+1
.

Therefore, we have

|Mδ| =
∫
Sδ

m(a, p, b)dadpdb.

By definition of M#
δ , for any ε > 0, we have limδ→0M

#
δ [B > ε] = 0. As δ → 0, the

limiting M#
δ -law of (A,P ) is a probability measure on (1, 2)× (0,∞) whose density function

is proportional to fW (a, p)p
− 4
γ2

+1. This completes the proof.

0

i i x̃δ

0

D
ε
1

D
ε
2

D
ε
1,δ

D
ε
2,δ

gδ :
˜Uδ → Uδ

Figure 4.3: We can couple M#
D and M#

δ so that the light green and pink quantum surfaces
agree with high probability. The domain Ũδ is the interior of Dε

1 ∪ Dε
2 in the embedding of

D1 ⊕D2 and Uδ is the interior of Dε
1,δ ∪ Dε

2,δ in the embedding of D1,δ ⊕D2,δ.

Proof of Lemma 4.1.6. Recall the definition of marked quantum surfaces D1 and D2 embed-

ded as (D, ϕD, ηD, 0, i). Let Ã and P̃ be the left and right boundary length of D1 respectively.

The law of (Ã, P̃ ) is the probability measure on [1, 2]× (0,∞) proportional to

∣∣∣Mdisk
0,2 (W ; a, p)

∣∣∣ |QD1,1(p)| ∝ fW (a, p)p
− 4
γ2

+1
. (4.9)
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Conditioning on (Ã, P̃ ), the joint law of (D1,D2) is Mdisk
0,2 (W ; Ã, P̃ )# ×QD1,1(P̃ )

#.

Next, let Aδ and Pδ be the left and right boundary of D1,δ respectively and let Bδ be

the right boundary of D2,δ. By Lemma 4.1.9, as δ → 0, M#
δ -law of (Aδ, Pδ) converges in

law to (Ã, P̃ ) and Bδ → 0 in probability. Therefore, we can couple M#
δ and M#

D so that

(Aδ, Pδ) = (Ã, P̃ ) with probability 1 − oδ(1). By Lemma 4.1.7 and 4.1.8, there exists a

coupling between (Dε
1,Dε

2) and (Dε
1,δ,Dε

2,δ) such that

lim
δ→0

P
[
(Dε

1,Dε
2) = (Dε

1,δ,Dε
2,δ)
]
= 1 (4.10)

for some ε = oδ(1) with sufficiently slow decay. Let Ũδ denote the interior of Dε
1 ∪ Dε

2

in the embedding of D1 ⊕ D2 and Uδ denote the interior of Dε
1,δ ∪ Dε

2,δ in the embedding

of D1,δ ⊕ D2,δ. By conformal welding, the marked quantum surfaces (Ũδ, ϕD, 0, i
−) and

(Uδ, ϕ
δ, 0, i−) agree with probability 1 − oδ(1). On this high probability event, there exists

a unique conformal map gδ : Ũδ → Uδ such that ϕD = ϕδ ◦ gδ +Q log |g′δ| with gδ(0) = 0 and

gδ(i
−) = i−.

Notice that the random simply connected domain Ũδ is completely determined by M#
D .

Almost surely under M#
D , the {D\Ũδ}δ is a sequence of shrinking compact sets in the eu-

clidean sense, i.e., diam(D\Ũδ) = oδ(1) and
⋂
δ>0D\Ũδ = {i}. By the coupling between

M#
D and M#

δ , we know that diam(D\Ũδ) = oδ(1) with probability 1 − oδ(1). Notice that

diam(D\Ũδ) = 0 if and only if the harmonic measure of D\Ũδ viewed from 0 in Ũδ tends to

0 as δ → 0. Therefore, in our coupling, with probability 1 − oδ(1), the harmonic measure

of D\Ũδ viewed from 0 in Ũδ is oδ(1). Since the harmonic measure is conformally invariant

and by (4.10), with probability 1− oδ(1), harmonic measure of D\Uδ viewed from 0 in Uδ is

also oδ(1). Hence, we have diam(D\Uδ) = oδ(1) with probability 1− oδ(1). This proves (2)

in Lemma 4.1.6.

By construction, we know that x̃δ ∈ D\Uδ and |x̃δ− i| ≤ diam (D\Uδ). The above argument

directly implies that |x̃δ− i| = oδ(1) with probability 1−oδ(1). Therefore (3) is also proved.
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Finally, by (4.10), we have gδ(0) = 0, gδ(i−) = i−, diam(D\Uδ) = oδ(1), and diam(D\Ũδ) =

oδ(1) with probability 1− oδ(1), the standard conformal distortion estimates imply (4).

Proof of Proposition 4.1.1. For the convenience of readers, we first recall the definition and

basic setup regarding M#
δ on H: For W > 0, let βW+2 = γ − W

γ . Sample (ϕ,x) from

LF
(γ,i),(βW+2,∞),(βW+2,x)
H ×dx and let η be sampled from SLEH

κ,(x;x−)→∞(W−2). Fix δ ∈ (0, 12)

and let M#
δ be the probability law of (ϕ,x, η) restricted to the event that νϕ(x,∞) ∈ (δ, 2δ),

νϕ(R) ∈ (1, 2) and i is to the right of η. Sample (ϕ,x, η) from M#
δ and let D1,δ and D2,δ

be the two components such that (H, ϕ, η, i,x) is the embedding of the conformally welded

surface D1 δ ⊕D2,δ.

We first prove the results on (D, 0, i) instead of (H, i,∞). Let f : H → D be the conformal

map such that f(i) = 0 and f(∞) = i. In the end, since both M#
δ and M#

D are probability

laws, we can pull back all the results via f−1. Let ϕδ = ϕ ◦ f−1 + log |(f−1)′| and ηδ = f ◦ η

be such that (D, ϕδ, ηδ, 0, i) is an embedding of D1,δ ⊕D2,δ. Let x̃δ = f(x) be the image of

x under f . Here ηδ represents the welding interface between D1,δ and D2,δ.

By Lemma 4.1.6, there exists a coupling between M#
D and M#

δ such that

lim
δ→0

P
[
(Dε

1,Dε
2) = (Dε

1,δ,Dε
2,δ)
]
= 1 (4.11)

for some ε = oδ(1) with sufficiently slow decay (this is (4.10)). Moreover, let Uδ be the

interior of Dε
1,δ ∪ Dε

2,δ ⊂ D and let Ũδ be the interior of Dε
1 ∪ Dε

2 ⊂ D. Then there exists

a unique conformal map gδ : Ũδ → Uδ such that with probability 1 − oδ(1), |x̃δ − i| =

oδ(1) and supz∈K |gδ(z) − z| = oδ(1) for any compact set K ⊂ D. Take K = D1 ⊆ D

and by definition of M#
D , ηD ⊆ ∂D1. The image of ηD under gδ is ηδ ⊂ ∂D1,δ. Since

supz |gδ(z) − z| = oδ(1), there exist parametrizations pδ : [0, 1] → ηδ and pD : [0, 1] → ηD

such that |gδ(pD(t)) − pD(t)| = |pδ(t) − pD(t)| = oδ(1) for all t ∈ [0, 1]. Hence, under such

coupling between M#
D and M#

δ , with probability 1− oδ(1), there exist parametrizations pδ

and pD of ηδ and ηD respectively, such that supt∈[0,1] |pδ(t) − pD(t)| = oδ(1), which implies
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the topology of convergence under coupling is the same as (3.11).

Next, by Lemma 4.1.6, |x̃δ − i| = oδ(1) with probability 1 − oδ(1), and for any instance

of x̃δ, ηδ has the law of SLED
κ,(x̃δ;x̃δ

+)→i
(W − 2)[·|0 ∈ D2,δ]. By Corollary 3.3.8, for any

deterministic sequence xδ on ∂D that converges to i in euclidean distance as δ → 0,

SLED
κ,(xδ;x

+
δ )→i

(W − 2)[·|0 ∈ D2,δ]
w−→ SLEbubble

κ,i (W − 2)[·|0 ∈ D2] (4.12)

in the distance (3.11). Hence , under M#
D , ηD is independent of ϕD and has the law of

SLEbubble
κ,i (W − 2)[·|0 ∈ D2]. By pulling back all the results above on D to H via f−1, we

have that

∫ 2

1
ϕ(ℓ)dℓ×SLEbubble

κ,0 (W −2)[·|i ∈ Dη(0)] =

∫ 2

1

∫ ∞

0
Mdisk

0,2 (W ; ℓ, r)×QD1,1(r)drdℓ (4.13)

for some unknown Liouville field ϕ. Finally, by the identical scaling argument in the proof

of [ARS22, Theorem 4.1], the integration on [1, 2] in (4.13) can be replaced by (0,∞). This

completes the proof.

4.2. Law of field via quantum triangles

4.2.1. Preliminaries on quantum triangles

Our derivation of field law relies on the conformal welding of quantum triangles with quan-

tum disks. In this section, we recall the definition of quantum triangles and review the

conformal welding theorem between quantum triangle and quantum disk ([ASY22]).

Definition 4.2.1 (Thick quantum triangle, [ASY22, Definition 2.17]). For W1,W2,W3 >

γ2

2 , set βi = γ + 2−Wi
γ < Q for i = 1, 2, 3, and let LF

(β1,+∞),(β2,−∞),(β3,0)
S be the Liouville

field on S with insertion β1, β2, β3 at +∞,−∞ and 0, respectively. Let ϕ be sampled from

1

(Q− β1)(Q− β2)(Q− β3)
LF

(β1,+∞),(β2,−∞),(β3,0)
S .
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Define QT(W1,W2,W3) to be the law of the three-pointed quantum surface

(S, ϕ,+∞,−∞, 0)/ ∼γ

and we call a sample from QT(W1,W2,W3) a quantum triangle of weight (W1,W2,W3).

One can also define the conditional law of quantum disks/triangles on fixed boundary length.

This is again done by disintegration.

Definition 4.2.2 ([ASY22, Definition 2.26]). Fix W1,W2,W3 >
γ2

2 . Let βi = γ+ 2−Wi
γ and

β = β1 + β2 + β3. Sample h from PH and set

h̃(z) = h(z) + (β − 2Q) log |z|+ − β1 log |z| − β2 log |z − 1|.

Fix ℓ > 0 and let L12 = ν
h̃
([0, 1]). We define QT(W1,W2,W3; ℓ), the quantum triangles of

weights W1,W2,W3 with left boundary length ℓ, to be the law of h̃ + 2
γ log

ℓ
L12

under the

reweighted measure 2
γ
ℓ
1
γ (β−2Q)−1

L
1
γ (β−2Q)

12

PH(dh). The same thing holds if we replace L12 = ν
h̃
([0, 1])

by L13 = ν
h̃
((−∞, 0]) or L23 = ν

h̃
([1,+∞)).

Lemma 4.2.3 ([ASY22, Lemma 2.27]). In the same settings of Definition 4.2.2, the sample

from QT(W1,W2,W3; ℓ) has left boundary length ℓ, and we have

QT(W1,W2,W3) =

∫ ∞

0
QT(W1,W2,W3; ℓ)dℓ. (4.14)

Let SLEκ(ρ−; ρ+, ρ1) be the law of a chordal SLEκ on H from 0 to ∞ with force points

0−, 0+, 1, with corresponding weights ρ−, ρ+, ρ1 respectively. Moreover, suppose η is a curve

from 0 to ∞ on H that does not touch 1. Let Dη be the connected component of H\η

containing 1 and ψη is the unique conformal map from the component Dη to H fixing 1 and

sending the first (resp. last) point on ∂Dη hit by η to 0 (resp. ∞). Define the measure
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S̃LEκ(ρ−; ρ+, ρ1;α) on curves from 0 to ∞ on H as follows:

dS̃LEκ(ρ−; ρ+, ρ1;α)

dSLEκ(ρ−; ρ+, ρ1)
(η) = ψ′

η(1)
α. (4.15)

Theorem 4.2.4 ([ASY22, Theorem 1.2]). Suppose W,W1,W2,W3 > 0 and

γ2

2
/∈ {W1,W2,W3,W +W1,W +W2}.

Let

α =
W3 +W2 −W1 − 2

4κ
(W3 +W1 + 2−W2 − κ) . (4.16)

Then there exist some constant C = CW,W1,W2 ∈ (0,∞) such that

QT(W +W1,W +W2,W3)⊗ S̃LEκ(W − 2;W2 − 2,W1 −W2;α)

= C ·
∫ ∞

0
Mdisk

0,2 (W ; ℓ)×QT(W1,W2,W3; ℓ)dℓ.
(4.17)

4.2.2. Quantum disks with generic bulk and boundary insertions

Definition 4.2.5 (Special case of Definition 2.2.6). Let α, β ∈ R. Fix p ∈ R and q ∈ H.

Suppose (h, c) is sampled from C
(β,p),(α,q)
H PH ×

[
e(

1
2
β+α−Q)cdc

]
, where

C
(β,p),(α,q)
H = |p|−β(Q−β

2
)

+ (2ℑq)−
α2

2 |q|−2α(Q−α)
+ .

Then the field ϕ(z) = h(z)−2Q log |z|++αGH(z, q)+
β
2GH(z, p)+c has the law of LF(β,p),(α,q)

H .

Moreover, If p = ∞, let (h, c) be sampled from C
(β,∞),(α,q)
H PH ×

[
e(

1
2
β+α−Q)cdc

]
, where

C
(β,∞),(α,q)
H = (2ℑq)−

α2

2 |q|−2α(Q−α)
+ .

Let ϕ∞(z) = h(z) + (β − 2Q) log |z|+ + αGH(z, q) + c and ϕ∞ has the law of LF(β,∞),(α,p)
H .

Proposition 4.2.6 ([ARS22, Proposition 3.9]). Suppose (H, ϕ, i, 0) is an embedding of
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QD1,1, then ϕ has the law of C0 · LF(γ,i),(γ,0)
H for some fixed finite constant C0.

Definition 4.2.7. Fix α, β ∈ R. Define the quantum surface QD1,1(α, β) as follows: suppose

(H, ϕ, i, 0) is an embedding of QD1,1(α, β), then the law of ϕ is LF
(α,i),(β,0)
H . Notice that

QD1,1(γ, γ) = C ·QD1,1 for some finite constant C.

Lemma 4.2.8. Fix α, β ∈ R and let h be sampled from PH. Let h̃(z) = h(z) + αGH(z, i) +

β
2GH(z, 0) − 2Q log |z|+ and L = ν

h̃
(R). Let LF(α,i),(β,0)

H (ℓ) be the law of h̃ + 2
γ log

ℓ
L under

the reweighted measure 2−α
2/2 2

γ
ℓ
2
γ (α+

β
2 −Q)−1

L
2
γ (α+

β
2 −Q)

PH, and let QD1,1(α, β; ℓ) be the measure on

quantum surfaces (H, ϕ, 0, i) with ϕ being sampled from LF
(α,i),(β,0)
H (ℓ). Then QD1,1(α, β; ℓ)

is a measure on quantum surfaces with (quantum) boundary length ℓ, and

LF
(α,i),(β,0)
H =

∫ ∞

0
LF

(α,i),(β,0)
H (ℓ)dℓ and QD1,1(α, β) =

∫ ∞

0
QD1,1(α, β; ℓ)dℓ.

(4.18)

Proof. Suppose ϕ has the law of h̃+ 2
γ log

ℓ
L , then we have

νϕ(R) =
∫
R
e
γ
2
ϕ(x)dx =

ℓ

L

∫
R
e
γ
2
h̃(x)dx = ℓ. (4.19)

Therefore, we have νϕ(R) = ℓ almost surely under LF
(α,i),(β,0)
H (ℓ). Moreover, for any non-

negative measurable function F on H−1(H), we have

∫ ∞

0

∫
F

(
h̃+

2

γ
log

ℓ

L

)
2−α

2/2 2

γ

ℓ
2
γ
(α+β

2
−Q)−1

L
2
γ
(α+β

2
−Q)

PH(dh)dℓ

=

∫ ∫ ∞

−∞
F (h̃+ c)2−α

2/2e(α+
β
2
−Q)cdcPH(dh)

(4.20)

by Fubini’s theorem and change of variable c = 2
γ log

ℓ
L . This matches the field law in

Definition 2.2.6. Hence (4.18) is proved.

Definition 4.2.9 (QD with one general boundary insertion). Fix α ∈ R and let (H, ϕ, i, 0)

be an embedding of QD1,1(γ, α). Let L = νϕ(R) denote the total quantum boundary length
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and A = µϕ(H) denote the total quantum area. Let QD0,1(γ, α) be the law of (H, ϕ, 0)

under the reweighted measure A−1QD1,1(γ, α). For integers n ≥ 0 and m ≥ 1, let (H, ϕ)

be sampled from the re-weighted measure AnLm−1QD0,1(γ, α), then independently sample

ω1, . . . , ωm−1 and z1, . . . , zn according to ν#ϕ and µ#ϕ respectively. Let QDn,m(γ, α) denote

the law of (H, ϕ, 0, ω1, . . . , ωm−1, z1, . . . , zn) viewed as a measure on equivalence class Dn,m.

Notice that in the above definition, we only have one general boundary insertion (with weight

α). All the other insertions (both bulk and boundary) are quantum typical.

α α

γ γ

α

γ γ

γ

γ

Figure 4.4: Left: QD0,1(γ, α) Middle: QD0,3(γ, α) Right: QD2,3(γ, α)

More generally, for fixed ℓ1, . . . , . . . , ℓm, like in [AHS20, Section 2.6], we can define the

measure QD1,m(γ, α)(ℓ1, ℓ2, . . . , ℓm) using disintegration and it satisfies

QD1,m(γ, α) =

∫ ∞

0
. . .

∫ ∞

0
QD1,m(γ, α; ℓ1, . . . , ℓm)dℓ1 . . . dℓm. (4.21)

4.2.3. Conformal weldings of thin and thick disks

Lemma 4.2.10. For W > γ2

2 , let βW = γ + 2−W
γ < Q. Then we have

QD0,3(γ, βW ) = C ·QT(2, 2,W ) (4.22)

for some finite constant C.
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Proof. After applying [AHS21, Lemma 2.31] twice, we have

LF
(βW ,0)
H (dϕ)νϕ(dx)νϕ(dy) = LF

(βW ,0),(γ,x),(γ,y)
H (dϕ)dxdy. (4.23)

By disintegration, we can fix an embedding of QD0,3(γ, α) to be (H, ϕ,−1, 0, 1) so that ϕ

has the law of C · LF(βW ,0),(γ,−1),(γ,1)
H for some finite constant C. Let f : H → S be the

conformal map such that f(−1) = −∞, f(1) = ∞ and f(0) = 0. Therefore, by Definition

4.2.1, it has the law of QT(2, 2,W ) under push-forward of f . This completes the proof.

Lemma 4.2.11. Recall LF(βi,zi)i
H from Definition 2.2.4. We have

LF
(βi,zi)i
H

[
f(ϕ)

∫
H
g(u)µϕ(du)

]
= LF

(βi,zi)i,(γ,u)
H [f(ϕ)]g(u)d2u (4.24)

for non-negative measurable functions f and g.

Proof. The proof is identical to that of [AHS21, Lemma 2.33] with Ĉ replaced by H.

Next we recall the decomposition theorem of thin quantum disk with one additional typical

boundary marked point that is crucial to our derivation of the field law.

Lemma 4.2.12 ([AHS20, Proposition 4.4]). For W ∈ (0, γ
2

2 ), we have

Mdisk
2,• (W ) =

(
1− 2

γ2
W

)2

Mdisk
0,2 (W )×Mdisk

2,• (γ2 −W )×Mdisk
0,2 (W ). (4.25)
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γ
2
−W

γ
2
−W

W

W
W

W
2 2

γ
2 + 2− αγ

2

W W

γ
2 + 2− αγ

Figure 4.5: When 0 < W < γ2

2 , welding QD1,1(γ, α) with Mdisk
0,2 (W ) is equivalent to first

welding QD0,3(γ, α) with three independent quantum disks Mdisk
0,2 (W ), Mdisk

2,• (γ2 −W ) and
Mdisk

0,2 (W ) separately then de-weighting all the three additional boundary marked points
and sampling an bulk marked point in the blue region according to quantum area measure.

Proposition 4.2.13. Fix 0 < γ < 2 and 0 < W < γ2

2 . For α ≤ γ < Q, let Wα =

2− (α− γ)γ ≥ 2 > γ2

2 . Let (H, ϕ, η, 0, i) be an embedding of

∫ ∞

0
QD1,1(γ, α; ℓ)×Mdisk

0,2 (W ; ℓ)dℓ. (4.26)

Then ϕ has the law of C · LF(β2W+Wα ,0),(γ,i)
H for some finite constant C. Notice that α =

βWα = Q+ γ
2 − Wα

γ .

Proof. Fix 0 < W < γ2

2 and α ≤ γ. Start with the following four quantum surfaces:

QD0,3(γ, α),Mdisk
0,2 (W ),Mdisk

0,2 (γ2 −W ) and Mdisk
0,2 (W ). (4.27)

Notice that QD0,3(γ, α) has one α insertion and two γ insertions along its boundary. First,

weld two Mdisk
0,2 (W ) disks along the boundaries of QD0,3(γ, α) with γ and α insertions, then

weld Mdisk
0,2 (γ2−W ) along the boundary of QD0,3(γ, α) with two γ insertions. Precisely, we
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consider

Weld
(
QD0,3(γ, α),Mdisk

0,2 (W )×Mdisk
0,2 (γ2 −W )×Mdisk

0,2 (W )
)

:=

∫ ∞

0

(∫∫ ∞

0
Mdisk

0,2 (W ; ℓ1)QD0,3(γ, α; ℓ1, ℓ2, ℓ3)Mdisk
0,2 (W ; ℓ3)dℓ1dℓ3

)
·

Mdisk
0,2 (γ2 −W ; ℓ2)dℓ2

=

∫ ∞

0

(∫∫ ∞

0
Mdisk

0,2 (W ; ℓ1)QD0,3(γ, α; ℓ1, ℓ2, ℓ3)Mdisk
0,2 (W ; ℓ3)dℓ1dℓ3

)
·

ℓ−1
2 Mdisk

2,• (γ2 −W ; ℓ2)dℓ2

= L−1
2 ·Weld(QD0,3(γ, α),Mdisk

0,2 (W )×Mdisk
2,• (γ2 −W )×Mdisk

0,2 (W ))

=

(
1− 2

γ2
W

)−2

· L−1
2 ·Weld

(
QD0,3(γ, α),Mdisk

2,• (W )
)
,

(4.28)

where L2 denotes the quantum length of welding interface between QD0,3(γ, α), Mdisk
0,2 (γ2−

W ) and

Weld
(
QD0,3(γ, α),Mdisk

2,• (W )
)
:=

∫ ∞

0
QD0,3(γ, α; ℓ)×Mdisk

2,• (W ; ·, ℓ)dℓ. (4.29)

In (4.29), QD0,3(γ, α; ℓ) represents the QD0,3(γ, α) conditioning on having total boundary

length ℓ and Mdisk
2,• (W ; ·, ℓ) represents the Mdisk

2,• (W ) conditioning on having left boundary

length ℓ. By de-weighting all the three marked points on the welding interface and sampling

an additional bulk marked points in the inner region of (4.29), we have

Weld
(
QD0,3(γ, α),Mdisk

2,• (W )
)
=

∫ ∞

0
QD0,3(γ, α; ℓ)×Mdisk

2,• (W ; ℓ)dℓ

=

∫ ∞

0
ℓ2 ·QD0,1(γ, α; ℓ)×Mdisk

2,• (W ; ℓ)dℓ

=

∫ ∞

0
ℓ3 ·QD0,1(γ, α; ℓ)×Mdisk

0,2 (W ; ℓ)dℓ

= L3
T ·Weld(QD0,1(γ, α),Mdisk

0,2 (W ))

= L3
T ·A−1

I ·Weld(QD1,1(γ, α),Mdisk
0,2 (W )),

(4.30)

where LT denotes the quantum length of the total welding interface and AI denotes the
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quantum area of QD0,1(γ, α). Hence, by (4.28), (4.30), we have

Weld
(
QD0,3(γ, α),Mdisk

0,2 (W )×Mdisk
0,2 (γ2 −W )×Mdisk

0,2 (W )
)

=

(
1− 2

γ2
W

)−2

· L−1
2 · L3

T ·A−1
I ·Weld(QD1,1(γ, α),Mdisk

0,2 (W )).

(4.31)

By applying Theorem 4.2.4 three times, we know that suppose (H, ϕ, η1, η2, η3, 0, 1,−1) is

an embedding of

Weld
(
QD0,3(γ, α),Mdisk

0,2 (W )×Mdisk
0,2 (γ2 −W )×Mdisk

0,2 (W )
)
,

then ϕ is independent of (η1, η2, η3) and has the law of C · LF(β2W+Wα ,0),(0,−1),(0,1)
H for some

finite constant C. Here we emphasize the fact that weights of insertions −1 and 1 are both

zero due to the computation

β2+W+(γ2−W ) = β2+γ2 = 0,

where the 2 comes from the insertion γ on QD0,3(γ, α), the W comes from Mdisk
0,2 (W ) and

the γ2−W comes from Mdisk
0,2 (γ2−W ). Finally, by quantum surface relationship (4.31) and

Lemma 4.2.11, we know that suppose (H, ϕ, 0, i, η) is an embedding of

Weld
(
QD1,1(γ, α),Mdisk

0,2 (W )
)
,

then ϕ has the law of C · LF(β2W+Wα ,0),(γ,i)
H for some finite constant C.

4.2.4. Proof of Theorem 1.1.1

In this section, we prove Theorem 1.1.1 by inductively welding thin disks along the QD1,1.
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≡

2

W ≥
γ
2

2 W ≥
γ
2

2

W̃ = W

3
∈ (0, γ

2

2
) ˜W

2 + 4˜W

Figure 4.6: Illustration of the induction procedure in the proof of Theorem 1.1.1: suppose
W ≥ γ2

2 and W̃ = W
3 ∈ (0, γ

2

2 ), then welding a thick quantum disk Mdisk
0,2 (W ) is equivalent

to welding three thin quantum disks Mdisk
0,2 (W̃ ). Notice that here we only care about the

law of the underlying random field.

Proof of Theorem 1.1.1. By Proposition 4.1.1, we have the correct curve law and know that

the curve law is independent of the underlying random field. Therefore, it remains to derive

the field law. Fix 0 < γ < 2 and 0 < W < γ2

2 . For α ≤ γ, let Wα = 2− (α − γ)γ ≥ 2. Let

(H, ϕ, η, 0, i) be an embedding of quantum surface

∫ ∞

0
QD1,1(γ, α; ℓ)×Mdisk

0,2 (W ; ℓ)dℓ. (4.32)

By Proposition 4.2.13, ϕ has the law of C · LF(β2W+Wα ,0),(γ,i)
H for some finite constant C.

Therefore, in order to prove the Theorem 1.1.1, we only need to extend the range of W from

(0, γ
2

2 ) to (0,∞). For any W ≥ γ2

2 , there exists some integer n ≥ 2 such that W̃ = W
n ∈
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(0, γ
2

2 ). Moreover, by Theorem 3.2.2, we have

∫ ∞

0
QD1,1(ℓ)×Mdisk

0,2 (W ; ℓ)dℓ

=

∫ ∞

0
QD1,1(ℓ)·Mdisk

0,2 (W̃ ; ℓ, ℓ1)Mdisk
0,2 (W̃ ; ℓ1, ℓ2) . . .Mdisk

0,2 (W̃ ; ℓn−2, ℓn−1)Mdisk
0,2 (W̃ ; ℓn−1, ℓn)︸ ︷︷ ︸

n thin disks

 dℓ⃗

=

∫ ∞

0

((((
QD1,1(ℓ)Mdisk

0,2 (W̃ ; ℓ, ℓ1)
)
Mdisk

0,2 (W̃ ; ℓ1, ℓ2)
)
. . .
)
Mdisk

0,2 (W̃ ; ℓn−1, ℓn)
)
dℓ⃗,

(4.33)

where dℓ⃗ = dℓdℓ1, . . . , dℓn. Notice that QD1,1 = C · QD1,1(γ, γ) by definition and Wγ = 2.

By applying Proposition 4.2.13 n times from the inner bracket to outer bracket, we have that

suppose (H, ϕ, η, 0, i) is an embedding of (4.32), then ϕ has the law of C · LF
(γ,i),(β

2+2nW̃
,0)

H ,

which is the same as C · LF(γ,i),(β2+2W ,0)
H for some finite constant C. This completes the

proof.

4.3. Proof of Theorem 1.1.3 via uniform embeddings of quantum surfaces

4.3.1. Uniform embeddings of quantum surfaces

To start, let us recall the setups of the uniform embedding of quantum surfaces described

in Section 2.3.3. Let conf(H) be the group of conformal automorphisms of H where group

multiplication · is the function composition f · g = f ◦ g. Let mH be a Haar measure

on conf(H), which is both left and right invariant. Suppose f is sampled from mH and

ϕ ∈ H−1(H), then we call the random function f •γ ϕ = ϕ ◦ f−1 +Q| log(f−1)′| the uniform

embedding of (H, ϕ) via mH. By invariance property of Haar measure, the law of f •γ ϕ only

depends on (H, ϕ) as quantum surface. Let (zi)1≤i≤n ∈ H, (sj)1≤j≤m ∈ ∂H be groups of bulk

and boundary marked points respectively. Suppose (H, h, z1 . . . , zn, s1, . . . , sm) is a marked

quantum surface, then we call mH ⋉ (H, h, z1 . . . , zn, s1, . . . , sm) the uniform embedding of

(H, h, z1 . . . , zn, s1, . . . , sm) via mH.
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Lemma 4.3.1 ([ARS22, Lemma 3.7]). Define three measures A,N,K on the conformal

automorphism group conf(H) on H as follows. Sample t from 1t>0
1
t dt and let a : z 7→ tz.

Sample s from Lebesgue measure on R and let n : z 7→ z + s. Sample u from 1−π
2
<u<π

2
du

and let k : z 7→ z cosu−sinu
z sinu+cosu . Let A,N,K be the law of a, n, k respectively, then the law of

a ◦ n ◦ k under A×N ×K is equal to mH.

Lemma 4.3.2. Suppose f is sampled from mH, then the joint law of (f(0), f(i)) is

1

ℑq · |p− q|2
dpdq2. (4.34)

Proof. By the definition of A,N and K in Lemma 4.3.1, the f(i) and f(0) have the marginal

law of ts+ ti and t tanu+ ts respectively, where t is sampled from 1{t>0}
1
t dt, s is sampled

from ds, and u is sampled from 1{−π
2
<u<π

2
}du. Let x = ts, y = t and z = t tanu+ st, then

we have
1

t
dsdtdu =

(
1

y2
dxdy

)(
y

y2 + (z − x)2
dz

)
=

1

ℑq · |p− q|2
dpd2q.

Therefore the joint law of (f(0), f(i)) is 1
ℑq·|p−q|2dpdq

2.

Lemma 4.3.3. Let f ∈ conf(H) be such that f(0) = p ∈ R and f(i) = q ∈ H, then we have

that

|f ′(i)| = ℑq and f ′(0) =
|q − p|2

ℑq
. (4.35)

Proof. Write f(z) = az+b
cz+d with ad− bc = 1. Since f(0) = p and f(i) = q, we have that



ℜ(q) = ac+bd
c2+d2

,

ℑ(q) = 1
c2+d2

,

p = b
d ,

ad− bc = 1.

Furthermore, we have |f ′(i)| = 1
c2+d2

and f ′(0) = 1
d2

. Since c2

d2
= |ℜ(q−p)|2

|ℑq|2 and c2+ d2 = 1
ℑq ,
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f ′(0) = |ℜ(q−p)|2
ℑq + ℑq = |q−p|2

ℑq and |f ′(i)| = ℑq. This completes the proof.

4.3.2. Proof of Theorem 1.1.3

Fix p ∈ R and γ ∈ (0, 2). Recall that for any η ∈ BubbleH(p), the Dη(p) denotes the

component of H\η which is encircled by η. Let |Dη(p)| denote the euclidean area of Dη(p).

For W > 0, let ρ =W − 2. Define

˜SLEbubble
κ,p (ρ) :=

1

|Dη(p)|

∫
H
|q − p|W− 2W (W+2)

γ2 (ℑq)
W (W+2)

γ2
−W

2 SLEbubble
κ,p (ρ)[dη|q ∈ Dη(p)]d

2q.

(4.36)

Lemma 4.3.4. For W > 0, let β2W+2 = γ − 2W
γ . There exists some constant C ∈ (0,∞)

such that

mH ⋉
(∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ

)
= C · LF(β2W+2,p)

H (dϕ)× ˜SLEbubble
κ,p (ρ)(dη)dp.

(4.37)

Furthermore, we have

mH,0⋉
(∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ

)
= C ·LF(β2W+2,0)

H (dϕ)× ˜SLEbubble
κ,0 (ρ)(dη), (4.38)

where recall that mH,0 is a Haar measure on conf(H, 0), i.e., the group of conformal auto-

morphisms of H fixing 0.

Proof. By Theorem 1.1.1, suppose (H, ϕ, η, 0, i) is an embedding of the quantum surface

∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD1,1(ℓ)dℓ,

then (ϕ, η) has the law of

C · LF(γ,i),β2W+2,0)
H (dϕ)× SLEbubble

κ,0 (ρ)[dη|i ∈ Dη(0)] (4.39)
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for some constant C ∈ (0,∞). By Proposition 2.2.9 and Lemma 4.3.3, for any f ∈ conf(H)

with f(0) = p ∈ R and f(i) = q ∈ H, we have

f∗LF
(γ,i),(β2W+2,0)
H = |f ′(0)|∆β2W+2 |f ′(i)|2∆γLF(γ,q),(β2W+2,p)

H

=

(
|q − p|2

ℑq

)∆β2W+2

· (ℑq)2∆γ · LF(γ,q),(β2W+2,p)
H .

(4.40)

Recall that for α ∈ R, ∆α = α
2 (Q− α

2 ). By Lemma 4.3.2, if f is sampled from a mH, then

the joint law of (f(0), f(i)) is 1
ℑq·|p−q|2dpdq

2. Therefore, suppose f is sampled from a mH,

then f∗LF
(γ,i),(β2W+2,0)
H has the law of

1

ℑq · |p− q|2
·
(
|q − p|2

ℑq

)∆β2W+2

· (ℑq)2∆γ · LF(γ,q),(β2W+2,p)
H dpdq2

= |q − p|W− 2W (W+2)

γ2 (ℑq)
W (W+2)

γ2
−W

2 LF
(γ,q),(β2W+2,p)
H dpd2q.

(4.41)

Moreover, since SLEbubble
κ,0 (ρ)[dη|i ∈ Dη(0)] is a probability measure, for fixed f ∈ conf(H)

with f(0) = p and f(i) = q, we have

f∗SLE
bubble
κ,0 (ρ)[dη|i ∈ Dη(0)] = SLEbubble

κ,0 (ρ)[dη|q ∈ Dη(p)]. (4.42)

Combining (4.39), (4.41) and (4.42), we have

mH ⋉
(∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD1,1(ℓ)dℓ

)
= C · |q − p|W− 2W (W+2)

γ2 (ℑq)
W (W+2)

γ2
−W

2 LF
(γ,q),(β2W+2,p)
H × SLEbubble

κ,0 (ρ)[dη|q ∈ Dη(p)]dpd
2q.

(4.43)

On the other hand, by [AHS21, Lemma 2.32] (the proof is identical with the domain replaced

78



by H), we have that

LF
(β2W+2,p)
H (dϕ)× ˜SLEbubble

κ,p (ρ)(dη)1Dη(p)(µϕ(d
2q))dp

= LF
(β2W+2,p),(γ,q)
H (dϕ)× ˜SLEbubble

κ,p (ρ)(dη)1Dη(p)(d
2q)dp

= LF
(β2W+2,p),(γ,q)
H (dϕ) · |q − p|W− 2W (W+2)

γ2 (ℑq)
W (W+2)

γ2
−W

2 SLEbubble
κ,p (ρ)[dη|q ∈ Dη(p)]d

2qdp.

(4.44)

Hence, by (4.43) and (4.44), we have

mH⋉
(∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD1,1(ℓ)dℓ

)
= C · LF(β2W+2,p)

H (dϕ)× ˜SLEbubble
κ,p (ρ)(dη)µϕ(1Dη(p)d

2q)dp

(4.45)

for some constant C ∈ (0,∞). After de-weighting both sides of (4.45) by the quantum area

of Dη(p) and forgetting the bulk marked point, we have

mH ⋉
(∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ

)
= C · LF(β2W+2,p)

H (dϕ)× ˜SLEbubble
κ,p (ρ)(dη)dp

(4.46)

since quantum area is invariant under the Haar measure mH. Furthermore, if we consider

the mH,0, which is a Haar measure on the subgroup of conf(H) fixing 0, i.e., conf(H, 0), then

we have

mH,0⋉
(∫ ∞

0
Mdisk

0,2 (W ; ·, ℓ)×QD0,1(ℓ)dℓ

)
= C ·LF(β2W+2,0)

H (dϕ)× ˜SLEbubble
κ,0 (ρ)(dη). (4.47)

Note that equation (4.47) should be viewed as the disintegration of equation (4.46) over its

boundary marked point.

Lemma 4.3.5. Fix ρ > −2. Then there exists some constant C ∈ (0,∞) such that

SLEbubble
κ,0 (ρ) = C · ˜SLEbubble

κ,0 (ρ), (4.48)
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where the constant C equals to SLEbubble
κ,0 (ρ)[i ∈ Dη(0)].

Proof. Notice that

|Dη(0)| · SLEbubble
κ,0 (ρ)(dη) =

∫
H
1q∈Dη(0)SLE

bubble
κ,0 (ρ)(dη)d2q

=

∫
H
SLEbubble

κ,0 (ρ)[q ∈ Dη(0)] · SLEbubble
κ,0 (ρ)[dη|q ∈ Dη(0)]d

2q.

Let ψ ∈ conf(H) be such that ψ(i) = q and ψ(0) = 0 and it is easy to show that ψ′(0) = |q|2
ℑq .

By [Zha22, Theorem 3.16], we have

SLEbubble
κ,0 (ρ)[q ∈ Dη(0)] = ψ′(0)−α · SLEbubble

κ,0 (ρ)[i ∈ Dη(0)], (4.49)

where α = (ρ+2)(2ρ+8−κ)
2κ . Since W = ρ+ 2, we have

ψ′(0)−α = |q|W− 2W (W+2)
κ (ℑq)−

W
2
+
W (W+2)

κ . (4.50)

Hence,

SLEbubble
κ,0 (ρ)[q ∈ Dη(0)] = C · |q|W− 2W (W+2)

κ (ℑq)−
W
2
+
W (W+2)

κ , (4.51)

where C = SLEbubble
κ,0 (ρ)[i ∈ Dη(0)] ∈ (0,∞) by Corollary 3.3.8. Therefore, by (4.36),

SLEbubble
κ,0 (ρ) = C · 1

|Dη(0)|

∫
H
|q|W− 2W (W+2)

κ (ℑq)−
W
2
+
W (W+2)

κ SLEbubble
κ,0 (ρ)[dη|q ∈ Dη(0)]d

2q

= C · ˜SLEbubble
κ,0 (ρ).

(4.52)

This completes the proof.

Corollary 4.3.6. Fix ρ > −2 and p ∈ R. Then there exists some constant C ∈ (0,∞) such

that

SLEbubble
κ,p (ρ) = C · ˜SLEbubble

κ,p (ρ). (4.53)
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Proof. Fix p ∈ R. Let fp ∈ conf(H) be such that fp(z) = z + p. Since SLEbubble
κ,0 [dη|q ∈

Dη(0)] is a probability measure on BubbleH(0, q) for all q,

fp

(
SLEbubble

κ,0 [dη|q ∈ Dη(0)]
)
= SLEbubble

κ,p [dη|q ∈ Dη(p)]. (4.54)

Hence,

fp

(
˜SLEbubble
κ,0 (ρ)

)
= fp

(
1

|Dη(0)|

∫
H
|q|W− 2W (W+2)

κ (ℑq)−
W
2
+
W (W+2)

κ SLEbubble
κ,0 (ρ)[dη|q ∈ Dη(0)]d

2q

)
=

1

|Dη(p)|

∫
H
|q − p|W− 2W (W+2)

κ (ℑ(q − p))−
W
2
+
W (W+2)

κ SLEbubble
κ,p (ρ)[dη|q ∈ Dη(p)]d

2q

=
1

|Dη(p)|

∫
H
|q − p|W− 2W (W+2)

κ (ℑq)−
W
2
+
W (W+2)

κ SLEbubble
κ,p (ρ)[dη|q ∈ Dη(p)]d

2q

= ˜SLEbubble
κ,p (ρ).

(4.55)

By Lemma 4.3.5, we have

SLEbubble
κ,0 (ρ) = C · ˜SLEbubble

κ,0 .(ρ) (4.56)

The (4.53) follows from applying fp on both sides of (4.56).

Proof of Theorem 1.1.3. Theorem 1.1.3 follows immediately from Lemma 4.3.4, Lemma

4.3.5.
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CHAPTER 5

SLE BUBBLE ZIPPERS WITH A GENERIC INSERTION AND

APPLICATIONS

5.1. SLE bubble zippers with a generic bulk insertion

5.1.1. Quantum disks with a generic bulk insertion

Definition 5.1.1 (same as Definition 2.2.6). For α, β ∈ R, let ϕ be sampled from LF
(α,i),(β,0)
H .

We denote QD1,1(α, β) the infinite measure describing the law of quantum surface (H, ϕ, 0, i).

Lemma 5.1.2. Fix α, β ∈ R and q ∈ H, and we have

(ℑq)2∆α−∆β |q|2∆βLF(α,q)(β,0)
H = (f∞)∗LF

(β,∞),(α,i)
H , (5.1)

where f∞ ∈ conf(H) is the conformal map with f∞(∞) = 0 and f∞(i) = q.

Proof. For each r > 0, let fr ∈ conf(H) be a conformal map such that fr(r) = 0 and

fr(i) = q. By Proposition 2.2.9, we have

LF
(β,0),(α,q)
H = |f ′r(i)|−2∆α |f ′r(r)|−∆β (fr)∗LF

(β,r),(α,i)
H . (5.2)

Assume fr(z) = arz+br
crz+dr

, where ardr − brcr = 1. Trivially, we have |f ′r(z)| = 1
(crz+dr)2

. Since

fr(r) = 0 and fr(i) = q, we have


ℑq = 1

c2r+d
2
r
,

ℜq = arcr+brdr
c2r+d

2
r
,

arr + br = 0.
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After solving the above equations, we have


|f ′r(r)| = a2r =

|q|2
(r2+1)ℑq ,

|f ′r(i)| = ℑq,
and



ar =
|q|√

r2+1
√
ℑq ,

br = − r|q|√
r2+1

√
ℑq ,

cr =

√
|q|2(r2+1)−(ℑq−rℜq)2√

r2+1
√
ℑq|q| ,

dr =

√
ℑq(1−rℜq

ℑq )√
r2+1|q| .

After multiplying rβ(Q−β
2
) on both sides of (5.2), we have

(
rβ(Q−β

2
)

(r2 + 1)
β
2
(Q−β

2
)

)
(ℑq)2∆α−∆β |q|2∆βLF(α,q),(β,0)

H = rβ(Q−β
2
)(fr)∗

[
LF

(β,r),(α,i)
H

]
.

As r → ∞, the left hand side becomes (ℑq)2∆α−∆β |q|2∆βLF(α,q),(β,0)
H . The right hand side

converges in vague topology to (f∞)∗LF
(β,∞),(α,i)
H follows from the facts that fr → f∞ in

the topology of uniform convergence of analytic function and its derivatives on all compact

sets and [AHS21, Lemma 2.18]. This completes the proof.

Lemma 5.1.3. Let α1, α2, β ∈ R and ℓ > 0. For ε > 0, we define the measure LF
(α2,i),(β,0)
H,ε

through the Radon-Nikodym derivative as follows:

LF
(α2,i),(β,0)
H,ε (ℓ)

LF
(α1,i),(β,0)
H (ℓ)

(ϕ) := ε
1
2
(α2

2−α2
1)e(α2−α1)ϕε(i).

Furthermore, we have the weak convergence of measures

lim
ε→0

LF
(α2,i),(β,0)
H,ε (ℓ) = LF

(α2,i),(β,0)
H (ℓ).

Proof. We know that if ϕ is sampled from LF
(α,i),(β,0)
H (1)#, then ϕ + 2

γ log ℓ has the law of

LF
(α,i),(β,0)
H (ℓ)#. Moreover, we have

|LF(α,i),(β,0)
H,ε (ℓ)|

|LF(α,i),(β,0)
H,ε (1)|

=
|LF(α,i),(β,0)

H (ℓ)|
|LF(α,i),(β,0)

H (1)|
= ℓ

2
γ (

β
2
+α−Q)−1

.
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Let

h̃j = h− 2Q log | · |+ + αjGH(·, i) +
β

2
GH(·, 0), j = 1, 2

and h̃2,ε = h̃1+(α2−α1)GH,ε(·, i), where GH,ε(z, i) is the average of Green function GH(z, ·)

over ∂B(i, ε). Notice that Var (hε(i)) = − log ε − log 2 + oε(1) and E
[
e(α2−α1)hε(i)

]
=

(1 + oε(1)) (2ε)
− 1

2
(α2−α1)2 . Furthermore, the average of −2Q log | · |+ αGH(·, i) + β

2GH(·, 0)

over ∂B(i, ε) is −α log(2ε) + oε(1). Let L1 = ν
h̃1
(R), L2 = ν

h̃2
(R) and L2,ε = ν

h̃2,ε
(R). For

any bounded continuous function F on H−1(H), we have

∫
ε

1
2
(α2

2−α2
1)e

(α2−α1)(h̃1ε(i)− 2
γ
logL1)F (h̃1 − 2

γ
logL1) · 2−

α21
2 · 2

γ
L
− 2
γ
(β
2
+α1−Q)

1 dh

=

∫
(1 + oε(1))

E[e(α2−α1)hε(i)]
e(α2−α1)hε(i)F (h̃1 − 2

γ
logL1) · 2−

α22
2 · 2

γ
L
− 2
γ
(β
2
+α2−Q)

1 dh

=

∫
(1 + oε(1))F (h̃2,ε −

2

γ
logL2,ε) · 2−

α22
2 · 2

γ
L
− 2
γ
(β
2
+α2−Q)

2,ε dh

ε→0−−−→
∫
F (h̃2 − 2

γ
logL2) · 2−

α22
2 · 2

γ
L
− 2
γ
(β
2
+α2−Q)

2 dh.

The second equality follows from the Girsanov’s Theorem. Since L2 = (1 + oε(1))L2,ε and

supx∈R |GH(x, i) − GH,ε(x, i)| = oε(1), the final ε limit follows from the the Dominated

Convergence Theorem.

5.1.2. Proof of Theorem 1.1.5

Proof of Theorem 1.1.5. By Theorem 1.1.1, we have

LF
(β2W+2,0),(γ,i)
H (1)×m = CW ·

∫ ∞

0
QD1,1(ℓ)×Mdisk

0,2 (W ; 1, ℓ)dℓ.

Let (Y, η) be sampled from the left hand side. Let ψη : H → Dη(i) be the conformal map

fixing 0 and i and ξη : H → Dη(∞) be such that ξη(0) = 0−, ξη(1) = 0+ and ξη(∞) = ∞.

Let X,Z ∈ H−1(H) be such that

X = Y ◦ ψη +Q log |ψ′
η| and Z = Y ◦ ξη +Q log |ξ′η|.
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Notice that QD1,1(ℓ) embedded in (H, 0, i) has the law of C · LF(γ,i),(γ,0)
H (r). Therefore, the

X has the law of

CW

∫ ∞

0
|Mdisk

0,2 (W ; 1, ℓ)| · LF(γ,i),(γ,0)
H (ℓ)dℓ.

The conditional law of marked quantum surface (H, Z, 0, 1) givenX is Mdisk
0,2 (βW ; 1, νX(R))#.

Next, if we re-weight X by ε
1
2
(α2−γ2)e(α−γ)Xε(i) and send ε to 0, the law of X converges

weakly to

CW

∫ ∞

0
|Mdisk

0,2 (W ; 1, ℓ)| · LF(α,i),(γ,0)
H (ℓ)dℓ.

Consequently, the law of Z conditioned on re-weighted X is Mdisk
0,2 (W ; 1, νX(R))#.

Next, let θi,ε be the uniform probability measure on ∂B(i, ε) for sufficiently small ε. Let

θηi,ε = (ψη)∗(θi,ε) be the push-forward of θi,ε under ψη. Since ψ′
η is holomorphic and log |ψ′

η|

is harmonic,

Xε(i) = (X, θi,ε) = (Y ◦ ψη +Q log |ψ′
η|, θ

η
i,ε) = (Y, θηi,|ψ′

η(i)|ε
) +Q log |ψ′

η(i)|.

Therefore, re-weighting by ε
1
2
(α2−γ2)e(α−γ)Xε(i) is equivalent to re-weighting by

ε
1
2
(α2−γ2)e

(α−γ)[(Y,θη
i,|ψ′

η(i)|ε
)+Q log |ψ′

η(i)|]

=
(
ε|ψ′

η(i)|
) 1

2
(α2−γ2)

e
(α−γ)(Y,θη

i,|ψ′
η(i)|ε

)
|ψ′
η(i)|−

1
2
α2+Qα−2.

Hence, we conclude that for any bounded continuous F onH−1(H)3 and bounded continuous

function g on BubbleH(0, i) equipped with Hausdorff topology,

lim
ε→0

∫∫
CW

(
ε|ψ′

η(i)|
) 1

2
(α2−γ2)

e
(α−γ)(Y,θη

i,|ψ′
η(i)|ε

)
F (X,Y, Z)LF

(β2W+2,0),(γ,i)
H (1)(dY )g(η)mα(dη)

=

∫∫
CWF (X̃, Ỹ , Z̃)LF

(β2W+2,0),(γ,i)
H (1)(dỸ )g(η̃)mα(dη̃).

By conformal welding, (X,Z) is uniquely determined by (Y, η). Similarly, (Ỹ , η̃) is uniquely
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determined by (X̃, Z̃). Therefore, when (Ỹ , η̃) is sampled from LF
(β2W+2,0),(γ,i)
H × mα, X̃

has the law of

CW ·
∫ ∞

0
|Mdisk

0,2 (W ; 1, ℓ)| · LF(α,i),(γ,0)
H (ℓ)dℓ

and the conditional law of marked quantum surface (H, Z̃, 0, i) given X̃ is Mdisk
0,2 (W ; 1, ν

X̃
(R)).

This finishes the proof.

5.2. Applications

5.2.1. Preliminary results on integrabilities of LCFT

First, we recall the double gamma function Γb(z). For b such that ℜ(b) > 0, Γb(z) is the

meromorphic on C such that

ln Γb(z) =

∫ ∞

0

1

t

(
e−zt − e−(b+ 1

b
)t/2

(1− e−bt)(1− e−
1
b
t)

−
(
1
2(b+

1
b )− z

)2
2

e−t +
z − 1

2(b+
1
b )

t

)
dt

for ℜ(z) > 0 and it satisfies the following two shift equations:

Γb(z)

Γb(z + b)
=

1√
2π

Γ(bz)b−bz+
1
2 and

Γb(z)

Γb(z +
1
b )

=
1√
2π

Γ

(
1

b
z

)(
1

b

)− 1
b
z+ 1

2

. (5.3)

The above two shift equations allow us to extend Γb(z) meromorphically from ℜ(z) > 0 to

the entire complex plane C. It has simple poles at −nb−m1
b for nonnegative integers m,n.

The double sine function is defined as

Sb(z) :=
Γb(z)

Γb(b+
1
b − z)

. (5.4)

We can now define the Liouville reflection coefficient R. For fixed µ1, µ2 > 0, let σj ∈ C

satisfy µj = eiπγ(σj−
Q
2
) and ℜσj = Q

2 for j = 1, 2 and define the following two meromorphic
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functions for β ∈ C as belows::

R(β, µ1, µ2) =
(2π)

2
γ
(Q−β)− 1

2 ( 2γ )
γ
2
(Q−β)− 1

2

(Q− β)Γ(1− γ2

4 )
2
γ
(Q−β)

Γ γ
2
(β − γ

2 )e
iπ(σ1+σ2−Q)(Q−β)

Γ γ
2
(Q− β)S γ

2
(β2 + σ2 − σ1)S γ

2
(β2 + σ1 − σ2)

,

(5.5)

R(β, µ1, µ2) = −Γ

(
1− 2

γ
(Q− β)

)
R(β, µ1, µ2). (5.6)

Proposition 5.2.1 ([RZ22, Theorem 1.7]). Let βW = Q = γ
2 − W

γ ∈ (γ2 , Q). Let µ1, µ2 ≥ 0

not both be zero. Recall random field ĥ defined in Definition 2.3.2 of Mdisk
0,2 (W ). We have

that

E
[(
µ1νĥ(R) + µ2νĥ(R+ πi)

) 2
γ
(Q−βW )

]
= R(βW , µ1, µ2). (5.7)

Lemma 5.2.2 ([AHS21, Lemma 3.3]). For W ∈ [γ
2

2 , γQ) and βW = Q+ γ
2 − W

γ , let L1, L2

denote the left and right boundary length of weight W quantum disk Mdisk
0,2 (W ), then the law

of µ1L1 + µ2L2 is

1ℓ>0R(βW , µ1, µ2)ℓ
− 2
γ2
W
dℓ.

Let W = 2, µ1 = µ2 = 1 and by independent sampling property of Mdisk
0,2 (2), we have the

following results on the joint law of left and right boundary length.

Proposition 5.2.3 ([DMS20], Proposition 5.1). For ℓ, γ > 0, we have

|Mdisk
0,2 (2; ℓ, r)| = (2π)

4
γ2

−1

(1− γ2

4 )Γ(1−
γ2

4 )
4
γ2

(ℓ+ r)
− 4
γ2

−1
. (5.8)

Proposition 5.2.4 ([AHS21, Proposition 3.4]). For W ∈ (γ
2

2 , γ
2) and βW = Q + γ

2 − W
γ .

Let L1 and L2 be the left and right quantum boundary lengths of weight-W quantum disk
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Mdisk
0,2 (W ), and we have

Mdisk
0,2 (W )

[
1− e−µ1L1−µ2L2

]
= − γ

2(Q− β)
R(βW ;µ1, µ2). (5.9)

Next, we recall the two-pointed correlation function of the Liouville theory on H that was

introduced in Section 1.1.2 when µ = 0, µ∂ > 0. For bulk insertions zi with weights αi and

boundary insertions sj with weights βj , the correlation function of LCFT at these points is

defined using the following formal path integral:

〈
N∏
i=1

eαiϕ(zi)
M∏
j=1

e
βj
2
ϕ(sj)

〉
µ∂

=

∫
X:H→R

DX
N∏
i=1

eαiX(zi)
M∏
j=1

e
βj
2
X(sj)e−S

L
µ∂

(X). (5.10)

In the above formula, DX is the formal uniform measure on infinite dimensional function

space and Sµ∂L (X) is the Liouville action functional given by

SLµ∂ (X) :=
1

4π

∫
H

(
|∇gX|2 +QRgX

)
dλg +

1

2π

∫
R

(
QKgX + 2πµ∂e

γ
2
X
)
dλ∂g. (5.11)

For background Riemannian metric g on H, ∇g, Rg,Kg, dλg, dλ∂g stand for the gradient,

Ricci curvature, Geodesic curvature, volume form and line segment respectively. The sub-

script µ∂ emphases the fact that we are considering the case when µ = 0, µ∂ > 0. For z ∈ H

and s ∈ R, the bulk-boundary correlator is

〈
eαϕ(z)e

β
2
ϕ(s)
〉
µ∂

=
G(α, β)

|z − z|2∆α−∆β |z − s|2∆β
. (5.12)

Next, we introduce the rigorous mathematical definition of G(α, β).

Definition 5.2.5 ([RZ22, Definition 1.5]). The function G(α, β) is defined as

G(α, β) =
2

γ
Γ

(
2α+ β − 2Q

γ

)(
µ

2Q−2α−β
γ

B

)
G(α, β),
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where for β < Q and γ
2 − α < β

2 < α:

G(α, β) = E

(∫
R

g(x)
γ
4
( 2
γ
−α−β

2
)

|x− i|γα
e
γ
2
h(x)dx

) 2
γ
(Q−α−β

2
)
 . (5.13)

In the above formula, g(x) = 1
|x|4+

, |x|+ = max(|x|, 1) and h(x) is sampled from PH.

Theorem 5.2.6 ([RZ22, Theorem 1.7]). For γ ∈ (0, 2), β < Q and γ
2 − α < β

2 < α,

G(α, β) =

(
2
γ
2
(β
2
−α)2π

Γ(1− γ2

4 )

) 2
γ
(Q−α−β

2
)
Γ(γα2 + γβ

4 − γ2

4 )Γ γ
2
(α− β

2 )Γ γ
2
(α+ β

2 )Γ γ
2
(Q− β

2 )
2

Γ γ
2
(Q− β

2 )Γ γ
2
(α)2Γ γ

2
(Q)

.

(5.14)

Lemma 5.2.7. Fix ℓ > 0. Let γ, β, α be such that γ ∈ (0, 2), β < Q, γ2 − α < β
2 < α. Let h

be sampled from PH and let h∞(z) = h(z) + (β − 2Q) log |z|+ +αGH(z, i). Let ϕ be sampled

from LF
(β,∞),(α,i)
H (dϕ) and for each bounded non-negative measurable function f on (0,∞),

we have

LF
(β,∞),(α,i)
H [f(νϕ(R))] =

∫ ∞

0
f(ℓ)2−

α2

2 ℓ
2
γ
( 1
2
β+α−Q)−1 · 2

γ
·G(α, β)dℓ,

where G(α, β) is the two point (one bulk, one boundary) correlation function of Liouville

theory on H.

Proof. It suffices to consider the case when f(ℓ) = 1a<ℓ<b(ℓ). By direct computation,

LF
(β,∞),(α,i)
H [f(νϕ(R))] = E

[∫
R
1
{e
γ
2 cνh∞(R)∈(a,b)}

2−
α2

2 e(
1
2
β+α−Q)cdc

]
= E

[∫ b

a
νh∞(R)

2
γ
(Q−α− 1

2
β)
2−

α2

2 ℓ
2
γ
( 1
2
β+α−Q)−1 · 2

γ
dℓ

]
=

∫ b

a
2−

α2

2 ℓ
2
γ
( 1
2
β+α−Q)−1 · 2

γ
· E
[
ν

2
γ
(Q−α− 1

2
β)

h∞(R)

]
dℓ.

The second line follows from the change of variable ℓ = e
γ
2
cνh∞(R). The third line follows
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from the finiteness of E
[
ν

2
γ
(Q−α− 1

2
β)

h∞(R)

]
and Fubini’s theorem. The finiteness of

E
[
ν

2
γ
(Q−α− 1

2
β)

h∞(R)

]

is proved in [RZ22, Proposition 5.1]. Furthermore,

E
[
ν

2
γ
(Q−α− 1

2
β)

h∞(R)

]
= lim

ε↓0
E

[(∫
R
ε
γ2

4 e
γ
2
hε(x)e

γ
2
[(β− 4

γ
) log |x|++αG̃H(x,i)]dx

) 2
γ
(Q−α− 1

2
β)
]

= lim
ε↓0

E


∫

R
e
γ
2
hε(x)− γ2

2
E[hε(x)2] |x|

γα+ γβ
2
−2

+

|x− i|γα
dx


2
γ
(Q−α− 1

2
β)


= E


∫

R
e
γ
2
hε(x)− γ2

2
E[hε(x)2] |x|

γα+ γβ
2
−2

+

|x− i|γα
dx


2
γ
(Q−α− 1

2
β)


= E


∫

R
e
γ
2
h(x) |x|

γα+ γβ
2
−2

+

|x− i|γα
dx


2
γ
(Q−α− 1

2
β)


= G(α, β).

This completes the proof.

5.2.2. Moments of the conformal radius of SLEκ(ρ) bubbles

By (1.11) in Theorem 1.1.5,

LF
(β2W+2,0),(α,i)
H (1)×mα = CW ·

∫ ∞

0
QD1,1(α, γ; ℓ)×Mdisk

0,2 (W ; 1, ℓ)dℓ (5.15)

for W > 0 and α ∈ R. By definition of mα (1.10),

|mα| = E
[
|ψ′
η(i)|2∆α−2

]
(5.16)
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since m is a probability measure. Therefore, taking mass on both sides of (5.15) yields

∣∣∣LF(β2W+2,0),(α,i)
H (1)

∣∣∣ · E [|ψ′
η(i)|2∆α−2

]
= CW ·

∫ ∞

0

∣∣QD1,1(α, γ; ℓ)
∣∣ ∣∣∣Mdisk

0,2 (W ; 1, ℓ)
∣∣∣ dℓ.
(5.17)

Lemma 5.2.8. Fix ℓ > 0 and q ∈ H. Let γ, β, α be such that γ ∈ (0, 2), β < Q and
γ
2 − α < β

2 < α. Then we have

|LF(β,0),(α,q)
H (ℓ)| = |q|−2∆β (ℑq)∆β−2∆α · 2−

α2

2 ℓ
2
γ
( 1
2
β+α−Q)−1 · 2

γ
·G(α, β). (5.18)

Moreover, for µ > 0, β < Q and Q− α < β
2 < α, we have

LF
(β,0),(α,q)
H

[
e−µνϕ(R)

]
= |q|−2∆β (ℑq)∆β−2∆α2−

α2

2
2

γ
·G(α, β)µ

2
γ
(Q−α− 1

2
β)
Γ

(
2

γ

(
1

2
β + α−Q

))
.

(5.19)

Proof. By Lemma 5.2.7 and Lemma 5.1.2, for bounded continuous function f on (0,∞),

β < Q and γ
2 − α < β

2 < α,

LF
(β,0),(α,q)
H [f(νϕ(R))] = |q|−2∆β (ℑq)∆β−2∆αLF

(β,∞),(α,i)
H [f(νϕ(R))]

= |q|−2∆β (ℑq)∆β−2∆α · 2−
α2

2

∫ ∞

0
f(ℓ)ℓ

2
γ
( 1
2
β+α−Q)−1 · 2

γ
·G(α, β)dℓ.

When f(ℓ) = e−µℓ, for β < Q and Q− α < β
2 < α,

∫ ∞

0
e−µℓℓ

2
γ
( 1
2
β+α−Q)−1

dℓ = µ
2
γ
(Q−α− 1

2
β)
Γ

(
2

γ

(
1

2
β + α−Q

))
.

This completes the proof.
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Special Case: W = 2

When W = 2, ∆β6 = ∆γ− 4
γ
= 2− 8

γ2
. By (5.17), we have

∣∣∣∣LF(γ− 4
γ
,0),(α,i)

H (1)

∣∣∣∣ · E [|ψ′
η(i)|2∆α−2

]
= C2 ·

∫ ∞

0
|QD1,1(α, γ; ℓ)||Mdisk

0,2 (2; 1, ℓ)|dℓ. (5.20)

Furthermore, we renormalize the moments of the conformal radius of SLEκ bubbles so that

there is no additional multiplicative constant on the right hand side. More specifically, we

define the renormalized moments of the conformal radius to be

CR2(α) :=
E
[
|ψ′
η(i)|2∆α−2

]
C2

and therefore have

∣∣∣∣LF(γ− 4
γ
,0),(α,i)

H (1)

∣∣∣∣ · CR2(α) =

∫ ∞

0
|QD1,1(α, γ; ℓ)||Mdisk

0,2 (2; 1, ℓ)|dℓ.

Proposition 5.2.9 (Moments of the conformal radius of SLEκ bubbles, same as Proposition

1.1.6). Fix W = 2, ρ = 0 and γ
2 < α < Q+ 2

γ . Suppose η is sampled from SLEbubble
κ,0 [dη|i ∈

Dη(0)], then we have

E
[
|ψ′
η(i)|2∆α−2

]
=

Γ(2αγ )Γ( 8κ − 2α
γ + 1)

Γ( 8κ − 1)
. (5.21)

Consequently,

E
[
Rad(Dη(0), i)

2∆α−2
]
= 22∆α−2 ·

Γ(2αγ )Γ( 8κ − 2α
γ + 1)

Γ( 8κ − 1)
. (5.22)

Proof. By Lemma 5.2.8, when α > 2
γ ,

∣∣∣∣LF(γ− 4
γ
,0),(α,i)

H (1)

∣∣∣∣ = 2−
α2

2 · 2
γ
·G(α, γ − 4

γ
) (5.23)
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and when α > γ
2 ,

|QD1,1(α, γ; r)| = 2−
α2

2 r
2
γ
(α−Q) 2

γ
G(α, γ). (5.24)

By [AHS21, Proposition 5.1],

|Mdisk
0,2 (2; 1, r)| = (2π)

4
γ2

−1

(1− γ2

4 )Γ(1−
γ2

4 )
4
γ2

(1 + r)
− 4
γ2

−1
.

Notice that when 2
γ < α < Q+ 2

γ ,

∫ ∞

0

r
2
γ
α

[(1 + r)r]
4
γ2

+1
dr = B

(
2

γ
(α−Q) + 1,

8

γ2
− 2α

γ
+ 1

)
=

Γ( 2γ (α−Q) + 1)Γ( 8
γ2

− 2α
γ + 1)

Γ( 4
γ2

+ 1)

=
Γ(2αγ − 4

κ)Γ(
8
κ − 2α

γ + 1)

Γ( 4κ + 1)
,

where B(x, y) is the Beta function with parameter x, y. Therefore, when max{γ2 ,
2
γ } < α <

Q+ 2
γ , we have

CR2(α) =
G(α, γ)

G(α, γ − 4
γ )

· (2π)
4
κ
−1

(1− κ
4 )Γ(1−

κ
4 )

4
κ

Γ(2αγ − 4
κ)Γ(

8
κ − 2α

γ + 1)

Γ( 4κ + 1)
. (5.25)

By shifting relation (2.30) in [RZ22],

G(α, γ)

G(α, γ − 4
γ )

=
κ
4Γ(1−

κ
4 )

4
κ

(2π)
4
κ 21−

8
κ

·
Γ(2αγ − 1)Γ( 4κ)

2

Γ( 8κ − 1)Γ( 4κ − 1)Γ(2αγ − 4
κ)
.

Therefore, when 2
γ < α < Q+ 2

γ , the renormalized moments of the conformal radius is equal
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to

CR2(α) =
1

π

κ

4− κ
2

8
κ
−2

Γ(2αγ − 1)Γ( 4κ)
2

Γ( 8κ − 1)Γ( 4κ − 1)Γ(2αγ − 4
κ)

Γ(2αγ − 4
κ)Γ(

8
κ − 2α

γ + 1)

Γ( 4κ + 1)

=
2

8
κ
−2

π

Γ(2αγ − 1)Γ( 4κ)

Γ( 8κ − 1)Γ(2αγ − 4
κ)

Γ(2αγ − 4
κ)Γ(

8
κ − 2α

γ + 1)

Γ( 4κ + 1)

=
2

8
κ
−2

π
· κ
4
·
Γ(2αγ − 1)Γ( 8κ − 2α

γ + 1)

Γ( 8κ − 1)

=
κ

4
√
π
·
Γ(2αγ − 1)Γ( 8κ − 2α

γ + 1)

Γ( 4κ)Γ(
4
κ − 1

2)
.

(5.26)

Notice that the lower bound α > 2
γ comes from Γ(2αγ − 4

κ). However, this term is transitory

and will be canceled with a term in G(α,γ)

G(α,γ− 4
γ
)
. Therefore, by analytic continuation of Gamma

function, (5.26) holds when γ
2 < α < Q+ 2

γ . Therefore, when α = γ,

CR2(γ) =
1

C2
=

κ

4
√
π
·

Γ( 8κ − 1)

Γ( 4κ)Γ(
4
κ − 1

2)

Hence, when γ
2 < α < Q+ 2

γ ,

E
[
|ψ′
η(i)|2∆α−2

]
=

CR2(α)

CR2(γ)
=

Γ(2αγ )Γ( 8κ − 2α
γ + 1)

Γ( 8κ − 1)
. (5.27)

Next, we verify the Proposition 5.2.9 by using the Laplace transform of total boundary

length νϕ(R). As we will see, it will produce the exact same formula. We mention this

computation to motivate our calculation of general weight-W case. From now on, let LW

and RW denote the left and right quantum boundary length of Mdisk
0,2 (W ) respectively.

Lemma 5.2.10. Let µ > 0 and we have

LF
(γ− 4

γ
,0),(α,i)

H [e−µνϕ(R)] · CR2(α) = Mdisk
0,2 (2)[e−µR2 |QD1,1(α, γ;L2)|]

94



Proof. By definition of welding operation, the L2 is also equal to outer boundary of QD1,1(α, γ).

Therefore,

LF
(γ− 4

γ
,0),(α,i)

H

[
e−µνϕ(R)

]
· E
[
|ψ′
η(i)|2∆α−2

]
= C2 ·

∫ ∞

0
Mdisk

0,2 (2; ℓ)[e−µR2 ]QD1,1(α, γ; ℓ)dℓ

= C2 ·
∫ ∞

0
Mdisk

0,2 (2; ℓ)
[
e−µR2 |QD1,1(α, γ; ℓ)|

]
dℓ

= C2 · Mdisk
0,2 (2)

[
e−µR2 · |QD1,1(α, γ;L2)|

]
.

(5.28)

Proof of Proposition 5.2.9 using Laplace transform. We first simplify last line of (5.28). By

(5.19), when Q− α < γ
2 < α and γ < Q, i.e., α > 2

γ ,

Mdisk
0,2 (2)

[
e−µR2 |QD1,1(α, γ;L2)|

]
= 2−

α2

2
2

γ
G(α, γ)Mdisk

0,2 [e−µR2L
2
γ
(α−Q)

2 ]

= 2−
α2

2
2

γ
G(α, γ)

(2π)
4
γ2

−1

(1− γ2

4 )Γ(1−
γ2

4 )
4
γ2

∫∫ ∞

0
e−µℓr

2
γ
(α−Q)

(ℓ+ r)
− 4
γ2

−1
dℓdr.

Let r = ℓ · t and dr = dt · ℓ. We have

∫∫ ∞

0
e−µℓr

2
γ
(α−Q)

(ℓ+ r)
− 4
γ2

−1
dℓdr =

∫∫ ∞

0
e−µℓ(ℓt)

2
γ
(α−Q)

(ℓ+ ℓ · t)−
4
γ2

−1
ℓdtdℓ

=

(∫ ∞

0

ℓ
2
γ
(α−Q)

e−µℓ

ℓ
4
γ2

dℓ

)(∫ ∞

0

t
2
γ
(α−Q)

(1 + t)
4
γ2

+1
dt

)
.

When 2
γ (α−Q)− 4

γ2
> −1, i.e., α > 4

γ ,

∫ ∞

0

ℓ
2
γ
(α−Q)

e−µℓ

ℓ
4
γ2

dℓ = µ
8
γ2

− 2α
γ Γ

(
2α

γ
− 8

γ2

)
.
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Furthermore, when 2
γ < α < Q+ 2

γ ,

∫ ∞

0

t
2
γ
(α−Q)

(1 + t)
4
γ2

+1
dr = B

(
2

γ
(α−Q) + 1,

8

γ2
− 2α

γ
+ 1

)
=

Γ( 2γ (α−Q) + 1)Γ( 8
γ2

− 2α
γ + 1)

Γ( 4
γ2

+ 1)

=
Γ(2αγ − 4

κ)Γ(
8
κ − 2α

γ + 1)

Γ( 4κ + 1)
,

where B(x, y) is the Beta function with parameter x, y. To conclude, when 4
γ < α < Q+ 2

γ ,

Mdisk
0,2 (2)[e−µR2 |QD1,1(α, γ;L2)|]

= 2−
α2

2
2

γ
G(α, γ)

(2π)
4
κ
−1

(1− κ
4 )Γ(1−

κ
4 )

4
κ

µ
8
κ
− 2α

γ Γ

(
2α

γ
− 8

κ

)
Γ(2αγ − 4

κ)Γ(
8
κ − 2α

γ + 1)

Γ( 4κ + 1)
.

On the other hand, when γ − 4
γ < Q and Q− α < γ

2 − 2
γ < α, i.e., α > 4

γ ,

LF
(γ− 4

γ
,0),(α,i)

H [e−µνϕ(R)] = 2−
α2

2
2

γ
G(α, γ − 4

γ
)µ

8
κ
− 2α

γ Γ

(
2α

γ
− 8

κ

)
.

Therefore, when 4
γ < α < Q+ 2

γ , we have

CR(α) =
G(α, γ)

G(α, γ − 4
γ )

(2π)
4
κ
−1

(1− κ
4 )Γ(1−

κ
4 )

4
κ

Γ(2αγ − 4
κ)Γ(

8
κ − 2α

γ + 1)

Γ( 4κ + 1)
,

which is identical to our previous calculation (5.25). Notice that by analytic continuation,

we can again extend the range of α to (γ2 , Q+ 2
γ ) in the end.

General weight-W case

In this section, we compute the moments of the conformal radius of SLEbubble
κ,0 (W −2)[dη|i ∈

Dη(0)] for general W > 0.

Lemma 5.2.11. Let µ > 0 and we have

LF
(β2W+2,0),(α,i)
H

[
e−µνϕ(R)

]
E
[
|ψ′
η(i)|2∆α−2

]
= CW · Mdisk

0,2 (W )
[
e−µRW · |QD1,1(α, γ;LW )|

]
.

(5.29)
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Proof. The proof is identical to that of Lemma 5.2.10.

Similarly as before, define the generalized renormalized moments of the conformal radius

CR(α,W ) to be the following:

CR(α,W ) :=
E
[
|ψ′
η(i)|2∆α−2

]
CW

. (5.30)

Therefore, we have

LF
(β2W+2,0),(α,i)
H

[
e−µνϕ(R)

]
· CR(α,W ) = Mdisk

0,2 (W )
[
e−µRW · |QD1,1(α, γ;LW )|

]
. (5.31)

Proposition 5.2.12. Fix γ ∈ (0, 2). When β2W+2 and α satisfy 0 < β2W+2 < γ and

Q− β2W+2

2 < α < Q+ γ
2 , we have

E
[
|ψ′
η(i)|2∆α−2

]
=

G(α, γ)

G(α, γ − 2W
γ )

G(γ, γ − 2W
γ )

G(γ, γ)

∫∞
0 µ

2
γ
(Q−α)

1

(
∂
∂µ1

R(βW ;µ1, 1)
)
dµ1

Γ( 2γ (Q− α) + 1)Γ( 2γ (α− W+2
γ ))

·
Γ( 2γ (Q− γ) + 1)Γ( 2γ (γ − W+2

γ ))∫∞
0 µ

2
γ
(Q−γ)

1

(
∂
∂µ1

R(βW ;µ1, 1)
)
dµ1

.

(5.32)

Corollary 5.2.13. Let γ, α be such that α > γ
2 , and we have

CR(α,W ) · LF(β2W+2,0),(α,i)
H

[
e−νϕ(R)

]
= 2−

α2

2
2

γ
G(α, γ)Mdisk

0,2 (W )

[
e−RW · L

2
γ
(α−Q)

W

]
.

Proof. By (5.18) and definition of QD1,1(α, γ; ℓ), when γ
2 − α < γ

2 < α and γ < Q, i.e.,

α > γ
2 ,

|QD1,1(α, γ;LW )| = 2−
α2

2 L
2
γ
( 1
2
γ+α−Q)−1

W

2

γ
G(α, γ).

The statement then follows directly from (5.29).
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Lemma 5.2.14. When W ∈ (0, γ
2

2 ) and α < Q+ γ
2 ,

Mdisk
0,2 (W )

[
L

2
γ
(α−Q)

W e−RW
]

=
γ

2(βW −Q)Γ
(

2
γ (Q− α) + 1

) ∫ ∞

0
µ

2
γ
(Q−α)

1

(
∂

∂µ1
R(βW ;µ1, 1)

)
dµ1.

Proof. By [AHS21, Proposition 3.6], when W ∈ (0, γ
2

2 ) and βW = Q+ γ
2 −

W
γ ∈ (Q,Q+ γ

2 ),

Mdisk
0,2 (W )

[
e−µ1LW−RW

]
= − γ

2(βW −Q)
R(βW ;µ1, 1).

Taking partial derivatives on both sides with respect to µ1 and we get that

Mdisk
0,2 (W )

[
Le−µ1LW−RW

]
=

γ

2(βW −Q)

(
∂

∂µ1
R(βW ;µ1, 1)

)
.

Next, for fixed real number a > −1, we integrate the above equation against µa1 on both

sides. By Fubini’s theorem,

∫ ∞

0
µa1Mdisk

0,2 (W )
[
LW e

−µ1LW−RW
]
dµ1 = Mdisk

0,2 (W )

[
LW e

−RW
∫ ∞

0
µa1e

−µ1LW dµ1

]
= Γ(a+ 1)Mdisk

0,2 (W )
[
L−a
W e−RW

]
.

Let a = 2
γ (α−Q). When α < Q+ γ

2 , i.e., 2
γ (Q− α) > −1, we have

∫ ∞

0
µ

2
γ
(Q−α)

1 Mdisk
0,2 (W )

[
Le−µ1LW−RW

]
dµ1

= Γ

(
2

γ
(Q− α) + 1

)
Mdisk

0,2 (W )

[
L

2
γ
(α−Q)

W e−RW
]
.

Therefore, when α < Q+ γ
2 and 0 < W < γ2

2 , we have

Mdisk
0,2 (W )

[
L

2
γ
(α−Q)

W e−RW
]

=
γ

2(βW −Q)Γ
(

2
γ (Q− α) + 1

) ∫ ∞

0
µ

2
γ
(Q−α)

1

(
∂

∂µ1
R(βW ;µ1, 1)

)
dµ1.
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Lemma 5.2.15. Fix γ ∈ (0, 2). When β2W+2 and α satisfy 0 < β2W+2 < γ and Q− β2W+2

2 <

α < Q+ γ
2 , we have

CR(α,W ) =
G(α, γ)

G(α, γ − 2W
γ )

γ
∫∞
0 µ

2
γ
(Q−α)

1

(
∂
∂µ1

R(βW ;µ1, 1)
)
dµ1

(γ − 2W
γ )Γ( 2γ (Q− α) + 1)Γ( 2γ (α− W+2

γ ))
. (5.33)

Proof. By Lemma 5.2.8, Corollary 5.2.13 and Lemma 5.2.14, when



γ
2 < α < Q+ γ

2 ,

0 < W < γ2

2 , i.e., 0 < β2W+2 < γ,

β2W+2 < Q,

Q− α <
β2W+2

2 < α,

(5.34)

we have

CR(α,W ) =
G(α, γ)

G(α, β2W+2)

γ

2(βW −Q)Γ( 2γ (Q− α) + 1)Γ( 2γ (
1
2β2W+2 + α−Q))

·
∫ ∞

0
µ

2
γ
(Q−α)

1

(
∂

∂µ1
R(βW ;µ1, 1)

)
dµ1

=
G(α, γ)

G(α, γ − 2W
γ )

γ
∫∞
0 µ

2
γ
(Q−α)

1

(
∂
∂µ1

R(βW ;µ1, 1)
)
dµ1

(γ − 2W
γ )Γ( 2γ (Q− α) + 1)Γ( 2γ (α− W+2

γ ))
.

(5.35)

Notice that (5.34) implies 0 < β2W+2 < γ and Q
2 < α < Q + γ

2 . Since W+2
γ = Q − β2W+2

2 ,

by analytic continuation of Γ( 2γ (α − W+2
γ )), the lower bound of α can be extended to

α > Q− β2W+2

2 . Therefore, the statement is proved.

Proof of Proposition 5.2.12. By analytic continuation of Γ( 2γ (α − W+2
γ )) , we can further

relax the range of α and β2W+2 to α ∈ (γ2 , Q+ γ
2 ) and β2W+2 ∈ (0, γ) as long as 2

γ (α−
W+2
γ ) ∈⋃

n≥0,n∈Z(−2n−2,−2n−1). Here, we extend to the range of α so that it contains the point
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γ. Therefore, by simple computation,

E
[
|ψ′
η(i)|2∆α−2

]
=

CR(α,W )

CR(γ,W )

=
G(α, γ)

G(α, γ − 2W
γ )

·
G(γ, γ − 2W

γ )

G(γ, γ)
·

∫∞
0 µ

2
γ
(Q−α)

1

(
∂
∂µ1

R(βW ;µ1, 1)
)
dµ1

Γ( 2γ (Q− α) + 1)Γ( 2γ (α− W+2
γ ))

·
Γ( 2γ (Q− γ) + 1)Γ( 2γ (γ − W+2

γ ))∫∞
0 µ

2
γ
(Q−γ)

1

(
∂
∂µ1

R(βW ;µ1, 1)
)
dµ1

.

(5.36)

By analytic continuation of Gamma function, we see that the above equation holds as long

as 0 < β2W+2 < γ and Q− β2W+2

2 < α < Q+ γ
2 .

5.2.3. The bulk-boundary correlation function in the LCFT

In this section, we derive an analytic formula linking the bulk-boundary correlation function

in the LCFT to the joint law of left, right quantum boundary length and total quantum

area of Mdisk
0,2 (W ). First, we recall the definition of the quantum disk with only one bulk

insertion point.

Definition 5.2.16 ([ARS22, Definition 4.2]). For α ∈ R, let ϕ be sampled from LF
(α,i)
H . We

denote Mdisk
1,0 (α) as the infinite measure described the law of quantum surface (H, ϕ, i).

Theorem 5.2.17 ([ARS22, Proposition 2.8],[Rem20]). For α > γ
2 , let h be sampled from

PH and let ϕ̃(z) = h(z)− 2Q log |z|+ + αGH(z, i). Let U0(α) := E
[
ν
ϕ̃
(R)

2
γ
(Q−α)

]
where the

expectation is taken over PH. Then we have

U0(α) =

(
2−

γα
2 2π

Γ(1− γ2

4 )

) 2
γ
(Q−α)

Γ

(
γα

2
− γ2

4

)
for all α >

γ

2
. (5.37)

Proposition 5.2.18 (Same as Proposition 1.1.8). Fix γ ∈ (0, 2) and µ, µ∂ > 0. When
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β2W+2 and α satisfy 0 < β2W+2 < γ and Q− β2W+2

2 < α < Q, we have

Gµ,µ∂ (α, β2W+2) = LF
(β2W+2,0),(α,i)
H

[
e−µ∂νϕ(R)−µµϕ(H)

]
= CR(α,W )−1 2

γ
2−

α2

2 U0(α)
2

Γ( 2γ (Q− α))

(
1

2

√
µ

sin(πγ2/4)

) 2
γ
(Q−α)

×

Mdisk
0,2 (W )

[
e−µ∂RW−µAW ·K 2

γ
(Q−α)

(
LW

√
µ

sin(πγ2/4)

)]
,

(5.38)

where LW , RW and AW denote the left, right quantum boundary length and total quantum

area of Mdisk
0,2 (W ) respectively, and CR(α,W ) is the renormalized moments of the conformal

radius taking formula (5.33).

Proof. For µ∂ , µ > 0, we have that

LF
(β2W+2,0),(α,i)
H [e−µ∂νϕ(R)−µµϕ(H)] · CR(α,W )

=

∫ ∞

0
Mdisk

0,2 (W ; ℓ)
[
e−µ∂RW−µAW

]
·QD1,1(α, γ; ℓ)

[
e−µA1,1

]
dℓ

=

∫ ∞

0
Mdisk

0,2 (W ; ℓ)
[
e−µ∂RW−µAW ·QD1,1(α, γ; ℓ)

[
e−µA1,1

]]
dℓ

= Mdisk
0,2 (W )

[
e−µ∂RW−µAW ·QD1,1(α, γ;LW )

[
e−µA1,1

]]
,

(5.39)

where A1,1 is the total quantum area of QD1,1(α, γ, ℓ). Next, notice that

QD1,1(α, γ; ℓ)
[
e−µA1,1

]
=
∣∣QD1,1(α, γ; ℓ)

∣∣ ·QD1,1(α, γ; ℓ)
#
[
e−µA1,1

]
= ℓ ·

∣∣∣Mdisk
1,0 (α; ℓ)

∣∣∣ · Mdisk
1,0 (α; ℓ)#

[
e−µA1,0

]
= ℓ · Mdisk

1,0 (α; ℓ)
[
e−µA1,0

]
,

(5.40)

where A1,0 is the total quantum area of Mdisk
1,0 (α; ℓ). The (5.40) follows from the fact that

QD1,1(α, γ; ℓ)
# and Mdisk

1,0 (α; ℓ)# are the same probability measure if we ignore the boundary
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marked point. By [ARS22, Proposition 4.20], when α ∈
(γ
2 , Q

)
,

Mdisk
1,0 (γ, α; ℓ)

[
e−µA1,0

]
=

2

γ
2−

α2

2 U0(α)ℓ
−1 2

Γ( 2γ (Q− α))

(
1

2

√
µ

sin(πγ2/4)

) 2
γ
(Q−α)

K 2
γ
(Q−α)

(
ℓ

√
µ

sin(πγ2/4)

)
,

(5.41)

where Kν(x) is the modified Bessel function of second kind. Precisely,

Kν(x) :=

∫ ∞

0
e−x cosh t cosh(νt)dt for x > 0 and ν ∈ R. (5.42)

Therefore, when α ∈
(γ
2 , Q

)
and µ > 0,

QD1,1(α, γ; ℓ)
[
e−µA1,1

]
(5.43)

=
2

γ
2−

α2

2 U0(α)
2

Γ( 2γ (Q− α))

(
1

2

√
µ

sin(πγ2/4)

) 2
γ
(Q−α)

K 2
γ
(Q−α)

(
ℓ

√
µ

sin(πγ2/4)

)
.

(5.44)

Finally, together with Corollary 5.2.12, we see that when β2W+2 and α satisfy 0 < β2W+2 < γ

and Q− β2W+2

2 < α < Q,

LF
(β2W+2,0),(α,i)
H

[
e−µ∂νϕ(R)−µµϕ(H)

]
= CR(α,W )−1 2

γ
2−

α2

2 U0(α)
2

Γ( 2γ (Q− α))

(
1

2

√
µ

sin(πγ2/4)

) 2
γ
(Q−α)

×

Mdisk
0,2 (W )

[
e−µ∂RW−µAWK 2

γ
(Q−α)

(
L

√
µ

sin(πγ2/4)

)]
.

(5.45)

This finishes the proof.

Remark 5.2.19. For βW ∈ ( 2γ , Q) andW = γ(Q+ γ
2−βW ), with AW , LW and RW being the

total area, left boundary and right boundary of the corresponding weight-W , two-pointed
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quantum disk Mdisk
0,2 (W ) respectively, define

Rbulk(βW ;µ1, µ2) :=
2(Q− βW )

γ
Mdisk

0,2 (W )
[
e−AW−µ1LW−µ2RW − 1

]
, (5.46)

which is the same as [ARSZ23, (1.14)]. Using the exact same argument as in [AHS21,

Proposition 3.6], when W ∈ (0, γ
2

2 ) and βW = Q+ γ
2 − W

γ ∈ (Q,Q+ γ
2 ), we have

Mdisk
0,2 (γ2 −W )

[
e−Aγ2−W−µ1Lγ2−W−µ2Rγ2−W − 1

]
Mdisk

0,2 (W )
[
e−AW−µ1LW−µ2RW

]
=

−γ2

4(βW −Q)2
.

(5.47)

Therefore, when W ∈ (0, γ
2

2 ) and βW ∈ (Q,Q+ γ
2 ), we have

Mdisk
0,2 (W )

[
e−AW−µ1LW−µ2RW

]
=

γ

2(Q− βW )
Rbulk(2Q− βW ;µ1, µ2)

−1. (5.48)

Notice that 2Q−βW = βγ2−W . The exact formula of Rbulk is obtained in [ARSZ23, Theorem

1.3], which in turn yields the exact formula for Gµ,µ∂ (α, β2W+2) in [ARSZ23, Section 4.3].
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CHAPTER 6

OUTLOOK AND FUTURE RESEARCH

In the last chapter, we discuss several conjectures that arise naturally from the contexts of

this thesis.

6.1. Generalized SLE bubbles on H: single case

As natural generalizations of Theorem 1.1.1 and Theorem 1.1.3, we can consider the case

when QD0,1 has one general boundary insertion, i.e., QD0,1(γ, α) in Definition 4.2.7. For

the sake of completeness, we provide two conjectures: one with the bulk insertion and one

without. Although our discussion will be centered around the Conjecture 6.1.2.

Conjecture 6.1.1. Fix W1 ≥ γ2

2 and W > 2. There exist a σ-finite infinite measure

SLEbubble
κ,0 (W,W1) on BubbleH(0) and some constant C ∈ (0,∞) such that suppose ϕ×ηW,W1

is sampled from

C · LF(β2W1+W
,0)

H (dϕ)× SLEbubble
κ,0 (W,W1)[dηW,W1 |i ∈ DηW,W1

(0)], (6.1)

then the law of (DηW,W1
(0), ϕ, 0) and (DηW,W1

(∞), ϕ, 0−, 0+) viewed as a pair of marked

quantum surface is equal to

∫ ∞

0
Mdisk

0,2 (W1; ·, ℓ)×QD1,1(γ, βW ; ℓ)dℓ. (6.2)
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W > 2

W1
W1

DηW,W1
(∞)

ηW,W1

p ∼ dx

DηW,W1
(p)

Figure 6.1: Illustration of welding equation (6.3) in Conjecture 6.1.2: first sample a root
point p according to Lebesgue measure dx on R, then sample (ϕ, η) according to the prod-
uct measure LF

(β2W1+W
,p)

H (dϕ) × SLEbubble
κ,p (W,W1)(dη). The resulting quantum surface

(H, ϕ, η, p)/ ∼γ has the law of C
∫∞
0 Mdisk

0,2 (W1; ·, ℓ) × QD0,1(γ, βW ; ℓ)dℓ after uniform em-
bedding.

Conjecture 6.1.2. Fix W1 ≥ γ2

2 and W > 2. There exist a σ-finite infinite measure

SLEbubble
κ,p (W,W1) on BubbleH(p) and some constant C ∈ (0,∞) such that

mH⋉
(∫ ∞

0
Mdisk

0,2 (W1; ·, ℓ)×QD0,1(γ, βW ; ℓ)dℓ

)
= C ·LF(β2W1+W

,p)

H ×SLEbubble
κ,p (W,W1)dp.

(6.3)

Furthermore, there exists some constant C ∈ (0,∞) such that

mH,0⋉
(∫ ∞

0
Mdisk

0,2 (W1; ·, ℓ)×QD0,1(γ, βW ; ℓ)dℓ

)
= C·LF(β2W1+W

,0)

H (dϕ)×SLEbubble
κ,0 (W,W1),

(6.4)

where mH,0 is a Haar measure on conf(H, 0), i.e., the group of conformal automorphisms of

H fixing 0.

In Conjecture 6.1.1 and 6.1.2, by the quantum triangle welding and the induction techniques

developed in Section 4.2, we can show that (1) ϕ has the law of C · LF(β2W1+W
,0)

H , and (2)

the welding interface ηW,W1 is independent of ϕ.

However, we have almost zero understanding on the law of ηW,W1 , i.e., SLEbubble
κ,0 (W,W1).

Recall that in Zhan’s limiting constructions of SLEκ(ρ) bubbles, one takes the weak limit of
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chordal SLEκ(ρ) under suitable rescaling. Therefore, in LQG frameworks, we take “quantum

version” of the limit by 1) conditioning on the (one-side) quantum boundary length of

Mdisk
1,2 (2) goes to zero 2) constructing a coupling with the limiting picture so that, with high

probability, the random domains match.

Nonetheless, this technique will not work in the case of Conjecture 6.1.2, or in a more

straightforward way, ηW,W1 is not the weak limit of chordal SLEκ(W − 2,W1 − 2) under

suitable rescaling. Suppose one takes Mdisk
1,2 (W ) and then conditioning on the (one-side)

quantum boundary length goes to zero, the limiting quantum surface will always be the

same; the boundary marked point is always quantum typical (cf. [MSW21, Appendix A]). In

other words, we will always get SLEbubble
κ,0 (W1−2). Therefore, shrinking (one-side) quantum

boundary length and coupling will only work for Mdisk
1,2 (2).

νφ(R) → 0

W

W

2

L

R

L

Figure 6.2: On the LHS, we have Mdisk
1,2 (W ). Conditioning on the quantum boundary length

of the right arc R shrinks to zero, we will get a Mdisk
1,1 (2), i.e., QD1,1. Notice that in [MSW21,

Appendix A], the weight W is in the restricted range. However, we believe that this is only
a technical barrier and will not affect the overall outcome.

Hence, one interesting question is that how to describe the law of ηW,W1 in Conjecture 6.1.2?

If better, what is its corresponding Lowener evolution (driving function)?

Also, going back to the Euclidean settings, in Zhan’s constructions of SLEκ(ρ) bubbles, one

takes the weak limit of SLEH
κ,(ε;ε+)→0(ρ) or SLEH

κ,(0;0−)→ε(ρ) under suitable rescaling. Either

way, that single force point of SLEκ is on the outside (see Figure 3.3).

Hence, what if you have two force points? In other words, what if we take the weak limit
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of SLEH
κ,(0;0−,0+)→ε(ρ−, ρ+)? I conjecture that it is the SLEbubble

κ,0 (ρ−). Similarly, if we take

the weak limit of SLEH
κ,(ε;ε−,ε+)→0(ρ−, ρ+), then it is SLEbubble

κ,0 (ρ+).

A somewhat similar question as above is what happens to the inner force point after collapsing

the ε with 0. Do they vanish? I conjecture that yes, the inner force point vanishes once

collapsed.

6.2. Generalized SLE bubbles on H: multiple case

Going one step further, motivated by the induction procedure described in Figure 4.6, we

are also interested in understanding the multiple SLE bubbles on H. Specifically, consider

welding of three quantum disks

∫ ∞

0

∫ ∞

0
QD0,1(γ, βW ; ℓ)×Mdisk

0,2 (W1, ℓ, r)×Mdisk
0,2 (W2; r, ·)drdℓ (6.5)

for W ≥ 2,W1 > 0 and W2 > 0.

WW1
W1

W2 W2

WW1 W1W2 W2

LHS: W ≥ 2,W1 ≥
γ
2

2
,W2 ≥

γ
2

2
RHS: W ≥ 2, 0 < W1 <

γ
2

2
,W2 ≥

γ
2

2

ηI

ηO
ηI

ηO

Figure 6.3: Illustration of quantum surface (6.5) when embedded in (H, ϕ, ηI , ηO).

Let (H, ϕ, 0, ηI , ηO) be an particular embedding of (6.5) (see Figure 6.3), then it is not hard to

show that the joint law of (ηI , ηO) is independent of ϕ. Moreover, the condition law (ηO|ηI)

should equal to SLEbubble
κ,0 (W1,W2) and the law of (ηI |ηO) should equal to SLEbubble

κ,0 (W,W1).

Recall that SLEbubble
κ,0 (·, ·) is the welding interface in Conjecture 6.1.2.

The interesting questions to the SLE research communities are what is the marginal law of
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η•, • ∈ {I,O}. Moreover, what is the Loewner evolution (driving function) of η•, • ∈ {I,O}?

6.3. Scaling limits of bubble-decorated quadrangulated disks

Recall that in the SLE loop case [AHS22], MSn ⊗ SAWn is the measure on pairs (M,η),

where M is a quadrangulation, η is a self-avoiding loop on M , and each (M,η) has weight

n5/212−#F(M)54−#η, where #F(M) denotes the number of faces ofM and #η is the number

of edges of η. It is proved that the following convergence result holds.

Theorem 6.3.1 ([AHS22, Theorem 1.2]). There exists constant c0 > 0 and for all c ∈ (0, 1),

MSn ⊗ SAWn|A(c)
w−→ c0 ·QS⊗ SLEloop

8/3 |A(c), (6.6)

where A(c) is the event that the length of the loop is in [c, c−1].

In the disk case, we say a planar map D is a quadrangulated disk if it is a planar map where

all faces have four edges except for the exterior face, which has arbitrary degree and simple

boundary. Let ∂D denote the edges on the boundary of the exterior face, and we denote

#∂D the boundary length of D. Let MDn be the measure on the quadrangulated disks

such that each disk D has weight n5/212−#F(D)54−#∂D, which has the same scaling as MSn

above. Note that here if D is sampled from MDn, then D is viewed as a metric measure

space by considering the graph metric rescaled by 2−1/2n−1/4 and giving each vertex mass

2(9n)−1.

If D is a quadrangulated disk, then we say η is a self-avoiding bubble on D rooted at er ∈ ∂D

if η is an orderer set of edges e1, . . . , e2k ∈ E(D) with r ∈ {1, . . . , 2k} and ej and ei share an

end-point if and only if |i− j| ≤ 1 or (i, j) ∈ {(1, 2k), (2k, 1)}.

Let MDn⊗∂MDn⊗SABn denote the measure on pairs (D, e, η) where η is a self-avoiding bub-

ble on D rooted at edge e ∈ ∂D and the pair (D, η) has weight #∂D−1 ·n5/212−#F(D)54−#η.

For (D, e, η) sampled from MDn ⊗ ∂MDn ⊗ SABn, we view D as a metric measure space

and view η as a bubble on this metric measure space rooted at edge e so that the time it
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takes to traverse each edge on the loop is 2−1n−1/2.

Conjecture 6.3.2. There exists some c0 > 0 such that for all c ∈ (0, 1),

MDn ⊗ ∂MDn ⊗ SABn|A(c)
w−→ c0 · LF(β6,p)

H × SLEbubble
8/3,p × dp|A(c), (6.7)

in Gromov-Hausdorff-Prokhorov-uniform topology, where A(c) is event that the length of

the bubble is in [c, c−1].

We can also understand the measure MDn ⊗ ∂MDn ⊗ SABn from the welding perspec-

tive. Suppose MDn is a measure on qudrangulated disks such that each disk D has weight

n5/212−#F(D)54−2#∂D and MDn is a measure on qudrangulated disks with each disk D has

weight n5/212−#F(D)54−#∂D. Let MDn
0,2 be the measure on (D, e1, e2) such that we first

sample D from reweighted measure (#∂MDn)2MDn and then sample two edges e1, e2 uni-

formly on ∂D. Similarly, let MDn
0,1 be the measure on (D, e) such that we first sample D

from reweighted measure (#∂MDn) ·MDn and then sample an edge e from ∂D uniformly.

For k ∈ N, let MDn
0,2(·, k) denote the restriction of MDn

0,2 to the event that right bound-

ary has length 2k and let MDn
0,1(k) denote the restriction of MDn

0,1 to the event that the

total boundary has length 2k. Let MDn
0,2(·, k)# and MDn

0,1(k)
# denote the corresponding

probability measure respectively.

Suppose (D, e1, e2) is sampled from MDn
0,2(·, k)# and (D, e) is sampled from MDn

0,1(k)
#,

then we can do the “discrete conformal welding” by identifying the right boundary of D to

the total boundary of D such that e1, e2 and e are identified. The self-avoiding bubble on

the discrete disk represents the welding interface of D and D. We parametrize the bubble

so that each edge on the bubble has length 2−1n−1/2 just like the sphere case. Suppose

(D, e1, e2) is sampled from MDn
0,2(·, k)# and (D, e) is sampled from MDn

0,1(k)
#, then we

denote the measure on the disks decorated with a self-avoiding bubble sampled in this way

by Weldbubbled (MDn
0,2(·, k)#,MDn

0,1(k)
#). Similarly, let Weldbubblec (QD0,2(·, ℓ)#,QD0,1(ℓ)

#)

denote the measure on bubble-decorated quantum disk obtained by identifying the right
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boundary of the disk sampled from QD0,2(·, ℓ)# and the total boundary of the disk sampled

from QD0,1(ℓ)
#.

Conjecture 6.3.3. For any ℓ > 0, we have

Weldbubbled (MDn
0,2(·, [ℓn1/2])#,MDn

0,1([ℓn
1/2])#)

w−→ Weldbubblec (QD0,2(·, ℓ)#,QD0,1(ℓ)
#)

(6.8)

in Gromov-Hausdorff-Prokhorov-uniform topology.
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