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ABSTRACT

ANDERSON-BERNOULLI LOCALIZATION ON 2D AND 3D LATTICE

Linjun Li

Jian Ding

The Anderson model describes the behaviour of electrons inside a piece of metal with

uniform impurity. The Anderson-Bernoulli model is a special case of the Anderson

model where the potential has Bernoulli distribution. We consider Anderson-Bernoulli

localization on Zd for d = 2, 3. For d = 2, we prove that, if the potential has symmetric

Bernoulli distribution and the disorder is large, then localization happens outside a

small neighborhood of finitely many energies. For d = 3, we prove that localization

happens at the bottom of the spectrum.
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Chapter 1

Introduction

The Anderson models are widely used to describe spectral and transport properties

of disordered media, such as moving quantum mechanical particles, or electrons in a

metal with impurities. The mathematical study of their localization phenomena can

be traced back to the 1980s (see e.g. [KS80]), and since then there have been many

results in models on both discrete and continuous spaces. The mathematical definition

for Anderson model (and Anderson localization) on discrete spaces is as follows. Let

d ∈ Z+, δ > 0 and V : Zd → R≥0 such that {V (a) : a ∈ Zd} is a family of i.i.d.

bounded random variables. Define the Anderson Hamiltonian H = −∆+δV where ∆

is the discrete Laplacian. Given a subset I ⊂ R, we say Anderson localization happens

in I if following holds: For any function u : Zd → R and energy λ ∈ I, if Hu = λu

and infn≥0 supa∈Zd(1 + |a|)−n|u(a)| <∞, we have inft>0 supa∈Zd exp(t|a|)|u(a)| <∞.

If I is a union of closed intervals, Anderson localization in I implies that H has

pure point spectrum in I (see e.g. [Kir08, Section 7]). Note that this is related to but
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different from “dynamical localization” (see e.g. discussions in [AW15, Section 7.1]).

In most early works, some regularity conditions on the distribution of the random

potential are needed. In [FS83], Fröhlich and Spencer used a multi-scale analysis

argument to show that if {V (a) : a ∈ Zd} are i.i.d. bounded random variables with

bounded probability density, then the resolvent decays exponentially when δ is large

enough or energy is sufficiently small. Then in [FMSS85], together with Martinelli

and Scoppola, they proved Anderson localization under the same condition. This

result was strengthened later by [CKM87], where the same results were proved under

the condition that the distribution of {V (a) : a ∈ Zd} are i.i.d., bounded, and Hölder

continuous.

It remains an interesting problem to remove these regularity conditions. As de-

scribed at the beginning of [DSS02], when using the Anderson models to study alloy

type materials, it is natural to expect the random potential to take only finitely many

values. A particular case is where the random potential are i.i.d. Bernoulli variables.

For the particular case of d = 1, in the above mentioned paper [CKM87] the

authors proved that for the discrete model on Z, Anderson localization holds for the

full spectrum when the i.i.d. random potential is non-degenerate and has some finite

moment. This includes the Bernoulli case. In [BDF+19] a new proof is given for the

case where the random potential has bounded support. In [DSS02], the continuous

model on R was studied, and Anderson localization was proved for the full spectrum

when the i.i.d. random potential is non-degenerate and has bounded support.
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For higher dimensions, a breakthrough was then made by Bourgain and Kenig.

In [BK05], they studied the continuous model Rd, for d ≥ 2, and proved Anderson-

Bernoulli localization near the bottom of the spectrum. An important ingredient is

the unique continuation principle in Rd, i.e. [BK05, Lemma 3.10]. It roughly says

that, if u : Rd → R satisfies ∆u = V u for some bounded V on Rd, and u is also

bounded, then u can not be too small on any ball with positive radius. Using this

unique continuation principle together with the Sperner lemma, they proved a Wegner

estimate, which was used to prove the exponential decay of the resolvent. In doing

this, many aspects of the usual multi-scale analysis framework were adapted; and

in particular, they introduced the idea of “free sites”. See [Bou05] for some more

discussions. Later, Germinet and Klein [GK12] incorporated the new ideas of [BK05]

and proved localization (in a strong form) near the bottom of the spectrum in the

continuous model, for any non-degenerate potential with bounded support.

The Anderson-Bernoulli localization on lattices in higher dimensions remained

open. There were efforts toward this goal by relaxing the condition that V only

takes two values (see [Imb21]). Recently, the work of Ding and Smart [DS20] proved

Anderson-Bernoulli localization near the edge of the spectrum on the 2D lattice. As

discussed in [BK05, Section 1], the approach there cannot be directly applied to the

lattice model, due to the lack of a discrete version of the unique continuation principle.

A crucial difference between the lattice Zd and Rd is that one could construct a

function u : Zd → R, such that ∆u = V u holds for some bounded V , but u is
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supported on a lower dimensional set (see Remark 2.1.6 below for an example on

3D lattice). Hence, a suitable “discrete unique continuation principle” in Zd would

state that, if a function u satisfies −∆u + V u = 0 in a finite (hyper)cube, then u

can not be too small (compared to its value at the origin) on a substantial portion of

the (hyper)cube. In [DS20], a randomized version of the discrete unique continuation

principle on Z2 was proved. The proof was inspired by [BLMS17], where unique

continuation principle was proved for harmonic functions (i.e. V = 0) on Z2. An

important observation exploited in [BLMS17] is that the harmonic function has a

polynomial structure.

The rest of the thesis is organized as follows: In Chapter 2, we consider the

Anderson-Bernoulli model on 3D lattice and prove localization near the bottom of

the spectrum. In Chapter 3, we consider the Anderson-Bernoulli model on 2D lattice

and prove localization at large disorder on the whole spectrum except a union of

small intervals. Chapter 2 is based on the article [LZ22] joint with Lingfu Zhang and

Chapter 3 is based on the article [Li20]. We refer the reader to original articles for

more details.
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Chapter 2

3D Anderson-Bernoulli localization

near the edge

2.1 Introduction

2.1.1 Main result and background

In the 3D Anderson-Bernoulli model on the lattice, we study the random Schrödinger

operator H := −∆ + δV , acting on the space `2(Z3). Here δ > 0 is the disorder

strength, ∆ is the discrete Laplacian:

∆u(a) = −6u(a) +
∑

b∈Z3,|a−b|=1

u(b), ∀u ∈ `2(Z3), a ∈ Z3, (2.1.1)
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and V : Z3 → {0, 1} is the Bernoulli random potential; i.e. for each a ∈ Z3, V (a) = 1

with probability 1
2

independently. Here and throughout this chapter, | · | denotes the

Euclidean norm.

Our main result is as follows.

Theorem 2.1.1. There exists λ∗ > 0, depending on δ, such that almost surely the

following holds. For any function u : Z3 → R and λ ∈ [0, λ∗], if Hu = λu and

infn≥0 supa∈Z3(1 + |a|)−n|u(a)| <∞, we have inft>0 supa∈Z3 exp(t|a|)|u(a)| <∞.

Our Theorem 2.1.1 settles the Anderson-Bernoulli localization near the edge of the

spectrum on the 3D lattice. Our proof follows the framework of [BK05] and [DS20].

Our main contribution is the proof of a 3D discrete unique continuation principle.

Unlike the 2D case, where some randomness is required (see Chapter 1), in 3D our

discrete unique continuation principle is deterministic, and allows the potential V to

be an arbitrary bounded function. It is also robust, in the sense that certain “sparse

set” can be removed and the result still holds; and this makes it stand for the multi-

scale analysis framework (see Theorem 2.3.4 below). The most innovative part of our

proof is to explore the geometry of the 3D lattice.

Let us also mention that Anderson localization is not expected through the whole

spectrum in Z3, when the potential is small and it is conjectured that there is a

localization-delocalization transition. To be more precise, it is conjectured that there

exists δ0 > 0 such that, for any δ < δ0, −∆ + δV has purely absolutely continuous

spectrum in some spectrum range (see e.g. [Sim00]). Localization and delocalization
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phenomenons are also studied for other models, see e.g. [AW15, Chapter 16] and

[AS19] for regular tree graphs and expander graphs, and see [BYY20, BYYY18, YY21]

and [SS17, SS21] for random band matrices.

2.1.2 An outline of the proof of the 3D discrete unique continuation

principle

In this subsection we explain the most important ideas in the proof of the 3D discrete

unique continuation principle.

The formal statement of the 3D discrete unique continuation principle is Theorem

2.3.4 below. It is stated to fit the framework of [BK05] and [DS20]. To make a clear

outline, we state a simplified version here.

Definition 2.1.2. For any a ∈ Z3, and r ∈ R+, the set a + ([−r, r] ∩ Z)3 is called a

cube, or 2r-cube, and we denote it by Qr(a). Particularly, we also denote Qr := Qr(0).

Theorem 2.1.3. There exists constant p > 3
2

such that the following holds. For each

K > 0, there is C1 > 0, such that for any large enough n ∈ Z+, and functions

u, V : Z3 → R with

∆u = V u (2.1.2)

in Qn and ‖V ‖∞ ≤ K, we have that

|{a ∈ Qn : |u(a)| ≥ exp(−C1n)|u(0)|}| ≥ np. (2.1.3)
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Remark 2.1.4. The power of 3
2

should not be optimal. We state it this way because

it is precisely what we need (in the proof of Lemma 2.3.5 below).

To prove Theorem 2.1.3, we first prove a version with a loose control on the

magnitude of the function but with a two-dimensional support. It is a simplified

version of Theorem 2.5.1 below.

Theorem 2.1.5. For each K > 0, there is C2 depending only on K, such that for any

n ∈ Z+ and functions u, V : Z3 → R with

∆u = V u (2.1.4)

in Qn and ‖V ‖∞ ≤ K, we have that

∣∣{a ∈ Qn : |u(a)| ≥ exp(−C2n
3)|u(0)|

}∣∣ ≥ C3n
2(log2 n)−1. (2.1.5)

Here C3 is a universal constant.

Remark 2.1.6. The power of n2 can not be improved. Consider the case where V ≡

0, and u : (x, y, z) 7→ (−1)x exp(sz)1x=y, where s ∈ R+ is the constant satisfying

exp(s) + exp(−s) = 6. One can check that ∆u0 ≡ 0, while |{a ∈ Qn : u0(a) 6= 0}| =

|{(x, y, z) ∈ Qn : x = y}| = (2n+ 1)2.

To prove Theorem 2.1.3, we find many disjoint translations of Qn1/3 inside Qn, and

use Theorem 2.1.5 on each of these translations. This is made precise by Theorem
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2.6.1 in Section 2.6. The foundation of the arguments there is the “cone property”,

given in Section 2.2, which says that from any point in Z3, we can find a chain of

points, where |u| decays at most exponentially. Such property is also used in other

parts of the chapter.

The proof of Theorem 2.1.5 is based on geometric arguments on Z3. We consider

four collections of planes in R3.

Definition 2.1.7. Let e1 := (1, 0, 0), e2 := (0, 1, 0), and e3 := (0, 0, 1) to be the

standard basis of R3, and denote λ1 := e1 + e2 + e3, λ2 := −e1 + e2 + e3, λ3 :=

e1 − e2 + e3, λ4 := −e1 − e2 + e3. For any k ∈ Z, and τ ∈ {1, 2, 3, 4}, denote

Pτ,k := {a ∈ R3 : a · λτ = k}.

We note that the intersection of Z3 with each of these planes is a 2D triangular

lattice. Besides, there is a family of regular tetrahedrons in R3, whose four faces are

orthogonal to λ1,λ2,λ3,λ4, respectively. Using these tetrahedrons, we construct some

polyhedrons P ⊂ R3, called pyramid. For each of these pyramid P, the boundary

∂P consists of subsets of some of the planes Pτ,k (where τ ∈ {1, 2, 3, 4} and k ∈

Z). See Figure 2.7 for an illustration. Using these observations, we lower bound

|{a ∈ Qn : |u(a)| ≥ exp(−C2n
3)|u(0)|} ∩ ∂P|.

To be more precise, we define such 2D triangular lattice as follows.

Definition 2.1.8. In R2, denote ξ := (−1, 0) and η :=
(

1
2
,
√

3
2

)
. Define the triangular

9



lattice as Λ := {sξ + tη : s, t ∈ Z}. For a ∈ Λ and n ∈ Z≥0, denote

Ta;n := {a+ sξ + tη : t, s ∈ Z,−n ≤ t ≤ 2n, t− n ≤ s ≤ n} . (2.1.6)

Then Ta;n is an equilateral triangle of lattice points with center a, such that on each

side there are 3n+ 1 lattice points.

Now we state the bound we need.

Theorem 2.1.9. There exist constants C4 > 5 and ε1 > 0 such that the following is

true. For any n ∈ Z+ and any function u : T0;n → R, if |u(a) +u(a− ξ) +u(a+η)| <

C−n4 |u(0)| for any a ∈ T0;bn2 c, then

∣∣{a ∈ T0;n : |u(a)| > C−n4 |u(0)|}
∣∣ > ε1n

2. (2.1.7)

This theorem can be seen as a triangular version of [BLMS17, Theorem(A)]. Our

proof is also similar to the arguments there, using the fact that the function u has an

approximate polynomial structure.

Organization of remaining chapter

In Section 2.2, we state and prove the “cone properties”. In Section 2.3, we introduce

our discrete unique continuation (Theorem 2.3.4), and explain how to prove the re-

solvent estimate (Theorem 2.3.1) from it, by adapting the framework from [BK05]

and [DS20]. The next three sections are devoted to the proof of our discrete unique
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continuation (Theorem 2.3.4): in Section 2.4 we prove the estimates on triangular

lattice, i.e. Theorem 2.1.9 and its corollaries, using arguments similar to those in

[BLMS17, Section 3]; in Section 2.5, we state and prove Theorem 2.5.1 (a stronger

version of Theorem 2.1.5) by constructing pyramids and using Theorem 2.1.9; finally,

in Section 2.6 we do induction on scales, and deduce Theorem 2.3.4 from Theorem

2.5.1.

We have three subsections with proofs of auxiliary lemmas. In Section 2.7.1 we

state some auxiliary results from [DS20] that are used in the general framework.

Section 2.7.2 is devoted to the base case of the multi-scale analysis in the general

framework. In Section 2.7.3 we give some details on deducing Anderson localiza-

tion (Theorem 2.1.1) from decay of the resolvent (Theorem 2.3.1), following existing

arguments (from [BK05, Bou05, GK12]).

2.2 Cone properties

In this section we state and prove the “cone properties”, which are widely used

throughout the rest of this chapter.

Definition 2.2.1. For each a ∈ Z3, and τ ∈ {1, 2, 3}, denote the cone

Cτa :=

b ∈ Z3 : |(b− a) · eτ | ≥
∑

τ ′∈{1,2,3}\{τ}

|(b− a) · eτ ′|

 . (2.2.1)

For each k ∈ Z, let Cτa (k) := Cτa ∩ {b ∈ Z3 : (b− a) · eτ = k} be a section of the cone.

11



We also denote C := C3
0, for simplicity of notations.

First, we have the “local cone property”.

Lemma 2.2.2. For any u : Z3 → R, a ∈ Z3, and v ∈ {±e1,±e2,±e3}, if |∆u(a+v)| ≤

K|u(a+ v)|, we have

max
b∈a+v+{0,±e1,±e2,±e3}\{a}

|u(b)| ≥ (K + 11)−1|u(a)|. (2.2.2)

Proof. Without loss of generality we assume that v = e1. We have

|u(a)| ≤ (6 +K)|u(a+ e1)|+ |u(a+ 2e1)|+ |u(a+ e1 − e2)|+ |u(a+ e1 + e2)|

+ |u(a+ e1 + e3)|+ |u(a+ e1 − e3)| ≤ (K + 11) max
b∈a+e1+{0,±e1,±e2,±e3}\{a}

|u(b)|,

(2.2.3)

and our conclusion follows.

With Lemma 2.2.2, we can inductively construct an oriented “chain” from 0 to

the boundary of a cube, and inside a cone.

Lemma 2.2.3. Let K ∈ R+, and u, V : Z3 → R, such that ‖V ‖∞ ≤ K, and ∆u = V u

in Qn for some n ∈ Z+. For any a ∈ Qn−2, τ ∈ {1, 2, 3}, ι ∈ {1,−1}, and k ∈ Z≥0, if

Cτa (ιk) ⊂ Qn, then there exists w ∈ Z≥0, and a sequence of points a = a0, a1, · · · , aw ∈

Cτa ∩Qn, such that for any 1 ≤ i ≤ w, we have ai−ai−1 ∈ (ιeτ +{0,±e1,±e2,±e3})\

{0}, |u(ai)| ≥ (K + 11)−1|u(ai−1)|; and (aw − a) · (ιeτ ) ∈ {k − 1, k}.
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Proof. We prove the case where ι = 1, and the other case follows the same arguments.

We define the sequence inductively. Let a0 := a. Suppose we have ai ∈ Cτa , with

0 ≤ (ai − a) · eτ < k − 1. Then ai + eτ + {0,±e1,±e2,±e3} ⊂ Qn. Let

ai+1 := argmaxb∈ai+eτ+{0,±e1,±e2,±e3}\{ai} |u(b)|. (2.2.4)

Then we have that ai+1 − ai ∈ eτ + {0,±e1,±e2,±e3} \ {0}, 0 ≤ (ai+1 − a) · eτ ≤ k,

and ai+1 ∈ Cτa . By Lemma 2.2.2, we also have that |u(ai+1)| ≥ (K + 11)−1|u(ai)|.

This process will terminate when (ai − a) · eτ ≥ k − 1 for some i ∈ Z≥0. Then we let

w = i; and from the construction we know that (ai − a) · eτ ∈ {k − 1, k}. Thus we

get the desired sequence of lattice points.

We also have a Dirichlet boundary version, whose proof is similar.

Lemma 2.2.4. Take any n ∈ Z+, K ∈ R+, and u, V : Qn → R, such that ‖V ‖∞ ≤ K

and ∆u = V u with Dirichlet boundary condition. For any a ∈ Qn, τ ∈ {1, 2, 3},

ι ∈ {1,−1}, and k ∈ Z≥0, if Cτa (ιk)∩Qn 6= ∅, then the result of Lemma 2.2.3 still holds.

In particular, we have aw ∈ (Cτa (ι(k−1))∪Cτa (ιk))∩Qn and |u(aw)| ≥ (K+11)−k|u(a)|.

Proof. Again we only prove the case where ι = 1, and define the sequence inductively.

The only difference is that, given some ai ∈ Cτa , if 0 ≤ (ai−a) ·eτ < k− 1, now we let

ai+1 := argmaxb∈(ai+eτ+{0,±e1,±e2,±e3}\{ai})∩Qn |u(b)|. (2.2.5)
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By the Dirichlet boundary condition, we still have that

ai+1 − ai ∈ eτ + {0,±e1,±e2,±e3} \ {0} ,

0 ≤ (ai+1 − a) · eτ ≤ k, ai+1 ∈ Cτa ∩Qn, and |u(ai+1)| ≥ (K + 11)−1|u(ai)|.

2.3 General framework

This section is about the framework, based on the arguments in [DS20]. We formally

state the discrete unique continuation principle (Theorem 2.3.4), and explain how to

deduce Theorem 2.1.1 from it. For some results from [DS20] that are used in this

section, we record them in Section 2.7.1 for easy reference purpose.

As in [DS20], these arguments essentially work for any i.i.d. potential V that

is bounded and nontrivial. For simplicity we only study the 1
2
-Bernoulli case with

disorder strength δ = 1. Borrowing the formalism from [BK05] and [DS20], we allow

V to take values in the interval [0, 1], for the purpose of controlling the number of

eigenvalues in proving the Wegner estimate (in the proof of Claim 2.3.9 below). In

other words, we study the operator H = −∆ + V , where V takes value in the space

[0, 1]Z
3
, equipped with the usual Borel sigma-algebra, and the distribution is given by

the product of the 1
2
-Bernoulli measure (which is supported on {0, 1}Z3

).

We let sp(H) be the spectrum of H, then it is well known that, almost surely

sp(H) = [0, 13] (see, e.g. [AW15, Corollary 3.13]). For any cube Q ⊂ Z3, let PQ :
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`2(Z3) → `2(Q) be the projection operator onto cube Q, i.e. PQu = u|Q. Define

HQ := PQHP
†
Q, where P †Q is the adjoint of PQ. Then HQ : `2(Q) → `2(Q) is the

restriction of H on Q with Dirichlet boundary condition.

Throughout this section, by “dyadic”, we mean a number being an integer power

of 2.

The following result on decay of the resolvent is a 3D version of Theorem [DS20,

Theorem 1.4], and it directly implies Theorem 2.1.1.

Theorem 2.3.1. There exist κ0 > 0, 0 < λ∗ < 1 and L∗ > 1 such that

P
[∣∣(HQL − λ)−1(a, b)

∣∣ ≤ exp
(
L1−λ∗ − λ∗|a− b|

)
, ∀a, b ∈ QL

]
≥ 1− L−κ0 (2.3.1)

for any λ ∈ [0, λ∗] and dyadic scale L ≥ L∗.

From Theorem 2.3.1, the arguments in [BK05, Section 7] prove Anderson local-

ization in [0, λ∗] (Theorem 2.1.1). See Section 2.7.3 for the details.

To prove Theorem 2.3.1, we will prove a 3D analog of [DS20, Theorem 8.3], i.e.

Theorem 2.3.10 below. Except for replacing all 2D objects by 3D objects, the essential

differences are:

1. We need more information on the the frozen sites defined in [DS20], rather than

only knowing they’re “ηk-regular” (see [DS20, Definition 3.4]).

2. We need a 3D Wegner estimate, an analog of [DS20, Lemma 5.6].

We now set up some geometric notations.
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Definition 2.3.2. For any sets A,B ⊂ R3, let

dist(A,B) := inf
a∈A,b∈B

|a− b|, (2.3.2)

and

diam(A) := sup
a,b∈A

|a− b|. (2.3.3)

If A = {b ∈ R3 : |a− b| < r}, for some r > 0 and a ∈ R3, we call A a (open) ball and

denote its radius as radi(A) := r.

The following definitions are used to describe the frozen sites, and are stronger

than being “ηk-regular” in [DS20].

Definition 2.3.3. Let d ∈ Z≥0, N ∈ Z+, and C, ε > 0, l ≥ 1. A set Z ⊂ R3 is called

(N, l, ε)-scattered if Z =
⋃
j∈Z+,1≤t≤N Z

(j,t) is a union of open balls such that,

1. for each j ∈ Z+ and t ∈ {1, · · · , N}, radi(Z(j,t)) = l;

2. for any j 6= j′ ∈ Z+ and t ∈ {1, 2, · · · , N}, dist(Z(j,t), Z(j′,t)) ≥ l1+ε.

A set Z ⊂ R3 is called C-unitscattered, if we can write Z =
⋃
j∈Z+

Z(j), where

each Z(j) ⊂ R3 is an open unit ball with center in Z3 and

∀j 6= j′ ∈ Z+, dist(Z(j), Z(j′)) ≥ C. (2.3.4)

Let l1, · · · ld > 1, we say that the vector ~l = (l1, l2, · · · , ld) is ε-geometric if for

each 2 ≤ i ≤ d, we have l1+2ε
i−1 ≤ li. Given a vector of positive reals ~l = (l1, l2, · · · , ld),
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a set E ⊂ R3 is called an (N,~l, C, ε)-graded set if there exist sets E0, · · · , Ed ⊂ R3,

such that E =
⋃d
i=0Ei and the following holds:

1. ~l is ε-geometric,

2. E0 is a C-unitscattered set,

3. for any 1 ≤ i ≤ d, Ei is an (N, li, ε)-scattered set.

For each 1 ≤ i ≤ d, we say that li is the i-th scale length of E. In particular, l1 is

called the first scale length. We also denote l0 := 1.

Let A ⊂ R3, and E be an (N,~l, C, ε)-graded set and C, ε > 0. Then E is said to

be (C, ε)-normal in A, if E0 ∩ A 6= ∅ implies C ≤ diam(A), and Ei ∩ A 6= ∅ implies

li ≤ diam(A)1− ε
2 for any i ∈ {1, · · · , d}.

In [DS20], a 2D Wegner estimate [DS20, Lemma 5.6] is proved and used in the

multi-scale analysis. We will prove the 3D Wegner estimate based on our 3D discrete

unique continuation, and we need to accommodate the frozen sites which emerge from

the multi-scale analysis. For this we refine Theorem 2.1.3 as follows.

Theorem 2.3.4. There exists a constant p > 3
2
, such that for any N ∈ Z+, K ∈ R+,

and small enough ε ∈ R+, there exist Cε,K , Cε,N > 0 to make the following statement

hold.

Take n ∈ Z+ with n > C4
ε,N and functions u, V : Z3 → R satisfying

∆u = V u, (2.3.5)
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and ‖V ‖∞ ≤ K in Qn. Let ~l be a vector of positive reals, and E ⊂ Z3 be an

(N,~l, ε−1, ε)-graded set with the first scale length l1 > Cε,N and be (1, ε)-normal in

Qn. Then we have that

|{a ∈ Qn \ E : |u(a)| ≥ exp(−Cε,Kn)|u(0)|}| ≥ np. (2.3.6)

Assuming Theorem 2.3.4, we can prove the 3D Wegner estimate. For simplicity

of notations, for any A ⊂ Z3, we denote VA := V |A, the restriction of the potential

function V on A.

Lemma 2.3.5 (3D Wegner estimate). There exists ε0 > 0 such that, if

1. ε > δ > 0, ε is small enough, and λ ∈ sp(H) = [0, 13],

2. N1 ≥ 1 is an integer and ~l is a vector of positive reals,

3. L0 > · · · > L5 ≥ Cε,δ,N1 with L1−2δ
j ≥ Lj+1 ≥ L

1− 1
2
ε

j for j = 0, 1, 2, 3, 4, where

Cε,δ,N1 is a (large enough) constant, and L0, L3 are dyadic,

4. Q ⊂ Z3 and Q is an L0-cube,

5. Q′1, Q
′
2, · · · , Q′N1

⊂ Q, and Q′k is an L3-cube for each k = 1, 2, · · · , N1 (we call

them “defects”),

6. G ⊂ ⋃N1

k=1Q
′
k with 0 < |G| < Lδ0,

7. E is a (1000N1,~l, ε
−1, ε)-graded set with the first scale length l1 ≥ Cε,δ,N1 and

V : E ∩Q→ {0, 1},
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8. for any L3-cube Q′ ⊂ Q \⋃N1

k=1Q
′
k, E is (1, ε)-normal in Q′,

9. for any V : Z3 → [0, 1] with VE∩Q = V , |λ− λ| ≤ exp(−L5) and HQu = λu, we

have

exp(L4)‖u‖`2(Q\
⋃
k Q
′
k) ≤ ‖u‖`2(Q) ≤ (1 + L−δ0 )‖u‖`2(G). (2.3.7)

Then

P
[
‖(HQ − λ)−1‖ ≤ exp(L1)

∣∣ VE∩Q = V
]
≥ 1− LCε−ε00 , (2.3.8)

where C is a universal constant, and ‖ · ‖ denotes the operator norm.

The proof is similar to that of [DS20, Lemma 5.6], after changing 2D notations

to corresponding 3D notations. The major difference is in Claim 2.3.7 and 2.3.8

(corresponding to [DS20, Claim 5.9 5.10]), where Theorem 2.3.4 is used. This is also

the reason why we need the constant p > 3
2

in Theorem 2.3.4.

Proof of Lemma 2.3.5. Let ε0 < p− 3
2

where p > 3
2

is the constant in Theorem 2.3.4.

In this proof, we will use c, C to denote small and large universal constants.

We let λ1 ≥ λ2 ≥ · · · ≥ λ(L0+1)3 be the eigenvalues of HQ. For each 1 ≤ k ≤

(L0 + 1)3, choose eigenfunctions uk such that ‖uk‖`2(Q) = 1 and HQuk = λkuk. We

may think of λk and uk as deterministic functions of the potential VQ ∈ [0, 1]Q.

Let E ′ =
(⋃N1

k=1Q
′
k

)
∪ (E ∩Q), then for any event E ,

P
[
E
∣∣ VE∩Q = V

]
= 2−|E

′\E|
∑

V ′:E′→{0,1},V ′|E∩Q=V

P
[
E
∣∣ VE′ = V ′

]
. (2.3.9)
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By the simple fact that the average is bounded from above by the maximum, we only

need to prove

P
[
‖(HQ − λ)−1‖ > exp(L1)

∣∣ VE′ = V ′
]
≤ LCε−ε00 , (2.3.10)

for any V ′ : E ′ → {0, 1} with V ′|E∩Q = V .

Claim 2.3.6. There is a constant CN1 such that the following is true. Suppose u

satisfies HQu = λu for some λ ∈ [0, 13]. Then there is a′ ∈ Z3, such that QL3
2

(a′) ⊂

Q \⋃kQ
′
k, and

|u(a′)| ≥ exp(−CN1L3)‖u‖`∞(Q). (2.3.11)

Proof. Without loss of generality, we assume Q = QL0
2

(0). Take a0 ∈ Q such that

|u(a0)| = ‖u‖`∞(Q). We assume without loss of generality that a0 · eτ ≤ 0, for each

τ ∈ {1, 2, 3}. Since each Q′k is an L3-cube, by the Pigeonhole principle, there is

x′0 ∈ [a0 · e1 + 100N1L3, a0 · e1 + 200N1L3], such that

{b ∈ Q : b · e1 ∈ [x′0 − 16L3, x
′
0 + 16L3]} ∩

N1⋃
k=1

Q′k = ∅. (2.3.12)

Now we iteratively apply the cone property Lemma 2.2.4 with K = 13. Recall the

notations of cones from Definition 2.2.1, and note that (K + 11) < exp(5). We find

a1 ∈ (C1
a0

(x′0 − a0 · e1) ∪ C1
a0

(x′0 − a0 · e1 + 1)) ∩Q (2.3.13)
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with

|u(a1)| ≥ exp(−1000N1L3)|u(a0)|, (2.3.14)

and a2 ∈ (C2
a1

(4L3) ∪ C2
a1

(4L3 + 1)) ∩Q with

|u(a2)| ≥ exp(−(1000N1 + 20)L3)|u(a0)|, (2.3.15)

and a3 ∈ (C3
a2

(2L3) ∪ C3
a2

(2L3 + 1)) ∩Q with

|u(a3)| ≥ exp(−(1000N1 + 30)L3)|u(a0)|. (2.3.16)

By (2.3.13), we have |a1 · e1 − x′0| ≤ 1 and −L0

2
≤ a1 · eτ ≤ 200N1L3 + 1 for τ = 2, 3.

Then |a2 · e1 − x′0| ≤ 4L3 + 2, and −L0

2
+ 4L3 ≤ a2 · e2 ≤ (200N1 + 4)L3 + 2, and

−L0

2
≤ a2 · e3 ≤ (200N1 + 4)L3 + 2. Finally, we have |a3 · e1 − x′0| ≤ 6L3 + 3, and

−L0

2
+2L3−1 ≤ a3·e2 ≤ (200N1+6)L3+3, and−L0

2
+2L3 ≤ a3·e3 ≤ (200N1+6)L3+3.

This implies QL3
2

(a3) ⊂ Q \ ⋃N1

k=1Q
′
k and the claim follows by letting a′ = a3 and

CN1 = 1000N1 + 30.

Claim 2.3.7. For any λ ∈ [0, 13], HQu = λu implies

∣∣∣∣{a ∈ Q : |u(a)| ≥ exp

(
−L2

4

)
‖u‖`2(Q)

}
\ E ′

∣∣∣∣ ≥ (L3

2

)p
. (2.3.17)

Proof. By applying Claim 2.3.6 to u, we can find a cube QL3
2

(a′) ⊂ Q\⋃kQ
′
k for some

a′ ∈ Z3, such that |u(a′)| ≥ exp(−CN1L3)‖u‖`∞(Q) ≥ exp(−CN1L3)(L0 +1)−
3
2‖u‖`2(Q).
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By Condition 8, E is (1, ε)-normal in QL3
2

(a′). Applying Theorem 2.3.4 to cube

QL3
2

(a′) with graded set E, function u, and K = 13, and letting 1
4
C2δ
ε,δ,N1

> CN1 +Cε,K

where Cε,K is the constant in Theorem 2.3.4, the claim follows.

Claim 2.3.8. Let si = exp(−L1 + (L2 − L4 + C)i) for each i ∈ Z. For 1 ≤ k1 ≤ k2 ≤

(L0 + 1)3 and 0 ≤ ` ≤ CLδ0, we have

P
[
Ek1,k2,`

∣∣ VE′ = V ′
]
≤ CL

3
2
0L
−p
3 (2.3.18)

where Ek1,k2,` denotes the event

|λk1 − λ|, |λk2 − λ| < s`, |λk1−1 − λ|, |λk2+1 − λ| ≥ s`+1. (2.3.19)

Proof. For i = 0, 1, we let Ek1,k2,`,i denote the event

Ek1,k2,` ∩
{∣∣∣∣{a ∈ Q : |uk1(a)| ≥ exp

(
−L2

4

)
, V (a) = i

}
\ E ′

∣∣∣∣ ≥ Lp3
8

}
∩ {VE′ = V ′}.

(2.3.20)

Since we are under the event VE′ = V ′, we can view Ek1,k2,`,0 and Ek1,k2,`,1 as subsets

of {0, 1}Q\E′ . Observe that Ek1,k2,` ∩ {VE′ = V ′} ⊂ Ek1,k2,`,0 ∪ Ek1,k2,`,1 by Claim 2.3.7.

Fix i ∈ {0, 1}. For each ω ∈ Ek1,k2,`,i, we denote

S1(ω) := {a ∈ Q \ E ′ : ω(a) = 1− i}, (2.3.21)
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and

S2(ω) :=

{
a ∈ Q \ E ′ : ω(a) = i, |uk1(a)| ≥ exp

(
−L2

4

)}
. (2.3.22)

By definition of Ek1,k2,`,i, we have |S2(ω)| ≥ Lp3
8

. For each ω ∈ Ek1,k2,`,i, a ∈ S2(ω), we

define ωa as

ωa(a) := 1− ω(a), ωa(a′) := ω(a′), ∀a′ ∈ Q \ E ′, a′ 6= a. (2.3.23)

We claim that ωa 6∈ Ek1,k2,`,i. In the case where i = 0, because of Condition 9 and

a 6∈ ⋃kQ
′
k, we have

∑
|λk−λ|<exp(−L5) uk(a)2 < exp(−cL4). Now we apply Lemma

2.7.2 to HQ − λ + s` with r1 = 2s`, r2 = s`+1, r3 = exp(−1
2
L2), r4 = exp(−cL4) and

r5 = exp(−L5). Then λk1 moves out of interval (λ− s`, λ+ s`) when ω(a) is changed

from 0 to 1. Thus we have ωa 6∈ Ek1,k2,`,0. The case where i = 1 is similar.

From this, we know that for any two ω, ω′ ∈ Ek1,k2,`,i, S1(ω) ⊂ S1(ω′) implies

S1(ω′) ∩ S2(ω) = ∅. Since |Q \ E ′| ≤ (L0 + 1)3 − (L3 + 1)3 ≤ L3
0, we can apply

Theorem 2.7.3 with set {S1(ω) : ω ∈ Ek1,k2,`,i} and ρ = 1
8
L−3

0 Lp3, and we conclude that

P[Ek1,k2,`,i| VE′ = V ′] ≤ CL
3
2
0L
−p
3 .

Claim 2.3.9. There is a set K ⊂ {1, 2, · · · , (L0 + 1)3} depending only on E ′ and V ′,

such that |K| ≤ CLδ0 and

{‖(HQ − λ)−1‖ > exp(L1)} ∩ {VE′ = V ′} ⊂
⋃

k1,k2∈K
k1≤k2

⋃
0≤`≤CLδ0

Ek1,k2,`. (2.3.24)
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Proof. Conditioning on VE′ = V ′, we view λk and uk as functions on [0, 1]Q\E
′
. Let

1 ≤ k1 < · · · < km ≤ (L0 + 1)3 be all indices ki such that there is at least one

ω ∈ [0, 1]Q\E
′

with |λki(w) − λ| ≤ exp(−L2). To prove the claim, it suffices to prove

that m ≤ CLδ0. Indeed, then we can always find an 0 ≤ ` ≤ m such that the annulus[
λ− s`+1, λ+ s`+1

]
\
[
λ− s`, λ+ s`

]
contains no eigenvalue of HQ.

Since
⋃
kQ
′
k ⊂ E ′, Condition 9 implies that for any ω ∈ [0, 1]Q\E

′
with |λki(ω) −

λ| ≤ exp(−L5), we have ‖uki(ω)‖`∞(Q\E′) ≤ exp(−L4). In particular, if there is

ω0 ∈ [0, 1]Q\E
′

such that |λki(ω0)− λ| ≤ exp(−L2), then by eigenvalue variation,

|λki(ω)− λ| ≤ exp(−L4) (2.3.25)

holds for all ω ∈ {0, 1}Q\E′ . Indeed, let ωt = (1− t)ω0 + tω for t ∈ [0, 1]. We compute

|λki(ωt)− λ| ≤|λki(ω0)− λ|+
∫ t

0

‖uki(ωs)‖2
`2(Q\E′)ds

≤ exp(−L2) +

∫ t

0

|Q| exp(−2L4) + 1|λki (ωs)−λ|≥exp(−L5)ds

≤ exp(−L4) + 1max0≤s≤t |λki (ωs)−λ|≥exp(−L5)

(2.3.26)

and conclude by continuity. By (2.3.25) and Condition 9, for all ω ∈ {0, 1}Q\E′ ,

we have 1 = ‖uki(ω)‖`2(Q) ≥ ‖uki(ω)‖`2(G) ≥ 1 − CL−δ0 . In particular, we have

|〈uki(ω), ukj(ω)〉`2(G) − 1i=j| ≤ CL−δ0 ≤ (5|G|)− 1
2 . By Lemma 2.7.1 we have that

m ≤ C|G| ≤ CLδ0.
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Finally,

P[‖(HQ − λ)−1‖ > exp(L1)| VE′ = V ′] ≤
∑

k1,k2∈K

∑
1≤`≤CLδ0

P[Ek1,k2,`| VE′ = V ′] (2.3.27)

and thus

P[‖(HQ − λ)−1‖ > exp(L1)| VE′ = V ′] ≤ CL
3
2

+3δ

0 L−p3 ≤ LCε−ε00 , (2.3.28)

so our conclusion follows.

We now prove Theorem 2.3.1 by a multi-scale analysis argument.

In the remaining part of this section, by “dyadic cube”, we mean a cube Q2n(a)

for some a ∈ 2n−1Z3 and n ∈ Z+. For each k,m ∈ Z+ and each 2k-cube Q, we denote

by mQ the 2mk-cube with the same center as Q.

Theorem 2.3.10 (Multi-scale Analysis). There exists κ > 0, such that for any ε∗ > 0,

there are

1. ε∗ > ε > ν > δ > 0,

2. M,N ∈ Z+,

3. dyadic scales Lk, for k ∈ Z≥0, with
⌊
log2 L

1−6ε
k+1

⌋
= log2 Lk,

4. decay rates 1 ≥ mk ≥ L−δk for k ∈ Z≥0,

such that for any 0 ≤ λ ≤ exp(−LδM), we have random sets Ok ⊂ R3 for k ∈ Z≥0 with
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Ok ⊂ Ok+1 (depending on the Bernoulli potential V ), and the following six statements

hold for any k ∈ Z≥0:

1. When k ≤M , Ok ∩ Z3 = dε−1eZ3.

2. When k ≥ M + 1, Ok is an (N,~l, (2ε)−1, 2ε)-graded random set with ~l =

(L1−2ε
M+1, L

1−2ε
M+2, · · · , L1−2ε

k ).

3. For any Lk-cube Q, the set Ok is (1, 2ε)-normal in Q.

4. For any i ∈ Z≥0 and any dyadic 2iLk-cube Q, the set Ok ∩ Q is VOk−1∩3Q-

measurable.

5. For any dyadic Lk-cube Q, it is called good (otherwise bad), if for any potential

V ′ : Z3 → [0, 1] with V ′Ok∩Q = VOk∩Q, we have

|(H ′Q − λ)−1(x, y)| ≤ exp(L1−ε
k −mk|x− y|), ∀x, y ∈ Q. (2.3.29)

Here H ′Q is the restriction of −∆ + V ′ on Q with Dirichlet boundary condition.

Then Q is good with probability at least 1− L−κk .

6. mk = mk−1 − L−νk−1 when k ≥M + 1.

Proof. Throughout the proof, we use c, C to denote small and large universal con-

stants.

Let κ be any number with 0 < κ < ε0, where ε0 is from Lemma 2.3.5. Let

small reals ε, δ, ν satisfy Condition 1 and to be determined. Let M ∈ Z+ satisfy
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3
5
δ < (1−6ε)M < 4

5
δ; such M must exist as long as ε < 1

24
. Leave N to be determined,

and let L0 be large enough with L0 ≥ max {Cδ,ε, Cε,δ,N}, where Cδ,ε is the constant

in Proposition 2.7.10 and Cε,δ,N is the constant in Lemma 2.3.5 (with N1 = N). For

k > 0, let Lk be dyadic numbers satisfying Condition 3. Fix λ ∈
[
0, exp(−LδM)

]
.

When k = 0, 1, · · · ,M , let Ok =
⋃
a∈dε−1eZ3 oa, where oa is the open unit ball

centered at a. Then Statement 1, 3, 4 hold. Let mk := L−δk . Proposition 2.7.10

implies Statement 5 for k = 1, 2, · · · ,M .

We now prove by induction for k > M . Assume that Statement 1 to 6 hold for

all k′ < k.

For any 0 < k′ < k, by Lemma 2.7.6, any bad dyadic Lk′-cube Q must contain

a bad Lk′−1-cube. For any 0 < i ≤ k, and a bad Lk−i-cube Q′ ⊂ Q, we call Q′

a hereditary bad Lk−i-subcube of Q, if there exists a sequence Q′ = Qi ⊂ Qi−1 ⊂

· · · ⊂ Q1 ⊂ Q, where for each j = 1, · · · , i, Qj is a bad Lk−j-cube. We also call such

sequence {Qj}1≤j≤i a hereditary bad chain of length i. Note that the set of hereditary

bad chains of Q is VOk−1∩Q-measurable.

Claim 2.3.11. When ε is small enough, there exists N ′ depending on M,κ, δ, ε, such

that, for any dyadic Lk-cube Q,

P [Q has no more than N ′ hereditary bad chain of length M ] ≥ 1− L−10
k . (2.3.30)
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Proof. Writing N ′ = (N ′′)M , we have

P[Q has more than N ′ hereditary bad chain of length M ]

≤
∑
Q′⊂Q

Q′ is a dyadic Lj-cube
k−M<j≤k

P[Q′ contains more than N ′′ bad Lj−1-subcubes]. (2.3.31)

We can use inductive hypothesis to bound this by

∑
Q′⊂Q

Q′ is a dyadic Lj-cube
k−M<j≤k

(
Lj
Lj−1

)CN ′′
(L−κj−1)cN

′′

≤
∑

k−M<j≤k

(
Lk
Lj

)C (
Lj
Lj−1

)CN ′′
(L−κj−1)cN

′′

≤CMLCk max
k−M<j≤k

L
(Cε−cκ)N ′′

j−1 ≤ CMLCk (L
(Cε−cκ)N ′′

k + L
(Cε−cκ)δN ′′

k ).

(2.3.32)

Here we used that Lk−M > L
δ
2
k in the last inequality. The claim follows by taking the ε

sufficiently small (depending on κ) and N ′′ large enough (depending on M,κ, δ, ε).

Now we let N := 1000N ′. We call a dyadic Lk-cube Q ready if Q has no more

than N ′ hereditary bad chain of length M . The event that Q is ready is VOk−1∩Q-

measurable.

Suppose Q is an Lk-cube and is ready. Let Q′′′1 , · · · , Q′′′N ′ ⊂ Q be a complete list of

all hereditary bad Lk−M -subcubes of Q. Let Q′′1, · · · , Q′′N ′ ⊂ Q be the corresponding

bad Lk−1-cubes, such that Q′′′i ⊂ Q′′i for each i = 1, 2, · · · , N ′. These cubes are chosen

in a way such that {Q′′1, · · · , Q′′N ′} contains all the bad Lk−1-cubes in Q.
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By Lemma 2.7.4, we can choose a dyadic scale L′ satisfying

L1−3ε
k ≤ L′ ≤ L1−2ε

k (2.3.33)

and disjoint L′-cubes Q′1, · · · , Q′N ′ ⊂ Q such that, for every Q′′i , there is a Q′j such

that Q′′i ⊂ Q′j and dist(Q′′i , Q \ Q′j) ≥ L′

8
. For each i = 1, 2, · · · , N ′, we let OQ,i be

the ball in R3, with the same center as Q′i and with radius L1−2ε
k . We can choose

OQ,i, Q
′′
i , Q

′′′
i in a VOk−1∩Q-measurable way.

Now we let Ok be the union of Ok−1 and balls OQ,1, · · · , OQ,N ′ , for each ready

Lk-cube Q; i.e.

Ok := Ok−1 ∪
( ⋃
Q is an Lk-cube and is ready

(
N ′⋃
i=1

OQ,i

))
, (2.3.34)

and let mk = mk−1 −L−νk−1. From induction hypothesis we have mk ≥ L−δk−1 −L−νk−1 ≥

L−δk .

We now verify Statement 2 to 6. First note that Statement 4 and 6 hold for k by

the above construction.

Claim 2.3.12. Statement 2 and 3 hold for k.

Proof. From (2.3.34), we let Õk′ :=
⋃
Q is an Lk′ -cube and is ready

⋃N ′

i=1OQ,i for k′ > M .

Then we have that Ok = OM ∪
(⋃k

k′=M+1 Õk′
)

, and we claim that

1. OM is (2ε)−1-unitscattered,
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2. Õk′ is an (N,L1−2ε
k′ , 2ε)-scattered set for each k′ > M .

By these two claims, Statement 2 holds by Condition 3.

Now we check these two claims. For the first one, just note that we have OM =⋃
a∈dε−1eZ3 oa, then use Definition 2.3.3. For the second one, when k′ > M the set

Õk′ is the union of N ′ balls OQ,1, OQ,2, · · · , OQ,N ′ for each ready Lk′-cube Q, and

each ball OQ,i has radius L1−2ε
k′ . Denote the collection of dyadic Lk′-cubes by Qk′ :={

QLk′
2

(a) : a ∈ Lk′
4
Z3
}

. We can divide Qk′ into at most 1000 subsets Qk′ =
⋃1000
t=1 Q

(t)
k′ ,

such that any two Lk′-cubes in the same subset have distance larger than Lk′ , i.e.

dist(Q,Q′) ≥ Lk′ for any t ∈ {1, 2, · · · , 1000} and any Q 6= Q′ ∈ Q(t)
k′ . (2.3.35)

For each 1 ≤ t ≤ 1000 and 1 ≤ j ≤ N ′, let

O
(t,j)
k′ =

{
OQ,j : Q is ready and Q ∈ Q(t)

k′

}
.

Then for any two O 6= O′ ∈ O
(t,j)
k′ , by (2.3.35), we have

dist(O,O′) ≥ Lk′ − 2L1−2ε
k′ ≥ L1−4ε2

k′ = (radi(O))1+2ε = (radi(O′))1+2ε. (2.3.36)

From Definition 2.3.3, we have that

Õk′ =
⋃

1≤t≤1000,1≤j≤N ′

(⋃
O

(t,j)
k′

)
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is an (N,L1−2ε
k′ , 2ε)-scattered set since N = 1000N ′. Thus the second claim holds.

Finally, since radi(OQ,i) = L1−2ε
k′ < diam(Q)1−ε for any ready Lk′-cube Q and

1 ≤ i ≤ N ′, we have that Ok is (1, 2ε)-normal in any Lk-cube. Hence Statement 3

holds.

Now it remains to check Statement 5 for k.

Claim 2.3.13. If Q is an Lk-cube and Q is ready, then for any 1 ≤ i ≤ N ′, we have

exp(cL1−δ
k−1)‖u‖

`∞(Q′i\
⋃N′
j=1 Q

′′
j )
≤ ‖u‖`2(Q′i)

≤ (1 + exp(−cL1−δ
k−M))‖u‖

`2(Q′i∩
⋃N′
j=1Q

′′′
j ),

(2.3.37)

for any λ ∈ R with |λ− λ| ≤ exp(−2L1−ε
k−1), and any u : Q′i → R with HQ′i

u = λu.

Proof. If a ∈ Q′i \
⋃N ′

j=1Q
′′′
j , then there is a j′ = 1, · · · ,M and a good Lk−j′-cube

Q′′ ⊂ Q′i with a ∈ Q′′ and dist(a,Q′i \ Q′′) ≥ 1
8
Lk−j′ . Moreover, if a ∈ Q′i \

⋃N ′

j=1Q
′′
j ,

then we can take j′ = 1. By the definition of good and Lemma 2.7.5,

|u(a)| ≤ 2 exp

(
L1−ε
k−j′ −

1

8
mk−j′Lk−j′

)
‖u‖`1(Q′i)

≤ exp(−cL1−δ
k−j′)‖u‖`2(Q′i)

. (2.3.38)

In particular, we see that

‖u‖
`∞(Q′i\

⋃N′
j=1Q

′′
j )
≤ exp(−cL1−δ

k−1)‖u‖`2(Q′i)
(2.3.39)

and

‖u‖
`∞(Q′i\

⋃N′
j=1 Q

′′′
j )
≤ exp(−cL1−δ

k−M)‖u‖`2(Q′i)
. (2.3.40)
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These together imply the claim.

Claim 2.3.14. If Q is an Lk-cube, and for any 1 ≤ i ≤ N ′, Ei(Q) denotes the event

that

Q is ready and ‖(HQ′i
− λ)−1‖ ≤ exp(L1−4ε

k ), (2.3.41)

then P[Ei(Q)] ≥ 1− LCε−ε0k .

Proof. Recall that the event where Q is ready is VOk−1∩Q-measurable, and subcubes

Q′i’s are also VOk−1∩Q-measurable. Assuming ε > 5δ, we apply Lemma 2.3.5 with

2ε > δ > 0, N1 = N ′, and to the cube Q′i with scales L′ ≥ L1−4ε
k ≥ L1−5ε

k ≥ Lk−1 ≥

L1−2δ
k−1 ≥ 2L1−ε

k−1 (recall that L′ is the scale chosen above satisfying (2.3.33)), defects{
Q′′j : Q′′j ⊂ Q′i

}
, G =

⋃
1≤j≤N ′:Q′′′j ⊂Q′i

Q′′′j , and E = Ok−1. Note that L
δ
2
k < Lk−M <

L
9δ
10
k . Condition 9 of Lemma 2.3.5 is given by Claim 2.3.13. By Claim 2.3.11 this claim

follows.

Claim 2.3.15. If Q is an Lk-cube and E1(Q), · · · , EN ′(Q) hold, then Q is good.

Proof. We apply Lemma 2.7.6 to the cube Q with small parameters ε > ν > 0, scales

Lk ≥ L1−ε
k ≥ L′ ≥ L1−3ε

k ≥ L1−4ε
k ≥ Lk−1 ≥ L1−ε

k−1, and defects Q′1, · · · , Q′N ′ . We

conclude that

|(HQ − λ)−1(a, b)| ≤ exp(L1−ε
k −mk|a− b|). (2.3.42)

Since Q′i ⊂ Ok when Q is ready, the events Ei(Q) are VOk∩Q-measurable, thus Q is

good.
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By combining Claim 2.3.14, Claim 2.3.15, and letting Cε < ε0 − κ, we have that

Statement 5 holds for k. Thus the induction principle proves the theorem.

Proof of Theorem 2.3.1. Apply Theorem 2.3.10 with any ε∗ <
κ

100
, then there are

{Lk}k∈Z≥0
, {mk}k∈Z≥0

, ε, δ, ν, N and M such that the statements of Theorem 2.3.10

hold. Let k∗ ∈ Z+ be large enough with k∗ ≥ M + 2 and let L∗ = Lk∗ . Fix

dyadic scale L ≥ L∗, and let k be the maximal integer such that L ≥ Lk+1. Then

L1+6ε
k ≤ Lk+1 ≤ L < Lk+2 ≤ L1+15ε

k . Denote

Q := {Q : Q is a dyadic Lk-cube and Q ∩QL 6= ∅} . (2.3.43)

Then QL ⊂
⋃
Q∈QQ and |Q| ≤ 1000

(
L
Lk

)3

≤ L100ε
k ≤ L100ε∗

k . By elementary observa-

tions, for any a ∈ QL, there is a Q ∈ Q such that a ∈ Q and dist(a,QL \ Q) ≥ 1
8
Lk.

Fix λ ∈ [0, exp(−LδM)]. For each Q ∈ Q, define AQ to be the following event:

|(HQ − λ)−1(a, b)| ≤ exp(L1−ε
k −mk|a− b|) for each a, b ∈ Q. (2.3.44)

By Lemma 2.7.6,
⋂
Q∈QAQ implies

|(HQL − λ)−1(a, b)| ≤ exp(L1−ε −m|a− b|),∀a, b ∈ QL, (2.3.45)
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where m = mk − L−δk . Note that for k ≥ k∗ − 1 ≥M + 1 we have

m = mk − L−δk ≥ L−δk∗−2 − L−νk∗−2 − · · · − L−νk−1 − L−δk > δ0 (2.3.46)

for some δ0 > 0 independent of k. Here the inequalities are by Condition 4 and

Statement 6 in Theorem 2.3.10, and the fact that Lk increases super-exponentially

and k∗ is large enough.

By Theorem 2.3.10, for each Q ∈ Q we have

P[AQ] ≥ 1− L−κk . (2.3.47)

Thus

P

[⋂
Q∈Q

AQ

]
≥ 1− |Q|L−κk ≥ 1− L−κ+100ε∗

k . (2.3.48)

Hence our theorem follows by letting κ0 = κ−100ε∗
1+15ε

and λ∗ = min
{
δ0, exp(−LδM), ε

}
.

2.4 Polynomial arguments on triangular lattice

The goal of this section is to prove Theorem 2.1.9, which is a triangular lattice version

of [BLMS17, Theorem (A)]. Our proof closely follows that in [BLMS17], which em-

ploys the polynomial structure of u and the Remez inequality, and a Vitalli covering

argument.
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2.4.1 Notations and basic bounds

Before starting the proof, recall Definition 2.1.8 for some basic geometric objects.

Here we need more notations for geometric patterns in Λ.

Definition 2.4.1. We denote γ := ξ + η =
(
−1

2
,
√

3
2

)
. For each b = sξ + tη ∈ Λ, we

denote ξ(b) := s and η(b) := t. For a ∈ Λ and m ∈ Z≥0, we denote the ξ-edge, η-edge,

and γ-edge of Ta;m to be the sets

{a−mη + sξ : −2m ≤ s ≤ m} ∩ Λ,

{a+mξ + tη : −m ≤ t ≤ 2m} ∩ Λ,

{a−mξ + sξ + sη : −m ≤ s ≤ 2m} ∩ Λ

(2.4.1)

respectively, each containing 3m + 1 points. In this section, an edge of Ta;m means

one of its ξ-edge, η-edge and γ-edge.

For a ∈ Λ and m, ` ∈ Z≥0, denote

Pa;m,` := {a+ sξ + tη : −` ≤ t ≤ 0,−m+ t ≤ s ≤ 0} ∩ Λ,

a trapezoid of lattice points. Especially, when ` = 0, Pa;m,` = {a+ sξ : 0 ≤ s ≤ m} is

a segment parallel to ξ. The lower edge of Pa;m,` is defined to be the set Pa−`η;m+`,0,

and the upper edge of Pa;m,` is defined to be the set Pa;m,0. The left leg of Pa;m,` is the
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ξ

η
m

ℓ

a

η-edge γ-edge upper edge

left leg right leg

lower edge

3m

a

ξ-edge

Figure 2.1: Ta;m is the set of lattice points in the triangle region; Pa;m,` is the set of
lattice points in the trapezoid region.

set {a+ tη : −` ≤ t ≤ 0} ∩ Λ, and the right leg of Pa;m,` is the set

{a−mξ − tγ : 0 ≤ t ≤ `} ∩ Λ.

See Figure 2.1 for an illustration of Ta;m and Pa;m,`.

The following lemma can be proved using a straight forward induction.

Lemma 2.4.2. Let R, S ∈ R+, a ∈ Λ, and m ∈ Z+. Suppose u : Λ→ R satisfies

|u(b) + u(b− ξ) + u(b+ η)| ≤ R (2.4.2)

for any b ∈ Ta;m with η(b) − ξ(b) < m, and |u| ≤ S on one of three edges of Ta;m.

Then |u(b)| ≤ 23mS + (23m − 1)R for each b ∈ Ta;m.

Proof. By symmetry, we only need to prove the result when |u| ≤ S on the ξ-edge of

Ta;m. Without loss of generality we also assume that a = 0.
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We claim that for each k = 0, 1, · · · , 3m, |u(b)| ≤ 2kS+(2k−1)R for any b ∈ T0;m

with η(b) = k −m. We prove this claim by induction on k. The base case of k = 0

holds by the assumptions. We suppose that the statement is true for 0, 1, · · · , k. For

any b ∈ T0;m with η(b) = k − m and ξ(b) > k − 2m, we have b, b − ξ ∈ T0;m and

η(b) = η(b− ξ) = k −m. By (2.4.2) and the induction hypothesis,

|u(b+ η)| ≤ |u(b)|+ |u(b− ξ)|+R ≤ 2(2kS + (2k − 1)R) +R = 2k+1S + (2k+1 − 1)R.

(2.4.3)

Then our claim holds by induction, and the lemma follows from our claim.

2.4.2 Key lemmas via polynomial arguments

In this subsection we prove two key results, Lemma 2.4.4 and 2.4.5 below, which are

analogous to [BLMS17, Lemma 3.4] and [BLMS17, Lemma 3.6], respectively. We will

use the Remez inequality [Rem36]. More precisely, we will use the following discrete

version as stated and proved in [BLMS17].

Lemma 2.4.3 ([BLMS17, Corollary 3.2]). Let d, ` ∈ Z+, and p be a polynomial with

degree no more than d. For M ∈ R+, suppose that |p| ≤ M on at least d + ` integer

points on a closed interval I, then on I we have

|p| ≤
(

4|I|
`

)d
M. (2.4.4)

Now we prove the following bound of |u| in a trapezoid, given that |u| is small on
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the upper edge and on a substantial fraction of the lower edge of the trapezoid.

Lemma 2.4.4. Let R,K ∈ R+, `,m ∈ Z+ with ` ≤ m
10

, and a ∈ Λ. There is a

universal constant C5 > 1 (independent of a,m, `,K,R), such that the following is

true. Suppose u : Pa;m,` → R is a function satisfying that:

1. (2.4.2) holds for any b ∈ Pa−η;m,`−1,

2. |u| ≤ K on the upper edge of Pa;m,`,

3. |u| ≤ K for at least half of the points in the lower edge of Pa;m,`.

Then |u| ≤ C`+m
5 (K +R) in Pa;m,`.

Proof. We assume without loss of generality that a = 0. We first claim that there is

a function v : P0;m,` → R satisfying the following four conditions:

1. v = 0 on {−tη : 1 ≤ t ≤ `}.

2. v = u on P0;m,0.

3. For each point b ∈ P−η;m,`−1,

v(b) + v(b− ξ) + v(b+ η) = u(b) + u(b− ξ) + u(b+ η). (2.4.5)

4. ‖v‖∞ ≤ 4`+m(K +R).

We construct the function v by first defining it on {−tη : 0 ≤ t ≤ `} and P0;m,0,

then iterating (2.4.5) line by line. More precisely, for −m ≤ s ≤ 0, we let v(sξ) =
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u(sξ). For each t = −1,−2 · · · ,−`, we first define v(tη) = 0, then define

v((s− 1)ξ + tη)

:=− v(sξ + tη)− v(sξ + (t+ 1)η) + u(sξ + tη)

+u((s− 1)ξ + tη) + u(sξ + (t+ 1)η)

(2.4.6)

for all −m + t + 1 ≤ s ≤ 0. Then we have defined v(sξ + tη) for −` ≤ t ≤ 0 and

−m+ t ≤ s ≤ 0. By our construction, v satisfies Condition 1 to 3.

Now we prove v satisfies Condition 4. First, (2.4.5) implies that |v(b) + v(b− ξ) +

v(b+η)| ≤ R for any b ∈ P−η;m,`−1. Using this and |v| ≤ K on P0;m,0, by an induction

similar to that in the construction of v, we can prove that

|v(−sξ − tη)| ≤ 2s+tK + (2s+t − 1)R (2.4.7)

for each 0 ≤ t ≤ ` and 0 ≤ s ≤ m+ t. In particular, |v| ≤ (K +R)4`+m on any point

in trapezoid P0;m,`, and v satisfies Condition 4.

Let w := u− v, then w = 0 on P0;m,0 and w(b) +w(b− η) +w(b− γ) = 0 for each

b ∈ P0;m,`−1. Also, |w| ≤ (K +R)4`+m +K ≤ (K +R)5`+m on at least half of points

in the lower edge of P0;m,`. Since ` ≤ m
10

, we have

∣∣{0 ≤ s ≤ m+ ` : |w(−sξ − `η)| ≤ (K +R)5`+m
}∣∣ ≥ m+ `

2
≥ 5`. (2.4.8)
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We claim that for each 0 ≤ t ≤ `, if we denote

gt(s) = (−1)sw(−sξ − tη), ∀0 ≤ s ≤ m+ t, s ∈ Z, (2.4.9)

then gt is a polynomial of degree at most t. We prove the claim by induction on t.

For t = 0, this is true since w = 0 on the upper edge of P0;m,`. Suppose the statement

is true for t, then since

gt+1(s)− gt+1(s+ 1) = (−1)sw(−sξ − (t+ 1)η)− (−1)s−1w((−s− 1)ξ − (t+ 1)η)

= −(−1)sw(−sξ − tη) = −gt(s), (2.4.10)

for all 0 ≤ s ≤ m+ t, s ∈ Z, we have that gt+1 is a polynomial of degree at most t+ 1.

Hence our claim holds.

In particular, g`(s) = (−1)sw(−sξ−`η) is a polynomial of degree at most `. Hence

by (2.4.8) and Lemma 2.4.3, there exists a constant C > 0 such that

|w(−sξ − `η)| ≤ 5`+mC`(K +R) (2.4.11)

for each 0 ≤ s ≤ m+ `. Thus on the lower edge of P0;m,`,

|u| ≤ |w|+ |v| ≤ 5`+mC`(K +R) + 4`+m(K +R) ≤ (5C + 4)`+m(K +R), (2.4.12)

Finally, by an inductive argument similar to the proof of Lemma 2.4.2, and letting
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C5 = 10C + 8, we get

|u| ≤ 2`(5C + 4)`+m(K +R) + (2` − 1)R ≤ C`+m
5 (K +R) (2.4.13)

in P0;m,`.

Our next lemma is obtained by applying Lemma 2.4.4 repeatedly.

Lemma 2.4.5. Let m, ` ∈ Z+ with ` ≤ m ≤ 2`, K,R ∈ R+, and a ∈ Λ. Let

u : Pa;m,` → R be a function satisfying (2.4.2) for each b ∈ Pa−η;m,`−1. If |u| ≤ K

on Pa;m,0 and |{b ∈ Pa;m,` : |u(b)| > K}| ≤ 1
105m`, then |u| ≤ (K +R)C`

6 in Pa;m,b `2c,

where C6 > 1 is a universal constant.

Proof. If ` ≤ 120, then the result holds trivially since 1
105m` ≤ 2

105 `
2 < 1. From now

on we assume that ` ≥ 120, and let C6 = C1000
5 where C5 is the constant in Lemma

2.4.4.

For each k = 0, 1, · · · , 29, we choose an lk ∈
{⌊

2k
60
`
⌋
,
⌊

2k
60
`
⌋

+ 1, · · · ,
⌊

2k+1
60

`
⌋
− 1
}

such that

|{b : |u(b)| ≤ K} ∩ Pa−lkη;m+lk,0| ≥
1

2
(m+ lk). (2.4.14)

Such lk must exist, since otherwise,

|{b ∈ Pa;m,` : |u(b)| > K}| > 1

2
· 1

60
m` >

1

105
m`, (2.4.15)

which contradicts with an assumption in the statement of this lemma. In particular,
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we can take l0 = 0.

From the definition, we have lk+1 − lk ≤ 1
20
` ≤ 1

20
m and lk+1 − lk ≥ 1

60
` ≥ 1

120
m.

For each k = 0, 1, · · · , 28, let Pk = Pa−lkη;m+lk,lk+1−lk , then we claim that |u| ≤

C
lk+1

6 (K +R) on Pk.

We prove this claim by induction on k. For k = 0, we use Lemma 2.4.4 for Pa;m,l1

to get

|u| ≤ (K +R)C l1+m
5 ≤ (K +R)C121l1

5 ≤ (K +R)C l1
6 (2.4.16)

in P0 = Pa;m,l1 . Suppose the statement holds for k, then |u| ≤ (K + R)C
lk+1

6 in

Pa−lk+1η;m+lk+1,0 which is the upper edge of Pk+1. We use Lemma 2.4.4 again for Pk+1,

and get |u| ≤ (K +R)C
lk+2

6 in Pk+1. Thus the claim follows.

Since l29 ≥ 29
30
`− 1 ≥

⌊
1
2
`
⌋

+ 1 when ` ≥ 120, we have Pa;m,b `2c ⊂
⋃28
k=0 Pk. Then

the lemma is implied by this claim.

2.4.3 Proof of Theorem 2.1.9

In this subsection we finish the proof of Theorem 2.1.9. The key step is a triangular

analogue of [BLMS17, Corollary 3.7] (Lemma 2.4.6 below); then we finish using a

Vitalli covering argument.

Proof of Theorem 2.1.9. Let ε1 = 1
1018 , and C4 = 6C6 > 6 where C6 is the constant

in Lemma 2.4.5. We note that now Theorem 2.1.9 holds trivially when n < 109, so

below we assume that n ≥ 109.
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We argue by contradiction, i.e. we assume that

|{b ∈ T0;n : |u(b)| > K}| ≤ ε1n
2, (2.4.17)

where we take K = C−n4 |u(0)|.

We first define a notion of triangles on which |u| is “suitably bounded”. For this,

we let R = C−n4 |u(0)| as well, and we define a triangle Ta;m ⊂ T0;bn2 c as being good if

m is even and |u| ≤ (K +R)
(
C4

3

)3m
on any point in Ta;m.

We choose points ai ∈ T0;b n20c for 1 ≤ i ≤
⌊
n2

106

⌋
, such that each Tai,2 ⊂ T0;b n20c,

and Tai,2 ∩ Taj ,2 = ∅ for any i 6= j. Denote S :=
{
Tai,2 : 1 ≤ i ≤

⌊
n2

106

⌋}
. By (2.4.17),

for at least half of the triangles in S, |u| ≤ K on each of them. Hence, there are at

least n2

107 good triangles in S. Denote

Q =

{
ai : 1 ≤ i ≤

⌊
n2

106

⌋
, Tai,2 is good

}
. (2.4.18)

For any a ∈ Q, let la = max
{
l ∈ Z+ : Ta,l is good and Ta,l ⊂ T0;bn2 c

}
. Denote Xa =

Ta;la for each a ∈ Q.

If there exists a ∈ Q with la ≥ n
30

, then this maximal triangle contains 0, and

|u(0)| ≤
(
C4

3

)3la
(K + R) ≤

(
C4

3

)n
(K + R) < |u(0)|, which is impossible. Hence

la ≤ n
30

for any a ∈ Q. For any a ∈ Q, denote Ya := Ta;4la . Then Ya ⊂ T0;bn2 c.

We need the following result on good triangles.

Lemma 2.4.6. For any m ∈ Z+ and a ∈ Λ the following is true. Let T1 = Ta;2m,
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T2 = Ta;5m and T3 = Ta;8m (see Figure 2.2 for an illustration). If T3 ⊂ T0;bn2 c, and

|{b ∈ T3 : |u(b)| > K}| ≤ m2

106 , and T1 is good, then T2 is also good.

We assume this result for now and continue our proof of Theorem 2.1.9. We have

that

|{b ∈ Ya : |u(b)| > K}| ≥ l2a
107

, ∀a ∈ Q, (2.4.19)

since otherwise, by Lemma 2.4.6 with T1 = Xa and T3 = Ya, there is a good triangle

strictly containing Xa and this contradicts with the maximal property of Xa.

Finally we will apply Vitalli’s covering theorem to the collection of triangles

{Ya : a ∈ Q}. We can find a subset Q̃ ⊂ Q such that
∣∣∣⋃a∈Q̃ Ya

∣∣∣ ≥ 1
16
|⋃a∈Q Ya|,

and Ya ∩ Ya′ = ∅ for any a 6= a′ ∈ Q̃. Hence

∣∣∣{a ∈ T0;bn2 c : |u(a)| > K
}∣∣∣ ≥ 1

107

∣∣∣∣∣∣
⋃
a∈Q̃

Ya

∣∣∣∣∣∣ > 1

109

∣∣∣∣∣⋃
a∈Q

Ya

∣∣∣∣∣ . (2.4.20)

Since Q ⊂ ⋃a∈Q Ya, we have
∣∣∣⋃a∈Q Ya

∣∣∣ ≥ |Q| > n2

107 , so

∣∣∣{a ∈ T0;bn2 c : |u(a)| > K
}∣∣∣ > 1

109
· n

2

107
=

n2

1016
.

This contradicts with our assumption (2.4.17) since ε1 = 1
1018 .

It remains to prove Lemma 2.4.6.

Proof of Lemma 2.4.6. We first note that u satisfies (2.4.2) for any b ∈ T0;bn2 c. With-

out loss of generality, we assume a = 0.
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ξ

η

T2
′

T1
′

T3
′

Figure 2.2: The thick lines indicate edges of T1, T2, and T3. The blue segment
indicates L1 and the red segment indicates L2. The yellow region indicates P ′1 and
the union of yellow region and green region indicates P1.

Define F : Λ→ Λ to be the counterclockwise rotation around 0 by 2π
3

, i.e.

F (s1ξ + t1η) = (t1 − s1)ξ − s1η (2.4.21)

for any s1, t1 ∈ Z.

We first consider the trapezoid P1 := P2mξ−2mη;6m,6m. The upper edge of P1 is

exactly the ξ-edge of T1 and the lower edge of P1 is contained in the ξ-edge of T3.

Denote P ′1 := P2mξ−2mη;6m,3m, K1 := (K +R)(2C6)6m and K2 := (K1 +R)C6m
6 . Then

|u| ≤ K1 in T1 since T1 is good. In particular, |u| ≤ K1 on the upper edge of P1.

We also have |{b ∈ P1 : |u(b)| > K}| ≤ 36
105m

2, by P1 ⊂ T3 and the assumption of this

lemma. Thus by Lemma 2.4.5, we deduce that |u| ≤ K2 in P ′1.

45



Let P2 := F (P1) and P3 := F−1(P1). A symmetric argument for P2 and P3 implies

that |u| ≤ K2 also holds in P ′2 := F (P ′1) and P ′3 := F−1(P ′1).

Consider the three triangles T ′1 := T3mξ+6mη;2m, T ′2 := T3mξ−3mη;2m and T ′3 :=

T−6mξ−3mη;2m (see Figure 2.2). We have T ′2 = F (T ′1) and T ′3 = F−1(T ′1). We claim

that |u| ≤ (K2+R)26m in
⋃
i=1,2,3 T

′
i . By symmetry, we only need to prove the claim in

T ′1. Denote L1 := {sξ + 4mη : −m ≤ s ≤ 2m} and L2 := {sξ + 4mη : 2m ≤ s ≤ 5m}.

Note that the ξ-edge of triangle T ′1 is the set of points

{sξ + 4mη : −m ≤ s ≤ 5m} = L1 ∪ L2. (2.4.22)

Since

F−1(L1) = {−4mξ + (s− 4m)η : −m ≤ s ≤ 2m} ⊂ P ′1, (2.4.23)

and

F (L2) = {(4m+ t)ξ + tη : −5m ≤ t ≤ −2m} ⊂ P ′1, (2.4.24)

we have L1 ⊂ F (P ′1) = P ′2 and L2 ⊂ F−1(P ′1) = P ′3. Hence |u| ≤ K2 on L1 ∪ L2, i.e.

the ξ-edge of T ′1. By Lemma 2.4.2, |u| ≤ (K2 +R)26m in T ′1, and our claim holds.

Since
(⋃

i=1,2,3 T
′
i

)
∪
(⋃

i=1,2,3 P
′
i

)
∪ T1 = T2, we have |u| ≤ (K2 + R)26m in T2.

We also have that

26m(K2 +R) = 212mC12m
6 K + (212mC12m

6 + 26mC6m
6 + 26m)R ≤

(
C4

3

)15m

(K +R),

(2.4.25)
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so T2 is good.

To apply Theorem 2.1.9 to prove Theorem 2.5.1 in the next section, we actually

need the following two corollaries.

Corollary 2.4.7. Let a ∈ Λ, and m, ` ∈ Z≥0 with m ≥ 2`. Take any nonempty

L ⊂ {a− tξ : t ∈ Z, ` ≤ t ≤ m− `} , (2.4.26)

and function u : Pa;m,` → R such that

|u(b) + u(b− ξ) + u(b+ η)| ≤ C−2`
4 min

c∈L
|u(c)|, (2.4.27)

for any b with {b, b− ξ, b+ η} ⊂ Pa;m,`. Then

∣∣∣∣{b ∈ Pa;m,` : |u(b)| ≥ C−2`
4 min

c∈L
|u(c)|

}∣∣∣∣ ≥ ε2(`+ 1)2 (2.4.28)

whenever L contains at least one element; and

∣∣∣∣{b ∈ Pa;m,` : |u(b)| ≥ C−2`
4 min

c∈L
|u(c)|

}∣∣∣∣ ≥ ε2(m+ 2)(`+ 1) (2.4.29)

if m ≥ 2`+ 2 and L = {a− tξ : t ∈ Z, `+ 1 ≤ t ≤ m− `− 1}. Here ε2 is a universal

constant.

Proof. If ` ≤ 109 then the conclusion holds trivially by taking ε2 small enough. From
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now on we assume ` > 109. We denote P := Pa;m,`, for simplicity of notations.

Without loss of generality, we assume that minc∈L |u(c)| = 1.

First we prove ∣∣{b ∈ P : |u(b)| ≥ C−2`
4

}∣∣ ≥ ε1(`+ 1)2

100
, (2.4.30)

which implies (2.4.28). We take a′ ∈ L. By (2.4.27), for any b ∈ Pa−ξ;m−2,`−2 and

0 < k1 < `, if |u(b)| ≥ C−k1
4 , then |u(b−η)| ≥ C−k1−1

4 or |u(b−γ)| ≥ C−k1−1
4 . Thus we

can inductively pick a1 = a′, a2, · · · , ab `3c ∈ P , such that for each i = 1, 2, · · · ,
⌊
`
3

⌋
,

|u(ai)| ≥ C−i+1
4 , and ai = a′ − siξ − iη with si − si−1 ∈ {0, 1} for each 2 ≤ i ≤

⌊
`
3

⌋
.

In particular, we have
∣∣∣u(ab `3c)∣∣∣ ≥ C−`4 .

Denote T ′ := Tab `3c;2b
`

18c. Then T ′ ⊂ P , and we can apply Theorem 2.1.9 in T ′

with n = 2
⌊
`

18

⌋
, thus (2.4.30) follows.

For the case where L = {a− tξ : t ∈ Z, `+ 1 ≤ t ≤ m− `− 1}, we prove

∣∣{b ∈ P : |u(b)| ≥ C−2`
4

}∣∣ ≥ ε1

(
(m+ 2)(`+ 1)

800
− (`+ 1)2

100

)
. (2.4.31)

When m ≤ 8`, (2.4.31) is trivial. From now on we assume that m > 8`. Denote

l :=
⌈
m−2`−1

4`

⌉
− 1. We take b1 := a − (` + 1)ξ. Let bi := b1 − 4`(i − 1)ξ where

i = 2, · · · , l. For each 1 ≤ i ≤ l, consider the trapezoid Pi := Pbi;2`,`. We note

that these trapezoids are disjoint, and Pi ⊂ P for each 1 ≤ i ≤ l (see Figure 2.3

for an illustration). We apply the same arguments in the proof of (2.4.30), with P
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P1 P2 . . . Pl

b2 blb1

Figure 2.3: An illustration of Pi’s. The thick line indicates L.

substituted by each Pi, and we get

∣∣{b ∈ Pi : |u(b)| ≥ C−2`
4

}∣∣ ≥ ε1(`+ 1)2

100
, (2.4.32)

for each 1 ≤ i ≤ l. By summing over all i we get (2.4.31).

Finally, we can deduce (2.4.29) from (2.4.30) and (2.4.31).

For the next corollary, we set up notations for reversed trapezoids.

Definition 2.4.8. For any a ∈ Λ, m, ` ∈ Z≥0 with ` ≤ m, we denote

P r
a;m,` := {a− tξ − sη : s ≤ t ≤ m, 0 ≤ s ≤ `} ∩ Λ, (2.4.33)

which is also a trapezoid, but its orientation is different from that of Pa;m,` (see Figure

2.4 for an illustration). We also denote {a− tξ : 0 ≤ t ≤ m}∩Λ to be the upper edge

of P r
a;m,`.

Corollary 2.4.9. Let a ∈ Λ, and m, ` ∈ Z≥0 with m ≥ `. Let L be a nonempty subset

of the upper edge of P r
a;m,`. Take a function u : P r

a;m,` → R such that
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a

ℓ

m a′

Figure 2.4: An illustration of Corollary 2.4.9: P r
a;m,` is the set of lattice points in

the region surrounded by black lines. Pa′+(b `5c+1)ξ;2b `5c+2,b `5c is the blue region, and

Pa−(b `5c+2)ξ;m−2b `5c−4,b `5c is the union of the blue and red regions.

|u(b) + u(b− ξ) + u(b+ η)| ≤ C−2`
4 min

c∈L
|u(c)|, (2.4.34)

for any b with {b, b− ξ, b+ η} ⊂ P r
a;m,`. Then

∣∣∣∣{b ∈ P r
a;m,` : |u(b)| ≥ C−2`

4 min
c∈L
|u(c)|

}∣∣∣∣ ≥ ε3(`+ 1)2, (2.4.35)

if L =
{
a−

⌊
m
2

⌋
ξ
}

or L =
{
a−

⌈
m
2

⌉
ξ
}

. And

∣∣∣∣{b ∈ P r
a;m,` : |u(b)| ≥ C−2`

4 min
c∈L
|u(c)|

}∣∣∣∣ ≥ ε3(m+ 2)(`+ 1), (2.4.36)

if L = {a− tξ : t ∈ Z, 1 ≤ t ≤ m− 1}. Here ε3 is a universal constant.

Proof. If m ≤ 109, then the conclusion holds trivially by taking ε3 small enough.

From now on we assume that m > 109. If L =
{
a−

⌊
m
2

⌋
ξ
}

or L =
{
a−

⌈
m
2

⌉
ξ
}

, let

a′ = a−
⌊
m
2

⌋
ξ or a′ = a−

⌈
m
2

⌉
ξ respectively. Consider Pa′+(b `5c+1)ξ;2b `5c+2,b `5c ⊂ P r

a;m,`

(blue region in Figure 2.4). Using Corollary 2.4.7 for this trapezoid, we get (2.4.35).
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If L = {a− tξ : t ∈ Z, 1 ≤ t ≤ m− 1}, consider Pa−(b `5c+2)ξ;m−2b `5c−4,b `5c ⊂ P r
a;m,`

(union of blue and red regions in Figure 2.4). Using Corollary 2.4.7 for this trapezoid,

we get (2.4.36).

2.5 Geometric substructure on 3D lattice

In this section we state and prove the following stronger version of Theorem 2.1.5

which incorporates a graded set (which is defined in Definition 2.3.3).

Theorem 2.5.1. For any K ∈ R+, N ∈ Z+, and small enough ε ∈ R+, we can find

large C2 ∈ R+ depending only on K and Cε,N ∈ R+ depending only on ε,N , such

that the following statement is true.

Take integer n > Cε,N and functions u, V : Z3 → R, satisfying

∆u = V u (2.5.1)

in Qn and ‖V ‖∞ ≤ K. Let ~l be a vector of positive reals, and E ⊂ Z3 be any

(N,~l, ε−1, ε)-graded set, with the first scale length l1 > Cε,N . If E is (1, 2ε)-normal in

Qn, then we have that

∣∣{a ∈ Qn : |u(a)| ≥ exp(−C2n
3)|u(0)|

}
\ E
∣∣ ≥ C3n

2(log2 n)−1. (2.5.2)

Here C3 is a universal constant.
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The first result we need is based on the “cone property” of the function u, as

discussed in Section 2.2. We remind the reader of the notations eτ , for τ = 1, 2, 3;

and λτ , Pτ,k, for τ ∈ {1, 2, 3, 4} and k ∈ Z, from Definition 2.1.7; and the cones from

Definition 2.2.1.

Proposition 2.5.2. Let K ∈ R+, n ∈ Z+, and u, V satisfy (2.5.1) in Qn, with ‖V ‖∞ ≤

K. Then there exists τ ∈ {1, 2, 3, 4}, such that for any 0 ≤ i ≤ n
10

there is

ai ∈ (Pτ,i ∪ Pτ,i+1) ∩ C ∩Q n
10

+1 (2.5.3)

with |u(ai)| ≥ (K + 11)−n|u(0)|.

Proof. We can assume that n ≥ 10 since otherwise this proposition holds obviously.

We argue by contradiction. Denote Υ := {b ∈ Qn : |u(b)| ≥ (K + 11)−n|u(0)|}. If the

statement is not true, then for each τ ∈ {1, 2, 3, 4}, there is iτ ∈
[
0, n

10

]
, such that

(Pτ,iτ ∪ Pτ,iτ+1) ∩ C ∩Υ ∩Q n
10

+1 = ∅. (2.5.4)

Define Bin :=
⋂4
τ=1 {a ∈ C : a · λτ < iτ}, Bbd :=

⋂4
τ=1 {a ∈ C : a · λτ ≤ iτ + 1} \

Bin, Bout := C \(Bin ∪Bbd). Then for any a ∈ Bin and b ∈ Bout, we have ‖a−b‖1 ≥ 3.

Since i1, i2, i3, i4 ≤ n
10

, we have that

Bbd ⊂ C ∩
{
a ∈ Z3 : |a · e1|+ |a · e2|+ a · e3 ≤

n

10
+ 1
}
⊂ Q n

10
+1. (2.5.5)
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Then the condition (2.5.4) implies that Υ ∩Bbd = ∅.

We now apply Lemma 2.2.3 to starting point a0 = 0, in the e3 direction, and k = n.

Let 0 = a0, a1, · · · , aw ∈ C∩Z3 be the chain. Then a0 ∈ Bin, and aw ·e3 ≥ n−1, which

implies that aw ∈ Bout (since otherwise, aw · e3 = 1
4

∑4
τ=1 aw · λτ ≤ 1

4

∑4
τ=1 iτ + 1 ≤

n
10

+ 1). Thus aw 6= a0 and w ≥ 1. Since |u(ai)| ≥ (K + 11)−1|u(ai−1)| for each

i = 1, · · · , w, we also have that each ai ∈ Υ. As Υ ∩Bbd = ∅, we can find 1 ≤ i ≤ w,

such that ai−1 ∈ Bin and ai ∈ Bout. This implies that ‖ai−1 − ai‖1 ≥ 3, which

contradicts with the construction of the chain from Lemma 2.2.3.

Proposition 2.5.3. For any K ∈ R+, N ∈ Z+, and small enough ε > 0, we can find

C7, Cε,N ∈ R+, where C7 depends only on K and Cε,N depends only on ε,N , such

that following statement is true.

Take integer n > Cε,N , and let functions u, V satisfy (2.5.1) in Qn, and ‖V ‖∞ ≤

K. Let ~l be a vector of positive reals, and E be an (N,~l, ε−1, ε)-graded set with the

first scale length l1 > Cε,N , and be (1, 2ε)-normal in Qn. For any τ ∈ {1, 2, 3, 4},

k ∈ Z, 0 ≤ k ≤ n
10

, and a0 ∈ Pτ,k ∩Qn
4
, there exists h ∈ Z+, such that

∣∣∣∣∣
{
a ∈ Qn ∩

h⋃
i=0

Pτ,k+i : |u(a)| ≥ exp(−C7n
3)|u(a0)|

}
\ E
∣∣∣∣∣ > C8hn(log2(n))−1.

(2.5.6)

Here C8 is a universal constant.

In Section 2.5.3, Theorem 2.5.1 is proved by applying Proposition 2.5.3 to each

point ai obtained from Proposition 2.5.2.
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The next two subsections are devoted to the proof of Proposition 2.5.3. We will

work with τ = 1 only, and the cases where τ = 2, 3, 4 follow the same arguments.

Assuming the result does not hold, we can find many “gaps”, i.e. intervals that do not

intersect the set {|u(a)| : a ∈ Qn\E, a ·λ1 ≥ k}. These gaps will allow us to construct

geometric objects on Z3. We first find many “pyramids” in {a ∈ Qn : a · λ1 ≥ k} (see

Lemma 2.5.5), then we prove Proposition 2.5.3 assuming a lower bound on the number

of desired points in each “pyramid” (Proposition 2.5.11). In Section 2.5.2 we prove

Proposition 2.5.11, by studying “faces” of each “pyramid”, and using corollaries of

Theorem 2.1.9.

2.5.1 Decomposition into pyramids

In this subsection we define pyramids in Qn, and in the next subsection we study the

structure of each of these pyramids.

We need some further geometric objects in R3.

Definition 2.5.4. For simplicity of notations we denote λ2 = λ2 = −e1 +e2 +e3, λ3 =

λ3 = e1−e2 +e3, and λ4 = −λ4 = e1 +e2−e3. Then λ1 ·λ2 = λ1 ·λ3 = λ1 ·λ4 = 1,

and λ2 · λ3 = λ2 · λ4 = λ3 · λ4 = −1.

For any a ∈ R3, r ∈ Z+, denote tr(a) = a + re1 + re2 + 2re3. Then tr(a) · λ2 =

a · λ2 + 2r, tr(a) · λ3 = a · λ3 + 2r, and tr(a) · λ4 = a · λ4. Denote

Ta,r :=
{
b ∈ P1,a·λ1 : b · λτ ≤ tr(a) · λτ ,∀τ ∈ {2, 3, 4}

}
, (2.5.7)
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and let T̊a,r be the interior of Ta,r in P1,a·λ1 . Respectively, T̊a,r and Ta,r are the open

and closed equilateral triangles with side length 2
√

2r in the plane P1,a·λ1 , and a is

the midpoint of one side. When a ∈ Z3, there are 2r + 1 lattice points on each side

of Ta,r.

We also take

Ta,r :=
{
b ∈ R3 : b · λ1 ≥ a · λ1, b · λτ ≤ tr(a) · λτ ,∀τ ∈ {2, 3, 4}

}
, (2.5.8)

which is a (closed) regular tetrahedron, with four faces orthogonal to λ1,λ2,λ3,λ4

respectively. The point tr(a) is a vertex of Ta,r, and Ta,r is the face orthogonal to λ1.

(See Figure 2.6 for an illustration)

For any k ∈ Z, denote πk(a) to be the orthogonal projection of a onto P1,k.

The purpose of the following lemma is to find some triangles (Tai,ri for ai, ri in

Lemma 2.5.5) in P1,k ∪ P1,k+1, and these triangles will be basements of pyramids to

be constructed in the proof of Proposition 2.5.3.

Lemma 2.5.5. Let N ∈ Z+, and ε > 0 and be small enough, then there exists Cε,N > 0

such that the following statement is true. Suppose we have

1. a function u : Z3 → R,

2. n, k ∈ Z, n > Cε,N , k ∈ Z ∩
[
0, n

10

)
, a0 ∈ P1,k ∩Qn

4
,

3. a vector of positive reals ~l, and an (N,~l, ε−1, ε)-graded set E with the first scale

length l1 > Cε,N , and E being (1, 2ε)-normal in Qn,
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4. D ∈ R+, and 0 < g1, · · · , g100n < |u(a0)|, such that gi ≤ gi+1 exp(−Dn) for

each 1 ≤ i ≤ 100n− 1.

Then we can find m ∈ Z+, r1, r2 · · · , rm ∈ Z ∩
[
0, n

32

)
,

a1, a2, · · · , am ∈ (P1,k ∪ P1,k+1) ∩Qn
2

and s1, s2, · · · , sm ∈ {1, 2, · · · , 100n}, satisfying the following conditions:

1.
∑m

i=1(ri + 1) ≥ n
100

.

2. for each 1 ≤ i ≤ m, we have |u(ai)| ≥ exp(Dn)gsi, and |u(b)| < gsi for any

b ∈ (T̊πk(ai),ri ∪ T̊πk+1(ai),ri) ∩ Z3.

3. for any point a ∈ P1,k, we have a ∈ Tπk(ai),ri for at most two 1 ≤ i ≤ m.

4. E is (ε−
1
2 , ε)-normal in Tai,ri for each 1 ≤ i ≤ m.

Proof. Denote R :=
{
a ∈ (P1,k ∪ P1,k+1) ∩Qn

2
: |u(a)| ≥ exp(Dn)g1

}
. For each a ∈

R, denote

I(a) := max {i ∈ {1, · · · , 100n} : |u(a)| ≥ exp(Dn)gi} , (2.5.9)

and we let r(a) be the largest integer, such that 0 ≤ r(a) < n
32

, and

|u(b)| ≤ gI(a), ∀b ∈
(
T̊πk(a),r(a) ∪ T̊πk+1(a),r(a)

)
∩ Z3. (2.5.10)

Suppose ~l = (l1, l2, · · · , ld). We write E =
⋃d
i=0Ei where Ei is a (N, li, ε)-scattered
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set for 0 < i ≤ d, and E0 is a ε−1-unitscattered set. We write Ei =
⋃N
t=1

⋃
j∈Z+

E
(j,t)
i ,

where each E
(j,t)
i is an open ball, and dist(E

(j,t)
i , E

(j′,t)
i ) ≥ l1+ε

i , ∀j 6= j′ ∈ Z+. We

also write E0 =
⋃
j∈Z+

oj where each oj is an open unit ball, such that ∀j 6= j′ ∈ Z+

we have dist(oj, oj′) ≥ ε−1.

If r(a) ≥ n
100

for any a ∈ R, then Condition 1 to 3 hold by letting m = 1, a1 = a,

r1 = r(a) and s1 = I(a). Now we show that Condition 4 also holds (when Cε,N is

large enough). Since E is (1, 2ε)-normal in Qn,

li < 4n1−ε, (2.5.11)

whenever Ei ∩ Qn 6= ∅. Then since n > Cε,N , by taking Cε,N large enough we have

n > 300ε−
1
2 , and

li < 4n1−ε < r(a)1− ε
2 . (2.5.12)

Thus E is (ε−
1
2 , ε)-normal in Ta1,r1 . From now on, we assume r(a) < n

100
for each

a ∈ R. We also assume that n > 100 by letting Cε,N > 100.

For each 0 < i ≤ d, 1 ≤ t ≤ N , and j ∈ Z+, denote B
(j,t)
i to be the open ball with

radius l
1+ 2

3
ε

i and the same center as E
(j,t)
i . Let B̃

(j,t)
i := B

(j,t)
i ∩P1,k, which is either a

2D open ball on the plane P1,k, or ∅. For each j ∈ Z+, let Bj be the open ball with

radius ε−
2
3 and has the same center as oj. Denote B̃j := Bj ∩ P1,k.
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We define a graph G as follows. The set of vertices of G is

V (G) :=
{
Tπk(a),r(a)+1 : a ∈ R

}
∪
{
B̃

(j,t)
i : 1 ≤ i ≤ d, 1 ≤ t ≤ N, j ∈ Z+, B̃

(j,t)
i 6= ∅

}
∪
{
B̃j : j ∈ Z+, B̃j 6= ∅

}
.

(2.5.13)

For any v1, v2 ∈ V (G), there is an edge connecting v1, v2 if and only if v1 ∩ v2 6= ∅.

Claim 2.5.6. There is a∞ ∈ R, such that Tπk(a0),r(a0)+1 and Tπk(a∞),r(a∞)+1 are in the

same connected component in G, and
(
Tπk(a∞),r(a∞)+1 ∪ Tπk+1(a∞),r(a∞)+1

)
∩Z3 6⊂ Qn

2
.

Proof. We let b0 := a0. For any i ∈ Z≥0, if bi ∈ R, we choose

bi+1 ∈ Z3 ∩
(
T̊πk(bi),r(bi)+1 ∪ T̊πk+1(bi),r(bi)+1

)
\
(
T̊πk(bi),r(bi) ∪ T̊πk+1(bi),r(bi)

)
, (2.5.14)

with the largest |u(bi+1)| (choose any one if not unique).

As bi+1 ∈ Z3 ∩
(
T̊πk(bi),r(bi)+1 ∪ T̊πk+1(bi),r(bi)+1

)
, we have that

bi+1 · (−e1 − e2 + 2e3) ≥ bi · (−e1 − e2 + 2e3) + 1. (2.5.15)

By the definition of r(bi), we have that |u(bi+1)| ≥ gI(bi) ≥ exp(Dn)gI(bi)−1, thus

I(bi+1) ≥ I(bi)− 1.

The construction terminates when we get some q ∈ Z+ such that bq 6∈ R. We let

a∞ := bq−1, and we show that it satisfies all the conditions.
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From the construction, for each i = 0, · · · , q − 1 we have πk(bi+1) ∈ T̊πk(bi),r(bi)+1,

so there is an edge in G connecting Tπk(bi),r(bi)+1 and Tπk(bi+1),r(bi+1)+1. This implies

that Tπk(b0),r(b0)+1 and Tπk(bq−1),r(bq−1)+1 are in the same connected component in G.

If
(
Tπk(bq−1),r(bq−1)+1 ∪ Tπk+1(bq−1),r(bq−1)+1

)
∩Z3 ⊂ Qn

2
, we have bq ∈ Qn

2
. By (2.5.15)

we have that bq · (−e1 − e2 + 2e3) ≥ b0 · (−e1 − e2 + 2e3) + q. Since b0, bq ∈ Qn
2
, we

have q ≤ 4n. This means that I(bq) ≥ I(b0)− q ≥ 100n− 4n > 1. Then we have that

bq ∈ R, which contradicts with its construction. This means that a∞ = bq−1 satisfies

all the conditions stated in the claim.

We define a weight on the graph G, by letting each vertex in
{
Tπk(a),r(a)+1 : a ∈ R

}
(which are triangles) have weight 2, and each other vertex (which are balls) have

weight 1. The weights are defined this way for the purpose of proving Condition 4.

We then take a path γpath = {v1, v2, · · · , vp} such that πk(a0) ∈ v1 and πk(a∞) ∈ vp,

and has the least total weight (among all such paths). Then all these vertices are

mutually different. For each i = 1, 2, · · · , p − 1 there is an edge connecting vi and

vi+1, and these are all the edges in the subgraph induced by these vertices. Note that

each vi is either a ball or a triangle in P1.k. See Figure 2.5 for an illustration.

Suppose all the triangles in γpath are
{
Tai,r(ai)+1 : 1 ≤ i ≤ m

}
. Let ri := r(ai) and

si := I(ai). We claim that these ai, ri and si for 1 ≤ i ≤ m satisfy all the conditions.

Condition 2 follows from the definition of ri = r(ai). As γpath is a least weighted

path, we have that vi′ ∩ vi′′ = ∅ whenever |i′ − i′′| > 1, thus Condition 3 follows as

well.

59



a1

a2

a3

a5

v1

v2

v3

v4

...

a4

v5

v6

v7

Figure 2.5: The path γpath

We next verify Condition 1. For this, we need to show that in the path, triangles

constitute a substantial fraction. This is incorporated in Claims 2.5.7 and 2.5.8 below.

Denote `i := diam(vi), for each 1 ≤ i ≤ p. As r(a∞) < n
100

, we have a∞ 6∈ Qn
2
− n

20
;

also note that a0 ∈ Qn
4
, so we have

`total :=

p∑
i=1

`i ≥ dist(Qn
4
,Z3 \Qn

2
− n

20
) ≥ n

5
. (2.5.16)

For each 1 ≤ i ≤ d and 1 ≤ t ≤ N , denote Vi,t :=
{
v ∈ γpath : ∃j ∈ Z+, v = B̃

(j,t)
i

}
.

Claim 2.5.7. If Vi,t 6= ∅, then
∑

i′:vi′∈Vi,t
`i′ ≤ `totall

− ε
4

i , provided that ε is small enough

and Cε,N is large enough.

Proof. Since Vi,t 6= ∅ and E is (1, 2ε)-normal in Qn, we have Cε,N ≤ li ≤ n1−ε.

Case 1: |Vi,t| = 1. Suppose {vi′} = Vi,t. Then by (2.5.16), when Cε,N is large enough
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we have

`i′ ≤ 2l
1+ 2

3
ε

i ≤ nl
− ε

4
i

5
≤ `totall

− ε
4

i . (2.5.17)

Case 2: |Vi,t| > 1. Write Vi,t =
{
vi1 , vi2 , · · · , viq

}
, where 1 ≤ i1 < i2 < · · · < iq ≤ p,

and q ≥ 2. For each w ∈ {1, 2, · · · , q − 1}, consider the part of γpath between viw and

viw+1 . By letting Cε,N large enough we have

iw+1∑
i′=iw

`i′ ≥ dist(viw , viw+1) ≥ l1+ε
i − 2l

1+ 2
3
ε

i ≥ 2(`iw + `iw+1)l
ε
4
i . (2.5.18)

Summing (2.5.18) through all w ∈ {1, 2, · · · , q − 1}, we get

`total ≥
1

2

∑
w∈{1,2,··· ,q−1}

iw+1∑
i′=iw

`i′ ≥

 ∑
vi′∈Vi,t

`i′

 l
ε
4
i . (2.5.19)

Then the claim follows as well.

Let V0 :=
{
vi′ ∈ γpath : ∃j ∈ Z+, vi′ = B̃j

}
.

Claim 2.5.8. If V0 6= ∅, then
∑

vi′∈V0
`i′ ≤ ε

1
4 `total, provided that ε is small enough

and Cε,N is large enough.

This is by the same arguments as the proof of Claim 2.5.7.

From Claim 2.5.7 and Claim 2.5.8, by making ε small and Cε,N large enough, from
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l1 > Cε,N and li+1 ≥ l1+2ε
i , we have

∑
i′:vi′ is a 2D ball

`i′ =
∑
vi′∈V0

`i′ +
∑

1≤i≤d,1≤t≤N

∑
vi′∈Vi,t

`i′ ≤ ε
1
4 `total +N`total

∞∑
i=1

l
− ε

4
i ≤ `total

100
.

(2.5.20)

Now we have that

m∑
i=1

(ri + 1) ≥ (2
√

2)−1
∑

i′:vi′ is a triangle

`i′ ≥ (2
√

2)−1 99

100
`total >

n

100
, (2.5.21)

where the last inequality is due to (2.5.16). Then Condition 1 follows.

It remains to check Condition 4. We prove by contradiction. Suppose for some

1 ≤ i′ ≤ m, E is not (ε−
1
2 , ε)-normal in Tai′ ,ri′ . There are only two cases:

Case 1: There exists 1 ≤ i ≤ d and E
(j,t)
i , such that

E
(j,t)
i ∩ Tai′ ,ri′ 6= ∅ (2.5.22)

and

li > diam(Tai′ ,ri′ )
1− ε

2 . (2.5.23)

Recall that B
(j,t)
i is the ball with radius l

1+ 2
3
ε

i and the same center as E
(j,t)
i . By (2.5.23)

and letting Cε,N large enough, we have

radi(B
(j,t)
i )− li = l

1+ 2
3
ε

i − li > diam(Tai′ ,ri′ ) + 3. (2.5.24)
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This implies that Tπk(ai′ ),ri′+1 ⊂ B
(j,t)
i and Tπk(ai′ ),ri′+1 ⊂ B̃

(j,t)
i . If we substitute

Tπk(ai′ ),ri′+1 by B̃
(j,t)
i in the path γpath, then the new path has lower weight than γpath.

This contradicts with the fact that γpath is a least weight path.

Case 2: E0 ∩ Tai′ ,ri′ 6= ∅ and ε−
1
2 > diam(Tai′ ,ri′ ).

Then Tπk(ai′ ),ri′+1 ⊂ Bj and Tπk(ai′ ),ri′+1 ⊂ B̃j for some j ∈ Z+, since radi(Bj)−1 =

ε−
2
3 − 1 > ε−

1
2 + 3 > diam(Tai′ ,ri′ ) + 3. By the same reason as Case 1, we reach a

contradiction. Thus Condition 4 holds and the conclusion follows.

Now we work on each tetrahedron Tai,ri . We will construct a pyramid in each of

them, and show that on the boundary of the pyramid, the number of points b such

that b 6∈ E, |u(b)| ≥ exp(−C2n
3), is at least in the order of r2

i + 1.

We start by defining a family of regular tetrahedrons. Recall that in Definition

2.5.4, we have defined the tetrahedron Ta,r with one face being Ta,r.

Definition 2.5.9. Let a ∈ Z3, r ∈ Z+. For each b ∈ Ta,r∩Z3, we define a regular tetra-

hedron Ta,r,b characterized by the following conditions. Its four faces are orthogonal

to λ1,λ2,λ3,λ4 respectively. For τ ∈ {2, 3, 4}, we consider the distances between the

faces of Ta,r and Ta,r,b that are orthogonal to λτ , and they are the same for each τ .

The point b is at the boundary of the face orthogonal to λ1. Formally, we denote

Fa,r,b := max
{
F : b · λτ ≤ tr(a) · λτ − F, ∀τ ∈ {2, 3, 4}

}
. (2.5.25)

Then Fa,r,b ≥ 0 since b ∈ Ta,r, and
Fa,r,b√

3
would be the distance between the faces of
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a

b

La,r,b,3
La,r,b,2

La,r,b,4

va,r,b,3

va,r,b,4 va,r,b,2

Ta,r,b

Ta,r

Ta,r,b

Ta,r

tr(a)

λ3

λ1

λ4λ2

Figure 2.6: An illustration of the constructions in Definition 2.5.4 and 2.5.9. The
colored triangles are Ta,r and Ta,r,b.

Ta,r and Ta,r,b that are orthogonal to λτ , for each τ ∈ {2, 3, 4}. Define

Ta,r,b :=
{
c ∈ R3 : c · λ1 ≥ b · λ1, b · λτ ≤ tr(a) · λτ − Fa,r,b, ∀τ ∈ {2, 3, 4}

}
,

(2.5.26)

and let T̊a,r,b be the interior of Ta,r,b. We denote Ta,r,b := Ta,r,b ∩P1,b·λ1 to be the face

of Ta,r,b orthogonal to λ1, and we denote its three edges as

La,r,b,τ :=
{
c ∈ Ta,r,b : c · λτ = tr(a) · λτ − Fa,r,b

}
, ∀τ ∈ {2, 3, 4}. (2.5.27)
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Then b is on one of these three edges. We denote the three vertices by

va,r,b,τ :=
⋂

τ ′∈{2,3,4}\{τ}

La,r,b,τ ′ , τ ∈ {2, 3, 4} , (2.5.28)

or equivalently, va,r,b,τ is the unique point characterized by va,r,b,τ · λ1 = b · λ1, and

va,r,b,τ ·λτ ′ = tr(a)·λτ ′−Fa,r,b for τ ′ ∈ {2, 3, 4}\{τ}. As b·λ1 and each tr(a)·λτ ′−Fa,r,b

are integers and have the same parity, we have va,r,b,τ ∈ Z3. We also denote the interior

of these three edges by

L̊a,r,b,τ := La,r,b,τ \ {va,r,b,2,va,r,b,3,va,r,b,4} , τ ∈ {2, 3, 4} . (2.5.29)

We now define the pyramid using these tetrahedrons.

Definition 2.5.10. Take any a ∈ Z3, r ∈ Z+. For any b ∈ Ta,r
⋂
Z3 let

H̊a,r,b :=
{
c ∈ R3 : c · λ1 > b · λ1

}
\ Ta,r,b, (2.5.30)

which is an open half space minus a regular tetrahedron. Let Ha,r,b be the closure of

H̊a,r,b.

Let Γ ⊂ Z3, such that a ∈ Γ and T̊a,r ∩ Γ = ∅. We consider the collection

of sets {Ha,r,b}b∈Ta,r∩Γ. They form a partially ordered set (POSET) by inclusion

of sets. We take all the maximal elements in {Ha,r,b}b∈Ta,r∩Γ, and denote them as

Ha,r,b1 , · · · ,Ha,r,bm . In particular Ha,r,a = Ha,r is maximal since T̊a,r ∩ Γ = ∅, so we
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can assume that b1 = a. (For each 2 ≤ i ≤ m, the choice of each bi ∈ Ta,r ∩ Γ may

not be unique, but always gives the same Ha,r,bi .) We note that since each Ha,r,bi is

maximal, all the numbers bi ·λ1 for 1 ≤ i ≤ m must be mutually different, so we can

assume that b1 · λ1 < · · · < bm · λ1.

The pyramid is defined as

Pa,r,Γ := Ta,r,bm ∪
m−1⋃
i=1

(
Ta,r,bi ∩

{
c ∈ R3 : c · λ1 ≤ bi+1 · λ1

})
, (2.5.31)

and we let P̊a,r,Γ be the interior of Pa,r,Γ. Note that in this definition, Pa,0,Γ := {a}.

Finally, let ∂Pa,r,Γ := Pa,r,Γ \ (P̊a,r,Γ ∪ T̊a,r) be the boundary of the pyramid (without

the interior of its basement). See Figure 2.7 for an example of pyramid.

In words, we construct the pyramid Pa,r,Γ by stacking together some “truncated”

regular tetrahedrons Ta,r,b, for b ∈ Γ, so that Pa,r,Γ intersects Γ only at its boundary.

Indeed, for each b ∈ Ta,r ∩ Γ we have b ∈ Ha,r,b, and P̊a,r,Γ ∩ Ha,r,b = ∅.

Our key step towards proving Proposition 2.5.3 is the following estimate about

points on the boundary of a pyramid.

Proposition 2.5.11. There exists a constant C9, such that for any K ∈ R+, N ∈ Z+,

and any small enough ε ∈ R+, there are small C10 ∈ R+ depending only on K and

large Cε,N ∈ R+ depending only on ε,N , such that the following statement holds.

Take any g ∈ R+, n, r ∈ Z+ with 0 ≤ r < n
32

, and functions u, V satisfying

∆u = V u in Qn and ‖V ‖∞ ≤ K. Suppose we have that
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a = b1

Ta,r

b2

b3
b4

tr(a)

Figure 2.7: Pyramid Pa,r,Γ, where Γ is the collection of red points.

1. Γ := {b ∈ Qn : |u(b)| ≥ exp(3C10n)g}, and a ∈ Γ ∩Qn
2
;

2. |u(b)| < g for each b ∈ T̊a,r ∩Z3, and either |u(b)| < g for each b ∈ T̊
a−λ1

3
,r
∩Z3

or |u(b)| < g for each b ∈ T̊
a+

λ1
3
,r
∩ Z3;

3. ~l is a vector of positive reals, E is an (N,~l, ε−1, ε)-graded set; in addition, the

first scale length of E is l1 > Cε,N , and E is (ε−
1
2 , ε)-normal in Ta,r;

4. for each b ∈ Qn with b · λ1 ≥ a · λ1, g ≤ |u(b)| ≤ exp(3C10n)g implies b ∈ E.
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Then

∣∣{b ∈ ∂Pa,r,Γ ∩ Z3 : |u(b)| ≥ exp(C10n)g
}
\ E
∣∣ ≥ C9(r2 + 1). (2.5.32)

The proof of Proposition 2.5.11 is left for the next subsection. We now finish the

proof of Proposition 2.5.3 assuming it.

Proof of Proposition 2.5.3. The idea is to first apply Lemma 2.5.5 to find some tri-

angles Tai,ri in P1,k ∪ P1,k+1, and build pyramids using these triangles as basements,

then apply Proposition 2.5.11 to lower bound the number of desired points on the

boundary of each pyramid and finally sum them up.

For the parameters, we take C7 = max {6C10, log(K + 11)} where C10 is the con-

stant in Proposition 2.5.11. We leave C8 to be determined. We require that ε is small

as required by Lemma 2.5.5 and Proposition 2.5.11; and for each such ε we let Cε,N

be large enough as required by Lemma 2.5.5 and Proposition 2.5.11.

Without loss of generality, we assume τ = 1. We can also assume n > 100, by

letting Cε,N > 100. Denote

Υ :=
{
a ∈ Qn : |u(a)| ≥ exp(−C7n

3)|u(a0)|, a · λ1 ≥ k
}
\ E. (2.5.33)

If |Υ| ≥ n2, the conclusion follows by letting h = 3n and C8 <
1
3
. Now we assume

that |Υ| < n2.

The interval [exp(−C7n
3)|u(a0)|, |u(a0)|) is the union of 2n2 disjoint intervals,
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which are

[
exp

(
−C7(i+ 1)n

2

)
|u(a0)|, exp

(
−C7in

2

)
|u(a0)|

)
, i = 0, · · · , 2n2 − 1. (2.5.34)

By the Pigeonhole principle, at least n2 of these intervals do not intersect the set

{|u(a)| : a ∈ Υ}; i.e., we can find exp(−C7n
3)|u(a0)| ≤ g1, · · · , gn2 ≤ |u(a0)|, such

that gi ≤ gi+1 exp
(
−C7n

2

)
, for each 1 ≤ i ≤ n2 − 1, and

{
a ∈ Qn : |u(a)| ∈

n2⋃
i=1

[
gi, gi exp

(
C7n

2

))
, a · λ1 ≥ k

}
⊂ E. (2.5.35)

We remark that actually we just need g1, · · · , g100n to apply Lemma 2.5.5, rather than

n2 numbers; but we cannot get a better quantitative lower bound for |u| by optimizing

this, since applying the Pigeonhole principle to 2n2 parts or n2 + 100n parts does not

make any essential difference.

As we assume that a0 ∈ P1,k∩Qn
4

and 0 ≤ k ≤ n
10

, we can apply Lemma 2.5.5 with

D = C7

2
. Then we can find some a1, · · · , am, r1, · · · , rm and gs1 , · · · , gsm , satisfying the

conditions there. In particular, we have |u(ai)| ≥ gsi exp
(
C7n

2

)
> exp(−C7n

3)|u(a0)|,

for each 1 ≤ i ≤ m.

If m > n, we can just take h = 2, and (2.5.6) holds by taking C8 small. Now

assume that m ≤ n. We argue by contradiction, assuming that (2.5.6) does not hold.

As C7 ≥ 6C10, we can apply Proposition 2.5.11 to a = ai, r = ri and g = gsi for
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each i = 1, 2, · · · ,m, and get that

|Υ ∩ Tai,ri | ≥
∣∣{b ∈ Tai,ri ∩ Z3 : |u(b)| ≥ exp(C10n)gsi

}
\ E
∣∣ ≥ C9(r2

i + 1). (2.5.36)

As we have assumed that (2.5.6) does not hold, for each h ∈ Z+,

C9

m∑
i=1

1h>4ri(r
2
i + 1) ≤

m∑
i=1

1h>4ri |Υ ∩ Tai,ri |

≤ 2

∣∣∣∣∣
(

h⋃
i=0

P1,k+i

)
∩Υ

∣∣∣∣∣ ≤ 2C8hn(log2 n)−1 (2.5.37)

where the second inequality is due to the fact that any point is contained in at most

two tetrahedrons Tai,ri , by Conclusion 3 in Lemma 2.5.5.

Take l := blog2 nc − 5. For each 0 ≤ j ≤ l, let

Mj = |
{
i : 1 ≤ i ≤ m, 2j ≤ ri + 1 < 2j+1

}
|.

Then we have that
l∑

j=0

2jMj ≥
1

2

m∑
i=1

(ri + 1) ≥ n

200
, (2.5.38)

by Lemma 2.5.5. For each 0 ≤ s ≤ l, by taking h = 2s+3 in equation (2.5.37) we get

C9

s∑
j=0

22jMj ≤ C82s+4n(l + 5)−1. (2.5.39)
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Multiplying both sides of (2.5.39) by 2−s and summing over all s ∈ Z≥0, we get

l∑
j=0

2jMj ≤
l∑

s=0

s∑
j=0

22j−sMj ≤
l∑

s=0

24C8(C9)−1n(l + 5)−1 < 24C8(C9)−1n. (2.5.40)

This contradicts with (2.5.38) whenever C8 < (200 · 24)−1C9.

2.5.2 Multi-layer structure of the pyramid and estimates on the

boundary

The purpose of this subsection is to prove Proposition 2.5.11. We first show that,

under slightly different conditions, there are many points in Γ on the boundary of a

pyramid without removing the graded set.

Proposition 2.5.12. There exists a constant C ′9, so that for any K ∈ R+, there is

C10 > K + 11, relying only on K, and the following is true.

Take any g ∈ R+, n, r ∈ Z with 0 ≤ r < n
32

, and functions u, V satisfying

∆u = V u in Qn and ‖V ‖∞ ≤ K. Suppose we have

1. Γ := {b ∈ Qn : |u(b)| ≥ exp(3C10n)g}, and a ∈ Γ ∩Qn
2
;

2. |u(b)| < g for each b ∈ T̊a,r ∩Z3, and either |u(b)| < g for each b ∈ T̊
a−λ1

3
,r
∩Z3

or for each b ∈ T̊
a+

λ1
3
,r
∩ Z3;

3. h := max{a · λ1} ∪
{
b · λ1 : b ∈ P̊a,r,Γ ∩ Z3, |La,r,b,2 ∩ Z3| ≥ r

4

}
, and |u(b)| ≤

exp(C10n)g for each b ∈ P̊a,r,Γ ∩ Z3 with b · λ1 ≤ h.
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Then

|{b ∈ ∂Pa,r,Γ : |u(b)| ≥ exp(C10n)g}| ≥ C ′9(r2 + 1). (2.5.41)

To prove Proposition 2.5.12, we analyze the structure of the pyramid boundary

∂Pa,r,Γ. Specifically, we study faces of it and estimate the number of lattice points b

with |u(b)| ≥ exp(C10n)g on each face. For some of the faces, we can show that the

number of such points is proportional to the area of the face. This is by observing

that the lattice Z3 restricted to the face is a triangular lattice, and then using results

from Section 2.4. Finally we sum up the points on all the faces and get the conclusion.

Proof of Proposition 2.5.12. We can assume that r > 100, since otherwise the state-

ment holds by taking C ′9 < 10−5.

We take a = b1, · · · , bm from the definition of Pa,r,Γ. As Ha,r,b1 , · · · ,Ha,r,bm are all

the maximal elements in {Ha,r,b}b∈Ta,r∩Γ, we have that

⋃
b∈Ta,r∩Γ

Ha,r,b =
m⋃
i=1

Ha,r,bi . (2.5.42)

We can also characterize P̊a,r,Γ as the half space {b ∈ R3 : b · λ1 > a · λ1} minus⋃m
i=1 Ha,r,bi .

For each s ∈ Z, we take ms ∈ {1, · · · ,m} to be the maximum number such that

bms · λ1 ≤ s.

We first study the faces of ∂Pa,r,Γ that are orthogonal to λ1. For 2 ≤ i ≤ m, we
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denote

R̊i := T̊a,r,bi−1
∩P1,bi·λ1 =

{
b ∈ P1,bi·λ1 : b · λτ < tr(a) · λτ − Fa,r,bi−1

, ∀τ ∈ {2, 3, 4}
}
.

(2.5.43)

Let Ri be the closure of R̊i, then Ri ⊃ Ta,r,bi and it has the same center as Ta,r,bi . We

denote the side length of Ri to be θi. Note that the three vertices of Ri are in 1
2
Z3,

so θi√
2
∈ 1

2
Z≥0. Further, for each 1 ≤ i ≤ m+ 1, we denote the side length of Ta,r,bi to

be ϑi. Note that the vertices of Ta,r,bi are va,r,bi,τ , for τ ∈ {2, 3, 4}, and each of them

is in Z3. Thus we have ϑi√
2

= |La,r,bi,2 ∩ Z3| − 1 ∈ Z≥0. We also obviously have that

2
√

2r = ϑ1 > θ2 > ϑ2 > · · · > θm > ϑm ≥ 0. For simplicity of notations, we also

denote bm+1 := argmaxb∈Pa,r,Γ b · λ1, and θm+1 = ϑm+1 = 0.

The following results will be useful in analyzing the face Ri, for 1 ≤ i ≤ mh+1.

Claim 2.5.13. For any 2 ≤ i ≤ mh+1 and b ∈ R̊i ∩Z3, if b+ e1− e3, b+ e2− e3 ∈ R̊i,

then we have

|u(c)| < exp(C10n)g, ∀c ∈ {b− e3, b− e1 − e3, b− e2 − e3, b− 2e3} . (2.5.44)

Claim 2.5.14. If C10 > K + 11, then for each 2 ≤ i ≤ mh, there exists τi ∈ {2, 3, 4},

such that bi ∈ La,r,bi,τi, and |u(b)| ≥ exp(2C10n)g, ∀b ∈ L̊a,r,bi,τi ∩ Z3.

We continue our proof assuming these claims. Fix 2 ≤ i ≤ mh+1. For any

b ∈ R̊i ∩ Z3 with b+ e1 − e3, b+ e2 − e3 ∈ R̊i, since ∆u(b− e3) = (V u)(b− e3), and
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|V (b− e3)| ≤ K, by Claim 2.5.13 we have

|u(b) + u(b+ e1 − e3) + u(b+ e2 − e3)|

≤ (K + 6) max
c∈{b−e3,b−e1−e3,b−e2−e3,b−2e3}

|u(c)| ≤ (K + 6) exp(C10n)g. (2.5.45)

We take C10 > 2 ln(C4(K + 6)) where C4 is the constant in Theorem 2.1.9. Then if

i ≤ mh, using Claim 2.5.14 and bi ∈ Γ, we have

|u(b) + u(b+ e1 − e3) + u(b+ e2 − e3)| < C−2n
4 min

c∈(L̊a,r,bi,τi∩Z3)∪{bi}
|u(c)|, (2.5.46)

where τi ∈ {2, 3, 4} is given by Claim 2.5.14. If mh < mh+1 and i = mh+1, as bi ∈ Γ

we have

|u(b) + u(b+ e1 − e3) + u(b+ e2 − e3)| < C−2n
4 |u(bi)|. (2.5.47)

Without loss of generality, we assume that τi = 2 in the former case, and bi ∈

La,r,bmh+1
,2 in the later case. We consider the following trapezoid in Ri:

W̊i :=
{
b ∈ R̊i : b · λ2 ≥ bi · λ2

}
, (2.5.48)

and letWi be the closure of W̊i. See Figure 2.8 for an illustration ofWi. Then W̊i∩Z3

can be treated as P
0;
ϑi√

2
+2
⌈
θi−ϑi
3
√

2

⌉
−2,
⌈
θi−ϑi
3
√

2

⌉
−1

(see Definition 2.4.1). We apply Corollary

2.4.7 to W̊i∩Z3, with L = L̊a,r,bi,2∩Z3 if ϑi ≥ 2
√

2 (thus L̊a,r,bi,2∩Z3 is not empty) and

i ≤ mh, and with L = {bi} otherwise. If i ≤ mh, we have ε2(θi−ϑi)2

(3
√

2)2 ≥ ε2(θi+2ϑi)(θi−ϑi)
5·3
√

2·3
√

2
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when ϑi =
√

2 or 0, since θi − ϑi ≥
√

2
2

. Thus we always have

∣∣∣∣∣
{
b ∈ W̊i ∩ Z3 : |u(b)| ≥ C

− 2(θi−ϑi)
3
√

2

4 min
c∈(L̊a,r,bi,2∩Z3)∪{bi}

|u(c)|
}∣∣∣∣∣

≥ ε2(θi + 2ϑi)(θi − ϑi)
5 · 3
√

2 · 3
√

2
. (2.5.49)

Since θi−ϑi
3
√

2
< n, and C−2n

4 minc∈(L̊a,r,bi,2∩Z3)∪{bi} |u(c)| ≥ exp(C10n)g by Claim 2.5.14,

we have

∣∣∣{b ∈ W̊i ∩ Z3 : |u(b)| ≥ exp(C10n)g
}∣∣∣ ≥ ε2(θi + 2ϑi)(θi − ϑi)

5 · 3
√

2 · 3
√

2
≥ ε2θi(θi − ϑi)

5 · 3
√

2 · 3
√

2
.

(2.5.50)

If mh < mh+1 and i = mh+1, we have

∣∣∣∣{b ∈ W̊i ∩ Z3 : |u(b)| ≥ C
− 2(θi−ϑi)

3
√

2

4 |u(bi)|
}∣∣∣∣ ≥ ε2(θi − ϑi)2

(3
√

2)2
. (2.5.51)

Since θi−ϑi
3
√

2
< n, and C−2n

4 |u(bi)| ≥ exp(C10n)g, we have

∣∣∣{b ∈ W̊i ∩ Z3 : |u(b)| ≥ exp(C10n)g
}∣∣∣ ≥ ε2(θi − ϑi)2

(3
√

2)2
. (2.5.52)

For the cases where τi = 3, 4, i ≤ mh, and the cases where mh < mh+1 = i and

bi ∈ La,r,bmh+1
,3 or La,r,bmh+1

,4, we can argue similarly and get (2.5.50) and (2.5.52) as

well.

We then study other faces of Pa,r,Γ. Again we fix 2 ≤ i ≤ mh, and assume that
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τi = 2, for τi given by Claim 2.5.14. We define

Ŝi :={
b ∈ P2,bi·λ2 : b · λτ < tr(a) · λτ − Fa,r,bi ,∀τ ∈ {3, 4}, bi · λ1 ≤ b · λ1 < bi+1 · λ1

}
.

(2.5.53)

Let S̊i :=
{
b ∈ Ŝi : b · λ1 < h+ 1

}
, and Si be the closure of S̊i. Then Si ⊂ P2,λ2·bi

and is a trapezoid. It is a face of ∂Pa,r,Γ, for 2 ≤ i < mh, and for i = mh when

mh+1 > mh; and it is part of a face of ∂Pa,r,Γ for i = mh when mh+1 = mh. See

Figure 2.8 for an illustration.

ϑi−1

θi

ϑi

bi−1

bi

ϑi−1 − θi

θi+1

Si

Wi

Si−1

θi−ϑi
3

b · λ1 = h+ 1

La,r,bi,τi (La,r,bi,2)

La,r,bi−1,τi−1

Figure 2.8: Faces Si, Wi, and Si−1, in the pyramid boundary ∂Pa,r,Γ. The yellow
triangle is the intersection of Pa,r,Γ with the plane b · λ1 = h + 1, and the blue lines
are La,r,bi,τi and La,r,bi−1,τi−1

.
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Claim 2.5.15. For b ∈ S̊i ∩ Z3, if b+ e1 + e2, b+ e1 + e3 ∈ S̊i, then

|u(c)| < exp(C10n)g, ∀c ∈ {b+ e1, b+ e1 − e2, b+ e1 − e3, b+ 2e1} . (2.5.54)

We leave the proof of this claim for later as well. By Claim 2.5.15, and arguing as

for (2.5.46) above, we conclude that ∀b ∈ S̊i ∩ Z3 with b+ e1 + e2, b+ e1 + e3 ∈ S̊i,

|u(b) + u(b+ e1 + e2) + u(b+ e1 + e3)| < C−2n
4 min

c∈(L̊a,r,bi,2∩Z3)∪{bi}
|u(c)|. (2.5.55)

Let’s first assume that S̊i ∩ Z3 6= ∅. Then we have L̊a,r,bi,2 ∩ Z3 6= ∅, and ϑi ≥ 2
√

2.

If i < mh+1, then bi+1 · λ1 ≤ h + 1, so we treat S̊i ∩ Z3 as P r

0;
ϑi√

2
−2,
⌈
ϑi−θi+1√

2

⌉
−1

(from

Definition 2.4.8), and La,r,bi,2 ∩ Z3 is its upper edge. If i = mh = mh+1 ≥ 2, then

bi+1 · λ1 > h + 1, and we treat S̊i ∩ Z3 as P r

0;
ϑi√

2
−2,
⌈
ϑi−θi+1√

2
− bi+1·λ1−(h+1)

2

⌉
−1

. We apply

Corollary 2.4.9 to the trapezoid, with L = L̊a,r,bi,2 ∩ Z3 if it is not empty; similar to

the study of Wi, we conclude that

∣∣{b ∈ Si ∩ Z3 : |u(b)| > exp(C10n)g
}∣∣ > ε3ϑi(ϑi − θi+1)√

2 ·
√

2
, (2.5.56)

if 2 ≤ i < mh+1, and

∣∣{b ∈ Si ∩ Z3 : |u(b)| > exp(C10n)g
}∣∣ > ε3ϑi√

2

(
ϑi − θi+1√

2
− bi+1 · λ1 − (h+ 1)

2

)
,

(2.5.57)

if i = mh = mh+1 ≥ 2. In the case where S̊i ∩ Z3 = ∅, we have ϑi ≤
√

2, and these
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inequalities still hold, since bi ∈ Si ∩ Z3 and |u(bi)| > exp(C10n)g.

When τi = 3, 4, we can define Si analogously, and obtain (2.5.56) and (2.5.57) as

well.

In addition, we consider

Ŝ1 :=
{
b ∈ P4,a·λ4 : b · λτ < tr(a) · λ2, ∀τ ∈ {2, 3}, a · λ1 ≤ b · λ1 < b2 · λ1

}
,

(2.5.58)

and let S̊1 :=
{
b ∈ Ŝ1 : b · λ1 < h+ 1

}
, and S1 be the closure of S̊1. We treat S1

differently (from Si for 2 ≤ i ≤ mh) because Claim 2.5.14 cannot be extended to

i = 1. Also note that by taking S1 ⊂ P4,a·λ4 , S1 is defined as (possibly part of) the

face in ∂Pa,r,Γ that contains a = b1.

Using arguments similar to those for Si, 2 ≤ i ≤ mh, we treat S̊1 ∩ Z3 as

P r

0;
ϑ1√

2
−2,
⌈
ϑ1−θ2√

2

⌉
−1

if mh+1 > 1, and as P r

0;
ϑ1√

2
−2,
⌈
ϑ1−θ2√

2
− b2·λ1−(h+1)

2

⌉
−1

if mh+1 = 1. Then

we apply Corollary 2.4.9 to it with L = {a}. We conclude that

∣∣{b ∈ S1 ∩ Z3 : |u(b)| > exp(C10n)g
}∣∣ >


ε3(ϑ1−θ2)2

(
√

2)2 , mh+1 > 1,

ε3

(
ϑ1−θ2√

2
− b2·λ1−(h+1)

2

)2

mh+1 = 1.

(2.5.59)

We now put together the bounds we’ve obtained so far, for all Si and Wi that are

contained in {b ∈ R3 : b · λ1 ≤ h+ 1}.

Case 1: mh = mh+1. In this case we consider Si for 1 ≤ i ≤ mh and Wi for

2 ≤ i ≤ mh.
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We first show that h 6= a · λ1. For this we argue by contradiction. Assume the

contrary, i.e. h = a · λ1. From the definition of h we have that |La,r,c,2 ∩ Z3| < r
4
, for

any c ∈ P̊a,r,Γ ∩ Z3 with c · λ1 = h + 1 = a · λ1 + 1. As we assumed that r > 100,

we must have b2 · λ1 = a · λ1 + 1 = h + 1, and this implies mh+1 = 2. However, by

h = a · λ1 we have mh = 1. This contradicts with the assumption that mh = mh+1.

We next show that

θmh+1√
2

+
bmh+1 · λ1 − (h+ 1)

2
<
r

2
. (2.5.60)

By the definition of h and h 6= a · λ1, we can find c ∈ P̊a,r,Γ ∩ Z3 with c · λ1 = h

and |La,r,c,2 ∩ Z3| ≥ r
4
. Since we assumed that r > 100, using mh = mh+1 we have

P̊a,r,Γ ∩ P1,h+1 ∩ Z3 6= ∅. This implies that bmh+1 · λ1 = bmh+1+1 · λ1 > h + 1 (since

otherwise, by the definiton of mh+1, we must have mh+1 = m and bm+1 · λ1 ≤ h+ 1,

implying P̊a,r,Γ ∩ P1,h+1 = ∅). Also note that bmh · λ1 ≤ h, so we can find b ∈ Z3,

and b in the closure of Ŝmh , such that b · λ1 = h + 1 or h + 2. As |La,r,b,2 ∩ Z3| =

θmh+1√
2

+ 1 +
(bmh+1−b)·λ1

2
, we have |La,r,b,2 ∩ Z3| ≥ θmh+1√

2
+

bmh+1·λ1−(h+1)

2
.

On the other hand, using |La,r,c,2 ∩ Z3| ≥ r
4

and r > 100 again, we have P̊a,r,Γ ∩

P1,b·λ1 ∩Z3 6= ∅. By the maximum property of h, for any b′ ∈ P̊a,r,Γ ∩P1,b·λ1 ∩Z3, we

have |La,r,b′,2 ∩ Z3| < r
4
. Then |La,r,b,2 ∩ Z3| < r

4
+ 3 < r

2
, and (2.5.60) follows.
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If mh = mh+1 = 1, by (2.5.59) we have that

∣∣{b ∈ Pa,r,Γ ∩ Z3 : |u(b)| > exp(C10n)g
}∣∣ > ε3

(
ϑ1 − θ2√

2
− b2 · λ1 − (h+ 1)

2

)2

> ε3

(
2r − r

2

)2

> ε3r
2, (2.5.61)

where we use (2.5.60) and the fact that ϑ1 = 2
√

2r.

If mh = mh+1 > 1, we note that for all 2 ≤ i ≤ mh, these Wi are mutually

disjoint; and for all 1 ≤ i ≤ mh, these Si are mutually disjoint. By equations

(2.5.50),(2.5.56),(2.5.57),(2.5.59) and taking a small enough ε4 > 0, we have that

∣∣{b ∈ Pa,r,Γ ∩ Z3 : |u(b)| > exp(C10n)g
}∣∣

>ε4

(
(ϑ1 − θ2)2

2
+

mh∑
i=2

θi(θi − ϑi) + ϑi(ϑi − θi+1)− ϑmh
bmh+1 · λ1 − (h+ 1)√

2

)

=ε4

(
ϑ2

1

4
+

(ϑ1 − 2θ2)2

4
+

∑mh
i=2(θi − ϑi)2 +

∑mh−1
i=2 (ϑi − θi+1)2

2

+

(
ϑmh − θmh+1 − bmh+1·λ1−(h+1)√

2

)2

2
−

(
θmh+1 +

bmh+1·λ1−(h+1)√
2

)2

2

)

≥ε4

ϑ2
1

4
−

(
θmh+1 +

bmh+1·λ1−(h+1)√
2

)2

2

 .

(2.5.62)

Using (2.5.60), we get

∣∣{b ∈ Pa,r,Γ ∩ Z3 : |u(b)| > exp(C10n)g
}∣∣ > ε4

(
2r2 − r2

4

)
> ε4r

2. (2.5.63)
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Case 2: mh < mh+1. In this case we consider Si for 1 ≤ i ≤ mh and Wi for

2 ≤ i ≤ mh+ 1 = mh+1. Similar to the first case, by (2.5.50),(2.5.52),(2.5.56),(2.5.59)

and taking a small enough ε5 > 0, we have

∣∣{b ∈ Pa,r,Γ ∩ Z3 : |u(b)| > exp(C10n)g
}∣∣

≥ε5
(

(ϑ1 − θ2)2

2
+

mh∑
i=2

θi(θi − ϑi) + ϑi(ϑi − θi+1) + (θmh+1
− ϑmh+1

)2

)

=ε5

(
ϑ2

1

4
+

(ϑ1 − 2θ2)2

4

+

mh∑
i=2

(θi − ϑi)2 + (ϑi − θi+1)2

2
+

(θmh+1
− 2ϑmh+1

)2

2
− ϑ2

mh+1

)

≥ε5
(
ϑ2

1

4
− ϑ2

mh+1

)
.

(2.5.64)

We now show that ϑmh+1
< r. Since mh+1 > mh, we have bmh+1

· λ1 = h + 1. If

ϑmh+1
≥ r, then |La,r,bmh+1

,2 ∩ Z3| ≥ r√
2

+ 1, and we can find b ∈ P̊a,r,Γ ∩ P1,h+1, such

that |La,r,b,2 ∩ Z3| ≥ r√
2
− 2 > r

4
. This contradicts with the definition of h.

With ϑmh+1
< r, and note that 2

√
2r = ϑ1 ≥ θ2, we have

∣∣{b ∈ Pa,r,Γ ∩ Z3 : |u(b)| > exp(C10n)g
}∣∣ > ε5

(
2r2 − r2

)
= ε5r

2. (2.5.65)

By taking C ′9 small enough, we get (2.5.41) by each of (2.5.61), (2.5.63), and (2.5.65).

It remains to prove Claim 2.5.13, 2.5.14, and 2.5.15.

Proof of Claim 2.5.13. Take any c ∈ {b− e3, b− e1 − e3, b− e1 − e3, b− 2e3}. As
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Ri ⊂ P1,bi·λ1

bi−1

b

b+ e2 − e3
b+ e1 − e3

b− e3
b− 2e3

b− e2 − e3

b− e1 − e3

Figure 2.9: An illustration of points in Claim 2.5.13. The red point (b − e3) is in
P1,bi·λ1−1 and the blue points are in P1,bi·λ1−2. The point c is among the red and blue
points.

c ·λ2 ≤ b ·λ2, c ·λ3 ≤ b ·λ3, and c ·λ4 ≤ (b+e1−e3) ·λ4, and b, b+e1−e3 ∈ R̊i ⊂ T̊a,r,

we have that

c · λτ < tr(a) · λτ − Fa,r,bi−1
≤ tr(a) · λτ , ∀τ ∈ {2, 3, 4}. (2.5.66)

We first consider the case where c 6∈ T̊a,r. Then we have that a · λ1 ≥ c · λ1 ≥

b · λ1 − 2 = bi · λ1 − 2 ≥ a · λ1 − 1, where the last inequality is due to bi ∈ T̊a,r. If

c ·λ1 = a ·λ1, we have c ∈ T̊a,r by (2.5.66); and by the second condition of Proposition

2.5.12 we have that |u(c)| < g. If c · λ1 = a · λ1 − 1, we have c ∈ T̊
a−λ1

3
,r

by (2.5.66).

As bi ·λ1 > a ·λ1, and bi ·λ1 = b ·λ1 ≤ c ·λ1 + 2, we have that bi ·λ1 = a ·λ1 + 1, thus

bi ∈ T̊a+
λ1
3
,r

. Since |u(bi)| ≥ exp(3C10n)g, by the second condition of Proposition

2.5.12 we have |u(c)| < g.

Now we assume that c ∈ T̊a,r. For any j, if i ≤ j ≤ m, as c · λ1 < bi · λ1, we have

that c ·λ1 < bj ·λ1, and thus c 6∈ Ha,r,bj . If 1 ≤ j ≤ i−1, we have bj ·λ1 ≤ bi−1 ·λ1, so
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Fa,r,bj ≤ Fa,r,bi−1
(since otherwise Ha,r,bi−1

is not maximal). By (2.5.66) we have that

c · λτ < tr(a) · λτ − Fa,r,bj , ∀τ ∈ {2, 3, 4}, (2.5.67)

thus c 6∈ Ha,r,bj . Then by the definition of P̊a,r,Γ, we have that c ∈ P̊a,r,Γ. As

c · λ1 ≤ bi · λ1 − 1 ≤ bmh+1
· λ1 − 1 ≤ h, we have |u(c)| ≤ exp(C10n)g by the third

condition of Proposition 2.5.12.

Claim 2.5.15 can be proved in a similar way.

Si ⊂ P2,bi·λ2

bi

b+ e1 + e3

b+ e1 + e2
b+ 2e1

b+ e1
b+ e1 − e3

b+ e1 − e2

b

Figure 2.10: An illustration of points in Claim 2.5.15. The red point (b + e1) is in
P2,bi·λ2−1 and the blue points are in P2,bi·λ2−2. The point c is among the red and blue
points.

Proof of Claim 2.5.15. We take c ∈ {b+ e1, b+ e1 − e2, b+ e1 − e3, b+ 2e1}, then

c · λ2 < b · λ2 = bi · λ2, and c · λτ ≤ b · λτ + 2 for τ ∈ {3, 4}. Since b, b+ e1 + e2, b+

e1 + e3 ∈ S̊i, we have that b · λ3 + 2 = (b + e1 + e3) · λ3 < tr(a) · λ3 − Fa,r,bi , and

b · λ4 + 2 = (b+ e1 + e2) · λ4 < tr(a) · λ4 + Fa,r,bi ; then

c · λτ < tr(a) · λτ − Fa,r,bi ≤ tr(a) · λτ , ∀τ ∈ {2, 3, 4}, (2.5.68)
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We claim that c 6∈ Ha,r,bj for any 1 ≤ j ≤ m: for j > i, note that b+ e1 + e2 ∈ S̊i, so

c ·λ1 ≤ b ·λ1 + 2 = (b+ e1 + e2) ·λ1 < bi+1 ·λ1; for j ≤ i, this is implied by (2.5.68).

Thus c ∈ P̊a,r,Γ ∪ T̊a,r, since we also have c · λ1 ≥ b · λ1 ≥ bi · λ1 ≥ a · λ1. If c ∈ T̊a,r,

by the second condition of Proposition 2.5.12, we have |u(c)| ≤ g < exp(C10n)g. If

c ∈ P̊a,r,Γ, using the fact that b + e1 + e2 ∈ S̊i again, we have c · λ1 ≤ b · λ1 + 2 =

(b+e1 +e2) ·λ1 ≤ h, and this implies that |u(c)| ≤ exp(C10n)g by the third condition

of Proposition 2.5.12.

Lastly, we prove Claim 2.5.14, using Claim 2.5.13 above and the local cone prop-

erty (from Section 2.2).

Proof of Claim 2.5.14. Throughout this proof, we assume that
(⋃

τ∈{2,3,4} L̊a,r,bi,τ
)
∩

Z3 6= ∅. We first show that we can find point b ∈
(⋃

τ∈{2,3,4} L̊a,r,bi,τ
)
∩ Z3, such that

|u(b)| ≥ (K + 11)−1 exp(3C10n)g. (2.5.69)

This is obviously true if bi ∈
⋃
τ∈{2,3,4} L̊a,r,bi,τ ; otherwise, by symmetry we assume

that bi = va,r,bi,4. By Lemma 2.2.2,

max
c∈{bi−e3,bi−e3+e1,bi−e3+e2,bi−e3−e1,bi−e3−e2,bi−2e3}

|u(c)| ≥ (K + 11)−1 exp(3C10n)g.

(2.5.70)

As bi, bi − e3 + e1, bi − e3 + e2 ∈ R̊i, by Claim 2.5.13, we have

max
c∈{bi−e3+e1,bi−e3+e2}

|u(c)| ≥ (K + 11)−1 exp(3C10n)g. (2.5.71)
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Note that bi − e3 + e1, bi − e3 + e2 ∈
⋃
τ∈{2,3,4} L̊a,r,bi,τ , so we can choose b ∈

{bi − e3 + e1, bi − e3 + e2} and the condition is satisfied.

Now by symmetry we assume that there is b ∈ L̊a,r,bi,4 ∩ Z3 so that

|u(b)| ≥ (K + 11)−1 exp(3C10n)g. (2.5.72)

We prove that, for any b′ ∈ L̊a,r,bi,4 ∩Z3, we have |u(b′)| ≥ exp(2C10n)g. We argue by

contradiction, and assume that there is b′ ∈ L̊a,r,bi,4∩Z3 so that |u(b′)| < exp(2C10n)g.

Without loss of generality, we also assume that b′ · e1 < b · e1. Consider the sequence

of points in L̊a,r,bi,4 ∩ Z3 between b and b′. We iterate this sequence from b to b′,

by adding −e1 + e2 at each step. We let c be the first one such that |u(c − e1 +

e2)| < (K + 11)−1|u(c)|. The existence of such c is ensured by that |u(b′)| < (K +

11) exp(−C10n)|u(b)|, |L̊a,r,bi,4 ∩ Z3| < 2r < n
16

, and C10 > K + 11. For such c we

also have c, c − e1 + e2 ∈ L̊a,r,bi,4 ∩ Z3, and |u(c)| ≥ (K + 11)−1−2r exp(3C10n)g >

exp
(

5C10n
2

)
g. Since c, c− e1 + e2, c− e1 + e3 ∈ R̊i, by Claim 2.5.13 we have

|u(c′)| < exp(C10n)g

<(K + 11)−1|u(c)|, ∀c′ ∈ {c− e1, c− e1 − e3, c− e1 − e2, c− 2e1} .
(2.5.73)

For c − e1 + e3, as c − e1 + e3 ∈ P̊a,r,Γ and (c − e1 + e3) · λ1 = c · λ1 ≤ h, we have

|u(c−e1 +e3)| ≤ exp(C10n)g < (K+11)−1|u(c)| by the third condition of Proposition

2.5.12. Then we get a contradiction with Lemma 2.2.2.
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The next step is to control the points in a graded set E.

Proposition 2.5.16. For C ′9 from Proposition 2.5.12, any small enough ε > 0, and

any N ∈ Z+, there exists Cε,N > 0 such that the following is true.

Let n ∈ Z+, r ∈ Z, 0 ≤ r < n
32

. Let Γ ⊂ Qn, a ∈ Γ ∩ Qn
2

such that T̊a,r ∩ Γ = ∅.

Suppose that ~l is a vector of positive reals, and E is an (N,~l, ε−1, ε)-graded set with

the first scale length l1 > Cε,N . If E is (ε−
1
2 , ε)-normal in Ta,r, then

∣∣E ∩ ∂Pa,r,Γ ∩ Z3
∣∣ ≤ C ′9

2
(r2 + 1). (2.5.74)

Proof. If r < 1
10
√
ε
, since E is (ε−

1
2 , ε)-normal in Ta,r, we have E∩Ta,r = ∅ when Cε,N

is large, and our conclusion holds.

From now on, we assume that r ≥ 1
10
√
ε
. Denote π := πa·λ1 for the simplicity of

notations. Evidently, for any two b1, b2 ∈ ∂Pa,r,Γ,

1

10
|b1 − b2| ≤ |π(b1)− π(b2)| ≤ |b1 − b2|. (2.5.75)

Suppose ~l = (l1, · · · , ld), where li+1 ≥ l1+2ε
i for each 1 ≤ i ≤ d−1. Write E =

⋃d
i=0 Ei,

where E0 is a ε−1-unitscattered set and Ei is an (N, li, ε)-scattered set. It suffices to

prove that there exists a universal constant C such that for each 1 ≤ i ≤ d,

∣∣Ei ∩ ∂Pa,r,Γ ∩ Z3
∣∣ ≤ CNl−εi r2, (2.5.76)
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and ∣∣E0 ∩ ∂Pa,r,Γ ∩ Z3
∣∣ ≤ Cε2r2. (2.5.77)

Then with (2.5.76) and (2.5.77) we can take ε small enough, such that Cε2 <
C′9
4

; and

take Cε,N large enough, such that

∞∑
i=1

CNl−εi ≤
∞∑
i=1

CNl
−ε(1+2ε)i−1

1 ≤ C ′9
4
. (2.5.78)

Thus we get (2.5.74).

We first prove (2.5.76). As in Definition 2.3.3, for each 1 ≤ i ≤ d, we write

Ei =
⋃
j∈Z+,1≤t≤N E

(j,t)
i where each E

(j,t)
i is a open ball with radius li, and

dist(E
(j,t)
i , E

(j′,t)
i ) ≥ l1+ε

i

for each j 6= j′.

Claim 2.5.17. For any 1 ≤ i ≤ d,
∣∣∣{(j, t) : E

(j,t)
i ∩ ∂Pa,r,Γ 6= ∅

}∣∣∣ < CNl−2−ε
i r2, where

C is a universal constant.

Proof. The proof is via a simple packing argument. Assume that Ei ∩Ta,r 6= ∅ (since

otherwise the claim obviously holds). Denote T̃a,r to be the closed equilateral triangle

in P1,a·λ1 , such that it has the same center and orientation as Ta,r, and its side length

is 100r. For any j, t, let B
(j,t)
i be the open ball with radius l

1+ ε
2

i and with the same

center as E
(j,t)
i . Since E is (ε−

1
2 , ε)-normal in Ta,r, we have diam(B

(j,t)
i ) ≤ 10r1− ε

2

4 .
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Suppose E
(j,t)
i ∩ ∂Pa,r,Γ 6= ∅, we then have π(B

(j,t)
i ) ⊂ T̃a,r. In addition, if for some

j′ 6= j we have E
(j′,t)
i ∩ ∂Pa,r,Γ 6= ∅ as well, by dist(E(j,t), E(j′,t)) ≥ l1+ε

i and (2.5.75),

we have that (when Cε,N is large enough) π(B
(j,t)
i ) ∩ π(B

(j′,t)
i ) = ∅. Thus for any t,

∣∣∣{j : E
(j,t)
i ∩ ∂Pa,r,Γ 6= ∅

}∣∣∣ l2+ε
i < Area(T̃a,r), (2.5.79)

since Area(π(B
(j,t)
i )) > l2+ε

i for any j, t. Our claim follows by observing the fact that

Area(T̃a,r) ≤ Cr2.

Claim 2.5.18. There exists some universal constant C such that for any j ∈ Z+,

t ∈ {1, 2, · · · , N} and i ∈ {1, 2, · · · , d},
∣∣∣E(j,t)

i ∩ ∂Pa,r,Γ ∩ Z3
∣∣∣ ≤ Cl2i .

Proof. By (2.5.75), π is a injection from ∂Pa,r,Γ, so we only need to show

∣∣∣π(E
(j,t)
i ) ∩ π(Z3)

∣∣∣ ≤ Cl2i . (2.5.80)

We note that π(Z3) is a triangular lattice on P1,a·λ1 , with constant lattice length
√

6
3

and π(E
(j,t)
i ) is a 2D ball with radius at least Cε,N . Assuming Cε,N > 10, we have

∣∣∣π(E
(j,t)
i ) ∩ π(Z3)

∣∣∣ ≤ 10 Area(π(E
(j,t)
i )) (2.5.81)

and our claim follows.
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Now by Claim 2.5.18,

∣∣Ei ∩ ∂Pa,r,Γ ∩ Z3
∣∣ ≤∑

j,t

∣∣∣E(j,t)
i ∩ ∂Pa,r,Γ ∩ Z3

∣∣∣
≤
∑
j,t

∣∣∣{(j, t) : E
(j,t)
i ∩ ∂Pa,r,Γ 6= ∅

}∣∣∣Cl2i . (2.5.82)

Then by Claim 2.5.17, we get (2.5.76).

As for (2.5.77), since by (2.5.75) π is a injection on ∂Pa,r,Γ, we only need to show

∣∣π (E0 ∩ ∂Pa,r,Γ ∩ Z3
)∣∣ ≤ Cε2r2 (2.5.83)

for some universal constant C. By (2.5.75) and the fact that E0 is ε−1-unitscattered,

we have

|π(b)− π(b′)| ≥ ε−1

10
(2.5.84)

for any b 6= b′ ∈ E0 ∩ ∂Pa,r,Γ ∩ Z3 (since b and b′ are centers of different unit balls in

E0). Thus (2.5.83) follows from Area(π(Pa,r,Γ)) < 100r2.

Proof of Proposition 2.5.11. We assume that r > 1000, since otherwise the statement

holds by taking C9 small enough.

To apply Proposition 2.5.12, we need to check its third condition. We argue by

contradiction, and assume that there exists b ∈ P̊a,r,Γ ∩ Z3 with b · λ1 ≤ h, and

|u(b)| > exp(C10n)g. Consider the triangle P1,b·λ1 ∩ P̊a,r,Γ, and write it as {c ∈

P1,b·λ1 : c · λτ < tr(a) · λτ − F ′, ∀τ = 2, 3, 4} for some F ′ ≥ 0. From the definition of
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b = c0

Figure 2.11: The three green areas are given by (2.5.85) and do not have common
intersection, so b = c0 ∈ P1,b·λ1 ∩ P̊a,r,Γ is outside one of them, and we can construct

a path in P̊a,r,Γ from it by using the cone property.

h, the its side length is at least
√

2
(
r
4
− 1
)
. Consider the three sets

{
c ∈ P1,b·λ1 : c · λτ > tr(a) · λτ − F ′ −

r

10

}
(2.5.85)

where τ ∈ {2, 3, 4} (see Figure 2.11). The intersection of all three of them is empty,

so by symmetry, we can assume that b is not in the first one, i.e.

b · λ2 ≤ tr(a) · λ2 − F ′ −
r

10
. (2.5.86)

Now we apply Lemma 2.2.3, starting from b and in the −e1 direction. Since

r < n
32

and a ∈ Qn
2
, we can find a sequence of points b = c0, c1, · · · , cr, such

that for any 1 ≤ i ≤ r, we have |u(ci)| ≥ (K + 11)−1|u(ci−1)|, and ci − ci−1 ∈

{−e1,−e1 + e2,−e1 + e3,−e1 − e2,−e1 − e3,−2e1}. Then we have that ci · λ2 ≤
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ci−1 ·λ2 + 2, ci ·λ3 ≤ ci−1 ·λ3 and ci ·λ4 ≤ ci−1 ·λ4. This means that for 1 ≤ i ≤ r
30

,

ci · λ2 ≤ b · λ2 +
r

15
< tr(a) · λ2 − F ′,

ci · λτ ≤ b · λτ ≤ tr(a) · λτ − F ′, ∀τ ∈ {3, 4},
(2.5.87)

Also, for i ≤ r
30

, we have

|u(ci)| ≥ (K + 11)−
r
30 |u(c0)| > exp

(
C10n

2

)
g, (2.5.88)

when C10 > K + 11. Since ci−1λ1 − 2 ≤ ci · λ1 ≤ ci−1λ1, by the second condition

of Proposition 2.5.11, we have that a · λ1 < ci · λ1 ≤ b · λ1 for each 1 ≤ i ≤ r
30

.

With (2.5.87) this implies that ci ∈ P̊a,r,Γ for each 1 ≤ i ≤ r
30

. See Figure 2.11 for an

illustration.

By the definition of the pyramid Pa,r,Γ, for 0 ≤ i ≤ r
30

we have that ci 6∈ Γ, thus

ci ∈ E by (2.5.88) and the fourth condition of Proposition 2.5.11.

For l ∈ R+ with 1 ≤ l < (2
√

2r)1− ε
2 , and any (1, l, ε)-scattered set Z, the number of

balls in Z that intersect {ci}b
r
30c

i=1 is at most 2
⌊
r
30

⌋
l−1−ε+1. This is because, otherwise,

there must exist 1 ≤ i1 < i2 ≤
⌊
r
30

⌋
, such that |i1 − i2| < l1+ε

2
, and ci1 and ci2 are

contained in different balls. By construction the distance between ci1 and ci2 is at

most 2|i1− i2|, and this contradicts with the fact that Z is (1, l, ε)-scattered. For each

ball in Z, it contains at most 2l points in {ci}b
r
30c

i=1 . This is because ci ·e1 ≤ ci−1 ·e1−1
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for 1 < i ≤
⌊
r
30

⌋
, and the diameter of each ball is 2l. Thus we have

∣∣∣∣Z ∩ {ci}b r30c
i=1

∣∣∣∣ ≤ 2l ·
(

2
⌊ r

30

⌋
l−1−ε + 1

)
< rl−ε + 2l. (2.5.89)

Similarly, for any ε−1-unitscattered set Z, we have

∣∣∣∣Z ∩ {ci}b r30c
i=1

∣∣∣∣ < rε+ 2. (2.5.90)

For the set E which is (ε−
1
2 , ε)-normal in Pa,r,Γ, using (2.5.89) and (2.5.90) we have

∣∣∣∣E ∩ {ci}b r30c
i=1

∣∣∣∣ < rε+ 2 +
∑

1≤i≤d:li<(2
√

2r)1− ε2

Nrl−εi + 2Nli (2.5.91)

We have that

Nr
d∑
i=1

l−εi ≤ Nr
∞∑
i=1

l
−ε(1+2ε)i−1

1 < Nr
∞∑
i=1

C
−ε(1+2ε)i−1

ε,N < Nr
∞∑
i=1

C−εε,NC
−2(i−1)ε2

ε,N

=
NrC−εε,N

1− C−2ε2

ε,N

, (2.5.92)

and when Cε,N is large enough this is less than r
100

.

Also, when (2
√

2r)1− ε
2 > Cε,N > 100, and ε < 1

200
, we have

∑
1≤i≤d:li<(2

√
2r)1− ε2

2Nli < 2

 log
(

log(2
√

2r)
log(Cε,N )

)
log(1 + 2ε)

+ 1

N(2
√

2r)1− ε
2

<
4 log(log(2

√
2r))

ε
N(2
√

2r)1− ε
2 , (2.5.93)
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where the first inequality is due to that there are at most

⌈
log

(
log(2

√
2r)

log(Cε,N )

)
log(1+2ε)

⌉
terms in

the summation, and each is at most 2N(2
√

2r)1− ε
2 . We further have that (2.5.93) is

less than r
100

when Cε,N is large enough. When (2
√

2r)1− ε
2 ≤ Cε,N , the left hand side

of (2.5.93) is zero. Thus the left hand side of (2.5.91) is less than 3r
100

+ 2 < r
30

when

ε < 1
100

and Cε,N is large enough. This contradicts with the fact that ci ∈ E for each

0 ≤ i ≤ r
30

.

Finally, the conclusion follows from Proposition 2.5.12 and 2.5.16, by taking C9 =

1
2
C ′9 and the same C10 as in Proposition 2.5.12.

2.5.3 Proof of Theorem 2.5.1

In this subsection we assemble results in previous subsections together and finish the

proof of Theorem 2.5.1.

Proof of Theorem 2.5.1. By taking Cε,N large we can assume that n > 100.

We prove the result for C3 = 1
60
C8 and C2 = max {2C7, 2 log(K + 11)}, where

C8, C7 are the constants in Proposition 2.5.3. We let ε be small enough, and Cε,N be

the same as required by Proposition 2.5.3.

By Proposition 2.5.2, there exists τ ∈ {1, 2, 3, 4}, and

ai ∈ (Pτ,i ∪ Pτ,i+1) ∩ C ∩Q n
10

+1 (2.5.94)

for i = 0, 1, · · · ,
⌊
n
10

⌋
− 1, such that |u(ai)| ≥ (K + 11)−n|u(0)|.
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For each i = 0, 1, · · · ,
⌊
n
10

⌋
−1, we apply Proposition 2.5.3 to ai, and find hi ∈ Z+,

such that

∣∣∣∣{a ∈ Qn ∩
hi⋃
j=0

Pτ,ai·λ1+j :

|u(a)| ≥ exp(−C7n
3)|u(ai)| ≥ exp(−C2n

3)|u(0)|
}
\ E
∣∣∣∣

> C8hin(log2(n))−1. (2.5.95)

Now for some m ∈ Z≥0, we define a sequence of nonnegative integers i1 < · · · < im

inductively. Let i1 := 0. Given ik, if aik · λτ + hk + 1 ≤
⌊
n
10

⌋
− 1, we let ik+1 :=

aik · λτ + hik + 1; otherwise, let m = k and the process terminates.

Obviously, the sets

a ∈ Qn ∩
hik⋃
j=0

Pτ,aik ·λ1+j : |u(a)| ≥ exp(−C2n
3)|u(0)|

 \ E (2.5.96)

for k = 1, · · · ,m are mutually disjoint. Besides, we have that ai1 · λτ ≤ 1 and

aim ·λτ + him ≥
⌊
n
10

⌋
− 1; and for each 1 ≤ k < m, aik+1

·λτ − aik ·λτ ≤ hik + 2. This

implies that
∑m

j=1(hik + 2) ≥
⌊
n
10

⌋
− 2, thus

∑m
j=1 hik >

n
60

, and

∣∣{a ∈ Qn : |u(a)| ≥ exp(−C2n
3)|u(0)|

}
\ E
∣∣ ≥ C8

(
m∑
k=1

hik

)
n(log2(n))−1

> C3n
2(log2(n))−1 (2.5.97)
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which is (2.5.2).

2.6 Recursive construction: proof of discrete unique con-

tinuation

We deduce Theorem 2.3.4 from Theorem 2.5.1 in this section. The key step is the

following result.

Theorem 2.6.1. There exist universal constants β and α > 5
4

such that for any positive

integers m ≤ n and any positive real K, the following is true. For any u, V : Z3 → R

such that ∆u = V u in Qn and ‖V ‖∞ ≤ K, we can find a subset Θ ⊂ Qn with

|Θ| ≥ β
(
n
m

)α
, such that

1. |u(b)| ≥ (K + 11)−12n|u(0)| for each b ∈ Θ.

2. Qm(b) ∩Qm(b′) = ∅ for b, b′ ∈ Θ, b 6= b′.

3. Qm(b) ⊂ Qn for each b ∈ Θ.

The proof of Theorem 2.6.1 is based on the cone property, i.e. Lemma 2.2.3, and

induction on n
m

. We first set up some notations.

Definition 2.6.2. A set B ⊂ Z3 is called a cuboid if there are integers tτ ≤ kτ , for

τ = 1, 2, 3, such that

B =
{
b ∈ Z3 : tτ ≤ b · eτ ≤ kτ , τ = 1, 2, 3

}
. (2.6.1)
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We denote p+(B) := k1, p−(B) := t1, and q+(B) := k2, q−(B) := t2. A cuboid is

called even if tτ , kτ are even for each τ = 1, 2, 3.

Proof of Theorem 2.6.1. Without loss of generality we assume that u(0) = 1.

Take α = 1.251 > 5
4
, and leave β to be determined. We denote fm(x) = β( x

m
)α

for x > 0. Then we have the following two inequalities:

4 · 4−α + 4 · 8−α > 1, 6 · 4−α > 1. (2.6.2)

This implies that there exists universal N0 > 108 such that, for any positive integers

m,n with n > N0m and any real β > 0, we have

4fm

(n
4
− 3
)

+ 4fm

(n
8
− 2
)
> fm(n+ 7) (2.6.3)

and

4fm

(n
4
− 3
)

+ 2fm

(n
4
− 2
)
> fm(n+ 7). (2.6.4)

We let β = (N0 + 7)−α, and fix m ∈ Z+. We need to show that, when n ≥ m, there is

Θ ⊂ Qn, such that |Θ| ≥ fm(n), and Θ satisfies the three conditions in the statement.

For this, we do induction on n. First, it holds trivially when m ≤ n ≤ N0m + 7 by

the choice of β. For simplicity of notations below, we only work on n that divides

8. At each step, we take some n > N0m ≥ 108m with n
8
∈ Z and suppose our

conclusion holds for all smaller n. Then we show that we can find a subset Θ ⊂ Qn

with |Θ| ≥ fm(n + 7), such that the conditions in the statement are satisfied. Thus
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the conclusion holds for n, n+ 1, · · · , n+ 7.

By Lemma 2.2.3, and using the notations in Definition 2.2.1, we pick a1 ∈ C3
0(n

2
)∪

C3
0(n

2
+ 1) and a2 ∈ C3

0(−n
2
) ∪ C3

0(−n
2
− 1) such that |u(a1)|, |u(a2)| ≥ (K + 11)−n.

For simplicity of notations, we denote Q1 as the even cuboid such that we have

Qn
2
−2(a1) ⊂ Q1 ⊂ Qn

2
−1(a1); and Q2 as the even cuboid such that Qn

2
−2(a2) ⊂ Q2 ⊂

Qn
2
−1(a2).

Then we use Lemma 2.2.3 again to pick

a11 ∈ C3
a1

(n
4
− 1
)
∪ C3

a1

(n
4

)
,

a12 ∈ C3
a1

(
−n

4
+ 1
)
∪ C3

a1

(
−n

4

)
,

a21 ∈ C3
a2

(n
4
− 1
)
∪ C3

a2

(n
4

)
,

a22 ∈ C3
a2

(
−n

4
+ 1
)
∪ C3

a2

(
−n

4

)
,

(2.6.5)

such that |u(a11)|, |u(a12)|, |u(a21)|, |u(a22)| ≥ (K+11)−2n. For i, j ∈ {1, 2}, let Qij be

an even cuboid such that Qn
4
−3(aij) ⊂ Qij ⊂ Qn

4
−2(aij). Comparing the coordinates

of aij’s, we see Qij’s are pairwise disjoint.

By inductive hypothesis, we can find 4f(n
4
− 3) points in Q11 ∪ Q12 ∪ Q21 ∪ Q22,

such that for each b among them,

|u(b)| ≥ (K + 11)−2n(K + 11)−12(n
4
−3) ≥ (K + 11)−12n (2.6.6)

and all Qm(b) are mutually disjoint, and contained in Q11 ∪Q12 ∪Q21 ∪Q22.
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a22

a21

a12

a11

Figure 2.12: The projection onto the e1e2 plane.

Let B be the minimal cuboid containing Q1 ∪ Q2, B1 be the minimal cuboid

containing Q11 ∪Q12, and B2 be the minimal cuboid containing Q21 ∪Q22.

Let g(r) := p+(Qn) − p+(B), g(l) := p−(B) − p−(Qn), g
(r)
1 := p+(Q1) − p+(B1),

g
(l)
1 := p−(B1)− p−(Q1), g

(r)
2 := p+(Q2)− p+(B2) and g

(l)
2 := p−(B2)− p−(Q2).

Similarly, in the e2-direction, let h(u) := q+(Qn)− q+(B), h(d) := q−(B)− q−(Qn),

h
(u)
1 := q+(Q1) − q+(B1), h

(d)
1 := q−(B1) − q−(Q1), h

(u)
2 := q+(Q2) − q+(B2) and

h
(d)
2 := q−(B2)− q−(Q2). See Figure 2.12 for an illustration of these definitions.

From the above definitions,

g(r) + g(l) + h(u) + h(d) = 4n− (p+(B)− p−(B))− (q+(B)− q−(B)). (2.6.7)
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Observe that

(p+(B)−p−(B))+(q+(B)−q−(B)) ≤ |(a1−a2)·e1|+|(a1−a2)·e2|+4
(n

2
− 1
)
. (2.6.8)

As a1 ∈ C3
0(n

2
)∪C3

0(n
2

+ 1), we have |a1 · e1|+ |a1 · e2| ≤ |a1 · e3| ≤ n
2

+ 1; and similarly,

we have |a2 · e1| + |a2 · e2| ≤ n
2

+ 1. Using these and (2.6.8), and triangle inequality,

we have

(p+(B)− p−(B)) + (q+(B)− q−(B)) ≤ 3n− 2. (2.6.9)

Thus with (2.6.7) we have

g(r) + g(l) + h(u) + h(d) ≥ n+ 2. (2.6.10)

The same argument applying to smaller cubes Q1 and Q2, we have

g
(r)
1 + g

(l)
1 + h

(u)
1 + h

(d)
1 ≥

n

2
+ 2 (2.6.11)

and

g
(r)
2 + g

(l)
2 + h

(u)
2 + h

(d)
2 ≥

n

2
+ 2. (2.6.12)

Summing them together we get

g(r) +g(l) +g
(r)
1 +g

(l)
1 +g

(r)
2 +g

(l)
2 +h(u) +h(d) +h

(u)
1 +h

(d)
1 +h

(u)
2 +h

(d)
2 ≥ 2n+6. (2.6.13)
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Figure 2.13: The projection onto the e1e2 plane in Case 1.

As these g’s and h’s are exchangeable, we assume without loss of generality that

g(r) + g(l) + g
(r)
1 + g

(l)
1 + g

(r)
2 + g

(l)
2 ≥ n+ 3. (2.6.14)

By symmetry, we assume without loss of generality that a1 · e1 ≤ a2 · e1; conse-

quently p−(Q1) ≤ p−(Q2). We discuss two possible cases.

Case 1: p+(B2) ≤ p+(Q1) or p−(B1) ≥ p−(Q2). By symmetry again, it suffices to

consider the scenario for p+(B2) ≤ p+(Q1). See Figure 2.13 for an illustration.

Consider cuboids

Ul :=
{
b ∈ Z3 : |b · e2|, |b · e3| ≤ n− 1,−n+ 1 ≤ b · e1 ≤ p−(Q1)− 1

}
,

Ur :=
{
b ∈ Z3 : |b · e2|, |b · e3| ≤ n− 1, p+(Q1) + 1 ≤ b · e1 ≤ n− 1

}
.

(2.6.15)
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Then Ul, Ur, B1, B2 are mutually disjoint, since p+(B2) ≤ p+(Q1) and p−(Q1) ≤

p−(Q2). Now we use Lemma 2.2.3 to pick points

c1 ∈ C1
0

(
1

2
(p−(Q1)− n)

)
∪ C1

0

(
1

2
(p−(Q1)− n) + 1

)
,

c2 ∈ C1
0

(
1

2
(p+(Q1) + n)

)
∪ C1

0

(
1

2
(p+(Q1) + n) + 1

)
,

(2.6.16)

such that |u(c1)|, |u(c2)| ≥ (K + 11)−n. Denote I1 := p−(Q1)+n
2

− 2, I2 := n−p+(Q1)
2

− 2.

Then I1, I2 ≤ n
2
. We also have

(p−(Q1) + n) + (n− p+(Q1)) = 2n+ p−(Q1)− p+(Q1) ≥ n+ 2, (2.6.17)

so

I1 + I2 ≥
n

2
− 3. (2.6.18)

We use inductive hypothesis on QI1(c1) ⊂ Ul, if I1 > m; and on QI2(c2) ⊂ Ur, if

I2 > m. Note that Ul, Ur, B1, B2 are mutually disjoint. Thus we get fm(I1)1I1>m +

fm(I2)1I2>m points in Z3, such that for each point b among them,

• |u(b)| ≥ (K + 11)−n(K + 11)−12·n
2 ≥ (K + 11)−12n,

• Qm(b) ∩Qm(b′) = ∅ for another b′ 6= b among them,

• Qm(b) ⊂ Qn \ (Q11 ∪Q12 ∪Q21 ∪Q22).
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We now show that

fm(I1)1I1>m + fm(I2)1I2>m ≥ 2fm

(n
4
− 2
)
. (2.6.19)

If I1, I2 > m, (2.6.19) follows by convexity and monotonicity of the function fm, and

(2.6.18). If I1 ≤ m, by (2.6.18) and the assumption that n > N0m ≥ 108m, we

have I2 ≥ n
2
− 3 −m > 107m. Then by monotonicity of fm we have fm(I2)1I2>m =

fm(I2) ≥ fm
(
n
2
− 3−m

)
≥ 2fm

(
n
4
− 2
)
, which implies (2.6.19). The case when

I2 ≤ m is symmetric.

Now together with the 4fm
(
n
4
− 3
)

points we found in Q11 ∪Q12 ∪Q21 ∪Q22, we

have a set of at least 4fm
(
n
4
− 3
)

+ 2fm
(
n
4
− 2
)

points in Qn, satisfying all the three

conditions.

Case 2: p+(B2) > p+(Q1) and p−(B1) < p−(Q2). See Figure 2.14 for an illustration.

Denote

U1 :=
{
b ∈ Z3 : |b · e2|, |b · e3| ≤ n− 1,−n+ 1 ≤ b · e1 ≤ p−(B1)− 1

}
,

U2 :=
{
b ∈ Z3 : |b · e2|, |b · e3| ≤ n− 1, p+(B2) + 1 ≤ b · e1 ≤ n− 1

}
,

U3 :=

{
b ∈ Z3 :

|b · e2| ≤ n− 1, 1 ≤ b · e3 ≤ n− 1, p+(B1) + 1 ≤ b · e1 ≤ p+(Q1)− 1

}
,

U4 :=

{
b ∈ Z3 :

|b · e2| ≤ n− 1,−n+ 1 ≤ b · e3 ≤ −1, p−(Q2) + 1 ≤ b · e1 ≤ p−(B2)− 1

}
.

(2.6.20)
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Figure 2.14: The projection onto the e1e2 plane in Case 2.

We note that U1, U2, U3, U4, B1 and B2 are mutually disjoint.

We use Lemma 2.2.3 to pick the following points:

c1 ∈C1
0

(
1

2

(
p− (B1)− n

))
∪ C1

0

(
1

2

(
p− (B1)− n

)
+ 1

)
,

c2 ∈C1
0

(
1

2

(
p+ (B2) + n

))
∪ C1

0

(
1

2

(
p+ (B2) + n

)
+ 1

)
,

c3 ∈C1
a1

(
1

2

(
p+ (B1) + p+

(
Q1
))
− a1 · e1

)
∪C1

a1

(
1

2

(
p+ (B1) + p+

(
Q1
))
− a1 · e1 + 1

)
,

c4 ∈C1
a2

(
1

2

(
p− (B2) + p−

(
Q2
))
− a2 · e1

)
∪C1

a2

(
1

2

(
p− (B2) + p−

(
Q2
))
− a2 · e1 + 1

)
,

(2.6.21)

such that |u(ci)| ≥ (K + 11)−3n for each i = 1, 2, 3, 4.

Denote J1 := p−(B1)+n
2

− 2, J2 := n−p+(B2)
2

− 2, J3 := p+(Q1)−p+(B1)
2

− 2, and
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J4 := p−(B2)−p−(Q2)
2

− 2.

For each i = 1, 2, 3, 4, if Ji > m, we use inductive hypothesis on QJi(ci) ⊂ Ui (note

that QJi(ci) is disjoint from Q11, so Ji ≤ 3n
4

). As the sets B1, B2, U1, U2, U3 and U4

are mutually disjoint, we can find
∑4

i=1 fm(Ji)1Ji>m points in
⋃4
i=1 Ui, such that for

each point b among them,

• |u(b)| ≥ (K + 11)−3n(K + 11)−12· 3n
4 = (K + 11)−12n,

• Qm(b) ∩Qm(b′) = ∅ for another b′ 6= b among them,

• Qm(b) ⊂ Qn \ (Q11 ∪Q12 ∪Q21 ∪Q22).

By (2.6.14), we have

(p−(B1) + n) + (n− p+(B2)) + (p+(Q1)− p+(B1)) + (p−(B2)− p−(Q2))

= g(r) + g(l) + g
(r)
1 + g

(l)
1 + g

(r)
2 + g

(l)
2 ≥ n+ 3, (2.6.22)

thus J1 + J3 + J3 + J4 ≥ n
2
− 7. Similar to (2.6.19) above, by monotonicity and

convexity of fm, and n > N0m ≥ 108m, we have

4∑
i=1

fm(Ji)1Ji>m ≥ 4fm

(n
8
− 2
)
. (2.6.23)

This implies that, together with the 4fm
(
n
4
− 3
)

points we found in Q11∪Q12∪Q21∪

Q22, we have a set of at least 4fm
(
n
4
− 3
)

+ 4fm
(
n
8
− 2
)

points in Qn, satisfying all

the three conditions.
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In conclusion, by (2.6.3) and (2.6.4), in each case, we can always find a Θ ⊂ Qn

satisfying the three conditions, with |Θ| ≥ fm(n + 7). Thus Theorem 2.6.1 follows

from the principle of induction.

Now we prove Theorem 2.3.4.

Proof of Theorem 2.3.4. Let p := 1
3
α + 13

12
, then p > 3

2
since α > 5

4
. Without loss of

generality, we assume that u(0) = 1.

Suppose ~l = (l1, l2, · · · , ld). Since E is (N,~l, ε−1, ε)-graded, we can write E =⋃d
i=0Ei where Ei is an (N, li, ε)-scattered set for i > 0 and E0 is a ε−1-unitscattered

set. We also write Ei =
⋃
j∈Z+,1≤t≤N E

(j,t)
i , where each E

(j,t)
i is an open ball with

radius li and

dist(E
(j,t)
i , E

(j′,t)
i ) ≥ l1+ε

i (2.6.24)

whenever j 6= j′.

We assume without loss of generality that ld ≤ 4n1− ε
2 . Otherwise, since E is

(1, ε)-normal in Qn, we can replace E by E0 ∪
(⋃

li≤4n1− ε2 Ei

)
.

Let nk := bld−kc for k = 0, 1, · · · , d.

Claim 2.6.3. We can assume there is M ∈ Z+ such that n
1
3

(1−4ε) + 1 ≤ nM ≤ n
1
3 .

Proof. Suppose there is no such M ∈ Z+, we then add a level of empty set with

scale length equal n
1
3

(1−2ε). More specifically, let k be the largest nonnegative integer

satisfying lk ≤ n
1
3

(1−4ε), then lk+1 > n
1
3 . We let l′i = li and E ′i = Ei for each 0 ≤ i ≤ k.

Let l′k+1 = n
1
3

(1−2ε) and E ′k+1 be any (N, l′k, ε)-scattered set that is disjoint from Qn.
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Let l′i = li−1 and E ′i = Ei−1 for i ≥ k + 2. Then for each 1 ≤ i ≤ d + 1, we have

(l′i−1)1+2ε ≤ l′i, and E ′i is (N, l′i, ε)-scattered. Also, as n > C4
ε,N we still have l′1 > Cε,N .

Evidently, by replacing E with
⋃d+1
i=0 E

′
i, our claim holds with M = k + 1.

Now we inductively construct subsets Θk ⊂ Qn for k = 0, 1, · · · ,M , such that the

following conditions hold.

1. |Θk| ≥
(
β
2

)2k+2
(
n
nk

)α
.

2. For any a ∈ Θk, we have |u(a)| ≥ (K + 11)−24(k+1)n.

3. For any a, a′ ∈ Θk with a 6= a′, we have Qnk(a) ∩Qnk(a
′) = ∅.

4. For any a ∈ Θk, we have Qnk(a) ⊂ Qn.

5. When k > 0, for any a ∈ Θk, there exists a′ ∈ Θk−1 such that Qnk(a) ⊂

Qnk−1
(a′).

6. For any a ∈ Θk and d− k ≤ i ≤ d, we have Ei ∩Qnk(a) = ∅.

Let n′0 := min
{⌊

1
4
n1+ε

0

⌋
, n
}

. By using Theorem 2.6.1 for m = n′0, we get a subset

Θ′0 ⊂ Qn such that |Θ′0| ≥ β
(
n
n′0

)α
and Θ′0 satisfies Condition 1 to 3 in Theorem

2.6.1. For each fixed t ∈ {1, 2, · · · , N} and j 6= j′ ∈ Z+, by definition we have

dist(E
(j,t)
d , E

(j′,t)
d ) ≥ 4n′0. This implies

∣∣∣{(j, t) : E
(j,t)
d ∩Qn′0

(a) 6= ∅
}∣∣∣ ≤ N, (2.6.25)
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for each a ∈ Θ′0. For each a ∈ Θ′0, by using Theorem 2.6.1 for Qn′0
(a) and m = n0, we

get a subset Θ
(a)
0 ⊂ Qn′0

(a) such that |Θ(a)
0 | ≥ β(

n′0
n0

)α and Θ
(a)
0 satisfies Condition 1

to 3 in Theorem 2.6.1. For each j, t we have
∣∣∣{b ∈ Θ

(a)
0 : Qn0(b) ∩ E(j,t)

d 6= ∅
}∣∣∣ ≤ 100.

This is because for each b ∈ Θ
(a)
0 with Qn0(b)∩E(j,t)

d 6= ∅, the cube Qn0(b) is contained

in the closed ball of radius 2
√

3n0 + ld < (2
√

3 + 1)n0 + 1 with the same center as

E
(j,t)
d . As we have Qn0(b)∩Qn0(b′) = ∅ for b 6= b′ ∈ Θ

(a)
0 , the number of such b ∈ Θ

(a)
0

is at most (2(2
√

3+1)n0+2)3

(2n0+1)3 < 100. Thus by (2.6.25), we have

∣∣∣{b ∈ Θ
(a)
0 : Qn0(b) ∩ Ed 6= ∅

}∣∣∣ ≤ 100N. (2.6.26)

Let Θ̃
(a)
0 := Θ

(a)
0 \

{
b ∈ Θ

(a)
0 : Qn0(b) ∩ Ed 6= ∅

}
for each a ∈ Θ′0, and Θ0 =

⋃
a∈Θ′0

Θ̃
(a)
0 .

Now we check the conditions. Condition 6 is from the definition, and Condition 5

automatically holds since k = 0. Condition 2 to 4 hold by the conditions in Theorem

2.6.1. For Condition 1, recall that ld ≥ l1 ≥ Cε,N , and ld ≤ 4n1− ε
2 . By letting Cε,N

large enough we have n′0 > l
1+ ε

2
d , and then 1

2
β(

n′0
n0

)α > 1
2
βl

1
2
αε

d ≥ 1
2
βC

1
2
αε

ε,N > 100N .

Thus for each a ∈ Θ′0 we have |Θ̃(a)
0 | ≥ |Θ(a)

0 | − 100N ≥ 1
2
β(

n′0
n0

)α. This implies that

|Θ0| =
∑
a∈Θ′0

|Θ̃(a)
0 | ≥

(
1

2
β

(
n′0
n0

)α)(
β

(
n

n′0

)α)
>

(
β

2

)2(
n

n0

)α
. (2.6.27)

Suppose we have constructed Θk, for some 0 ≤ k < M , we proceed to construct

Θk+1. Note that as l1+2ε
d−k−1 ≤ ld−k, we have nk ≥ n1+2ε

k+1 − 1. Let n′k+1 =
⌊

1
4
n1+ε
k+1

⌋
. Take

an arbitrary a0 ∈ Θk, use Theorem 2.6.1 for Qnk(a0) with m = n′k+1, we get a subset
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Θ
′(a0)
k+1 ⊂ Qnk(a0) such that |Θ′(a0)

k+1 | ≥ β
(

nk
n′k+1

)α
and Θ

′(a0)
k+1 satisfies Condition 1 to 3

in Theorem 2.6.1. For each fixed t ∈ {1, 2, · · · , N} and j 6= j′ ∈ Z+, by definition we

have dist(E
(j,t)
d−k−1, E

(j′,t)
d−k−1) ≥ 4n′k+1. This implies, for each a ∈ Θ

′(a0)
k+1 ,

∣∣∣{(j, t) : E
(j,t)
d−k−1 ∩Qn′k+1

(a) 6= ∅
}∣∣∣ ≤ N. (2.6.28)

For each a ∈ Θ
′(a0)
k+1 , by using Theorem 2.6.1 for Qn′k+1

(a) and m = nk+1, we get a

subset Θ
(a)
k+1 ⊂ Qn′k+1

(a) such that |Θ(a)
k+1| ≥ β

(
n′k+1

nk+1

)α
and Θ

(a)
k+1 satisfies Condition 1

to 3 in Theorem 2.6.1. By (2.6.28),

∣∣∣{b ∈ Θ
(a)
k+1 : Qnk+1

(b) ∩ Ed−k−1 6= ∅
}∣∣∣ ≤ 100N. (2.6.29)

Let Θ̃
(a)
k+1 := Θ

(a)
k+1 \

{
b ∈ Θ

(a)
k+1 : Qnk+1

(b) ∩ Ed−k−1 6= ∅
}

. Then |Θ̃(a)
k+1| ≥ |Θ

(a)
k+1| −

100N ≥ 1
2
β
(
n′k+1

nk+1

)α
, when Cε,N is large enough; and for each b ∈ Θ̃

(a)
k+1, Qnk+1

(b)∩Ei 6=

∅ implies i ≤ d− k − 2. Then

∣∣∣∣∣∣∣
⋃

a∈Θ
′(a0)
k+1

Θ̃
(a)
k+1

∣∣∣∣∣∣∣ =
∑

a∈Θ
′(a0)
k+1

|Θ̃(a)
k+1| ≥

(
β

2

)2(
nk
nk+1

)α
. (2.6.30)

Now let Θk+1 :=
⋃
a0∈Θk

⋃
a∈Θ

′(a0)
k+1

Θ̃
(a)
k+1. Then Condition 2 to 6 hold for k + 1
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obviously. As for Condition 1,

|Θk+1| =
∑
a0∈Θk

∣∣∣∣∣∣∣
⋃

a∈Θ
′(a0)
k+1

Θ̃
(a)
k+1

∣∣∣∣∣∣∣ ≥ |Θk|
(
β

2

)2(
nk
nk+1

)α
≥
(
β

2

)2k+4(
n

nk+1

)α
,

(2.6.31)

where the second inequality is true since Condition 1 holds for k.

Inductively, we have constructed ΘM such that

1. |ΘM | ≥
(
β
2

)2M+2
(

n
nM

)α
.

2. For any a ∈ ΘM , we have |u(a)| ≥ (K + 11)−24(M+1)n.

3. For any a, a′ ∈ ΘM with a 6= a′, we have QnM (a) ∩QnM (a′) = ∅.

4. For any a ∈ ΘM , we have QnM (a) ⊂ Qn.

5. For any a ∈ ΘM and d−M ≤ i ≤ d, we have Ei ∩QnM (a) = ∅.

As l1+2ε
d−k−1 ≤ ld−k for each 0 ≤ k < M , we have nM ≤ l

( 1
1+2ε)

M

d ≤ n( 1
1+2ε)

M

. Note that

nM > n
1
3

(1−4ε), thus
(

1
1+2ε

)M ≥ 1
3
(1− 4ε). From this we have

M < 2ε−1. (2.6.32)

Since l1+2ε
d−M−1 ≤ ld−M and ld−M ≥ l1 ≥ Cε,N we have ld−M−1 < n1−ε

M when Cε,N is large

enough. Then for each a ∈ ΘM , by Condition 5 we have that E is (1, 2ε)-normal in
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QnM (a). For any a ∈ ΘM , we apply Theorem 2.5.1 to QnM (a), then

∣∣{b ∈ QnM (a) : |u(b)| ≥ (K + 11)−24(M+1)n exp(−C2n
3
M)
}
\ E
∣∣ ≥ C3

n2
M

log(nM)
.

(2.6.33)

Let Cε,K = C2 + 96 log(K + 11)ε−1. From (2.6.33), (2.6.32) and n
1
3

(1−4ε) < nM < n
1
3 ,

we have

|{b ∈ QnM (a) : |u(b)| ≥ exp(−Cε,Kn)} \ E| ≥ C3
n2
M

log(nM)
. (2.6.34)

Since QnM (a) ∩QnM (a′) = ∅ when a 6= a′ ∈ ΘM , in total we have

|{b ∈ Qn : |u(b)| ≥ exp(−Cε,Kn)} \ E| ≥ C3
n2
M

log(nM)
|ΘM |

≥ C3

(
β

2

)2M+2

n
2
3

(1−4ε)+ 2
3
α(log(nM))−1 ≥ np, (2.6.35)

where the last inequality holds by taking ε small enough, and then Cε,N large enough

(recall that we require n > C4
ε,N).

2.7 Proofs of auxiliary lemmas

2.7.1 Auxiliary lemmas for the framework

In our general framework several results from [DS20] are used, and some of them are

also used in Section 2.7.3 below as well. For the convenience of readers we record
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them here.

There are a couple of results from linear algebra. The first of them is an estimate

on the number of almost orthonormal vectors, which appears in [Tao] as well as

[DS20].

Lemma 2.7.1 ([Tao][DS20, Lemma 5.2]). Assume v1, · · · , vm ∈ Rn such that |vi · vj −

1i=j| ≤ (5n)−
1
2 , then m ≤ 5−

√
5

2
n.

The second one is about the variation of eigenvalues.

Lemma 2.7.2 ([DS20, Lemma 5.1]). Suppose the real symmetric n × n matrix A has

eigenvalues λ1 ≥ · · · ≥ λn ∈ R with orthonormal eigenbasis v1, · · · , vn ∈ Rn. If

1. 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ n

2. 0 < r1 < r2 < r3 < r4 < r5 < 1

3. r1 ≤ cmin{r3r5, r2r3/r4} where c > 0 is a universal constant

4. 0 < λj ≤ λi < r1 < r2 < λi−1

5. v2
j,k ≥ r3

6.
∑

r2<λ`<r5
v2
`,k ≤ r4

then the i-th largest eigenvalue λ′i (counting with multiplicity) of A + eke
†
k is at least

r1, where ek is the k-th standard basis element and e†k is its transpose.

We then state the generalized Sperner’s theorem, used in the proof of our 3D

Wegner estimate (Lemma 2.3.5).
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Theorem 2.7.3 ([DS20, Theorem 4.2]). Suppose ρ ∈ (0, 1], and A is a set of subsets

of {1, · · · , n} satisfying the following. For every A ∈ A, there is a set B(A) ⊂

{1, · · · , n}\A such that |B(A)| ≥ ρ(n−|A|), and A′∩B(A) = ∅ for any A ⊂ A′ ∈ A.

Then

|A| ≤ 2nn−
1
2ρ−1. (2.7.1)

For the next several results, in [DS20] they are stated and proved in the 2D lattice

setting, but the proofs work, essentially verbatim, in the 3D setting.

The following covering lemma is used in the multi-scale analysis. Recall that by

“dyadic” we mean an integer power of 2.

Lemma 2.7.4 ([DS20, Lemma 8.1]). There is a constant C > 1 such that following

holds. Suppose K ≥ 1 is an integer, α ≥ CK is a dyadic scale, L0 ≥ αL1 ≥ L1 ≥

αL2 ≥ L2 are dyadic scales, Q ⊂ Z3 is an L0-cube, and Q′′1, · · ·Q′′K ⊂ Q are L2-cubes.

Then there is a dyadic scale L3 ∈ [L1, αL1] and disjoint L3-cubes Q′1, · · · , Q′K ⊂ Q,

such that for each Q′′k there is Q′j with Q′′k ⊂ Q′j and dist(Q′′k, Q \Q′j) ≥ 1
8
L3.

We need the following continuity of resolvent estimate. It is stated in a slightly

different way from [DS20, Lemma 6.4], so we add a proof here.

Lemma 2.7.5 ([DS20, Lemma 6.4]). If for λ ∈ R, α > β > 0, and a cube Q ⊂ Z3, we

have

|(HQ − λ)−1(a, b)| ≤ exp(α− β|a− b|) for a, b ∈ Q, (2.7.2)
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then for λ′ with |λ′ − λ| ≤ 1
2
|Q|−1 exp(−α), we have

|(HQ − λ′)−1(a, b)| ≤ 2 exp(α− β|a− b|) for a, b ∈ Q. (2.7.3)

Proof. We first prove (2.7.3) assuming λ′ is not an eigenvalue of HQ. By resolvent

identity we have,

(HQ − λ′)−1 = (HQ − λ)−1 + (HQ − λ′)−1(λ′ − λ)(HQ − λ)−1. (2.7.4)

Let γ = maxa,b∈Q exp(β|a− b| − α)|(HQ − λ′)−1(a, b)|. Then for any a, b ∈ Q,

|(HQ − λ′)−1(a, b)|

≤|(HQ − λ)−1(a, b)|+ |λ′ − λ|
∑
c∈Q

|(HQ − λ′)−1(a, c)||(HQ − λ)−1(c, b)|

≤ exp(α− β|a− b|) + |λ′ − λ|
∑
c∈Q

exp(α− β|a− c|) exp(α− β|c− b|)γ

≤ exp(α− β|a− b|) + |λ′ − λ||Q| exp(2α− β|a− b|)γ

≤ exp(α− β|a− b|) +
1

2
exp(α− β|a− b|)γ.

(2.7.5)

This implies γ ≤ 1 + 1
2
γ and thus γ ≤ 2 and (2.7.3) follows.

Now we can deduce that | det(HQ − λ′)−1| is uniformly bounded for λ′ that is

not an eigenvalue of HQ and satisfies |λ′ − λ| ≤ 1
2
|Q|−1 exp(−α). By continuity of

the determinant (as a function of λ′), we conclude that HQ has no eigenvalue in[
λ− 1

2
|Q|−1 exp(−α), λ+ 1

2
|Q|−1 exp(−α)

]
. Thus our conclusion follows.
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We also need the following result to deduce exponential decay of the resolvent in

a cube from the decay of the resolvent in subcubes.

Lemma 2.7.6 ([DS20, Lemma 6.2]). Suppose

1. ε > δ > 0 are small,

2. K ≥ 1 is an integer and λ ∈ [0, 13],

3. L0 ≥ · · · ≥ L6 are large enough (depending on ε, δ,K) with L1−ε
k ≥ Lk+1 ,

4. 1 ≥ m ≥ 2L−δ5 represents the exponential decay rate,

5. Q ⊂ Z3 is an L0-cube,

6. Q′1, · · · , Q′K ⊂ Q are disjoint L2-cubes with ‖(HQ′k
− λ)−1‖ ≤ exp(L4),

7. for all a ∈ Q, one of the following holds

• there is Q′k with a ∈ Q′k and dist(a,Q \Q′k) ≥ 1
8
L2

• there is an L5-cube Q′′ ⊂ Q such that a ∈ Q′′, dist(a,Q \Q′′) ≥ 1
8
L5, and

|(HQ′′ − λ)−1(b, b′)| ≤ exp(L6 −m|b− b′|) for b, b′ ∈ Q′′.

Then |(HQ−λ)−1(a, a′)| ≤ exp(L1−m̃|a−a′|) for a, a′ ∈ Q where m̃ = m−L−δ5 .

2.7.2 The principal eigenvalue

This section sets up the base case in the induction proof of Theorem 2.3.10. We follow

[DS20, Section 7], and generalize their result to higher dimensions. We take d ∈ Z,

d > 2, and denote Qn :=
{
a ∈ Zd : ‖a‖∞ ≤ n

}
instead.
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Theorem 2.7.7. Let V : Qn → [0, 1] be any potential function, and R > 0 large

enough, such that for any a ∈ Qn, there exists b ∈ Qn with V (b) = 1 and |a− b| < R.

Let H : `2(Qn)→ `2(Qn), H = −∆ + V , with Dirichlet boundary condition. Then its

principal eigenvalue is no less than CR−d, where C is a constant depending only on

d.

Proof. Let λ0 denote the principal eigenvalue, then by e.g. [Eva10, Exercise 6.14] we

have

λ0 = sup
u:Qn→R+

min
Qn

Hu

u
. (2.7.6)

Hence we lower bound λ0 by constructing a function u. Let G̃ : Zd → R be the lattice

Green’s function; i.e. for any a ∈ Zd, G̃(a) is the expected number of times that a

(discrete time) simple random walk starting at 0 gets to a. Let G := G̃/2d. Then G

is the only function such that −∆G = δ0 (where δ0(0) = 1 and δ0(a) = 0 for a 6= 0),

and 0 ≤ G(a) ≤ G(0) for any a ∈ Zd. In addition, for any a ∈ Zd with a 6= 0, by e.g.

[LL10, Theorem 4.3.1] we have

G(a) =
Cd
|a|d−2

+O

(
1

|a|d
)
, (2.7.7)

where Cd is a constant depending only on d. Hence

4Cd
5|a|d−2

≤ G(a) ≤ 3Cd
2|a|d−2

(2.7.8)

when |a| is large enough.

115



We define u : Zd → R+ as

u(a) := 1 +G(0)−G(a)− εdR−d|a|2, ∀a ∈ Zd, (2.7.9)

where εd > 0 is a small enough constant depending on d. Then

−∆u = −δ0 + 2dεdR
−d, (2.7.10)

and for any a ∈ Zd with |a| < 3R, we have 0 < u(a) ≤ 1 +G(0).

Assume that R is large enough. For any a with 2R < |a| < 3R, we have u(a) ≥

1+G(0)− 3Cd
2(2R)d−2 −9εdR

−d+2; and for any a with |a| < R, u(a) ≤ 1+G(0)− 4Cd
5Rd−2 ≤

1+G(0)− 3Cd
2(2R)d−2−9εdR

−d+2, as long as εd <
Cd
180

(also note that here we have d > 2).

Thus

min
2R<|a|<3R

u(a) ≥ max
|a|<R

u(a) (2.7.11)

Now we define u0 : Qn → R+, as u0(a) := min|a−b|<3R,V (b)=1 u(a − b), ∀a ∈ Qn.

Pick an arbitrary a′ ∈ Qn, by (2.7.11) there is b′ with |a′ − b′| ≤ 2R such that

u0(a′) = u(a′ − b′) and V (b′) = 1. For any a′′ ∈ Qn with |a′′ − a′| = 1, since

|a′′ − b′| ≤ 2R + 1 < 3R, we have

u0(a′′) = min
|a′′−b|<3R,V (b)=1

u(a′′ − b) ≤ u(a′′ − b′). (2.7.12)
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Thus by (2.7.10), and Dirichlet boundary condition,

Hu0(a′) =2du0(a′)−
∑

a′′∈Qn,|a′−a′′|=1

u0(a′′) + V (a′)u0(a′)

≥2du(a′ − b′)−
∑

a′′∈Qn,|a′−a′′|=1

u(a′′ − b′) + V (a′)u(a′ − b′)

≥−∆u(a′ − b′) + V (a′)u(a′ − b′)

=− δ0(a′ − b′) + 2dεdR
−d + V (a′)u(a′ − b′)

≥2dεdR
−d.

(2.7.13)

Since a′ is arbitrary and 0 < u0(a′) ≤ 1 +G(0), by (2.7.6) and letting C = 2dεd
1+G(0)

, we

have λ0 ≥ CR−d.

Remark 2.7.8. The exponent in R−d is optimal. Consider a potential V such that

V (a) = 1 only if a ∈ dReZd ∩Qn and V (a) = 0 otherwise. In this case we have that

λ0 ≤ 8dR−d + 4dn−1. To see this, consider the test function φ(a) = 1 − V (a) for

a ∈ Qn and use the variational principle λ0 ≤ 〈φ,Hφ〉
‖φ‖22

.

Corollary 2.7.9. Let H, C be defined as in Theorem 2.7.7. Let 0 ≤ λ < CR−d

2
. Then

‖(H − λ)−1‖ ≤ 2Rd

C
and

|(H − λ)−1(a, b)| ≤ 2Rd

C
exp

(
−CR

−d

8d+ 2
|a− b|

)
(2.7.14)

for any a, b ∈ Qn.

Proof. As the principal eigenvalue of H is no less than CR−d, we have ‖(H−λ)−1‖ ≤
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2Rd

C
. Let T := I − 1

4d+1
(H − λ). Since any eigenvalue of H is in

[
CR−d, 4d+ 1

]
, the

eigenvalues of T are in
[
0, 1− C

8d+2
R−d

]
, so ‖T‖ ≤ 1− C

8d+2
R−d.

Note that for each i > 0 and a, b ∈ Qn, T i(a, b) = 0 if |a− b| > i. Then we have

|(H − λ)−1(a, b)| = (4d+ 1)−1|(I − T )−1(a, b)| ≤ (4d+ 1)−1
∑
i≥0

|T i(a, b)|

= (4d+1)−1
∑

i≥|a−b|

|T i(a, b)| ≤ (4d+1)−1
∑

i≥|a−b|

‖T‖i ≤ 2Rd

C
exp

(
−CR

−d

8d+ 2
|a− b|

)
,

(2.7.15)

so the corollary follows.

Finally, we have the following result, which implies the base case in the induction

proof of Theorem 2.3.10.

Proposition 2.7.10. Let d = 3, and V be the Bernoulli potential, i.e. P(V (a) = 0) =

P(V (a) = 1) = 1
2

for each a ∈ Z3 independently. For any 0 < δ < 1
10

and ε > 0, there

exists Cδ,ε such that for any n > Cδ,ε and 0 ≤ λ < Cn−
3δ
10

2
, with probability at least

1− n−1 the following is true.

Take any V ′ : Z3 → [0, 1] such that V ′Qn∩dε−1eZ3 = VQn∩dε−1eZ3. Let H ′Qn be the

restriction of −∆ + V ′ on Qn with Dirichlet boundary condition. Then we have

‖(H ′Qn − λ)−1‖ ≤ exp(n2δ), (2.7.16)
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and

|(H ′Qn − λ)−1(a, b)| ≤ n2δ exp(−n−δ|a− b|) for any a, b ∈ Qn. (2.7.17)

Proof. Let R := n
δ
10 , and let A denote the following event:

∀a ∈ Qn, ∃b ∈ Qn ∩ dε−1eZ3, s.t. |a− b| ≤ R, V (b) = 1. (2.7.18)

Then A only depends on VQn∩dε−1eZ3 .

Using Corollary 2.7.9 with d = 3, we have that (2.7.16) and (2.7.17) hold under

the event A, when n is large enough.

Finally, since there are (2n+1)3 points inQn, and inside each ball of radiusR, there

are at least 1
8
n

3δ
10 ε3 points in dε−1eZ3∩Qn, we have P(Ac) ≤ (2n+ 1)32−

1
8
n

3δ
10 ε3 ≤ n−1,

when n is large enough.

2.7.3 Deducing Anderson localization from the resolvent estimate

The arguments in this section originally come from [BK05, Section 7] (see also [GK12,

Section 6, 7] and [Bou05, Section 6]). These previous works are about the continu-

ous space model. For completeness and for the reader’s convenience, we adapt the

arguments for the lattice model, thus deducing Theorem 2.1.1 from Theorem 2.3.1.

As in Section 2.3, in this section, by “dyadic” we mean an integer power of 2, and

by “dyadic cube”, we mean a cube Q2n(a) for some a ∈ 2n−1Z3 and n ∈ Z+.
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For any k ∈ Z+, we define

Ωk := {u : Z3 → R : |u(a)| ≤ k(1 + |a|)k, ∀a ∈ Z3, and u(0) = 1}. (2.7.19)

Since the law of H is invariant under translation, to prove Theorem 2.1.1, it suffices

to show that for any k ∈ Z+, almost surely

inf
t>0

sup
a∈Z3

exp(t|a|)|u(a)| <∞, (2.7.20)

for any u ∈ Ωk and λ ∈ [0, λ∗] with Hu = λu.

Denote I = (0, λ∗). We first see that it suffices to prove (2.7.20) for any u ∈ Ωk

and λ ∈ I with Hu = λu, by applying the following lemma to λ = 0 and λ = λ∗.

Lemma 2.7.11. Suppose λ ∈ [0, λ∗] and k ∈ Z+. Then almost surely, there is no

u ∈ Ωk with Hu = λu.

Proof. Let Li = 2i for i ∈ Z+. By Theorem 2.3.1 and the Borel-Cantelli lemma,

almost surely, there exists i′ > 0, such that for any i > i′,

∣∣∣(HQLi
− λ)−1(a, b)

∣∣∣ ≤ exp
(
L1−λ∗
i − λ∗|a− b|

)
, ∀a, b ∈ QLi . (2.7.21)
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Assume there exists u ∈ Ωk with Hu = λu. For each large enough i we have

|u(0)| =

∣∣∣∣∣∣∣∣∣
∑

a∈QLi ,a
′∈Z3\QLi

|a−a′|=1

(HQLi
− λ)−1(0, a)u(a′)

∣∣∣∣∣∣∣∣∣
≤6 · (2Li + 1)2 exp

(
−λ∗Li

2

)
k(1 +

√
3Li)

k

(2.7.22)

which converges to zero as i → ∞. Thus u(0) = 0, which contradicts with the fact

that u ∈ Ωk.

Let us fix k ∈ Z+ and denote by σk(H) the set of all λ ∈ I, such that Hu = λu

for some u ∈ Ωk. For each L ∈ Z+, denote by σ(HQL) the set of eigenvalues of HQL .

The first key step is to prove that for any large enough L, with high probability, the

distance between any λ ∈ σk(H) and σ(HQL) is small, exponentially in L.

Proposition 2.7.12. There exist κ′, c1 > 0 such that for any dyadic L large enough,

we can find a VQL-measurable event E (L)
wloc, such that

P
[
E (L)
wloc

]
≥ 1− L−κ′ , (2.7.23)

and under the event E (L)
wloc, we have dist(λ, σ(HQL) ∩ I) ≤ exp(−c1L) for any

λ ∈ σk(H) ∩
[
exp(−c1

√
L), λ∗ − exp(−c1

√
L)
]
.

The next key step is to strengthen Proposition 2.7.12 so that each λ ∈ σk(H) is
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not only exponentially close to σ(HQL), but also exponentially close to a finite subset

S ⊂ σ(HQL) with |S| < Lδ
′

for arbitrarily small δ′.

Proposition 2.7.13. For any δ′ > 0, there exist κ′′, c2 > 0 such that for each dyadic L

large enough (depending on δ′), we can find a VQL-measurable event E (L)
sloc with

P
[
E (L)
sloc

]
≥ 1− L−κ′′ , (2.7.24)

and under the event E (L)
sloc, there exists a finite set S ⊂ σ(HQL)∩I with |S| < Lδ

′
such

that dist(λ, S) ≤ exp(−c2L) for any λ ∈ σk(H) ∩ [exp(−Lc2), λ∗ − exp(−Lc2)].

Proposition 2.7.12 and 2.7.13 are discrete versions of [Bou05, Lemma 6.1] and

[Bou05, Lemma 6.4] respectively. See also [GK12, Proposition 6.3, 6.9]. Now we

leave the proofs of these two propositions to the next two subsections, and prove

localization assuming them.

Proof of Theorem 2.1.1. We apply Proposition 2.7.13 with δ′ < κ0 where κ0 is the

constant in Theorem 2.3.1. Take large enough dyadic L, and consider the annulus

AL = Q5L \ Q2L. We cover AL by 2L-cubes {Q(j) : 1 ≤ j ≤ 1000} that are disjoint

with QL, such that for each a ∈ AL there is 1 ≤ j ≤ 1000 with a ∈ Q(j) and

dist(a,Z3 \ Q(j)) ≥ 1
8
L. Apply Theorem 2.3.1 to each of Q(j)’s and to each energy

λ ∈ S ⊂ σ(HQL) ∩ I, we have

P
[
E (L)
ann

∣∣ E (L)
sloc

]
≥ 1− 1000Lδ

′−κ0 (2.7.25)
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where E (L)
ann denotes the event:

∣∣(HQ(j) − λ)−1(a, b)
∣∣ ≤ exp

(
L1−λ∗ − λ∗|a− b|

)
∀1 ≤ j ≤ 1000, ∀a, b ∈ Q(j), and ∀λ ∈ S.

(2.7.26)

Then by Proposition 2.7.13 we have

P
[
E (L)
ann ∩ E (L)

sloc

]
≥ (1− L−κ′′)(1− 1000Lδ

′−κ0) ≥ 1− L−κ′′′ , (2.7.27)

for some constant κ′′′ > 0 and large enough L.

Under the event E (L)
ann ∩ E (L)

sloc, we take any u ∈ Ωk with Hu = λu and λ ∈

[exp(−Lc2), λ∗ − exp(−Lc2)], and λ′ ∈ S with |λ − λ′| < exp(−c2L). Thus using

Lemma 2.7.5, we have

‖u‖`∞(AL) ≤ 2 exp

(
L1−λ∗ − 1

8
λ∗L

)
‖u‖`1(Q6L)

≤ 2 exp

(
L1−λ∗ − 1

8
λ∗L

)
k(6
√

3L+ 1)k(12L+ 1)3 ≤ exp(−c′L)

(2.7.28)

for some constant c′ < λ∗
8

and large enough L.

Now we consider the event

Eloc =
⋃
i′≥0

⋂
i≥i′

(E (2i)
ann ∩ E (2i)

sloc). (2.7.29)
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We have P[Eloc] = 1 by (2.7.27). Note that for any λ ∈ I, we have

λ ∈ [exp(−Lc2), λ∗ − exp(−Lc2)]

for large enough L. We also have that
⋃
i≥i′ A2i = Z3 \ Q2i′+1 for any i′ ∈ Z+.

By (2.7.28) we have that (2.7.20) holds under the event Eloc. Then localization is

proved.

2.7.4 The first spectral reduction

For simplicity of notations, for any λ ∈ R, dyadic scale L, and a ∈ Z3, we say QL(a)

is λ-good if

∣∣(HQL(a) − λ)−1(b, b′)
∣∣ ≤ exp

(
L1−λ∗ − λ∗|b− b′|

)
, ∀b, b′ ∈ QL(a). (2.7.30)

Otherwise, we call it λ-bad. By Theorem 2.3.1, for any large enough dyadic scale L

and λ ∈ [0, λ∗], we have

P[QL(a) is λ-bad] ≤ L−κ0 . (2.7.31)

Proof of Proposition 2.7.12. Throughout the proof, we use C to denote large universal

constants. For a dyadic scale L, we construct a graph GL whose vertices are all the

dyadic 2L-cubes. The edges are given as follows: for any a 6= a′ ∈ L
2
Z3, there is an

edge connecting QL(a) and QL(a′) if and only if QL(a) ∩QL(a′) 6= ∅.

Fix large dyadic scale L. Take the dyadic scale L0 ∈
{√

L,
√

2L
}

. For any λ ∈ I,

124



denote by Eλper the event that there is a path of λ-bad 2L0-cubes Q1, · · · , Qm in GL0

such that

Q1 ∩QL
2
6= ∅ and Qm ∩QL = ∅. (2.7.32)

Under the event Eλper, suppose that Γ0 = (Q1, · · · , Qm) is such a path with the shortest

length. Since dist(QL
2
,Z3 \ QL) ≥ L

2
, we have m ≥ L

4
√

3L0
. By definition of dyadic

cubes and that Γ0 has the shortest length, there are at least m
1000

disjoint λ-bad cubes

in Γ0. Hence,

P[Eλper] ≤
∑

m≥ L
4
√

3L0

CL31000m(L−κ0
0 )

m
1000 ≤ 2CL3(1000L

− κ0
1000

0 )
L

4
√

3L0 ≤ L−c
′L0

0 (2.7.33)

for some c′ > 0. Here the first inequality is by (2.7.31), and counting the total number

of GL0 paths with length m and one end intersecting QL
2
.

Claim 2.7.14. Under the event (Eλper)c, any λ′ ∈ σk(H) with |λ′ − λ| ≤ exp(−L1−λ∗
2

0 )

satisfies dist(λ′, σ(HQ 3
2L

)) ≤ exp(−ε′L0) for a universal constant ε′ > 0.

Proof. Denote the set of all the λ-bad L0-cubes contained inQ 3
2
L by S. We consider Z3

as a graph with edges between nearest neighbors. Consider the set S0 := (
⋃S)∪QL

2
⊂

Q 3
2
L. Let S1 be the maximal connected component of S0 which contains QL

2
. Then

(Eλper)c implies S1 ⊂ QL+2L0 . Denote

∂−S1 = {a ∈ S1 : |a− a′| = 1 for some a′ ∈ Z3 \ S1}, (2.7.34)
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and

∂+S1 = {a ∈ Z3 \ S1 : |a− a′| = 1 for some a′ ∈ S1}. (2.7.35)

Assume λ′ satisfies the hypothesis in the claim, then there is u ∈ Ωk such that

Hu = λ′u. For any a′ ∈ ∂−S1 ∪ ∂+S1, there is a dyadic L0-cube Q′ such that a′ ∈ Q′

and dist(a′,Z3 \ Q′) ≥ 1
8
L0. By maximality of S1, we have Q′ is λ-good. Thus by

Lemma 2.7.5,

|u(a′)| ≤2 exp(L1−λ∗
0 − 1

8
λ∗L0)‖u‖`1(QL+4L0

)

≤2 exp(L1−λ∗
0 − 1

8
λ∗L0)(2L+ 8L0 + 1)3k(

√
3L+ 4

√
3L0 + 1)k

≤ exp(− 1

10
λ∗L0)

(2.7.36)

for large enough L0. Let u∗ : Q 3
2
L → R be defined by u∗ = u on S1 and u∗ = 0 on

Q 3
2
L \ S1. Then

(HQ 3
2L
− λ′)u∗(a) =



0 if a ∈ Q 3
2
L \ (∂−S1 ∪ ∂+S1),

∑
|a′−a|=1,a′∈∂+S1

u(a′) if a ∈ ∂−S1,

−∑|a′−a|=1,a′∈∂−S1
u(a′) if a ∈ ∂+S1.

(2.7.37)

By (2.7.36), we have

‖(HQ 3
2L
− λ′)u∗‖`2(Q 3

2L
) ≤ 6(3L+ 1)

3
2 exp(− 1

10
λ∗L0) ≤ exp(−ε′L0)‖u∗‖`2(Q 3

2L
)

(2.7.38)
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for large enough L. Here, we used ‖u∗‖`2(Q 3
2L

) ≥ 1 since 0 ∈ S1 and u(0) = 1. By

expanding u∗ into a linear combination of eigenvectors of HQ 3
2L

, (2.7.38) guarantees

that there is an eigenvalue λ0 of HQ 3
2L

such that |λ′ − λ0| ≤ exp(−ε′L0). Our claim

follows.

Denote λ(h) = h exp(−L0) for h ∈ Z+ and let

E0
trap =

⋂
λ(h)∈I

(Eλ(h)

per )c. (2.7.39)

Then by (2.7.33),

P[E0
trap] ≥ 1− λ∗ exp(L0)L−c

′L0
0 ≥ 1− L−10 (2.7.40)

for large L.

Claim 2.7.15. Under the event E0
trap, any λ ∈ [0, λ∗] ∩ σk(H) satisfies

dist(λ, σ(HQ 3
2L

)) ≤ exp(−ε′L0). (2.7.41)

Proof. For any λ ∈ [0, λ∗], there exists an h ∈ Z+ such that λ(h) ∈ I and |λ− λ(h)| ≤

exp(−L1−λ∗
2

0 ). Our claim follows from Claim 2.7.14.

Let q be the smallest positive integer such that 2
1
q − 1 < λ∗

2
and let τ = 2

1
q − 1.

Define L̃1 = L1+τ
0 and L̃i+1 = L̃1+τ

i for i = 1, 2, · · · , q − 1. Then L ≤ L̃q = L2
0 ≤ 2L.

Let Li be the (unique) dyadic scale such that Li ∈ [L̃i, 2L̃i) for each i = 1, · · · , q.
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Let Mi = 3
2
L + C ′

∑
1≤j≤i Lj for each i = 1, · · · , q and M0 = 3

2
L. Here C ′ is a large

constant to be determined. Then

Mi ≤
3

2
L+ 4C ′iL ≤

(
3

2
+ 4C ′q

)
L (2.7.42)

for each 0 ≤ i ≤ q. In addition, we denote Mq+1 = 2wL where w is the smallest

integer with 2w > 3 + 8C ′q, and let Lq+1 = Lq.

For any λ ∈ I and any j ∈ {1, · · · , q + 1}, denote by Eλ,jper the following event:

there exists a path of λ-bad 2Lj-cubes in GLj , say Q1, · · · , Qm, such that

Qi ⊂ QMj
\QMj−1

, ∀i ∈ {1, · · · ,m},

Q1 ∩QMj−1+10Lj 6= ∅,

Qm ∩QMj−10Lj 6= ∅.

(2.7.43)

Under the event Eλ,jper, suppose that Γ0 = (Q1, · · · , Qm) in GLj is such a path with the

shortest length. Since dist(QMj−1+10Lj ,Z3 \QMj−10Lj) ≥ (C ′−20)Lj, we have m ≥ C′

4

when C ′ is large enough. By definition of dyadic cubes and that Γ0 has the shortest

length, there are at least m
1000

disjoint λ-bad cubes in Γ0. Hence,

P[Eλ,jper] ≤
∑
m≥C′

4

C(C ′L)31000m(L−κ0
j )

m
1000 ≤ 2C(C ′L)3(1000L

− κ0
1000

j )
C′
4 ≤ L−10.

(2.7.44)

Here the first inequality is by (2.7.31) and counting the number of paths in GLj with
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length m and one end intersecting QMj−1+10Lj , and the last inequality is by taking C ′

large enough.

By adapting the proof of Claim 2.7.14 we can get the following result.

Claim 2.7.16. Under the event (Eλ,jper)
c, any λ′ ∈ σk(H) with |λ′ − λ| ≤ exp(−L1−λ∗

2
j )

satisfies dist(λ′, σ(HQMj
)) ≤ exp(−ε′′Lj) for a universal constant ε′′ > 0.

Note that, given λ ∈ I, the event Eλ,jper is VQMj \QMj−1
-measurable. Hence, the event

E jtrap :=

(⋃
λ∈σ(HQMj−1

)∩I Eλ,jper

)c
satisfies

P[E jtrap|VQMj−1
] ≥ 1− (Mj−1 + 1)3L−10 ≥ 1− L−6 (2.7.45)

by (2.7.42) and (2.7.44) for large enough L. For each 0 ≤ j ≤ q + 1, E jtrap is VQMj -

measurable, thus the event Etrap :=
⋂

0≤j≤q+1 E jtrap is VQMq+1
-measurable. By (2.7.40)

and (2.7.45), we have

P[Etrap] ≥ 1− (q + 2)L−6 ≥ 1− L−5. (2.7.46)

Claim 2.7.17. Under the event Etrap, any λ ∈ [exp(−ε′′′L0/2), λ∗ − exp(−ε′′′L0/2)] ∩

σk(H) satisfies

dist(λ, σ(HQMq+1
)) ≤ exp(−ε′′′L) (2.7.47)

for some ε′′′ > 0.

Proof. Let ε′′′ = min{ε′, ε′′}. Let λ ∈ [exp(−ε′′′L0/2), λ∗ − exp(−ε′′′L0/2)] ∩ σk(H).
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We inductively prove that, dist(λ, σ(HQLj
)) ≤ exp(−ε′′′Lj) for any 0 ≤ j ≤ q + 1.

Thus, in particular, we have

dist(λ, σ(HQMq+1
)) ≤ exp(−ε′′′Lq+1) ≤ exp(−ε′′′L), (2.7.48)

and the claim follows.

For the case j = 0, by Claim 2.7.15, dist(λ, σ(HQM0
)) ≤ exp(−ε′L0). Assume

the conclusion holds for some j < q + 1, then |λ − λ0| ≤ exp(−ε′′′Lj) for some

λ0 ∈ σ(HQMj
). As λ ∈ [exp(−ε′′′L0/2), λ∗ − exp(−ε′′′L0/2)], we must have λ0 ∈ I.

Since τ < λ∗
2

, for L large enough we have ε′′′Lj > L
1−λ∗

2
j+1 and |λ−λ0| ≤ exp(−L1−λ∗

2
j+1 ).

Thus Claim 2.7.16 implies dist(λ, σ(HQMj+1
)) ≤ exp(−ε′′Lj+1).

Finally, since Mq+1 = 2wL and w is a constant, the proposition follows from Claim

2.7.17 and (2.7.46).

2.7.5 The second spectral reduction

For any positive integers L′′ > L′, we denote the annulus AL′′,L′ = QL′′ \ QL′ . Take

any δ > 0. For λ ∈ I and L′′ > 2L′, let E (λ)
L′′,L′ denote the following event: there exists

a subset G
(λ)
L′′,L′ ⊂ AL′′,L′ with |G(λ)

L′′,L′ | ≤ (L′)
δ
2 such that, for any a ∈ AL′′,2L′ \G(λ)

L′′,L′ ,

there is a λ-good cube QL′′′(b) ⊂ AL′′,L′ such that dist(a,QL′′ \ QL′′′(b)) ≥ 1
8
L′′′, and

(L′)
δ
10 ≤ L′′′ ≤ L′. Note that, E (λ)

L′′,L′ is VAL′′,L′ -measurable.

Lemma 2.7.18. Let ε, δ > 0 be small enough. Suppose L′, L′′ are dyadic, satisfying
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(L′)1+ 1
2
ε < L′′ < (L′)1+ε, and L′ is large enough (depending on ε, δ). Then for any

λ ∈ I we have P[E (λ)
L′′,L′ ] ≥ 1− (L′)−10.

Proof. Let L̃(0) = L′, L̃(i+1) = (L̃(i))1−ε, and L(i) be the (unique) dyadic scale with

L(i) ∈ [L̃(i), 2L̃(i)), for i ∈ Z≥0. Let M ′ ∈ Z+ such that 1
10
δ < (1− ε)M ′ < 1

6
δ. For any

dyadic 2L(M ′)-cube Q ⊂ AL′′,L′ , we call it hereditary bad if there are λ-bad dyadic

cubes Q(0), · · · , Q(M ′) = Q such that, Q(i+1) ⊂ Q(i) ⊂ AL′′,L′ for each 0 ≤ i ≤ M ′ − 1

and Q(i) is a dyadic 2L(i)-cube. By (2.7.31), and the same arguments in the proof

of Claim 2.3.11, the following is true. For small enough ε, there exists N ∈ Z+

depending on ε, δ, such that with probability at least 1− (L′)−10,

|{Q ⊂ AL′′,L′ : Q is a hereditary bad 2L(M ′)-cube}| < N. (2.7.49)

Let G
(λ)
L′′,L′ =

⋃{Q ⊂ AL′′,L′ : Q is a hereditary bad 2L(M ′)-cube}. Then (2.7.49)

implies |G(λ)
L′′,L′| ≤ N(2L(M ′) + 1)3 ≤ (L′)

δ
2 for large enough L′. For each a ∈

AL′′,2L′ \ G(λ)
L′′,L′ , there is 0 ≤ i′ ≤ M ′ and a λ-good cube QL(i′)(b) ⊂ AL′′,L′ such

that dist(a,QL′′ \QL(i′)(b)) ≥ 1
8
L(i′). Since (L′)

δ
10 ≤ L(i′) ≤ L′, our claim follows.

For any large enough dyadic scales L′, L′′ with (L′)1+ 1
2
ε < L′′ < (L′)1+ε, we de-

note EsuppL′′,L′ =
⋂
λ∈σ(HQL′

)∩I E
(λ)
L′′,L′ . Then by Lemma 2.7.18, as each E (λ)

L′′,L′ is VAL′′,L′ -

measurable, we have

P[EsuppL′′,L′ ] ≥ 1− (L′)−6. (2.7.50)

Proof of Proposition 2.7.13. In this proof we let ε > 0 be a small universal constant,
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and δ > 0 be a number depending on δ′. Both of them are to be determined.

Now we fix dyadic scale L large enough (depending on ε, δ and thus depending on

δ′). Let L̃0 = L, L̃i+1 = L̃
1− 3

4
ε

i , and Li be the (unique) dyadic scale with Li ∈ [L̃i, 2L̃i),

for i ∈ Z≥0. Pick M ∈ Z+ such that 1
10
δ < (1 − 3

4
ε)M < 1

6
δ. Write Li = 1

16
Li for

0 ≤ i ≤M and let

Esupp =
⋂

0≤i≤M−1

Esupp
Li,Li+1

. (2.7.51)

Then by (2.7.50),

P[Esupp] ≥ 1−M
(
LM
16

)−6

≥ 1− L− δ2 (2.7.52)

as L is large enough. For 0 ≤ i ≤M , denote by Θi the set of eigenvalues λ ∈ σ(HQLi
)

such that,

λ ∈ [(M − i+ 1) exp(−L δ
20 ), λ∗ − (M − i+ 1) exp(−L δ

20 )], (2.7.53)

and

dist(λ, σ(HQLj
)), dist(λ, σ(HQLj

)) ≤ 2i exp(−c′Lj) ∀j ∈ {i, i+ 1, · · · ,M}. (2.7.54)

Here the constant c′ = c1
20

where c1 is the constant from Proposition 2.7.12.

Claim 2.7.19. Under the event Esupp, for any 1 ≤ i ≤ M and λ ∈ Θi, there exists

G(i−1) ⊂ QLi−1
with 10 ≤ |G(i−1)| ≤ L

2
3
δ such that the following holds. For any

λ′ ∈ σ(HQLi−1
) and u ∈ `2(QLi−1

) with |λ−λ′| ≤ 2i−1 exp(−c′Li) and HQLi−1
u = λ′u,
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we have ‖u‖`2(G(i−1)) ≥ (1− |G(i−1)|−2)‖u‖`2(QLi−1
).

Proof. Since λ ∈ Θi, there are λ(j) ∈ σ(HQLj
) such that |λ− λ(j)| ≤ 2i exp(−c′Lj) for

each i ≤ j ≤M . Let

G(i−1)
∗ =

⋃
i−1≤j≤M−1

G
(λ(j+1))

Lj ,Lj+1
. (2.7.55)

Then |G(i−1)
∗ | ≤ML

δ
2 . Suppose λ′ and u satisfy the hypothesis. Then

|λ′−λ(j)| ≤ |λ′−λ|+ |λ−λ(j)| ≤ 2i−1 exp(−c′Li) + 2i exp(−c′Lj) ≤ 2M+1 exp(−c′Lj)

(2.7.56)

for each i ≤ j ≤ M . Denote L′j = 1
2
Lj for each i ≤ j ≤ M − 1 and L′i−1 = Li−1.

Pick an arbitrary a ∈ QLi−1
\ QLM , there exists j′ ∈ {i − 1, · · · ,M − 1} such that

a ∈ AL′
j′ ,2Lj′+1

. If a 6∈ G(i−1)
∗ , by definition of Gλ(j′+1)

Lj′ ,Lj′+1
, there exists a λ(j′+1)-good cube

QL′′′(b) such that Lj′+1 ≥ L′′′ ≥ Lj′+1

δ
10 ≥ L

δ2

100 , and dist(a,QLj′
\ QL′′′(b)) ≥ 1

8
L′′′.

Then since a ∈ QL′
j′

, we have dist(a,QLi−1
\QL′′′(b)) ≥ 1

8
L′′′. We also have that

|λ′ − λ(j′+1)| ≤ 2M+1 exp(−c′Lj′+1) ≤ 2M+1 exp(−16c′L′′′). (2.7.57)

Then by Claim 2.7.5 we have,

|u(a)| ≤ 2 exp

(
(L′′′)1−λ∗ − 1

8
λ∗L

′′′
)
‖u‖`1(QLi−1

) ≤ L−10‖u‖`2(QLi−1
). (2.7.58)

Hence, by letting G(i−1) = G
(i−1)
∗ ∪QLM , we have 10 ≤ |G(i−1)| ≤ |G(i−1)

∗ | + |QLM | ≤
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ML
δ
2 + 100L

δ
2 ≤ L

2
3
δ, and

‖u‖`2(G(i−1)) ≥
(
1− (2Li−1 + 1)3L−20

) 1
2‖u‖`2(QLi−1

) ≥ (1− |G(i−1)|−2)‖u‖`2(QLi−1
).

(2.7.59)

Thus our claim follows.

Claim 2.7.20. Under the event Esupp, for any 1 ≤ i ≤M and λ ∈ Θi, we have

|{λ′ ∈ σ(HQLi−1
) : |λ− λ′| ≤ 2i−1 exp(−c′Li)}| ≤ 2L

2
3
δ. (2.7.60)

Proof. Let λ1, · · · , λp ∈ σ(HQLi−1
) be all the eigenvalues (counting with multiplicity)

in the interval

[λ− 2i−1 exp(−c′Li), λ+ 2i−1 exp(−c′Li)]. (2.7.61)

Let u1, · · · , up be the corresponding (mutually orthogonal) eigenvectors with prop-

erties that HQLi−1
us = λsus and ‖us‖`2(QLi−1

) = 1 for 1 ≤ s ≤ p. By Claim 2.7.19,

‖us‖`2(G(i−1)) ≥ 1− |G(i−1)|−2 for 1 ≤ s ≤ p. Thus we have

|〈us1 , us2〉`2(G(i−1)) − 1s1=s2| ≤ 2|G(i−1)|−2 (2.7.62)

for 1 ≤ s1, s2 ≤ p. By Lemma 2.7.1, we have p ≤ 2|G(i−1)| ≤ 2L
2
3
δ.

Claim 2.7.21. We have |Θ0| ≤ LMδ under the event Esupp.

Proof. Suppose Esupp holds. For each 1 ≤ i ≤ M and λ ∈ Θi−1, there are λ(j) ∈
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σ(HQLj
) and λ(j) ∈ σ(HQLj

) with |λ−λ(j)|, |λ−λ(j)| ≤ 2i−1 exp(−c′Lj), for i ≤ j ≤M .

In particular, |λ − λ(i)| ≤ 2i−1 exp(−c′Li). Thus |λ(i) − λ(j)| ≤ 2i−1(exp(−c′Lj) +

exp(−c′Li)) ≤ 2i exp(−c′Lj) and similarly |λ(i)−λ(j)| ≤ 2i exp(−c′Lj) for i ≤ j ≤M .

Moreover, λ ∈ Θi−1 implies that λ ∈ [(M−i+2) exp(−L δ
20 ), λ∗−(M−i+2) exp(−L δ

20 )]

and thus

λ(i) ∈ [(M − i+ 1) exp(−L δ
20 ), λ∗ − (M − i+ 1) exp(−L δ

20 )]. (2.7.63)

These imply λ(i) ∈ Θi. Hence, we have

Θi−1 ⊂ {λ ∈ σ(HQLi−1
) : dist(λ,Θi) ≤ 2i−1 exp(−c′Li)}. (2.7.64)

Together with Claim 2.7.20, we have |Θi−1| ≤ 2L
2
3
δ|Θi| for 1 ≤ i ≤ M . Since

|ΘM | ≤ |σ(HQLM
)| ≤ 10L3

M ≤ 100L
δ
2 , we have |Θ0| ≤ 100L

δ
2 · 2ML 2

3
Mδ ≤ LMδ.

Now we denote E (L)
sloc = Esupp ∩ ⋂0≤i≤M E

(Li)
wloc ∩ E

(Li)
wloc. By Proposition 2.7.12 and

(2.7.52),

P[E (L)
sloc] ≥ 1− L− δ2 − 2(M + 1)L−

1
20
κ′δ ≥ 1− L−κ′′ (2.7.65)

for some small κ′′ > 0 depending on δ,M . Take c2 = min{ δ
30
, c′}. Under the event

E (L)
sloc, for any

λ ∈ σk(H) ∩ [exp(−Lc2), λ∗ − exp(−Lc2)], (2.7.66)
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we claim that

dist(λ,Θ0) ≤ exp(−c2L). (2.7.67)

To see this, by definition of E (Li)
wloc and E (Li)

wloc, (2.7.66) implies dist(λ, σ(HQLi
)) ≤

exp(−c1Li) and dist(λ, σ(HQLi
)) ≤ exp(− c1

16
Li) for each 0 ≤ i ≤ M . In particu-

lar, there is λ0 ∈ σ(HQL) such that |λ − λ0| ≤ exp(−c1L). Since c′ = c1
20

, we have

λ0 ∈
[
(M + 1) exp(−L δ

20 ), λ∗ − (M + 1) exp(−L δ
20 )
]

by (2.7.66), and also

dist(λ0, σ(HQLi
)) ≤|λ− λ0|+ dist(λ, σ(HQLi

))

≤ exp(−c1L) + exp(−c1Li)

≤ exp(−c′Li),

dist(λ0, σ(HQLi
)) ≤|λ− λ0|+ dist(λ, σ(HQLi

))

≤ exp(−c1L) + exp(− c1

16
Li)

≤ exp(−c′Li),

(2.7.68)

for 0 ≤ i ≤M . Hence λ0 ∈ Θ0 and (2.7.67) follows.

Finally, observe that |Θ0| ≤ LMδ ≤ L
log( 1

10 δ)

log(1− 3
4 ε)

δ ≤ Lδ
′

by taking δ small enough

(depending on δ′), the proposition follows by letting S = Θ0.
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Chapter 3

2D Anderson-Bernoulli localization

with large disorder

3.1 Introduction

3.1.1 Main result

Let p ∈ (0, 1) and V̄ > 0. Let V : Zd → {0, V̄ } be a random function such that

{V (a) : a ∈ Zd} is a family of independent Bernoulli random variables with P(V (a) =

0) = p and P(V (a) = V̄ ) = 1− p for each a ∈ Zd. Let ∆ denote the Laplacian

∆u(a) = −2du(a) +
∑

b∈Zd,|a−b|=1

u(b), ∀u : Zd → R, a ∈ Zd. (3.1.1)
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Here and throughout the chapter, |a| = ‖a‖∞ for a ∈ Zd. We study the spectra

property of the (random) Anderson Hamiltonian

H = −∆ + V (3.1.2)

when V̄ is large enough.

It is known that (see e.g. [Pas80]), almost surely, the spectrum of H = −∆ +V is

σ(H) = [0, 4d] ∪
[
V̄ , V̄ + 4d

]
(3.1.3)

which is a union of two disjoint intervals when V̄ > 4d. Here and throughout the

chapter, we denote by σ(A) the spectrum of a self-adjoint operator A. Our main

theorem is the following

Theorem 3.1.1 (Main theorem). Let d = 2, p = 1
2
. There exist positive integer n and

energies λ(1), λ(2), · · · , λ(n) ∈ [0, 8] such that the following holds.

For each V̄ large enough, suppose λ̃(i) = V̄ + 8− λ(i) for i = 1, · · · , n. Let

YV̄ =
n⋃
i=1

[
λ(i) − V̄ − 1

4 , λ(i) + V̄ −
1
4

]

and

ỸV̄ =
n⋃
i=1

[
λ̃(i) − V̄ − 1

4 , λ̃(i) + V̄ −
1
4

]
.

Let H be defined as in (3.1.2). Then almost surely, for any λ0 ∈ σ(H) \ (YV̄ ∪ ỸV̄ )
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and u : Z2 → R, if Hu = λ0u and

inf
m>0

sup
a∈Z2

(|a|+ 1)−m|u(a)| <∞, (3.1.4)

then

inf
c>0

sup
a∈Z2

exp(c|a|)|u(a)| <∞. (3.1.5)

Remark 3.1.2. The energies λ(i)’s are defined in Definition 3.2.12 below and they do

not depend on V̄ . In fact, λ(i)’s are Dirichlet eigenvalues of −∆ restricted on finite

subsets of Z2 and λ̃(i)’s are simply images of λ(i)’s under the mapping x 7→ V̄ + 8−x.

Remark 3.1.3. Our proof and conclusions in Theorem 3.1.1 extend to 1− pc < p < pc

where pc >
1
2

is the site percolation threshold on Z2 (see Section 3.2.1). p ∈ (1−pc, pc)

is an essential assumption for our method to prove Theorem 3.1.1 (see Section 3.1.2

below). Thus it is an interesting question that whether a similar result can be proved

for p ∈ (0, 1− pc] ∪ [pc, 1).

For simplicity, throughout this chapter, we restrict ourselves to the case p = 1
2
.

The result in Theorem 3.1.1 means Anderson localization happens in σ(H)\ (YV̄ ∪

ỸV̄ ). In his seminal paper [And58], Anderson said,

The theorem is that at sufficiently low densities, transport does not take

place; the exact wave functions are localized in a small region of space.

Here, the density refers to the density of states measure (DOS measure). Intuitively,

DOS measure in interval [E1, E2] gives the “number of states per unit volume” with
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energy in [E1, E2]. More precisely, we restrict the operator H to the square centered

at origin with edge length 2L, and denote the (random) empirical distribution of

the restricted operator’s eigenvalues by µL. It is known that, almost surely, when L

goes to infinity, µL converges weakly to some probability measure which is called the

DOS measure (see e.g. [AW15, Chapter 3] by Aizenman and Warzel). The smallness

of DOS measure was mathematically verified for several cases, in particular for the

following two cases,

1. For any nontrivial distribution of V , the DOS measure is extremely small near

the bottom of the spectrum. This is also called the “Lifshitz tail phenomenon”.

See e.g. [AW15, Chapter 4.4] and also [Kir08, Section 6.2].

2. Suppose V = δV0 where V0 has uniformly Hölder continuous distribution (see

[AW15, Definition 4.5]). The DOS measure of any finite interval with given

length becomes uniformly small when the disorder strength δ increases to infin-

ity. See e.g. [AW15, Theorem 4.6].

In both cases, according to [And58], one expects Anderson localization to happen

in the corresponding spectrum range, namely, near the bottom in the first case and

throughout the whole spectrum in the second case. In fact, both cases have been

studied extensively and Anderson localization was proved for several distributions of

V .

For V with Hölder continuous distribution, Anderson localization was proved in

both cases in any dimension, namely, near the bottom of the spectrum or throughout
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the spectrum when the disorder strength is large enough. As written in Chapter

1, this was first proved for distributions with bounded density in [FS83],[FMSS85]

by Fröhlich, Martinelli, Scoppola and Spencer. Later on, the multi-scale method

in [FS83],[FMSS85] was strengthened to prove the same result for general Hölder

continuous distribution in [CKM87] by Carmona, Klein and Martinelli.

As for Bernoulli potential, Anderson-Bernoulli localization near the bottom of

spectrum was verified in the continuous model Rd(d ≥ 2) by Bourgain and Kenig in

[BK05], and later in the discrete model Zd by Ding and Smart in [DS20] for d = 2

and by Zhang and the author in [LZ22] (which is the arxiv version of Chapter 2) for

d = 3.

For Bernoulli potential with large disorder (i.e. operator (3.1.2) with large V̄ ), the

total length of spectrum is always 8d by equation (3.1.3). When V̄ increases, the DOS

measure behaves completely different from the case when V has Hölder continuous

distribution. When d = 2 and p = 1
2
, the DOS measure always has a constant lower

bound in the sets YV̄ and ỸV̄ defined in Theorem 3.1.1 for sufficiently large V̄ . On the

other hand, the DOS measure is constantly small outside YV̄ ∪ ỸV̄ . Hence, Theorem

3.1.1 is again under the umbrella of prediction in [And58].

Let us also mention that, although smallness of DOS implies localization in many

cases, the converse is not true. In fact, much stronger result for Anderson localization

is expected in dimension one and two. For one dimension, it is proved that Anderson

localization happens throughout the whole spectrum for any nontrivial distribution of
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V with finite moment (see e.g. [CKM87]). It is a general belief among physicists that

(see e.g. [Sim00] by Simon), in dimension two, Anderson localization also happens

throughout the whole spectrum for any finite nontrivial distribution of V . Thus it is

reasonable to conjecture that, in our model, localization also happens inside YV̄ ∪ ỸV̄

and it is more of a technical limitation that we have to exclude YV̄ ∪ ỸV̄ .

In order to prove Theorem 3.1.1, we only need to consider the spectrum of H

contained in [0, 8] and prove the exponential decaying property of resolvent as follows.

Theorem 3.1.4. Let d = 2, p = 1
2
. There exist positive integer n, constants κ, α, ε > 0

and energies λ(1), λ(2), · · · , λ(n) ∈ [0, 8] such that the following holds.

For any V̄ > 0, denote YV̄ =
⋃n
i=1

[
λ(i) − V̄ − 1

4 , λ(i) + V̄ −
1
4

]
. Let H be defined as

in (3.1.2). Then for each V̄ , L > α, each λ0 ∈ [0, 8] \YV̄ and each box Q ⊂ Z2 of side

length L,

P
[
|(HQ − λ0)−1(a, b)| ≤ V̄ L1−ε−ε|a−b| for a, b ∈ Q

]
≥ 1− L−κ. (3.1.6)

Here HQ : `2(Q) → `2(Q) is the restriction of Hamiltonian H to the box Q with

the Dirichlet boundary condition.

Proof of Theorem 3.1.1 assuming Theorem 3.1.4. Probability estimate (3.1.6) with

the arguments in [BK05, Section 7] implies that Anderson localization happens in

[0, 8] \ YV̄ . See also [GK12, Section 6,7] by Germinet and Klein, and Section 2.7.3 in

Chapter 2.
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Now we use symmetry to prove the Anderson localization for the spectrum range

[V̄ , V̄ + 8] \
n⋃
i=1

[
λ̃(i) − V̄ − 1

4 , λ̃(i) + V̄ −
1
4

]
,

where λ̃(i) = V̄ + 8− λ(i). Define Ṽ : Z2 → {0, V̄ } by Ṽ (a) = V̄ − V (a)(a ∈ Z2) and

let H̃ = −∆ + Ṽ . Let λ̃ = V̄ + 8 − λ for every λ ∈ R. For each u : Z2 → R, define

ũ : Z2 → R by ũ(x, y) = (−1)x+yu(x, y) for x, y ∈ Z. This gives a bijection u 7→ ũ

from functions on Z2 to themselves. The properties (3.1.4) and (3.1.5) in Theorem

3.1.1 are preserved under this bijection. Moreover, by direct calculations, we have

Hu = λu if and only if H̃ũ = λ̃ũ. (3.1.7)

Since H̃ has the same distribution as H, Anderson localization happens in {λ̃ : λ ∈

[0, 8] \ YV̄ } = [V̄ , V̄ + 8] \⋃n
i=1

[
λ̃(i) − V̄ − 1

4 , λ̃(i) + V̄ −
1
4

]
. Theorem 3.1.1 follows.

3.1.2 Outline

In order to prove localization, [DS20] and [BK05] used a multi-scale analysis to prove

an estimate similar to (3.1.6) (see also Section 2.3 in Chapter 2). These two previous

works considered the edge of spectrum where the Lifshitz tail phenomenon happens

and used this phenomenon to prove the initial step of the induction in the multi-

scale analysis. Then they used an eigenvalue variation argument to prove the Wegner

estimate which is crucial to the inductive steps. The key to the eigenvalue variation
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argument is the unique continuation principle (see [DS20, Theorem 1.6] and [BK05,

Lemma 3.10]).

Our method follows the multi-scale analysis framework in [DS20] and [BK05], and

studies the spectrum range beyond the edge by taking advantage of site percolation.

Informally, the condition p = 1
2

implies that the sites with the same potential rarely

form large connected components (see Section 3.2.1 and [Gri99, Chapter 1.6] for the

former definition of site percolation). By this fact, the initial scale case (Proposition

3.2.21) for the multi-scale analysis is proved for energies away from λ(i)’s which are

eigenvalues of the minus Laplacian restricted on small finite subsets of Z2 (thus away

from λ(i)’s the DOS measure is small).

The most important and difficult part for the induction of multi-scale analysis is to

prove the Wegner estimate (Proposition 3.3.18) which indicates log-Hölder continuity

of the DOS measure (see e.g. [Bou05, Section 6]). Our Wegner estimate states that,

for an interval of length less than O(V̄ −L
1−ε′

), the probability that it contains an

eigenvalue of HQL is less than O(L−κ
′
) for some κ′, ε′ > 0.

In order to prove the Wegner estimate, we prove an upper bound and a lower

bound on how far an eigenvalue of HQL will move after perturbing the potential

function V . Here, “perturb” means changing the value of V at some vertices from 0

to V̄ or from V̄ to 0.

The upper bound estimate requires to show that if the j-th smallest eigenvalue

is close to a given real number λ0, then one can perturb the potential V on a (1 −
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ε) portion of QL such that the j-th smallest eigenvalue will not move too far (less

than O(V̄ −L
1−ε′′

) with ε′′ > ε′). Here and throughout this section, when we say j-

th smallest eigenvalue, we always count with multiplicity. While this upper bound

estimate was proved for λ0 near the bottom of the spectrum in [DS20], it is simply not

true for λ0 away from the bottom. For example, suppose HQL has k > 0 eigenvalues

(with multiplicities) in [0, 8]. Pick an arbitrary a ∈ QL with V (a) = 0 and let the

perturbed operator H ′QL be obtained by changing the potential V from 0 to V̄ only

at vertex a. It can be shown that, the k-th smallest eigenvalue of H ′QL is in [V̄ , V̄ + 8]

and thus is far from the k-th smallest eigenvalue of HQL which is in [0, 8]. Hence we

can not expect the upper bound estimate to hold in its original version.

It turns out that a different version of upper bound estimate still holds. In that

version, we will not compare the j-th smallest eigenvalue of an operator with the

j-th smallest eigenvalue of its perturbation. We will make another correspondence

between eigenvalues of an operator and eigenvalues of its perturbation. To clarify,

in the previous example, the k-th eigenvalue of HQL will actually correspond to the

(k − 1)-th eigenvalue of H ′QL and the distance between these two eigenvalues will

be shown to be small, provided one of them is close to λ0. To rigorously find the

correspondence between eigenvalues of an operator and eigenvalues of its perturbation,

we will introduce the“cutting procedure”which continuously“transforms”the operator

HQL (and H ′QL) to a direct sum operator
⊕

iHΛi (and
⊕

iH
′
Λi

) respectively. Here,⋃
i Λi = QL is a disjoint union. The j-th eigenvalue of the operator HQL corresponds
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to j′-th eigenvalue of H ′QL only if the j-th eigenfunction of
⊕

iHΛi equals the j′-th

eigenfunction of
⊕

iH
′
Λi

. Under this correspondence of eigenvalues, the upper bound

estimate is stated as Claim 3.3.21. The formal definition of cutting procedure is given

in Definition 3.2.9 and 3.2.16 by using percolation clusters.

The lower bound estimate requires to show that there are an enough portion of

points in QL such that, when the potential increases on any of these points, a given

eigenvalue will move a decent distance (at least Ω(V̄ −L
1−ε′

)). Based on the heuristic

that increasing the potential at vertices where an eigenfunction u has large absolute

values will increase the associated eigenvalue fast, one only needs to show that the

eigenfunction u has a decent lower bound on an enough portion of points in QL. This

is guaranteed by a discrete version of unique continuation principle Theorem 3.1.5

which is analogue of [DS20, Theorem 1.6]. However, under the new correspondence

of eigenvalues, the j-th eigenvalue of HQL may correspond to either the j-th eigenvalue

or the (j− 1)-th eigenvalue of the perturbation H ′QL (here H ′QL is obtained from HQL

by changing the potential V from 0 to V̄ only at one vertex). If it corresponds to the

j-th eigenvalue of H ′QL , then by monotonicity, the eigenvalue will increase. Otherwise

if it corresponds to the (j − 1)-th eigenvalue of H ′QL , then by Cauchy interlacing

theorem, the eigenvalue will decrease. Either way the lower bound estimate can be

proved for rank one perturbation, provided we can have a quantitative estimate on

the difference. This is considered in Lemma 3.3.8 and Lemma 3.3.9.

In order to have a polynomial bound on the probability (i.e. the right hand side of
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(3.1.6)), we need to consider the perturbation on a large set of vertices rather than only

one vertex. For this purpose, the previous works [DS20] and [BK05] used the Sperner

lemma which deals with monotone functions. However, as seen in the argument above,

under the new correspondence, the eigenvalue is no longer a monotone function of

the potential. Thus the original Sperner lemma ([DS20, Theorem 4.2]) can not be

applied to our case. Instead, we generalize Sperner lemma to deal with directed graph

products and prove Lemma 3.3.16 which is another new ingredient. The original

Sperner lemma ([DS20, Theorem 4.2]) can be seen as a special case of Lemma 3.3.16

when each directed graph consists of two vertices and one directed edge. The details

are given in Section 3.3.2.

3.1.3 Discrete unique continuation principle

We state the discrete unique continuation principle here which roughly says that,

with high probability, any solution of Hu = λu in a box Q with side length L satisfies

|u| ≥ (V̄ L)−L on Ω(L2) many points in Q.

Theorem 3.1.5. For every small ε > 0, there exists α > 1 such that the following

holds. If λ0 ∈ [0, 8] is an energy, V̄ ≥ 2 and Q ⊂ Z2 is a box of side length L ≥ α,

then P[E ] ≥ 1− exp(−εL 2
3 ), where E denotes the event that

∣∣∣{a ∈ Q : |u(a)| ≥ (V̄ L)−αL‖u‖`∞( Q
100

)

}∣∣∣ ≥ ε3L2 (3.1.8)

holds whenever λ ∈ R, u : Z2 → R, |λ− λ0| ≤ (V̄ L)−αL and Hu = λu in Q.
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In fact, the multi-scale analysis framework requires us to prove a slightly stronger

version Lemma 3.3.5 which accommodates a sparse“frozen set”. An important feature

of Theorem 3.1.5 and Lemma 3.3.5 is that the probability estimate does not depend on

V̄ . This feature is one of the major reasons why the set of energies λ(i)’s in Theorem

3.1.1 does not grow when V̄ increases.

Theorem 3.1.5 generalizes [DS20, Theorem 1.6] to deal with large V̄ and proves

a Ω(L2) lower bound on the cardinality of the support of u. This improves the

previous Ω(L
3
2 (logL)−

1
2 ) lower bound in [DS20, Theorem 1.6]. The price we pay is

that the energy window needs to be O((V̄ L)−αL) (while it was O(exp(−α(L logL)
1
2 ))

in [DS20]).

We refer the reader to the beginning of Section 3.5 for a proof outline and a

comparison between proofs of [DS20, Theorem 1.6] and Theorem 3.1.5. Here, we only

mention the main new ingredient Lemma 3.1.6 which is proved in Section 3.5.1. In

fact, a weaker form of Lemma 3.1.6 will suffice for the proof of Theorem 3.1.5.

Lemma 3.1.6. Given positive integers k < n, denote the n dimensional Boolean cube

by Bn = {(x1, x2, · · · , xn) ∈ Rn : xi ∈ {0, 1} for each 1 ≤ i ≤ n}. Then for any k

dimensional affine space Γ ⊂ Rn,

#{a ∈ Bn : min
b∈Γ
‖a− b‖2 <

1

4
n−

1
2 (n− k)−

1
2} ≤ 2k+1. (3.1.9)

Lemma 3.1.6 can be seen as a quantitative version of Odlyzko Lemma (see e.g.

[Odl88]). To prove it, we will find a subset S ⊂ {1, · · · , n} with |S| = n − k − 1
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such that, the projection operator onto the orthogonal complement of Γ is “well

invertible” when it is restricted on RS . The existence of S is a direct consequence of

the following “Restricted Invertibility Theorem” for matrices with isotropic columns

which was previously proved in [MSS14] by Marcus, Spielman and Srivastava.

Lemma 3.1.7 (Theorem 3.1 in [MSS14]). Suppose v1, v2, · · · , vl ∈ Cm are vectors with∑l
i=1 viv

†
i = Im where v†i is the dual vector of vi and Im is the identity matrix.

Then for every m′ < m there is a subset S ⊂ {1, 2, · · · ,m} of size m′ such that

the m′-th largest eigenvalue of
∑

i∈S viv
†
i is at least

(
1−

√
m′

m

)2
m
l

.

For general restricted invertibility principles and their history, we refer to [NY17]

by Naor and Youssef.

3.1.4 Notations

We set up some notations in this subsection. Throughout the chapter, we regard Z2

as a graph with vertices {(x, y) : x, y ∈ Z} and there is an edge connecting a, b ∈ Z2

if and only if |a− b| = 1 (in this case, we also write a ∼ b). We let

Ql(a) =

{
a′ ∈ Z2 : |a− a′| ≤ l − 1

2

}
(3.1.10)

for real number l ≥ 1 and a ∈ Z2, and denote its side length `(Ql(a)) = 2b l−1
2
c. For

simplicity, we denote Ql = Ql(0). Given real number k > 0, we write kQl(a) = Qkl(a).

Given any subset S ⊂ Z2 and function f : Z2 → R, define the restriction f |S :
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S → R by f |S(a) = f(a) for a ∈ S. We denote PS : `2(Z2) → `2(S) to be the

projection operator defined by PSf = f |S for each f ∈ `2(Z2). For simplicity, we

write ‖f‖`2(S) = ‖PSf‖`2(S). For an operator A on `2(Z2), we denote AS = PSAP
†
S

where P †S is the adjoint operator of PS.

Given a ∈ Z2, define 1a(a) = 1 and 1a(a
′) = 0 if a′ 6= a. Given S ⊂ Z2, an operator

A on `2(S) and a, b ∈ S, write A(a, b) = 〈1a, A1b〉`2(S) where 〈·, ·〉`2(S) denotes the inner

product in `2(S). We also denote by ‖A‖ the Euclidean norm of the operator A.

Throughout the rest of the chapter, H always denotes the operator defined in

(3.1.2). Given λ ∈ C \ σ(HS), we write GS(a, b;λ) = (HS − λ)−1(a, b) for S ⊂ Z2 and

a, b ∈ S.

For any real function u defined on a domain D and any real number c, we use

{u ≥ c} as shorthand for the set {a ∈ D : u(a) ≥ c}.

Organization of remaining chapter

In Section 3.2, we define the cutting procedure. Along this way, we prove the in-

duction base case (Proposition 3.2.21) for multi-scale analysis. The sharpness of site

percolation (Proposition 3.2.2) plays a key role there.

In Section 3.3, we prove the Wegner estimate Proposition 3.3.18. We will first

collect all needed lemmas in Section 3.3.1 and prove a generalized Sperner lemma in

Section 3.3.2. The proof of Wegner estimate is given in Section 3.3.3.

In Section 3.4, we perform the multi-scale analysis by using Wegner estimate and

150



prove Theorem 3.1.4.

In Section 3.5, we prove the unique continuation theorem 3.1.5 and Lemma 3.3.5.

Among these four sections, Section 3.4 follows closely the existing framework in

[DS20] and [BK05] while other sections contain the new ingredients as follows:

• A “cutting procedure” which allows us to match eigenvalues under different

potential functions (Section 3.2).

• The use of sharpness of site percolation in the proof of initial case of multi-scale

analysis (Section 3.2).

• A generalized Sperner lemma for directed graph products (Section 3.3).

• A 2D unique continuation theorem with an improved lower bound (see (3.1.8))

and a smaller energy window (Section 3.5).

3.2 Initial scale

In this section, we use site percolation (Section 3.2.1) to define the cutting procedure

described in the introduction. We will first define r-bits which are boxes centered in

a sublattice with certain edge length (Definition 3.2.4). We then define the cutting

procedure for Hamiltonian restricted on r-bits by using percolation clusters (Defini-

tion 3.2.9). These r-bits will also be used as “basic units” for eigenvalue variation

arguments in the proof of Wegner estimate Proposition 3.3.18 in Section 3.3. Then

we will extend the cutting procedure to boxes with larger length scale (Definition
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3.2.16). Finally, we will prove the induction base case for the multi-scale analysis

(Proposition 3.2.21).

3.2.1 Site percolation

Consider the Bernoulli site percolation on Z2. Let p ∈ (0, 1), suppose each vertex in

Z2 is independently occupied with probability p. It is well known that there exists

a critical probability pc ∈ (0, 1) such that, for p > pc, almost surely, there exists an

infinite connected subset of Z2 whose vertices are occupied; for p < pc, almost surely,

there does not exist an infinite connected subset of Z2 whose vertices are occupied.

It is known that pc >
1
2
, see e.g. [GS98] by Grimmett and Stacey.

Definition 3.2.1. For any S ⊂ Z2, denote

∂+S = {a ∈ Z2 \ S : a ∼ b for some b ∈ S}

to be the outer boundary of S; and

∂−S = {a ∈ S : a ∼ b for some b ∈ Z2 \ S}

to be the inner boundary of S. Denote

∂S =
{
{a, b} : a ∈ ∂+S, b ∈ ∂−S and a ∼ b

}

152



to be the set of edges connecting elements in ∂−S and ∂+S.

The following sharpness proposition follows directly from pc >
1
2

and [AB87,

Theorem 7.3] by Aizenman and Barsky:

Proposition 3.2.2. Suppose V : Z2 → {0, V̄ } is a random function such that {V (a) :

a ∈ Z2} is a family of i.i.d. random variables such that P [V (a) = 0] = 1
2

and

P
[
V (a) = V̄

]
= 1

2
. There is a numerical constant c0 > 0 such that, for each l > 10

and b ∈ Z2,

P
[
E lper(b)

]
< exp(−c0l). (3.2.1)

Here, E lper(b) denotes the event that there is a path in Z2 joining b to some vertex in

∂−Ql(b) such that V equals 0 on all vertices in this path.

3.2.2 r-bit

Let ε0 > 0 be a fixed small constant such that

ε0 < ε10
1 (3.2.2)

where ε1 is the numerical constant appeared in Lemma 3.3.5 below.

The inequality (3.2.2) will only be used in the proof of Proposition 3.3.18. At this

moment, the reader can think of ε0 as a small numerical constant.

Definition 3.2.3. For any large odd number r, denote ṙ =
⌈
(1− ε0

2
)(r − 1)

⌉
. For

any vertex a ∈ ṙZ2 where ṙZ2 = {(ṙx, ṙy) : x, y ∈ Z}, let Ωr(a) = Q(1−2ε0)r(a),
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Ω̃r(a) = Q(1− 3
2
ε0)r(a) and Fr(a) = Qr(a) \ Ωr(a).

Definition 3.2.4. Given a large odd number r, a vertex a ∈ ṙZ2 and a potential

function V ′ : Fr(a) → {0, V̄ }, we call (Qr(a), V ′) an r-bit. We say (Qr(a), V ′) is

admissible if the following two items hold:

• For each x ∈ ∂−Qr(a) and y ∈ Fr(a) with |x − y| ≥ ε0
30
r, there is no path in

Fr(a) joining x to y such that V ′ equals 0 on all vertices in the path.

• There is no path in Fr(a) joining some vertex in ∂+Ωr(a) to some vertex in

∂−Ω̃(a) such that V ′ equals 0 on all vertices in the path.

With a little abuse of notations, we also call Qr(a) an r-bit if a ∈ ṙZ2. When

V ′ : Fr(a)→ {0, V̄ } is obviously given, we also say Qr(a) is admissible if (Qr(a), V ′)

is admissible.

Given an r-bit Qr(a), we say it is inside some S ⊂ Z2 if Qr(a) ⊂ S. We say it

does not affect S if Ωr(a) ∩ S = ∅.

Remark 3.2.5. We give here three remarks on r-bits, the first two are from Definition

3.2.3 and the third one is obvious by Definition 3.2.4. See also Figure 3.1 for an

illustration.

1. For two different r-bits Qr(a1) and Qr(a2), we have

Ω̃r(a1) ∩ (∂+Qr(a2) ∪Qr(a2)) = ∅.
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a1

a4

a2
ℓ(Qr(a2))= r− 1

a3

Figure 3.1: The black squares represent r-bits Qr(ai)(i = 1, 2, 3, 4) with overlaps, the
blue squares represent Ω̃r(ai)(i = 1, 2, 3, 4) and the green squares represent Ωr(ai)(i =
1, 2, 3, 4).

Note that, Ω̃r(a1) is a scaling image of r-bit Qr(a1) with the scaling constant

slightly smaller than 1. Thus the equation above means Ω̃r(a1) is disjoint from

other r-bits and their outer boundaries.

2. For any a ∈ Z2, there exists an r-bit Qr(b) with a ∈ Q(1− 2
5
ε0)r(b).

3. Suppose r-bits (Qr(a), V ′) and (Qr(a
′), V ′′) satisfy V ′(b) = V ′′(b−a+a′) for each

b ∈ Fr(a), then (Qr(a), V ′) is admissible if and only if (Qr(a
′), V ′′) is admissible.

The following Proposition 3.2.6 is the place where we use the sharpness of site

percolation (Proposition 3.2.2).

Proposition 3.2.6. Suppose odd number r is large enough. Let V : Z2 → {0, V̄ } be

the i.i.d. Bernoulli random potential with P(V (a) = 0) = P(V (a) = V̄ ) = 1
2

for each
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a ∈ Z2. Then for each a ∈ ṙZ2, we have

P
[
(Qr(a), V |Fr(a)) is admissible

]
> 1− exp(−8c1r) (3.2.3)

where c1 is a numerical constant.

Proof. Let Enad(a) be the event that (Qr(a), V |Fr(a)) is not admissible. Then by

Definition 3.2.4,

Enad(a) ⊂
⋃

b∈∂−Ω̃(a)∪∂−Qr(a)

E
ε0
60
r

per (b). (3.2.4)

Here, the notation E lper(b) is defined in Proposition 3.2.2. Assume r is large enough,

by Proposition 3.2.2,

P [Enad(a)] ≤ 8r exp(−c0ε0

60
r) < exp(−8c1r), (3.2.5)

where c1 <
c0ε0
480

is a numerical constant.

Definition 3.2.7. For any r-bit (Qr(a), V |Fr(a)), we denote by Sr(a) the maximal con-

nected subset of Ωr(a) ∪ {b ∈ Fr(a) : V (b) = 0} that contains Ωr(a).

Lemma 3.2.8. Given V0 : Qr(a) → {0, V̄ }, suppose (Qr(a), V0|Fr(a)) is an admissible

r-bit. Then we have the following properties:

1. Ωr(a) ⊂ Sr(a) ⊂ Ω̃r(a) \ ∂−Ω̃r(a).

2. Sr(a) is V0|Fr(a)-measurable.
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3. V0(b) = V̄ for each b ∈ ∂+Sr(a).

Proof. The first property is due to the second item in Definition 3.2.4. The second

property follows directly from Definition 3.2.7. The third property follows from the

maximality of Sr(a).

We now define the “cutting procedure” on an admissible r-bit Qr(a). Intuitively,

the cutting procedure on Qr(a) continuously modifies the edge weight of ∂Sr(a) and

finally splits Sr(a) and Qr(a) \ Sr(a).

Definition 3.2.9. Given V : Qr(a)→ {0, V̄ }, suppose (Qr(a), V |Fr(a)) is an admissible

r-bit. For t ∈ [0, 1], define operator H t
Qr(a) : `2(Qr(a)) → `2(Qr(a)) as follows:

H t
Qr(a)(b, c) = t − 1 if {b, c} ∈ ∂Sr(a); H t

Qr(a)(b, c) = HQr(a)(b, c) otherwise. Denote

Gt
Qr(a)(b, c;λ) = (H t

Qr(a) − λ)−1(b, c) for any b, c ∈ Qr(a).

Remark 3.2.10. From Definition 3.2.9, H t
Qr(a) is self-adjoint for each t. We have

H0
Qr(a) = HQr(a) and H1

Qr(a) = HSr(a)

⊕
HQr(a)\Sr(a).

Lemma 3.2.11. Given V : Qr(a) → {0, V̄ }, suppose (Qr(a), V |Fr(a)) is an admissible

r-bit. Then for each t ∈ [0, 1] and each connected subset S ⊂ Qr(a), we have

σ
(
H t
Qr(a)

)
⊂ [0, 8] ∪

[
V̄ , V̄ + 8

]
, (3.2.6)

and

σ (HS) ⊂ [0, 8] ∪
[
V̄ , V̄ + 8

]
. (3.2.7)
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Proof. We first prove (3.2.6). Suppose λ ∈ σ
(
H t
Qr(a)

)
, let u be an eigenfunction with

H t
Qr(a)u = λu. Pick b ∈ Qr(a) with |u(b)| ≥ |u(b′)| for each b′ ∈ Qr(a). Then we have

(V (b) + 4− λ)u(b) = −
∑
b′∼b

b′∈Qr(a)

H t
Qr(a)(b, b

′)u(b′). (3.2.8)

Since |H t
Qr(a)(b, b

′)| ≤ 1 for each b 6= b′, (3.2.8) implies

|(V (b) + 4− λ)u(b)| ≤ 4|u(b)|,

and thus |(V (b) + 4− λ)| ≤ 4. The conclusion follows from V (b) ∈ {0, V̄ }.

Finally, to prove (3.2.7), substitute H t
Qr(a) by HS and repeat the above argument.

3.2.3 Resolvent estimate on r-bits

Now we define the exceptional energies λ(i)’s in Theorem 3.1.1 and Theorem 3.1.4.

They are exactly the eigenvalues of the minus Laplacian restricted on connected sub-

sets ofQr. A small neighbourhood of them (the set J V̄r in Definition 3.2.12) is excluded

so that the resolvent is bounded on admissible r-bits (Proposition 3.2.13).

Definition 3.2.12. Given an odd number r and a real number U > 1, let

Eigr =
⋃
S⊂Qr

S is connected

σ
(
(−∆)S

)
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and

JUr =
⋃

x∈Eigr

[
x− U− 1

4 , x+ U−
1
4

]
.

Proposition 3.2.13. Given r a large odd number, a ∈ ṙZ2 and V ′ : Fr(a) → {0, V̄ },

we assume V̄ > exp(r2). Suppose r-bit (Qr(a), V ′) is admissible and λ0 ∈ [0, 8] \ J V̄r .

Then for each V : Qr(a) → {0, V̄ } with V |Fr(a) = V ′, each t ∈ [0, 1] and each

connected subset S ⊂ Qr(a), we have the following:

• ‖(H t
Qr(a) − λ0)−1‖ ≤ 2V̄

1
4 .

• ‖(HS − λ0)−1‖ ≤ 2V̄
1
4 .

• |Gt
Qr(a)(b, b

′;λ0)| ≤ V̄ −
1
4 for each b ∈ ∂−Qr(a), b′ ∈ Qr(a) such that |b−b′| ≥ ε0

8
r.

Proof. We first prove the first item. The strategy here is to prove that for any

eigenvalue λ of H t
Qr(a), there is some W ′ ⊂ Qr(a) such that λ is close to an eigenvalue

of HW ′ .

If there is no eigenvalue of H t
Qr(a) in [0, 8], then by Lemma 3.2.11, ‖(H t

Qr(a) −

λ0)−1‖ ≤ (V̄ − 8)−1 < 2V̄
1
4 and the first item holds.

Now assume there is an eigenvalue λ of H t
Qr(a) in [0, 8] and we need to prove

|λ − λ0| ≥ 1
2
V̄ −

1
4 . Let v be an `2(Qr(a)) normalised eigenfunction of H t

Qr(a) with

eigenvalue λ. Write T = {a′ ∈ Qr(a) : V (a′) = V̄ }. For each a′ ∈ T , we have

−
∑
b′∼a′

b′∈Qr(a)

H t
Qr(a)(a

′, b′)v(b′) = (V̄ + 4− λ)v(a′). (3.2.9)
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Since ‖v‖`2(Qr(a)) = 1 and |H t
Qr(a)(b

′, b′′)| ≤ 1 for any b′ 6= b′′, we have |v(a′)| ≤

4/(V̄ − 4) for a′ ∈ T . This implies ‖v‖`2(T ) ≤ 4r/(V̄ − 4) < 1
2

since V̄ > exp(r2).

Consider all maximal connected subsets W ⊂ Qr(a) \ T . The number of them is less

than r2, thus there exists one of these subsets W ′ ⊂ Qr(a) with

‖v‖`2(W ′) ≥
1

2r
. (3.2.10)

Since V = 0 on W ′, by Lemma 3.2.8, ∂+Sr(a)∩W ′ = ∅ and (H t
Qr(a))W ′ = HW ′ . Thus

for each b ∈ W ′,

(HW ′ − λ)(v|W ′)(b) = (H t
Qr(a) − λ)v(b)−

∑
b′∼b

b′∈∂+W ′∩Qr(a)

H t
Qr(a)(b, b

′)v(b′). (3.2.11)

By maximality of W ′, for each a′ ∈ ∂+W ′ ∩Qr(a), a′ ∈ T and thus

|v(a′)| ≤ 4/(V̄ − 4).

Since (H t
Qr(a) − λ)v = 0 and |H t

Qr(a)(b, b
′)| ≤ 1 when b 6= b′, (3.2.11) implies

|(HW ′ − λ)(v|W ′)(b)| ≤ 16/(V̄ − 4)

for each b ∈ W ′. Thus

‖(HW ′ − λ)(v|W ′)‖`2(W ′) ≤ 16r/(V̄ − 4) ≤ 32r2/(V̄ − 4)‖v‖`2(W ′) (3.2.12)
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by (3.2.10). Writing v|W ′ as a linear combination of eigenfunctions of HW ′ , (3.2.12)

provides an eigenvalue λ′ of HW ′ such that |λ− λ′| ≤ 32r2/(V̄ − 4). Since λ′ ∈ Eigr

and λ0 6∈ J V̄r , by Definition 3.2.12,

|λ0 − λ| ≥ |λ0 − λ′| − |λ′ − λ| > V̄ −
1
4 − 32r2/(V̄ − 4) >

1

2
V̄ −

1
4 .

Here, we used V̄ > exp(r2). The first item follows.

The proof of the second item is similar to the proof of the first item. Assume there

is an eigenvalue λ∗ of HS in [0, 8]. Let v∗ be an `2(S) normalised eigenfunction of HS

with eigenvalue λ∗, we need to prove |λ∗− λ0| ≥ 1
2
V̄ −

1
4 . For each a′ ∈ T ∩S, we have

−
∑
b′∼a′
b′∈S

HS(a′, b′)v∗(b
′) = (V̄ + 4− λ∗)v∗(a′). (3.2.13)

Since |HS(b′, b′′)| ≤ 1 for any b′ 6= b′′, we have |v∗(a′)| ≤ 4/(V̄ − 4) for a′ ∈ T ∩ S.

This implies ‖v∗‖`2(T ) ≤ 4r/(V̄ − 4) < 1
2
. Consider all maximal connected subsets

W ⊂ S \T . The number of them is less than r2, thus there exists one of these subsets

W ′′ ⊂ S with ‖v∗‖`2(W ′′) ≥ 1
2r

. For each b ∈ W ′′,

(HW ′′ − λ∗)(v∗|W ′′)(b) = (HS − λ∗)v∗(b)−
∑
b′∼b

b′∈∂+W ′′∩S

HS(b, b′)v∗(b
′). (3.2.14)
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By maximality of W ′′, for each a′ ∈ ∂+W ′′ ∩ S, a′ ∈ T and thus

|v∗(a′)| ≤ 4/(V̄ − 4).

Since (HS − λ∗)v∗ = 0 and |HS(b, b′)| ≤ 1 when b 6= b′, (3.2.14) implies

|(HW ′′ − λ∗)(v∗|W ′′)(b)| ≤ 16/(V̄ − 4)

for each b ∈ W ′′. Thus

‖(HW ′′ − λ∗)(v∗|W ′′)‖`2(W ′′) ≤ 16r/(V̄ − 4) ≤ 32r2/(V̄ − 4)‖v∗‖`2(W ′′). (3.2.15)

Writing v∗|W ′′ as a linear combination of eigenfunctions of HW ′′ , (3.2.15) provides

an eigenvalue λ′∗ of HW ′′ such that |λ∗ − λ′∗| ≤ 32r2/(V̄ − 4). Since λ′∗ ∈ Eigr and

λ0 6∈ J V̄r , by the same argument for the first item, we have

|λ0 − λ∗| >
1

2
V̄ −

1
4

and the second item follows.

Now we prove the third item and the strategy here is to exploit the resolvent

identity. Pick b, b′ ∈ Qr(a) with b ∈ ∂−Qr(a) and |b − b′| ≥ ε0r
8

. We claim that,

there exists connected S0 ⊂ Qr(a) ∩ Q ε0r
9

(b) with b ∈ S0 such that, for any c ∈ S0

and c′ ∈ Qr(a) \ S0 with c ∼ c′, we have c ∈ T . To see this, if V (b) = V̄ , then
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simply let S0 = {b}; otherwise, let S1 be the maximal connected subset of Qr(a) \ T

that contains b. Since Qr(a) is admissible, the first item in Definition 3.2.4 implies

S1 ⊂ Qr(a) ∩ Q ε0r
10

(b). Let S0 = S1 ∪ (∂+S1 ∩ Qr(a)) and our claim follows from the

maximality of S1.

By Lemma 3.2.8, Sr(a) ⊂ Ω̃r(a) and thus Sr(a) ∩ (S0 ∪ ∂+S0) = ∅. By resolvent

identity,

Gt
Qr(a)(b, b

′;λ0) =
∑

c∈S0,c∼c′
c′∈Qr(a)\S0

GS0(b, c;λ0)Gt
Qr(a)(c

′, b′;λ0). (3.2.16)

By definition of resolvent,

(V (c)− λ0 + 4)GS0(b, c;λ0) = δc,b +
∑

c′′∼c,c′′∈S0

GS0(b, c′′;λ0) (3.2.17)

where δc,b = 1 if c = b and δc,b = 0 otherwise. Hence

|GS0(b, c;λ0)| ≤ 1

|V (c)− λ0 + 4|(1 + 4‖(HS0 − λ0)−1‖). (3.2.18)

The second item of this proposition implies ‖(HS0 − λ0)−1‖ ≤ 2V̄
1
4 . Assume c ∼ c′

for some c ∈ S0 and c′ ∈ Qr(a) \ S0, then the property of S0 and inequality (3.2.18)

together imply V (c) = V̄ and

|GS0(b, c;λ0)| ≤ 20V̄ −
3
4 . (3.2.19)
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Finally, in (3.2.16), by the first item in this proposition and inequality (3.2.19),

|Gt
Qr(a)(b, b

′;λ0)| ≤‖(H t
Qr(a) − λ0)−1‖

∑
c∈S0,c∼c′
c′∈Qr(a)\S0

|GS0(b, c;λ0)|

≤2V̄
1
4

∑
c∈S0,c∼c′
c′∈Qr(a)\S0

|GS0(b, c;λ0)|

≤320r2V̄ −
1
2

<V̄ −
1
4 .

3.2.4 Initial scale analysis

In this subsection, we extend the cutting procedure to larger boxes and prove the

induction base case for multi-scale analysis (Proposition 3.2.21).

Definition 3.2.14. Suppose r is an odd number, a ∈ Z2 and L ∈ Z+. We say QL(a) is

r-dyadic if there exists k ∈ Z+ such that a ∈ 2kṙZ2 and L = 2k+1ṙ + r. In this case,

L is called an r-dyadic scale.

Lemma 3.2.15. Suppose QL(a) is an r-dyadic box. Then we have

QL(a) =
⋃

b∈ṙZ2∩QL(a)

Qr(b).

If r-bit Qr(b
′) 6⊂ QL(a), then Ω̃r(b

′) ∩QL(a) = ∅.
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Proof. We assume without loss of generality that a = 0. Write L = 2k+1ṙ + r with

k ∈ Z+. By (3.1.10),

QL(0) = {(x, y) ∈ Z2 : −2kṙ − r − 1

2
≤ x, y ≤ 2kṙ +

r − 1

2
}. (3.2.20)

By Definition 3.2.3, ṙ ≥ (1− ε0
2

)(r − 1) > r
2

and thus

ṙZ2 ∩QL(0) = {(ṙx, ṙy) : |x|, |y| ≤ 2k, x, y ∈ Z}. (3.2.21)

Hence by (3.2.20) and ṙ < r − 1,

QL(0) =
⋃

b∈ṙZ2∩QL(0)

{b′ ∈ Z2 : |b− b′| ≤ r − 1

2
} =

⋃
b∈ṙZ2∩QL(0)

Qr(b).

Assume r-bit Qr(b
′) 6⊂ QL(0), then b′ 6∈ ṙZ2 ∩ QL(0). Write b′ = (ṙx′, ṙy′) with

x′, y′ ∈ Z. By (3.2.21), without loss of generality, we assume |x′| ≥ 2k + 1. By

(3.2.20),

inf
b′′∈QL(0)

|b′ − b′′| ≥ ṙ − r − 1

2
≥ (1− ε0

2
)(r − 1)− r − 1

2
>

(1− 3
2
ε0)r − 1

2
.

By Definition 3.2.3, Ω̃r(b
′) ∩QL(0) = ∅.

We now extend the “cutting procedure” to r-dyadic boxes. It will be used in the

proof of Proposition 3.3.18.
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Definition 3.2.16. Given an r-dyadic box QL(a) and V : QL(a) → {0, V̄ }, let R

be a subset of admissible r-bits inside QL(a). For each t ∈ [0, 1], define HR,tQL(a) :

`2(QL(a))→ `2(QL(a)) as follows:


HR,tQL(a)(b, c) = t− 1 if {b, c} ∈ ⋃Qr(a′)∈R ∂Sr(a

′);

HR,tQL(a)(b, c) = HQL(a)(b, c) otherwise.

Denote GR,tQL(a)(b, c;λ) = (HR,tQL(a) − λ)−1(b, c) for b, c ∈ QL(a).

Definition 3.2.17. For any large odd number r, denote Θr = ∪a∈ṙZ2Fr(a). For sim-

plicity, we also denote Θr by Θ1 if r is already given in context.

The reason to define Θr is that, one only needs to know the value of V on Θr

to decide whether each r-bit is admissible or not. The sub-index of “Θ1” is for the

consistency of notations in later multi-scale analysis Theorem 3.4.7.

Definition 3.2.18. Given an odd number r, an r-dyadic box QL(a) and a potential

function V ′ : Θ1 ∩ QL(a) → {0, V̄ }, we say QL(a) is perfect if for any r-bit Qr(b) ⊂

QL(a), (Qr(b), V
′|Fr(b)) is admissible.

Proposition 3.2.19. Suppose odd number r is large enough and c1 is the constant

in Proposition 3.2.6. Given r-dyadic box QL(a) with L ≤ exp(c1r), the event that

QL(a) is perfect only depends on V |Θ1∩QL(a) and

P[QL(a) is perfect] ≥ 1− L−6. (3.2.22)
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Proof. Since for each r-bit Qr(b) ⊂ QL(a), the event that it is admissible only depends

on V |Fr(b), thus the event that QL(a) is perfect only depends on V |Θ1∩QL(a).

By Proposition 3.2.6, we have

P[QL(a) is perfect] ≥ 1− L2 exp(−8c1r) ≥ 1− L−6 (3.2.23)

since L ≤ exp(c1r).

Definition 3.2.20. Given S1, S2 ⊂ Z2, denote

dist(S1, S2) = inf
a∈S1,b∈S2

|a− b|.

We now prove the exponential decaying property of resolvent for perfect r-dyadic

boxes. It will serve as the induction base case for the multi-scale analysis in Section

3.4.

Proposition 3.2.21. Suppose odd number r is large enough and V̄ > exp(r2). If

V ′ : Θ1 ∩ QL(a) → {0, V̄ } such that QL(a) is a perfect r-dyadic box, then for any

V : QL(a)→ {0, V̄ } with V |Θ1∩QL(a) = V ′, any λ0 ∈ [0, 8]\J V̄r , any subset R of r-bits

inside QL(a), any t ∈ [0, 1], and each b, c ∈ QL(a), we have

|GR,tQL(a)(b, c;λ0)| ≤ V̄ −
|b−c|

8r
+1. (3.2.24)

Proof. For simplicity of notations, we assume a = 0.
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Let g = maxb,c∈QL |GR,tQL
(b, c;λ0)|V̄ |b−c|8r and assume that for some b, b′ ∈ QL,

|GR,tQL
(b, b′;λ0)|V̄ |b−b

′|
8r = g.

Note that QL =
⋃
a′∈ṙZ2∩QL Qr(a

′) by Lemma 3.2.15. By definition, we have

ṙ =
⌈(

1− ε0
2

)
(r − 1)

⌉
. By elementary geometry, there is an r-bit Qr(c) ⊂ QL such

that b′ ∈ Qr(c) and dist(b′, QL \Qr(c)) ≥ ε0r
7

. By resolvent identity,

GR,tQL
(b, b′;λ0)

=
∑

b′′∈Qr(c)
b′′∼b′′′

b′′′∈QL\Qr(c)

G̃Qr(c)(b
′, b′′;λ0)GR,tQL

(b′′′, b;λ0) + 1b∈Qr(c)G̃Qr(c)(b, b
′;λ0). (3.2.25)

Here, we have G̃Qr(c)(b
′, b′′;λ0) = Gt

Qr(c)
(b′, b′′;λ0) if Qr(c) ∈ R and G̃Qr(c)(b

′, b′′;λ0) =

GQr(c)(b
′, b′′;λ0) otherwise. Note that, if b′′ ∼ b′′′ for some b′′ ∈ Qr(c) and b′′′ ∈

QL \ Qr(c), then |b′ − b′′| ≥ ε0r
7
− 1 ≥ ε0r

8
. In this case, by Proposition 3.2.13,

|G̃Qr(c)(b
′, b′′;λ0)| ≤ V̄ −

1
4 ≤ V̄ −

|b′−b′′|
4r since |b′ − b′′| ≤ r . Thus, we can estimate the

first term in the right hand side of (3.2.25) by

∣∣∣∣∣∣∣∣∣∣
∑

b′′∈Qr(c)
b′′∼b′′′

b′′′∈QL\Qr(c)

G̃Qr(c)(b
′, b′′;λ0)GR,tQL

(b′′′, b;λ0)

∣∣∣∣∣∣∣∣∣∣
(3.2.26)

≤
∑

b′′∈Qr(c)
b′′∼b′′′

b′′′∈QL\Qr(c)

gV̄ −
|b′−b′′|

4r
− |b−b

′′′|
8r (3.2.27)

<
1

2
V̄ −

|b−b′|
8r g (3.2.28)
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The second inequality is because, by triangle inequality with |b′′ − b′′′| = 1 and |b′ −

b′′| ≥ ε0r
8

,

V̄ −
|b′−b′′|

4r
− |b−b

′′′|
8r ≤ V̄ −

|b−b′|
8r

+ 1
8r
− ε0

64 (3.2.29)

≤ exp(
1

8
r − ε0

64
r2)V̄ −

|b−b′|
8r (3.2.30)

<
1

16
r−1V̄ −

|b−b′|
8r (3.2.31)

for large enough r, where (3.2.30) is due to V̄ > exp(r2). Since

|GR,tQL
(b, b′;λ0)| = V̄ −

|b−b′|
8r g,

by (3.2.25) and (3.2.28),

g ≤ 1

2
g + V̄

|b−b′|
8r 1b∈Qr(c)|G̃Qr(c)(b, b

′;λ0)|. (3.2.32)

If b 6∈ Qr(c), then we have g = 0. Otherwise, |b − b′| ≤ r. By the first item in

Proposition 3.2.13, |G̃Qr(c)(b, b
′;λ0)| ≤ 2V̄

1
4 and thus

g ≤ 2V̄
|b−b′|

8r |G̃Qr(c)(b, b
′;λ0)| ≤ 4V̄

3
8 < V̄ , (3.2.33)

which is equivalent to (3.2.24).
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3.3 Wegner Estimate

In this section we prove the Wegner estimate (Proposition 3.3.18) which will be used

in multi-scale analysis Theorem 3.4.7. In Section 3.3.1, we collect several lemmas on

unique continuation (Lemma 3.3.5), eigenvalue variation (Lemma 3.3.8 and Lemma

3.3.9) and almost orthonormal vectors (Lemma 3.3.10). In Section 3.3.2, a generalized

Sperner lemma (Lemma 3.3.16) for directed graph products is proved. All these

lemmas will be used in Section 3.3.3 to prove the Wegner estimate Proposition 3.3.18.

3.3.1 Auxiliary lemmas

We first need some geometry notations from [DS20]. The following Definition 3.3.1

to 3.3.4 are the same as Definition 3.1 to 3.4 in [DS20].

Definition 3.3.1. Given two subsets I, J ⊂ Z, denote

RI,J = {(x, y) ∈ Z2 : x+ y ∈ I and x− y ∈ J}. (3.3.1)

We call RI,J a tilted rectangle if I, J are intervals. A tilted square Q̃ is a tilted rectangle

RI,J with |I| = |J |. With a little abuse of notations, we denote `(Q̃) = |I| for a tilted

square Q̃ = RI,J .

Definition 3.3.2. Given k ∈ Z, define the diagonals

D±k = {(x, y) ∈ Z2 : x± y = k}. (3.3.2)
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Definition 3.3.3. Suppose Θ ⊂ Z2, η > 0 a density, and R a tilted rectangle. Say that

Θ is (η,±)-sparse in R if

|D±k ∩Θ ∩R| ≤ η|D±k ∩R| for all diagonals D±k . (3.3.3)

We say that Θ is η-sparse in R if it is both (η,+)-sparse and (η,−)-sparse in R.

Definition 3.3.4. A subset Θ ⊂ Z2 is called η-regular in a set E ⊂ Z2 if we have∑
k |Qk| ≤ η|E| whenever Θ is not η-sparse in each of the disjoint tilted squares

Q1, Q2, · · · , Qn ⊂ E.

The following Lemma 3.3.5 and 3.3.6 are used to find an enough portion of the

box where an eigenfunction has a decent lower bound. In particular, Lemma 3.3.5 is

analogue of [DS20, Theorem 3.5] and its proof is given in Section 3.5.

Lemma 3.3.5. There exists numerical constant 0 < ε1 <
1

100
such that the following

holds. For every ε ≤ ε1, there is a large α > 1 depending on ε such that, if

1. Q ⊂ Z2 a box with `(Q) ≥ α

2. Θ ⊂ Q is ε-regular in Q

3. V̄ ≥ 2 and λ0 ∈ [0, 8]

4. V ′ : Θ→ {0, V̄ }
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5. Eε,αuc (Q,Θ) denotes the event that


|λ− λ0| ≤ (`(Q)V̄ )−α`(Q)

Hu = λu in Q

|u| ≤ 1 in a 1− ε3 fraction of Q \Θ

(3.3.4)

implies |u| ≤ (`(Q)V̄ )α`(Q) in 1
100
Q,

then P[Eε,αuc (Q,Θ)
∣∣V |Θ = V ′] ≥ 1− exp(−ε`(Q)

2
3 ).

The following lemma is a rewrite of [DS20, Lemma 5.3] and its proof is the same

as the proof of [DS20, Lemma 5.3].

Lemma 3.3.6. For every integer K ≥ 1, there exists CK > 0 depending on K such

that the following holds. If

1. V̄ ≥ 2 and λ ∈ [0, 8]

2. L ≥ CKL
′ ≥ L′ ≥ CK

3. box Q ⊂ Z2 with `(Q) = L

4. boxes Q′k ⊂ Q with `(Q′k) = L′ for k = 1, 2, · · · , K

5. HQu = λu,

then,

‖u‖`∞(Q′) ≥ V̄ −CKL
′‖u‖`∞(Q) (3.3.5)

holds for some 2Q′ ⊂ Q \ ∪kQ′k with `(Q′) = L′.
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Definition 3.3.7. Given a self-adjoint matrix A and λ ∈ R, denote

n(A;λ) = trace 1(−∞,λ)(A).

i.e. n(A;λ) is the number of A’s eigenvalues (with multiplicities) which are less than

λ.

The following Lemma 3.3.8 and 3.3.9 will provide a lower bound of the eigenvalue

variation under a rank one perturbation of an operator. Lemma 3.3.8 was proved in

[DS20, Lemma 5.1].

Lemma 3.3.8. Suppose real symmetric n×n matrix A has eigenvalues λ1 ≤ λ2 ≤ · · · ≤

λn ∈ R with orthonormal eigenbasis v1, v2, · · · , vn ∈ Rn. Let integers k ∈ {1, 2, · · · , n}

and 1 ≤ j ≤ i ≤ n− 1. If

1. 0 < r1 < r2 < r3 < r4 < r5 < 1

2. r1 ≤ C min{r3r5, r2r3/r4}

3. 0 < λj ≤ λi < r1 < r2 < λi+1

4. v2
j (k) ≥ r3

5.
∑

r2<λl<r5
v2
l (k) ≤ r4

then n(A; r1) > n(A + tPk; r1) for t ≥ 1, where Pk is the projection operator defined

by (Pku)(i) = 0 if i 6= k and (Pku)(k) = u(k) for any u ∈ Rn.
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Proof. [DS20, Lemma 5.1] implies the conclusion for the case when t = 1. The

conclusion still holds for t ≥ 1 by monotonicity.

Lemma 3.3.9. Let k ∈ {1, 2, · · · , n} and Pk be the projection operator defined by

(Pku)(i) = 0 if i 6= k and (Pku)(k) = u(k) for any u ∈ Rn. Suppose self-adjoint

operator A : Rn → Rn has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn ∈ R with orthonormal

eigenbasis v1, v2, · · · , vn ∈ Rn.

If λ 6∈ σ(A) and
∑n

i=1
vi(k)2

λi−λ > 0(< 0), then λ 6∈ σ(A + tPk) for each t > 0(< 0),

respectively.

Proof. We only consider the case when
∑n

i=1
vi(k)2

λi−λ > 0, the other case follows the

same argument.

For each t ∈ R, let vt1, v
t
2, · · · , vtn be the orthonormal eigenbasis of A + tPk with

eigenvalues λt1, λ
t
2 · · · , λtn. Then the resolvent of A + tPk at k with energy λ0 6∈

σ(A+ tPk) is

Gt(k, k;λ0) =
〈
1k, (A+ tPk − λ0)−11k

〉
=

n∑
i=1

vti(k)2

λti − λ0

. (3.3.6)

Let i denote the imaginary unit. By resolvent identity, for each t, η > 0,

Gt(k, k;λ+ iη) =
1

t+G0(k, k;λ+ iη)−1
. (3.3.7)

Since G0(k, k;λ) =
∑n

i=1
vi(k)2

λi−λ > 0, (3.3.7) implies limη→0Gt(k, k;λ+ iη) > 0 for any
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t > 0. Since Gt(k, k;λ+ iη) =
∑n

i=1
vti(k)2

λti−λ−iη
,

lim
η→0

n∑
i=1

vti(k)2

λti − λ− iη
<∞. (3.3.8)

Assume λ ∈ σ(A + tPk), then there exists i0 with λti0 = λ. Equation (3.3.8) implies

vti0(k) = 0. Since (A + tPk)v
t
i0

= λti0v
t
i0

, we have Avti0 = λvti0 . This contradicts with

λ 6∈ σ(A).

We also need the following bound on the number of almost orthonormal vectors

which was proved in [DS20]. A similar version of the following lemma was also proved

in [Tao].

Lemma 3.3.10 (Lemma 5.2 in [DS20]). If v1, · · · , vm ∈ Rn satisfy |〈vi, vj〉 − δij| ≤

(5n)−
1
2 , then m ≤ (5−

√
5)n/2.

3.3.2 Sperner Lemma

We prove a generalization of [DS20, Theorem 4.2] which will be used in an eigenvalue

variation argument in the proof of Proposition 3.3.18.

Definition 3.3.11. Suppose ρ ∈ (0, 1]. A set A of subsets of {1, 2, · · · , n} is ρ-Sperner

if, for every A ∈ A, there is a set B(A) ⊂ {1, 2, · · · , n} \ A such that |B(A)| ≥

ρ(n− |A|) and A ⊂ A′ ∈ A implies A′ ∩B(A) = ∅.

The following lemma is proved in [DS20, Theorem 4.2].
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Lemma 3.3.12 (Theorem 4.2 in [DS20]). If ρ ∈ (0, 1] and A is a ρ-Sperner set of

subsets of {1, 2, · · · , n}, then

|A| ≤ 2nn−
1
2ρ−1.

Definition 3.3.13. Suppose A = (T,E) is a simple directed graph (without multi-

edges or self-loops) with vertex set T and edge set E. For each e ∈ E, we denote

by e−(e+) the starting (ending) vertex of e respectively. i.e. e = (e−, e+). For two

e1, e2 ∈ E, we say e1 and e2 have no intersection if e±1 , e
±
2 are four different vertices;

otherwise, we say e1 and e2 have intersection.

Definition 3.3.14. Given k ∈ Z+ and a simple directed graph A = (T,E), A is called

k-colourable if E can be written as a disjoint union E =
⋃k
j=1Ej such that for each

j ∈ {1, · · · , k} and e1 6= e2 ∈ Ej, e1 and e2 have no intersection.

Lemma 3.3.15. Suppose A = (T,E) is a simple directed graph and m ∈ Z+. Assume

for each x ∈ T ,

|{e ∈ E : e+ = x} ∪ {e ∈ E : e− = x}| ≤ m. (3.3.9)

Then A is 2m− 1-colourable.

Proof. By (3.3.9), each e ∈ E has intersection with at most 2m−2 other edges. Thus

we can color the edges of A by at most 2m − 1 colors such that any two edges with

the same color have no intersection.

The following lemma is a generalization of [DS20, Theorem 4.2] in the sense that

[DS20, Theorem 4.2] is the special case when each graph Ai (see below) has two
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vertices and one directed edge.

Lemma 3.3.16. Given N, k,K0 ∈ Z+, suppose Ai = (Ti, Ei) are simple directed graphs

for 1 ≤ i ≤ N . Assume Ai is k-colourable for each 1 ≤ i ≤ N .

Suppose B ⊂ T1 × T2 × · · · × TN satisfies the following:

1. Each ~x = (x1, x2, · · · , xN) ∈ B is associated with K0 indices 1 ≤ I1(~x) <

I2(~x) < · · · < IK0(~x) ≤ N and K0 edges ej(~x) ∈ EIj(~x) (j = 1, · · · , K0) such

that ej(~x)− = xIj(~x) (j = 1, · · · , K0).

2. |B| > K−1
0 k2N

1
2 |T1||T2| · · · |TN |,

then there exist ~x, ~y ∈ B such that the following properties hold:

(a) for each i = 1, 2, · · · , N , either xi = yi or (xi, yi) ∈ Ei,

(b) there exists j ∈ {1, 2, · · · , K0} such that (xIj(~x), yIj(~x)) = ej(~x).

Proof. Let us first consider an easier case when each Ai consists of two vertices and

one directed edge (thus we can assume k = 1). Let ei denote the single directed edge

in Ai for 1 ≤ i ≤ N . Then there is a bijection between T1 × T2 × · · · × TN and the

power set of {1, · · · , N}:

~x 7−→ Y~x = {i : 1 ≤ i ≤ N, xi = e+
i }. (3.3.10)

We prove the lemma by contradiction. We assume there are no two elements in B

satisfying both (a) and (b). Note that in our case, for any ~x, ~y ∈ B, condition (a) is
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equivalent to Y~x ⊂ Y~y and condition (b) is equivalent to Y~y∩{Ij(~x) : 1 ≤ j ≤ K0} 6= ∅.

Hence, for any ~x, ~y ∈ B, Y~x ⊂ Y~y implies Y~y∩{Ij(~x) : 1 ≤ j ≤ K0} = ∅. By Definition

3.3.11, {Y~z : ~z ∈ B} is K0/N -Sperner. By Lemma 3.3.12, |B| ≤ 2NN−
1
2K−1

0 =

K−1
0 N

1
2 |T1||T2| · · · |TN | which contradicts with assumption 2.

Now we consider the general case and we first prove that we can assume k = 1

without loss of generality. By assumption 2,

K−1
0 k2N

1
2 |T1||T2| · · · |TN | < |B| ≤ |T1||T2| · · · |TN |,

thus we have k2N
1
2 < K0. In particular, k < K0.

Claim 3.3.17. We can assume k = 1.

Proof of the claim. For each i, since Ai is k-colourable, we can write Ei as a disjoint

union Ei =
⋃k
m=1E

(m)
i such that any two edges in E

(m)
i have no intersection. For

each ~x ∈ B, by pigeonhole principle, there exists m(~x) ∈ {1, 2, · · · , k}, such that

∣∣∣{1 ≤ j ≤ K0 : ej(~x) ∈ E(m(~x))
Ij(~x)

}∣∣∣ ≥ ⌈K0

k

⌉
.

Since B =
⋃k
m=1Bm with Bm = {~x ∈ B : m(~x) = m}, by pigeonhole principle again,

there exists m′ ∈ {1, · · · , k} with |Bm′| ≥
⌈

1
k
|B|
⌉

and thus

|Bm′ | ≥
⌈
K0

k

⌉−1

N
1
2 |T1||T2| · · · |TN |.
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We substitute Ai = (Ti, Ei) by A′i = (Ti, E
(m′)
i ) for i = 1, · · · , N , substitute B by

Bm′ , K0 by
⌈
K0

k

⌉
and k by 1.

Now we assume k = 1. We prove the lemma by contradiction. We assume

there are no two elements in B satisfying both (a) and (b). (3.3.11)

Given i ∈ {1, · · · , N}, write Ei = {eis : s = 1, · · · , ni} and denote the set T ′i =

Ti \
⋃ni
s=1{e−is, e+

is}. For simplicity, denote

N×
i=1

Ti = T1 × T2 × · · · × TN .

Let Fi = Ei ∪ T ′i which consists of some edges and vertices. For each element in the

Cartesian product ~f = (f1, · · · , fN) ∈ F1 × F2 × · · · × FN , denote

C~f =

{
~x ∈

N×
i=1

Ti : ∀1 ≤ i ≤ N , xi = fi if fi ∈ T ′i ; xi ∈
{
f−i , f

+
i

}
if fi ∈ Ei

}
.

Then

T1 × T2 × · · · × TN =
⋃

~f∈F1×F2×···×FN

C~f . (3.3.12)

For each 1 ≤ i ≤ N , since Ai is 1-colourable, any two edges in Ei have no intersection.

Thus the union in (3.3.12) is a disjoint union. Since |B|/(|T1||T2| · · · |TN |) > K−1
0 N

1
2 ,

by pigeonhole principle again, there exists ~f ′ = (f ′1, · · · , f ′N) ∈ F1 × F2 × · · · × FN
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such that

|B ∩ C~f ′ |/|C~f ′| > K−1
0 N

1
2 . (3.3.13)

Let I = {1 ≤ i ≤ N : f ′i ∈ Ei} be the set of coordinates such that f ′i is an edge. By

assumption 1, for each ~x ∈ B ∩ C~f ′ and j ∈ {1, · · · , K0}, we have ej(~x) = f ′Ij(~x),

e−j (~x) = xIj(x) and Ij(~x) ∈ I. Denote

Y~x = {i ∈ I : xi = (f ′i)
+}

for each ~x ∈ B ∩ C~f ′ . Then ~z 7→ Y~z is an injection from B ∩ C~f ′ to the power set

of I. Note that, the definition of set Y~x is analog of (3.3.10) except that we are now

restricting on the subset I.

We claim that {Y~x : ~x ∈ B ∩ C~f ′} is K0/|I|-Sperner as a set of subsets of I. To

see this, suppose Y~x ⊂ Y~y for some ~x, ~y ∈ B ∩C~f ′ . Then ~x, ~y satisfy property (a). By

assumption (3.3.11), ~x, ~y do not satisfy property (b), thus

Y~y ∩ {Ij(~x) : j = 1, · · · , K0} = ∅.

Since {Ij(~x) : j = 1, · · · , K0} ⊂ I \ Y~x, our claim follows from Definition 3.3.11.

Now Lemma 3.3.12 implies

|B ∩ C~f ′| = |{Y~x : ~x ∈ B ∩ C~f ′}| ≤ 2|I|K−1
0 |I|

1
2 ≤ |C~f ′|K−1

0 N
1
2 ,
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which contradicts with (3.3.13).

3.3.3 Proof of Wegner estimate

We now prove analogue of the Wegner estimate [DS20, Lemma 5.6].

Proposition 3.3.18 (Wegner estimate). Assume

(1) ε > δ > 0 are small and c2 > 0 is a numerical constant

(2) integer K ≥ 1, odd number r > Cε,δ,K and real V̄ > exp(r2)

(3) λ0 6∈ J V̄r which is defined in Definition 3.2.12

(4) scales R0 ≥ R1 ≥ · · · ≥ R6 ≥ exp(c2r) with R1−2δ
k ≥ Rk+1 ≥ R

1− 1
2
ε

k and R0, R3

are r-dyadic

(5) Q ⊂ Z2 an r-dyadic box with `(Q) = R0

(6) Q′1, · · · , Q′K ⊂ Q r-dyadic boxes, each with length R3 (called “defects”)

(7) G ⊂ ∪kQ′k with 0 < |G| ≤ Rδ
0

(8) Θ ⊂ Q and Q \Θ = ∪b∈DΩr(b) for some D ⊂ ṙZ2 ∩Q

(9) Θ is ε
1
5
0 -regular in every box Q′ ⊂ Q \ ∪kQ′k with `(Q′) = R6, where ε0 is defined

by (3.2.2)

(10) potential V ′ : Θ → {0, V̄ } satisfies the following: for any V : Q → {0, V̄ } with

V |Θ = V ′, any λ ∈
[
λ0 − V̄ −R5 , λ0 + V̄ −R5

]
, any t ∈ [0, 1] and any subset R of r-bits

that do not affect Θ ∪⋃kQ
′
k, each Qr(b) ∈ R is admissible and HR,tQ u = λu implies

V̄ R4‖u‖`2(Q\
⋃
k Q
′
k) ≤ ‖u‖`2(Q) ≤ (1 +R−δ0 )‖u‖`2(G). (3.3.14)

181



Then we have

P
[
‖(HQ − λ0)−1‖ ≤ V̄ R1

∣∣ V |Θ = V ′
]
≥ 1−R10ε− 1

2
0 . (3.3.15)

As mentioned in Section 3.1.2, in order to prove the Wegner estimate, we need

to prove the upper bound estimate and the lower bound estimate. In particular, the

upper bound estimate is proved in Claim 3.3.21 and it provides a significantly smaller

subset ΛV of eigenvalues (depending on potential V ) such that eigenvalues outside

ΛV have zero probability to be close to λ0. Thus we only need to consider eigenvalues

in ΛV . The lower bound estimate is proved in Claim 3.3.23 and it implies that, any

eigenvalue in ΛV can be perturbed to move away from λ0 by changing the potential

function on any vertex in a significant portion of the box. By combining this fact

and the Sperner lemma (Lemma 3.3.16), we prove a probability upper bound for the

event that there is an eigenvalue in ΛV which is close to λ0 and thus prove the Wegner

estimate.

Proof of Proposition 3.3.18. Throughout the proof, we allow constants C > 1 > c > 0

to depend on ε, δ, K.

Claim 3.3.19. We can assume without loss of generality that ∪kQ′k ⊂ Θ.

Proof of the claim. Let Θ′ = ∪kQ′k \Θ and observe that for any event E ,

P
[
E
∣∣V |Θ = V ′

]
= E

[
P
[
E
∣∣V |Θ∪Θ′ = V ′ ∪ V ′′

]]
(3.3.16)
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where the expectation is taking over all V ′′ : Θ′ → {0, V̄ }. Thus, it suffices to estimate

the term in the expectation. Now we replace Θ by Θ ∪ Θ′ and check assumptions.

Except for assumption (8), other assumptions are straightforward. As for assumption

(8), note that Q\(Θ∪Θ′) = (Q\Θ)\(∪kQ′k). For any a ∈ ṙZ2, by Lemma 3.2.15 and

the assumption that Q′k’s are r-dyadic, either Ωr(a) ⊂ (∪kQ′k) or Ωr(a)∩ (∪kQ′k) = ∅.

Thus Q \ (Θ ∪ Θ′) = ∪b∈D′Ωr(b) where D′ = {b ∈ D : Ωr(a) ∩ (∪kQ′k) = ∅}. The

assumption follows.

Now we assume ∪kQ′k ⊂ Θ, then by Lemma 3.2.15, Ω̃r(b) ∩ (∪kQ′k) = ∅ for each

b ∈ D.

We fix R = {Qr(b) : b ∈ D}. By assumption (10), when the square Qr(b) ∈ R,

(Qr(b), V |Fr(b)) is admissible. For each V : Q→ {0, V̄ } with V |Θ = V ′ and t ∈ [0, 1],

denote all the eigenvalues of HR,tQ by

λt1(V ) ≤ λt2(V ) ≤ · · · ≤ λtR2
0
(V ).

In particular, λ0
1(V ) ≤ λ0

2(V ) ≤ · · · ≤ λ0
R2

0
(V ) are all the eigenvalues of HQ. Let

uV,k(k = 1, · · · , R2
0) be an orthonormal eigenbasis such that for each k,

HQuV,k = λ0
k(V )uV,k.
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Since HR,1Q (x, y) = 0 whenever {x, y} ∈ ⋃b∈D ∂Sr(b), we have

HR,1Q =
⊕
b∈D

HSr(b)

⊕
HQ\(∪b∈DSr(b)). (3.3.17)

Here, we also used the fact that Sr(b) ∩ Sr(b′) = ∅ whenever b 6= b′ ∈ D (see Remark

3.2.5).

Thus eigenvalues of HR,1Q consist of eigenvalues of HSr(b)(b ∈ D) and eigenvalues of

HQ\(∪b∈DSr(b)). By item 1 in Lemma 3.2.8, Q \ (∪b∈DSr(b)) ⊂ Θ. Thus HQ\(∪b∈DSr(b))

only depends on V |Θ = V ′. Let λ1 ≤ λ2 ≤ · · · ≤ λm be all the eigenvalues of

HQ\(∪b∈DSr(b)). Let λq ≤ λq+1 ≤ · · · ≤ λq+p be all the eigenvalues of HQ\(∪b∈DSr(b))

inside the closed interval [λ0 − V̄ −R4 , λ0 + V̄ −R4 ]. Then

λq−1 < λ0 − V̄ −R4

if q > 1. Denote

i(V ) = |{k : λ1
k(V ) < λ0 − V̄ −R4}|+ 1 = n(HR,1Q ;λ0 − V̄ −R4) + 1.

Because λ0 6∈ J V̄r , by item 2 in Proposition 3.2.13, any eigenvalue of HSr(b)(b ∈ D) is
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outside the interval [λ0 − 1
2
V̄ −

1
4 , λ0 + 1

2
V̄ −

1
4 ]. Thus by (3.3.17),

σ(HR,1Q ) ∩ [λ0 − V̄ −R4 , λ0 + V̄ −R4 ]

= σ(HQ\(∪b∈DSr(b))) ∩ [λ0 − V̄ −R4 , λ0 + V̄ −R4 ]

= {λq+j : 0 ≤ j ≤ p}

= {λ1
i(V )+j(V ) : 0 ≤ j ≤ p}.

(3.3.18)

Claim 3.3.20. p ≤ CRδ
0.

Proof of the claim. Let

{
vi ∈ `2

(
Q \ (∪b∈DSr(b))

)
: 0 ≤ i ≤ p

}

be an orthonormal set with HQ\(∪b∈DSr(b))vi = λq+ivi for each 0 ≤ i ≤ p. Consider the

function v′i on Q defined by v′i|∪b∈DSr(b) = 0 and v′i|Q\(∪b∈DSr(b)) = vi. By (3.3.17), v′i is

an eigenfunction of HR,1Q with the eigenvalue λq+i. By assumption (10), ‖v′i‖`2(G) ≥

(1 +R−δ0 )−1 ≥ 1−R−δ0 . From 〈v′i, v′j〉`2(Q) = δij we deduce that

|〈v′i, v′j〉`2(G) − δij| ≤ R−δ0 ≤ (5|G|)− 1
2 .

Thus, {v′i|G : 0 ≤ i ≤ p} is a set of almost orthogonal vectors and Lemma 3.3.10 im-

plies the claim.

Claim 3.3.21. Suppose λ0
k(V ) ∈ [λ0 − V̄ −R2 , λ0 + V̄ −R2 ] for some 1 ≤ k ≤ R2

0. Then
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there exists j ∈ {0, 1, · · · , p} such that k = i(V ) + j.

Proof of the claim. Fix such V and for simplicity, when t ∈ [0, 1] we denote λtk =

λtk(V ) and choose utk to be an `2-normalised eigenfunction of HR,tQ with eigenvalue

λtk. Denote X = ∪b∈D∂Sr(b). The first order variation implies (see [Kat13, Chapter

2, Section 6.5])

|λtk − λ0
k| =

∣∣∣∣∣∣∣
∫ t

0

∑
x∼y

{x,y}∈X

usk(x)usk(y)ds

∣∣∣∣∣∣∣ . (3.3.19)

By Lemma 3.2.15,
⋃
b∈D Ω̃r(b)∩ (∪kQ′k) = ∅. Since X ⊂ ⋃b∈D Ω̃r(b), assumption (10)

and equation (3.3.14) imply

|
∫ t

0

∑
x∼y

{x,y}∈X

usk(x)usk(y)ds| ≤ 2t|X|V̄ −2R4 ≤ 4tR2
0V̄
−2R4 <

1

2
V̄ −R4

as long as |λtk − λ0| ≤ V̄ −R5 . Thus (3.3.19) implies

|λtk − λ0| ≤ V̄ −R2 +
1

2
V̄ −R4 + 4R2

01max0≤s≤t |λsk−λ0|≥V̄ −R5 . (3.3.20)

Since λtk is continuous with respect to t, by continuity, (3.3.20) implies |λtk − λ0| ≤

V̄ −R4 for each t ∈ [0, 1]. In particular, |λ1
k−λ0| ≤ V̄ −R4 . Thus by (3.3.18), k = i(V )+j

for some j ∈ {0, 1, · · · , p}.

By Claim 3.3.21, we only need to consider eigenvalues in set {λi(V )+k : 0 ≤ k ≤ p}.

We will prove that, with high probability, these (p+ 1) eigenvalues are away from λ0

with distance at least V̄ −R1 . We first prove that each of these (p + 1) eigenvalues’
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eigenfunctions has a large support (Claim 3.3.22). Then we use these supports of

eigenfunctions to do an eigenvalue perturbation argument which, combined with the

Sperner lemma, proves that eigenvalues in {λi(V )+k : 0 ≤ k ≤ p} are away from λ0

with high probability (Claim 3.3.23).

Claim 3.3.22. P
[
Euc
∣∣V |Θ = V ′

]
≥ 1− exp(−Rε

0), where Euc denotes the event that

∣∣∣{a ∈ Q : |u(a)| ≥ V̄ −
1
2
R2‖u‖2

}
\Θ
∣∣∣ ≥ R

3
2
4

holds whenever |λ− λ0| ≤ V̄ −R5 and HQu = λu.

Proof of the claim. Our strategy here is that we first use Lemma 3.3.6 to find a vertex

a∗ with |u(a∗)| being lower bounded, then use the unique continuation Lemma 3.3.5

to find R
3
2
4 vertices in QR6(a∗).

Recall the definition of Eε,αuc (Q,Θ) in Lemma 3.3.5 and that equation (3.2.2) implies

ε
1
5
0 < ε1. By Lemma 3.3.5 and assumption (9), there exists α′ > 1 such that the event

E ′uc =
⋂

Q′⊂Q\∪kQ′k
`(Q′)=R6

Eε
1
5
0 ,α
′

uc (Q′,Θ ∩Q′)

satisfies

P
[
E ′uc
∣∣VΘ = V ′

]
≥ 1− exp(−ε

1
5
0R

2
3
6 + C log(R0)) ≥ 1− exp(−Rε

0). (3.3.21)

Thus it suffices to show E ′uc ⊂ Euc. Suppose E ′uc holds, |λ−λ0| ≤ V̄ −R5 , and HQu = λu.
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Lemma 3.3.6 provides an R3-box Q∗ with Q∗ ⊂ Q\∪kQ′k and a∗ ∈ 1
2
Q∗ such that,

|u(a∗)| ≥ V̄ −CKR3‖u‖`∞(Q) ≥ V̄ −C
′
KR3‖u‖`2(Q). (3.3.22)

Since Eε
1
5
0 ,α
′

uc (QR6(a∗),Θ ∩QR6(a∗)) holds and

|λ− λ0| ≤ V̄ −R5 ≤ (R6V̄ )−α
′R6 ,

we see that

|{|u| ≥ (R6V̄ )−α
′R6|u(a∗)|} ∩QR6(a∗) \Θ| ≥ 1

2
ε

3
5
0R

2
6. (3.3.23)

Thus by taking r > Cε,δ,K large and observing R6 ≥ exp(c2r), we have

|{|u| ≥ V̄ −
1
2
R2‖u‖`2(Q)} ∩Q \Θ| ≥ 1

2
ε

3
5
0R

2
6 ≥ R

3
2
4 . (3.3.24)

(3.3.24) provides the inclusion and the claim.

Claim 3.3.23. For 0 ≤ k1 ≤ k2 ≤ p and 0 ≤ ` ≤ CRδ
0, we have

P
[
Ek1,k2,` ∩ Euc

∣∣ V |Θ = V ′
]
≤ Cr6R0R

− 3
2

4 (3.3.25)
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where Ek1,k2,` denotes the event

|λ0
i(V )+k1

(V )− λ0|, |λ0
i(V )+k2

(V )− λ0| < s` and (3.3.26)

|λ0
i(V )+k1−1(V )− λ0|, |λ0

i(V )+k2+1(V )− λ0| ≥ s`+1, (3.3.27)

where si := V̄ −R1+(R2− 1
2
R4+C)i for each i ∈ Z.

Proof. Conditioning on V |Θ = V ′, we view events Euc and Ek1,k2,` as subsets of

{0, V̄ }∪b∈DΩr(b). Given τ ∈ {0, 1}, denote by Ek1,k2,`,τ the intersection of Ek1,k2,` and

the event

|{a′ ∈ Q \Θ : |uV,i(V )+k1(a′)| ≥ V̄ −
1
2
R2 and V (a′) = τ V̄ }| ≥ 1

2
R

3
2
4 . (3.3.28)

Then

Ek1,k2,` ∩ Euc ⊂ Ek1,k2,`,0 ∪ Ek1,k2,`,1.

It suffices to prove that

P
[
Ek1,k2,`,τ

∣∣ V |Θ = V ′
]
≤ 200r6R0R

− 3
2

4 (3.3.29)

for each τ ∈ {0, 1}.

We prove it for τ = 0, the case where τ = 1 is symmetric. We prove by contra-
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diction, assume (3.3.29) does not hold for τ = 0. That is,

P
[
Ek1,k2,`,0

∣∣ V |Θ = V ′
]
> 200r6R0R

− 3
2

4 . (3.3.30)

Given V ∈ Ek1,k2,`,0 with V |Θ = V ′ and a ∈ Ωr(b) with some b ∈ D, we say a is a

“crossing” site with respect to V (or w.r.t. V ) if V (a) = 0 and

n
(
(−∆ + V + V̄ δa)Sr(b);λ0

)
= n

(
(−∆ + V )Sr(b);λ0

)
− 1;

we say a is a “non-crossing” site with respect to V (or w.r.t. V ) if V (a) = 0 and

n
(
(−∆ + V + V̄ δa)Sr(b);λ0

)
= n

(
(−∆ + V )Sr(b);λ0

)
.

Note that by rank one perturbation, for any a ∈ Q \ Θ with V (a) = 0, either a is a

crossing site w.r.t. V or a is a non-crossing site w.r.t. V .

Denote by Ek1,k2,`,0,cro the intersection of Ek1,k2,`,0 and the event

|{|uV,i(V )+k1| ≥ V̄ −
1
2
R2} ∩ {a′ ∈ Q \Θ : a′ is a crossing site w.r.t. V }| ≥ 1

4
R

3
2
4 .

Denote by Ek1,k2,`,0,ncr the intersection of Ek1,k2,`,0 and the event

|{|uV,i(V )+k1 | ≥ V̄ −
1
2
R2} ∩ {a′ ∈ Q \Θ : a′ is a non-crossing site w.r.t. V }| ≥ 1

4
R

3
2
4 .
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Then by (3.3.28),

Ek1,k2,`,0 ⊂ Ek1,k2,`,0,cro ∪ Ek1,k2,`,0,ncr.

By (3.3.30), one of the following holds:

P
[
Ek1,k2,`,0,cro

∣∣ V |Θ = V ′
]
> 100r6R0R

− 3
2

4 , (3.3.31)

or

P
[
Ek1,k2,`,0,ncr

∣∣ V |Θ = V ′
]
> 100r6R0R

− 3
2

4 . (3.3.32)

We will arrive at contradiction in each case.

Case 1. (3.3.31) holds.

For each b ∈ D, we define a directed graph Ab = (Tb, Eb) with vertex set Tb =

{0, V̄ }Ωr(b), and the edge set Eb is defined as follows. For each w ∈ Tb, let w̃ ∈

{0, V̄ }Sr(b) be w̃ = w in Ωr(b) and w̃ = V ′ in Sr(b) \ Ωr(b). Given w1, w2 ∈ Tb, there

is an edge which starts from w1 and ends at w2 if w2 = w1 + V̄ δb′ for some b′ ∈ Ωr(b)

and n
(
(−∆)Sr(b) + w̃2;λ0

)
= n

(
(−∆)Sr(b) + w̃1;λ0

)
− 1.

For each w ∈ Tb, there are less than 2r2 edges which start from or end at w. By

Lemma 3.3.15, Ab is 4r2-colourable.

For each V ∈ Ek1,k2,`,0,cro ∩ {V : V |Θ = V ′}, by pigeonhole principle, we can find a

subset D0(V ) ⊂ D with |D0(V )| = d1
4
r−2R

3
2
4 e such that for each b ∈ D0(V ), there is a

crossing site b′ ∈ Ωr(b) w.r.t. V with |uV,i(V )+k1(b′)| ≥ V̄ −
1
2
R2 . This provides, for each

b ∈ D0(V ), an edge eb(V ) ∈ Eb with eb(V )− = V |Ωr(b), eb(V )+ = V |Ωr(b) + V̄ δb′ and
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|uV,i(V )+k1(b′)| ≥ V̄ −
1
2
R2 . We use Lemma 3.3.16 with directed graphs Ab = (Tb, Eb)

(b ∈ D), subset B = Ek1,k2,`,0,cro ⊂×b∈D Tb, N = |D| ≤ R2
0, K0 = d1

4
r−2R

3
2
4 e, k = 4r2,

associated index set D0(V ) and edge set {eb(V ) : b ∈ D0(V )} for each V ∈ B. Here,

equation (3.3.32) serves as assumption 2 in Lemma 3.3.16. Lemma 3.3.16 provides

V1, V2 ∈ Ek1,k2,` such that the following holds:

• ∀b ∈ D, either V1|Qr(b) = V2|Qr(b) or V2|Qr(b) = V1|Qr(b) + V̄ δb′ for some crossing

site b′ w.r.t. V1.

• There exists a crossing site a0 ∈ Q \ Θ w.r.t. V1 such that V2(a0) = V̄ and

|uV1,i(V1)+k1(a0)| ≥ V̄ −
1
2
R2 .

Denote V3 = V1 + V̄ δa0 . Then by definition of crossing site and (3.3.17), i(V3) =

i(V1)− 1 and

i(V2) = i(V1)− |{a ∈ Q : V1(a) 6= V2(a)}|.

By Cauchy interlacing theorem and the fact that |{a ∈ Q : V2(a) 6= V3(a)}| =

i(V3)− i(V2), we have

λ0
i(V1)+k1

(V1) ≥ λ0
i(V3)+k1

(V3) ≥ λ0
i(V2)+k1

(V2). (3.3.33)

By assumption (10), for each 1 ≤ j ≤ R2
0, we have |uV1,j(a0)| ≤ V̄ −R4 when |λ0

j(V1)−

λ0| ≤ V̄ −R5 . Since |uV1,i(V1)+k1(a0)| ≥ V̄ −
1
2
R2 and

λ0 − s` < λ0
i(V1)+k1

(V1) < λ0 + s`,
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we have

R2
0∑

j=1

uV1,j(a0)2

λ0
j(V1)− (λ0 − s`)

=

i(V1)+k2∑
j=i(V1)+k1

uV1,j(a0)2

λ0
j(V1)− (λ0 − s`)

+
∑

j 6∈[i(V1)+k1,i(V1)+k2]

|λ0
j (V1)−λ0|≤V̄ −R5

uV1,j(a0)2

λ0
j(V1)− (λ0 − s`)

+
∑

|λ0
j (V1)−λ0|>V̄ −R5

uV1,j(a0)2

λ0
j(V1)− (λ0 − s`)

≥ uV1,i(V1)+k1(a0)2

λ0
i(V1)+k1

(V1)− (λ0 − s`)
−

∑
j 6∈[i(V1)+k1,i(V1)+k2]

|λ0
j (V1)−λ0|≤V̄ −R5

V̄ −2R4

s`+1 − s`

−
∑

|λ0
j (V1)−λ0|>V̄ −R5

2V̄ R5

≥ V̄
−R2

2s`
−R2

0

V̄ −2R4

s`+1 − s`
− 2R2

0V̄
R5

>0.

(3.3.34)

Note that

λ0
i(V3)+k1

(V1) = λ0
i(V1)+k1−1(V1) < λ0 − s` < λ0

i(V1)+k1
(V1).

By Lemma 3.3.9 and (3.3.34), λ0
i(V3)+k1

(V1 + tδa0) < λ0− s` for each t > 0. Let t = V̄ ,

we have λ0
i(V3)+k1

(V3) < λ0 − s`. Thus by (3.3.33), λ0
i(V2)+k1

(V2) < λ0 − s` and hence

V2 6∈ Ek1,k2,`. We thus arrived at contradiction.

Case 2. (3.3.32) holds.

For each b ∈ D, we define a directed graph Ab = (Tb, Eb) with vertex set Tb =

{0, V̄ }Ωr(b), and edge set Eb is defined as follows. For each w ∈ Tb, let w̃ ∈ {0, V̄ }Sr(b)
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be w̃ = w in Ωr(b) and w̃ = V ′ in Sr(b) \ Ωr(b). Given w1, w2 ∈ Tb, there is an

edge which starts from w1 and ends at w2 if w2 = w1 + V̄ δb′ for some b′ ∈ Ωr(b) and

n
(
(−∆)Sr(b) + w̃2;λ0

)
= n

(
(−∆)Sr(b) + w̃1;λ0

)
.

By the similar arguments used in Case 1, there exist V1, V2 ∈ Ek1,k2,` such that the

following holds:

• ∀b ∈ D, either V1|Qr(b) = V2|Qr(b) or V2|Qr(b) = V1|Qr(b) + V̄ δb′ for some non-

crossing site b′ w.r.t. V1.

• There exists a non-crossing site a0 w.r.t. V1 such that we have V2(a0) = V̄ and

|uV1,i(V1)+k1(a0)| ≥ V̄ −
1
2
R2 .

Denote V3 = V1 + V̄ δa0 . Then by (3.3.17) and definition of non-crossing site, i(V3) =

i(V1) = i(V2). Since V1 ≤ V3 ≤ V2, by monotonicity,

λ0
i(V1)+k2

(V1) ≤ λ0
i(V3)+k2

(V3) ≤ λ0
i(V2)+k2

(V2). (3.3.35)

Now we apply Lemma 3.3.8 to HQ − λ0 + s` with r1 = 2s`, r2 = s`+1, r3 = V̄ −R2 ,

r4 = V̄ −cR4 and r5 = V̄ −R5 . Then λ0
i(V3)+k2

(V3) ≥ λ0 + s`. By (3.3.35), λ0
i(V2)+k2

(V2) ≥

λ0 + s` and thus V2 6∈ Ek1,k2,`. We thus arrived at contradiction.

Claim 3.3.24.

{‖(HQ − λ0)−1‖ > V̄ R1} ∩ {V |Θ = V ′} ⊂
⋃

0≤k1≤k2≤p
0≤`≤CRδ0

Ek1,k2,` (3.3.36)
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Proof of the claim. By Claim 3.3.20 and Claim 3.3.21, we can always find 0 ≤ ` ≤

CRδ
0 such that the annulus (λ0−s`+1, λ0+s`+1)\(λ0−s`, λ0+s`) contains no eigenvalue

of HQ. The claim follows.

Finally by Claim 3.3.24,

P[‖(HQ − λ0)−1‖ > V̄ R1| V |Θ = V ′]

≤
∑

0≤k1,k2≤p

∑
1≤`≤CRδ0

P[Ek1,k2,` ∩ Euc| V |Θ = V ′] + P[Ecuc
∣∣ V |Θ = V ′]. (3.3.37)

By Claim 3.3.22, 3.3.23 and let Cε,δ,K be large enough,

P[‖(HQ − λ0)−1‖ > V̄ R1| V |Θ = V ′]

≤ Cr6R1+3δ
0 R

− 3
2

4 + exp(−R−ε0 )

≤ R
10ε− 1

2
0 .

We used here r ≥ Cε,δ,K and R0 ≥ exp(c2r).

3.4 Larger scales

We now prove Theorem 3.1.4 by a multi-scale analysis based on [DS20, Lemma 8.3]

with Wegner estimate Proposition 3.3.18.

Definition 3.4.1. Suppose r is an odd number, R is a set of r-bits and E ⊂ Z2. We

195



denote

RE = {Qr(b) ∈ R : Qr(b) ⊂ E}. (3.4.1)

We need the following gluing lemma in multi-scale analysis which is a direct mod-

ification of [DS20, Lemma 6.2] and it follows from the same proof as [DS20, Lemma

6.2].

Lemma 3.4.2 (Gluing lemma). If

1. ε > δ > 0 small and c3 > 0 a numerical constant

2. K ≥ 1 an integer, r > Cε,δ,K a large odd number and V̄ > exp(r2)

3. t ∈ [0, 1] and λ0 ∈ [0, 8]

4. scales R0 ≥ · · · ≥ R6 ≥ exp(c3r) with R1−ε
k ≥ Rk+1

5. 1 ≥ m ≥ 2R−δ5 represents the exponential decay rate

6. Q = QR0(a) ⊂ Z2 an r-dyadic box

7. Q′1, · · · , Q′K ⊂ Q disjoint r-dyadic R2-boxes with ‖(HQ′k
− λ0)−1‖ ≤ V̄ R4 (they

are called “defects”)

8. R a subset of admissible r-bits inside Q which do not affect ∪kQ′k

9. for all b ∈ Q one of the following holds

• there is Q′k such that b ∈ Q′k and dist(b,Q \Q′k) ≥ 1
8
`(Q′k)
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• there is an r-dyadic R5-box Q′′ ⊂ Q such that b ∈ Q′′, dist(b,Q \ Q′′) ≥

1
8
`(Q′′), and |GRQ′′ ,tQ′′ (b′, b′′;λ0)| ≤ V̄ R6−m|b′−b′′| for b′, b′′ ∈ Q′′,

then |GR,tQ (b, b′;λ0)| ≤ V̄ R1−m̄|b−b′| for b, b′ ∈ Q where m̄ = m−R−δ5 .

Remark 3.4.3. As in [DS20, Remark 6.3], the scales R0, · · · , R6 has the following

interpretations:

1. R0: large scale

2. exp(R1): large scale resolvent bound

3. R2: defect scale

4. −R3: defect edge weight

5. exp(R4): defect resolvent bound

6. R5: small scale

7. exp(R6): small scale resolvent bound

They are set up to be compatible with the multi-scale analysis (Theorem 3.4.7) below.

We also need a covering lemma which is a direct modification of [DS20, Lemma

8.1] and it follows from the same proof as [DS20, Lemma 8.1].

Lemma 3.4.4. Suppose K ≥ 1 is an integer, r is a large odd number, α ≥ CK is a

power of 2, R0 ≥ R1 ≥ R2 are r-dyadic scales with Ri ≥ αRi+1(i = 0, 1), Q ⊂ Z2

is an r-dyadic R0-box and Q′′1, · · · , Q′′K ⊂ Q are r-dyadic R2-boxes. Then there is an
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r-dyadic scale R3 ∈ [R1, αR1] and disjoint r-dyadic R3-boxes Q′1, · · · , Q′K ⊂ Q such

that,

for each Q′′k, there is Q′j with Q′′k ⊂ Q′j and dist(Q′′k, Q \Q′j) ≥
1

8
R3. (3.4.2)

The following lemma provides the continuity of resolvent bounds and its proof was

given in [DS20].

Lemma 3.4.5 (Lemma 6.4 in [DS20]). If square Q ⊂ Z2, λ ∈ R, α > β > 0, and

|(HQ − λ)−1(x, y)| ≤ exp(α− β|x− y|)

for any x, y ∈ Q, then for all |λ′ − λ| ≤ cβ|Q|−1 exp(−α), we have

|(HQ − λ′)−1(x, y)| ≤ 2 exp(α− β|x− y|)

for any x, y ∈ Q.

Definition 3.4.6. Suppose γ, ε > 0, large odd number r, real V̄ > exp(r2), energy

λ0, r-dyadic box QL(a), Θ ⊂ QL(a) and V ′ : Θ → {0, V̄ }. We say (QL(a),Θ, V ′) is

(γ, ε)-good if the following holds:

Whenever we have

• V : QL(a)→ {0, V̄ } with V |Θ = V ′,

• b, c ∈ QL(a),
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• t ∈ [0, 1],

• R a subset of r-bits inside QL(a) such that each Qr(b) ∈ R does not affect Θ,

then

• for each Qr(b) ∈ R, (Qr(b), V |Fr(b)) is admissible,

• the following inequality holds:

|GR,tQL(a)(b, c;λ0)| ≤ V̄ −γ|b−c|+L
1−ε
. (3.4.3)

The following multi-scale analysis is a direct modification of [DS20, Lemma 8.3].

By using a standard argument (see, e.g. the proof of Theorem 2.3.1 in Chapter 2), it

implies Theorem 3.1.4 with YV̄ = J V̄r .

Recall that in Definition 3.2.17, we defined Θr = ∪a∈ṙZ2Fr(a) for any large odd

number r.

Theorem 3.4.7 (Multi-scale Analysis). For each κ < 1
2
, we can pick ε > δ > 0 such

that, for each odd number r > Cε,δ, V̄ > exp(r2) and λ0 6∈ J V̄r , the following holds.

There exist

1. r-dyadic scales Lk for k ≥ 1 with Lk+1 ∈
[

1
2
L

1
1−6ε

k , L
1

1−6ε

k

]
and the first scale sat-

isfying 1
2

exp(1
2
c1δr) ≤ L1 ≤ exp(1

2
c1δr) where c1 is the constant in Proposition

3.2.6,

2. decay rates γk ≥ 1
10r

with γ1 = 1
8r

and γk+1 = γk − L−δk ,
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3. densities ηk < ε
1
5
0 with η1 = ε

1
4
0 and ηk+1 = ηk + L

− 1
5
ε

k where ε0 is defined by

(3.2.2),

4. random sets Θk ⊂ Θk+1(k ≥ 1) where Θ1 = Θr,

such that the following statements are true for k ≥ 1,

1. when k ≥ 2, Θk

⋂
Q is V |Θk−1

⋂
3Q-measurable for any r-dyadic box Q with

`(Q) ≥ Lk,

2. when k ≥ 2, Θk is a union of Θk−1 and some r-bits,

3. Θk is ηk-regular in any QL(a) ⊂ Z2 with L ≥ L
1− 5

2
ε

k ,

4. for any r-dyadic box Q with `(Q) = Lk,

P [(Q,Θk ∩Q, V |Θk∩Q) is (γk, ε)-good] ≥ 1− L−κk . (3.4.4)

Proof. Assume ε, δ are small and we impose further constraints on these objects

during the proof. Set r-dyadic scale

L1 ∈
[

1

2
exp(

1

2
c1δr), exp(

1

2
c1δr)

]

where c1 is the constant in Proposition 3.2.6. Set γ1 = 1
8r

and η1 = ε
1
4
0 . By letting

r > Cε,δ, we can pick Lk, γk, ηk as in conditions 1, 2 and 3 for k ≥ 2. Let M0

be the largest integer such that LM0 ≤ exp(c1r). Then M0 ≤ C ′ε,δ for a constant
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Figure 3.2: The figure illustrates the proof that Θ1 (the pink region) is η1-regular in
QL(a). The blue region indicates

⋃{Q(1−100
√
ε0)r(b) : b ∈ ṙZ2}, the black tilted square

indicates Q̃ and the green line indicates the diagonal D.

C ′ε,δ depending on ε, δ and we have Lk−M0 ≤ Lδk for each k > M0. Set Θk = Θ1

for k = 1, · · · ,M0. We prove by induction on k. We first prove the conclusion for

k ≤M0. Statements 1 and 2 are true since Θk = Θ1 when k ≤M0. To see Statement

3, let QL(a) ⊂ Z2 such that L ≥ L
1− 5

2
ε

1 . Suppose Q̃ ⊂ QL(a) is a tilted square. We

claim that, if there exists b1 ∈ QL(a) ∩ ṙZ2 such that Q̃ ∩ Q(1−100
√
ε0)r(b1) 6= ∅, then

Θ1 is ε
1
4
0 -sparse in Q̃. We prove our claim by elementary geometry (see Figure 3.2).

To see this, if Q̃ ∩Θ1 = ∅ then our claim is obvious. Otherwise, note that we have

dist(Θ1, Q(1−100
√
ε0)r(b1))

= dist(Fr(b1), Q(1−100
√
ε0)r(b1))

= dist(Qr(b1) \Q(1−2ε0)r(b1), Q(1−100
√
ε0)r(b1))

=

⌊
(1− 2ε0)r − 1

2

⌋
−
⌊

(1− 100
√
ε0)r − 1

2

⌋
+ 1

>(50
√
ε0 − ε0)r.

(3.4.5)

Thus Q̃∩Θ1 6= ∅ implies that the edge length of Q̃ is larger than
(50
√
ε0−ε0)r√

2
> 25

√
ε0r.
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Suppose l ∈ Z and ς ∈ {+,−} such that Q̃ ∩ Dςl 6= ∅ where Dςl is a diagonal defined

in Definition 3.3.2. Write D = Q̃ ∩ Dςl and then

|D| > 25
√
ε0r. (3.4.6)

By elementary geometry,

|{b ∈ ṙZ2 : D ∩Qr(b) 6= ∅}| ≤ 10 +
10|D|
r

. (3.4.7)

Since D has at most one intersection with any horizontal or vertical line, we have

|D ∩ Fr(b)| ≤ 10ε0r (3.4.8)

for each b ∈ ṙZ2. On the other hand, by Definition 3.2.17 we have

|Θ1 ∩ D| ≤
∑

b∈ṙZ2:D∩Qr(b)6=∅

|D ∩ Fr(b)|.

Thus by (3.4.8) and (3.4.7), we have |Θ1 ∩ D| ≤ 100ε0r + 100ε0|D| ≤ ε
1
4
0 |D|. The

second inequality here is due to (3.4.6). Our claim follows.

Thus any tilted square in which Θ1 is not ε
1
4
0 -sparse is contained in

QL(a) \
⋃

b∈QL(a)∩ṙZ2

Q(1−100
√
ε0)r(b),
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whose cardinality is less than 104√ε0L
2 + 8rL ≤ ε

1
4
0L

2. Here, we used L ≥ exp(cδr),

r > Cε,δ and ε0 small enough (provided by (3.2.2)). Thus Θ1 is ε
1
4
0 -regular in QL(a)

and Statement 3 follows.

To see Statement 4, by Proposition 3.2.21, an r-dyadic Q is perfect implies (Q,Θ1∩

Q, V |Θ1∩Q) is ( 1
8r
, 1)-good. Thus Proposition 3.2.19 implies Statement 4 when k ≤M0.

Assume k ≥ M0 + 1 and our conclusions hold for any smaller k. We proceed to

prove it for k. The general strategy is to apply Lemma 3.4.2.

For each j < k, we call an r-dyadic box QLj(a) “good” if

(QLj(a),Θj ∩QLj(a), V |Θj∩QLj (a)) is (γj, ε)-good.

Otherwise, we call it “bad”. We must control the number of bad boxes in order to

apply Lemma 3.4.2.

For any 0 < k′ < k, by Lemma 3.4.2, any bad r-dyadic Lk′-box Q must contain a

bad Lk′−1-box. For any 0 < i ≤ k, and a bad Lk−i-box Q′ ⊂ Q, we call Q′ a hereditary

bad Lk−i-subbox of Q, if there exists a sequence Q′ = Qi ⊂ Qi−1 ⊂ · · · ⊂ Q1 ⊂ Q,

where for each j = 1, · · · , i, Qj is a bad Lk−j-box. We also call such sequence

{Qj}1≤j≤i a hereditary bad chain of length i. Note that the set of hereditary bad

chains of Q is VΘk−1∩Q-measurable.

Claim 3.4.8. If ε < cκ and N > CM0,κ, then for all k > M0,

P[Q has no more than N hereditary bad chains of length M0] ≥ 1− L−1
k .
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Proof of the claim. Let N = (N ′)M0 with N ′ to be determined. We can use the

inductive hypothesis to estimate

P [Q has more than N hereditary bad chains of length M0] (3.4.9)

≤
∑

r-dyadic Q′ ⊂ Q
`(Q′)=Lj
k−M0<j≤k

P [Q′ has more than N ′ bad Lj−1-subboxes] (3.4.10)

≤
∑

k−M0<j≤k

L2
k(Lj/Lj−1)CN

′
(L−κj−1)cN

′
(3.4.11)

≤ CM0L
2
k(L

(Cε−cκ)N ′

k + L
(Cε−cκ)N ′

k−M0
) (3.4.12)

≤ CM0L
2
k(L

(Cε−cκ)N ′

k + L
(Cε−cκ)(1−6ε)M0N ′

k ). (3.4.13)

Here, c, C denote absolute constants. The claim follows by taking cκ = cκ
2C

and

CM0,κ = ( 20+2M0

cκ(1−6cκ)M0
)M0 , and letting ε < cκ and N ′ > C

1
M0
M0,κ

.

Now fix N as in the claim above. We call an Lk-box Q ready if Q is r-dyadic and

Q contains no more than N ′ hereditary bad chains of length M0. Note that the event

that Q is ready is V |Θk−1∩Q-measurable.

Suppose the Lk-box Q is ready. Let Q′′′1 , · · · , Q′′′N ⊂ Q be a complete list of Lk−M0-

boxes that includes every hereditary bad Lk−M0-subboxes of Q. Let Q′′1, · · · , Q′′N ⊂ Q

be the corresponding bad Lk−1-subboxes of Q, such that Q′′′i ⊂ Q′′i for each i =

1, 2, · · · , N . These cubes are chosen in a way such that {Q′′1, · · · , Q′′N} contains all

the bad Lk−1-subboxes in Q. Applying Lemma 3.4.4, we can choose an r-dyadic scale
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L′ ∈ [cNL
1−3ε
k , L1−3ε

k ] and disjoint r-dyadic L′-subboxes

Q′1, · · · , Q′N ⊂ Q

such that, for each Q′′i , there is Q′j such that Q′′i ⊂ Q′j and dist(Q′′i , Q \ Q′j) ≥ 1
8
L′.

Note that we can choose Q′i, Q
′′
i , Q

′′′
i in a VΘk−1∩Q-measurable way.

We define Θk to be the union of Θk−1 and the subboxes Q′1, · · · , Q′N ⊂ Q of each

ready Lk-box Q. We need to verify statements 1 to 4. Note that Statement 2 is true

since each r-dyadic box is a union of r-bits (Lemma 3.2.15).

Claim 3.4.9. Statements 1, 3 hold.

Proof of the claim. For each Lk-box Q, the event that Q is ready, the scale L′ and

L′-boxes Q′i ⊂ Q are all V |Q∩Θk−1
-measurable. Thus Θk ∩Q is V |Θk−1∩3Q-measurable.

Note that we have 3Q in place of Q because each r-dyadic Lk-box Q intersects 24

other r-dyadic Lk-boxes contained in 3Q.

As for Statement 3, for each L
1− 5

2
ε

k -box Q ⊂ Z2, the set Q ∩Θk \Θk−1 is covered

by at most 25N boxes Q′i with length at most L1−3ε
k . Suppose Q̃ is a tilted square

such that Q ∩ Θk−1 is ηk−1-sparse in Q̃ but Q ∩ Θk is not ηk-sparse in Q̃, then Q̃

must intersect one of Q′i’s and have length at most L
1− 11

4
ε

k . This implies Θk ∩ Q is

ηk-regular in Q.

Claim 3.4.10. If the Lk-box Q is ready, R a subset of r-bits inside Q′i that do not affect

Θk−1∪
⋃
j Q
′′
j , then each Qr(b) ∈ R is admissible. Furthermore, if |λ−λ0| ≤ V̄ −2L1−ε

k−1,
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t ∈ [0, 1] and HR,tQ′i
u = λu, then

V̄ cL1−δ
k−1‖u‖`∞(E) ≤ ‖u‖`2(Q′i)

≤ (1 + V̄ −cL
1−δ
k−M0 )‖u‖`2(G),

where E = Q′i \ ∪iQ′′j and G = Q′i ∩ ∪jQ′′′j .

Proof of the claim. If r-bit Qr(b) ⊂ Q does not affect Θk−1 ∪
⋃
j Q
′′
j , then it is con-

tained in a good Lk−1-box QLk−1
(a′) ⊂ Q. By Definition 3.4.6, since Qr(b) does not

affect Θk−1 ∩QLk−1
(a′), it is admissible.

If a ∈ Q′i \ G, then there is j ∈ {1, · · · ,M0} and a good Lk−j-box Q′′ ⊂ Q′i with

a ∈ Q′′ and dist(a,Q′i \Q′′) ≥ 1
8
Lk−j. Moreover, if a ∈ E, then j = 1. By Definition

3.4.6 and Lemma 3.4.5,

|u(a)| =

∣∣∣∣∣∣∣∣∣∣
∑
b∈Q′′

b′∈Q′i\Q′′
b∼b′

G
RQ′′ ,t
Q′′ (a, b;λ)u(b′)

∣∣∣∣∣∣∣∣∣∣
≤ 4Lk−jV̄

L1−ε
k−j−

1
8
γk−jLk−j‖u‖`2(Q′i)

≤ V̄ −cL
1−δ
k−j‖u‖`2(Q′i)

.

Here we used γk−j ≥ 1
10r

and Lk−j ≥ exp(cδr). In particular, we see that

‖u‖`∞(E) ≤ V̄ −cL
1−δ
k−1‖u‖`2(Q′i)
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and

‖u‖`∞(Q′i\G) ≤ V̄ −cL
1−δ
k−M0‖u‖`2(Q′i)

.

Claim 3.4.11. If Q is an r-dyadic Lk-box and Ei(Q) denotes the event that

Q is ready and P[‖(HQ′i
− λ0)−1‖ ≤ V̄ L1−4ε

k

∣∣V |Θk∩Q] = 1,

then P[Ei(Q)] ≥ 1− L10ε− 1
2

k .

Proof of the claim. Recall the event that Q ready and boxes Q′i ⊂ Q are V |Θk−1∩Q-

measurable. We may assume i = 1. We apply Proposition 3.3.18 to box Q′1 with

5ε > δ > 0, K = N , scales

L′ ≥ L1−4ε
k ≥ L1−5ε

k ≥ Lk−1 ≥ L1−2δ
k−1 ≥ 2L1−ε

k−1 ≥ L
1− 5

2
ε

k−1 ,

Θ = Θk−1∩Q′1, defects {Q′′j : Q′′j ⊂ Q′1}, and G = ∪{Q′′′j : Q′′′j ⊂ Q′1}. Assume ε > 5δ

and note that k ≥M0 + 1 and Lk−1 ≥ LM0 ≥ exp(1
2
c1r). The previous claims provide

the conditions to verify the hypothesis of Proposition 3.3.18. Since Q′1 ⊂ Θk when Q

is ready, the claim follows.

Claim 3.4.12. If Q is an r-dyadic Lk-box and E1(Q), · · · , EN(Q) hold, then Q is good.

Proof of the claim. Suppose R is a subset of r-bits inside Q that do not affect Θk and

t ∈ [0, 1]. By Claim 3.4.10, each Qr(b
′) ∈ R is admissible. We apply Lemma 3.4.2
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to the box Q with small parameters ε
3
> δ > 0, decay rate γk−1, scales Lk ≥ L1−ε

k ≥

L′ ≥ L
1− 7

2
ε

k ≥ L1−4ε
k ≥ Lk−1 ≥ L1−ε

k−1, and defects Q′1, · · · , Q′N . We conclude that

|GR,tQ (a, b)| ≤ V̄ L1−ε
k −γk|a−b|

for each a, b ∈ Q. Since the events Ei(Q) are V |Θk∩Q-measurable, we see that Q is

good.

Finally we verify Statement 4. Combining the previous two claims, for any r-

dyadic Lk-box Q, we have

P[(Q,Θk ∩Q, V |Θk∩Q) is (γk, ε)-good] ≥ 1−NL10ε− 1
2

k ≥ 1− L−κk ,

provided κ < 1
2
− 10ε.

3.5 Proof of Lemma 3.3.5

Our approach follows the scheme in [DS20, Section 3] and [BLMS17]. The key for

the proofs in [DS20], [BLMS17] and the current proof is the following observation for

functions u satisfying Hu = λu on a tilted rectangle R[1,a],[1,b] defined in Definition

3.3.1.

Observation 3.5.1. Let V : Z2 → R and u : R[1,a],[1,b] → R. Suppose a ≥ 10b and
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−∆u+ V u = λu in R[2,a−1],[2,b−1]. If

‖u‖`∞(R[1,a],[1,2]) ≤ 1

and |u| ≤ 1 on a 1−ε fraction of R[1,a],[b−1,b], then ‖u‖`∞(R[1,a],[1,b]) is“suitably”bounded.

Observation 3.5.1 does not hold for arbitrary V and λ. It was proved in [BLMS17,

Lemma 3.4] for the case when V ≡ 0 and λ = 0 (i.e. u is a harmonic function). It

was also proved to hold with high probability for the case when a ≥ Cb2 log(a) and

{V (x)}x∈Z2 is a family of i.i.d. Bernoulli random variables taking values in {0, 1}

([DS20, Lemma 3.13]).

In Lemma 3.5.20 below, we will prove that observation 3.5.1 holds with high

probability only requiring a ≥ 10b and {V (x)}x∈Z2 is a family of i.i.d. Bernoulli

random variables taking values in {0, V̄ }.

Lemma 3.5.20 is the main new ingredient in the current proof. As long as Lemma

3.5.20 is proved, the rest of the proof of Lemma 3.3.5 follows the same scheme in

[DS20] and [BLMS17] by proving a “growth lemma” (Lemma 3.5.22) and using a

covering argument (Section 3.5.5) to conclude.

To prove the observation 3.5.1 (Lemma 3.5.20), we first consider the case when

u = 0 on R[1,a],[1,2] (Lemma 3.5.8). We use the triangular matrix structure of the

operator Mk,k′

[1,a] defined in Definition 3.5.10. Then we use Lemma 3.1.6 to estimate

the probability. We refer the reader to the beginning of Section 3.5.3 for an intuitive

argument of the simple case when u|R[1,a],[1,2]∪R[1,a],[b−1,b]
= 0.
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3.5.1 Auxiliary lemmas

We first prove Lemma 3.1.6 by using Lemma 3.1.7.

Proof of Lemma 3.1.6. Write {ej}nj=1 to be the standard normal basis in Rn. Write

Γ = Γ0 + a0 where Γ0 is a k dimensional subspace and a0 ∈ Rn. Let Γ1 be the

orthogonal complement of Γ0 and let P : Rn → Γ1 be the orthogonal projection.

Define vi = Pei for i = 1, 2, · · · , n, then
∑n

i=1 viv
†
i = In−k (the identity operator on

Γ1).

Using Lemma 3.1.7 with l = n, m = n − k and m′ = n − k − 1, we can find

S ⊂ {1, 2, · · · , n} with |S| = n− k − 1 such that the n− k − 1-th largest eigenvalue

of ∑
i∈S

viv
†
i =

∑
i∈S

Peie
†
iP
† (3.5.1)

is at least 1
4n(n−k)

. Assume without loss of generality that S = {1, 2, · · · , n− k − 1}.

Denote by Γ′ the subspace generated by {ei}n−k−1
i=1 and let Q : Rn → Γ′ be the

orthogonal projection onto Γ′. Then (3.5.1) is just PQ†QP †. Note that the dimension

of the range of QP † is at most n− k− 1, thus the rank of the operator PQ†QP † is at

most n− k− 1. Hence the n− k− 1-th largest eigenvalue (which is also the smallest

eigenvalue) of the positive semi-definite operator QP †PQ† is at least 1
4n(n−k)

. This

implies

‖PQ†a‖2 ≥
√

1

4n(n− k)
‖a‖2 (3.5.2)

for any a ∈ Γ′.
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Consider the Boolean subcube B′ =
{∑n−k−1

i=1 xiei : xi ∈ {0, 1}
}
⊂ Γ′. We claim

that for any v′ ∈ Rn,

#{a ∈ B′ + v′ : min
b∈Γ
‖a− b‖2 <

1

4
n−

1
2 (n− k)−

1
2} ≤ 1. (3.5.3)

To see this, assume the claim does not hold. Then for some v′′ ∈ Rn, there are two

different a1, a2 ∈ (B′ + v′′) with minb∈Γ ‖aj − b‖2 < 1
4
n−

1
2 (n − k)−

1
2 for j = 1, 2.

Choose b1, b2 ∈ Γ with ‖aj − bj‖2 <
1
4
n−

1
2 (n− k)−

1
2 for j = 1, 2. Let a′ = a1 − a2 and

b′ = b1 − b2. Then ‖a′ − b′‖2 <
1
2
n−

1
2 (n− k)−

1
2 and a′ ∈ Γ′, b′ ∈ Γ0.

Since any two vectors in B′ + v′′ has `2 distance at least 1, ‖a′‖2 ≥ 1. On

the other hand, we have minb∈Γ0 ‖a′ − b‖2 <
1
2
n−

1
2 (n − k)−

1
2 which is equivalent to

‖PQ†a′‖2 <
1
2
n−

1
2 (n − k)−

1
2 . However, this contradicts with (3.5.2) and our claim

(3.5.3) follows.

Finally, B =
⋃{

B′ +
∑n

j=n−k xjej : xj ∈ {0, 1} for n− k ≤ j ≤ n
}

. Thus by

(3.5.3),

#

{
a ∈ B : min

b∈Γ
‖a− b‖2 <

1

4
n−

1
2 (n− k)−

1
2

}
≤

∑
xj∈{0,1} for n−k≤j≤n

#

{
a ∈ B′ +

n∑
j=n−k

xjej : min
b∈Γ
‖a− b‖2 <

1

4
n−

1
2 (n− k)−

1
2

}

≤
∑

xj∈{0,1} for n−k≤j≤n

1

= 2k+1.
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We will also need the following lemma to bound the inverse norm of principal

submatrices of a triangular matrix.

Lemma 3.5.2. Let d > 0 be an integer, K > 1 be a real number and {m1 < m2 <

· · · < md} be a set of positive integers. Let A = (aij)1≤i,j≤d be a lower (or upper)

triangular matrix. Assume that |aii| = 1 for each i = 1, · · · , d and |aij| ≤ K |mi−mj |

for each 1 ≤ i, j ≤ d. Then the Euclidean operator norm of the inverse A−1 satisfies

‖A−1‖ ≤ d(2K)md.

Proof. We assume A to be a lower triangular matrix, the case for upper triangular

matrix follows the same argument. Denote A−1 =
(
a′ij
)

1≤i,j≤d.

We prove that |a′ij| ≤ (2K)|mi−mj | by induction on k = i − j. For k = 0, since A

is lower triangular, a′ii = (aii)
−1 and thus |a′ii| = 1. Assume our conclusion holds for

0 ≤ k < k′, we prove the case when i− j = k′. Note that

d∑
l=1

aila
′
lj = 0. (3.5.4)

This implies

aiia
′
ij = −

i−1∑
l=j

aila
′
lj. (3.5.5)

Since |aii| = 1, by inductive hypothesis and |all′ | ≤ K |ml−ml′ |, we have

|a′ij| ≤
i−1∑
l=j

Kmi−ml(2K)ml−mj = Kmi−mj
i−1∑
l=j

2ml−mj ≤ (2K)mi−mj . (3.5.6)
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Thus the induction proves |a′ij| ≤ (2K)mi−mj for 1 ≤ i, j ≤ d. Finally,

‖A−1‖ ≤ (
∑

1≤i,j≤d

|a′ij|2)
1
2 ≤ d(2K)md

since 0 < m1 < · · · < md.

3.5.2 Tilted rectangles

In this section, we collect basic lemmas on functions satisfying the equation Hu = λu

on a tilted rectangle (see Definition 3.3.1). The following Lemma 3.5.4, Lemma 3.5.6

and Lemma 3.5.7 are rewrite of [DS20, Lemma 3.8], [DS20, Lemma 3.10] and [DS20,

Lemma 3.11] respectively. They are modified to depend on V̄ explicitly.

We will keep several notations from [DS20, Section 3]. In particular, we work in

the tilted coordinates of

(s, t) = (x+ y, x− y). (3.5.7)

Under coordinate transformation (3.5.7), the transformed lattice is Z̃2 = {(s, t) ∈ Z2 :

s− t is even}. The equation

Hu = λu (3.5.8)

becomes

u(s, t) = (4+V (s−1, t−1)−λ)u(s−1, t−1)−u(s−2, t)−u(s−2, t−2)−u(s, t−2).

(3.5.9)
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Given two intervals J1, J2 ⊂ Z, by Definition 3.3.1, under the coordinate transfor-

mation, the tilted rectangle RJ1,J2 ⊂ Z2 is transformed to

R̃J1,J2 = {(s, t) ∈ J1 × J2 : s− t is even}

in the new lattice Z̃2. With a little abuse of notations, we also use RJ1,J2 to denote

R̃J1,J2 for the rest of this section.

Definition 3.5.3. Given integers a1 < a2 and b1 < b2, the west boundary of the tilted

rectangle is

∂wR[a1,a2],[b1,b2] = R[a1,a2],[b1,b1+1] ∪R[a1,a1+1],[b1,b2].

The following lemma is a rewrite of [DS20, Lemma 3.8] and it follows from the

same proof of [DS20, Lemma 3.8].

Lemma 3.5.4. Suppose energy λ ∈ R, real number V̄ ∈ R and integers a1 < a2, b1 < b2.

Then every function u : ∂wR[a1,a2],[b1,b2] → R has a unique extension

u0 = E
(λ,V̄ )
R[a1,a2],[b1,b2]

(u) : R[a1,a2],[b1,b2] → R

such that

Hu0 = λu0 (3.5.10)

in R[a1+1,a2−1],[b1+1,b2−1]. Moreover, E
(λ,V̄ )
R[a1,a2],[b1,b2]

is a random linear operator and is

V |R[a1+1,a2−1],[b1+1,b2−1]
-measurable.
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Remark 3.5.5. Given energy λ, real V̄ and integers a1 < a2 and b1 < b2, we also

denote E
(λ,V̄ )
R[a1,a2],[b1,b2]

by E
(λ,V̄ )
[a1,a1],[b1,b2] for simplicity. When energy λ and real number V̄

are given in context, we also omit λ, V̄ and denote E
(λ,V̄ )
R[a1,a2],[b1,b2]

by ER[a1,a2],[b1,b2]
and

E
(λ,V̄ )
[a1,a2],[b1,b2] by E[a1,a2],[b1,b2].

Lemma 3.5.6. Suppose we have real numbers λ, V̄ and integers a1 ≤ a2 and b1 ≤

b2. Assume λ ∈ [−2, 10] and V̄ ≥ 2. If Hu = λu in R[a1+1,a2−1],[b1+1,b2−1] and

‖u‖`∞(∂wR[a1,a2],[b1,b2]) = 1, then

‖u‖`∞(R[a1,a2],[b1,b2]) ≤ (V̄ (a2 − a1 + 1))C1(b2−b1−1)∨0 (3.5.11)

‖u‖`∞(R[a1,a2],[b1,b2]) ≤ (V̄ (b2 − b1 + 1))C1(a2−a1−1)∨0 (3.5.12)

for a numerical constant C1.

Proof. We only prove (3.5.11), and (3.5.12) follows by symmetry.

Assume without loss of generality that a1 = b1 = 1. We prove

|u(s, t)| ≤ (CV̄ s)(t−2)∨0 (3.5.13)

by induction on (s, t) ∈ R[1,a2],[1,b2]. Here, C ≥ 10 is a universal constant to be

determined. Firstly, if (s, t) ∈ R[1,a2],[1,2], then t ≤ 2 and

|u(s, t)| ≤ 1 ≤ (CV̄ s)(t−2)∨0
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by assumption. Secondly, if (s, t) ∈ R[1,2],[3,b2], then |u(s, t)| ≤ 1 ≤ (CV̄ s)(t−2)∨0 by

assumption. Now suppose (s, t) ∈ R[3,a2],[3,b2] and assume (3.5.13) holds for (s′, t′) ∈

R[1,s],[1,t] \ {(s, t)}. We use (3.5.9) to get

|u(s, t)|

≤(14 + V̄ )|u(s− 1, t− 1)|+ |u(s− 2, t)|+ |u(s− 2, t− 2)|+ |u(s, t− 2)|

≤(14 + V̄ )(CV̄ s)t−3 + (CV̄ (s− 2))t−2 + (CV̄ (s− 2))(t−4)∨0 + (CV̄ s)(t−4)∨0

≤(16 + V̄ )(CV̄ s)t−3 + (CV̄ (s− 2))t−2

≤(CV̄ s)t−2

(
16 + V̄

CV̄
s−1 +

(
s− 2

s

)t−2
)

≤(CV̄ s)t−2

(
16 + V̄

CV̄
s−1 + 1− 2s−1

)
≤(CV̄ s)t−2.

Here, we used |λ| ≤ 10, V̄ ≥ 2 and C ≥ 10.

The following lemma follows the same proof of [DS20, Lemma 3.11].

Lemma 3.5.7. Suppose real numbers λ1, λ2, V̄ and positive integers a, b > 2. Assume

λ1, λ2 ∈ [−2, 10] and V̄ ≥ 2. If Hu1 = λ1u1 and Hu2 = λ2u2 in R[2,a−1],[2,b−1] and

u1 = u2 in ∂wR[1,a],[1,b], then

‖u1 − u2‖`∞(R[1,a],[1,b]) ≤ (aV̄ )C2b‖u1‖`∞(∂wR[1,a],[1,b])|λ1 − λ2|, (3.5.14)

where C2 is a numerical constant.
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3.5.3 Key lemmas

The main task in this subsection is to prove the following Lemma 3.5.8 which will

be used to prove the key estimate Lemma 3.5.20. See the context below observation

3.5.1 for a comparison between Lemma 3.5.20 and [DS20, Lemma 3.13].

Lemma 3.5.8. There are constants α1 > 1 > c4 > 0 such that, if

1. integers a > b > α1 with 10b ≤ a ≤ 60b,

2. λ0 ∈ [0, 8] and V̄ ≥ 2,

3. Θ ⊂ Z2 is (c4,−)-sparse in R[1,a],[1,b],

4. V ′ : Θ→ {0, V̄ },

5. Etr(R[1,a],[1,b]) denotes the event that,


Hu = λ0u in R[2,a−1],[2,b−1]

‖u‖`∞(R[1,2],[1,b]) = 1

u ≡ 0 on R[1,a],[1,2]

(3.5.15)

implies |u| ≥ (aV̄ )−α1a on a 1
106 fraction of R[1,a],[b−1,b],

then P
[
Etr(R[1,a],[1,b])

∣∣ V |Θ = V ′
]
≥ 1− exp(−c4a).

We give an intuitive argument here for the simple case when we have Hu = λu in

R[2,a−1],[2,b−1] with a ≥ 10b. We claim that, with high probability,

u|R[1,a],[1,2]∪R[1,a],[b−1,b]
= 0
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will force u ≡ 0 in R[1,a],[1,b] (which is implied by observation 3.5.1 and linearity).

To see this, by Lemma 3.5.4, we can regard function u|R[1,a],[b−1,b]
as the image of

u|R[1,a],[1,2]∪R[1,2],[3,b]
under a linear mapping determined by the potential V . We assume

u|R[1,a],[1,2]
= 0 and u(1, 3) = 1 (recall that we are working in the tilted coordinate

(3.5.7)). It suffices to prove that, with high probability,

u|R[1,a],[b−1,b]
6= 0 for any choice of u|R[1,2],[4,b]

. (3.5.16)

Once this is proved, u|R[1,a],[1,2]∪R[1,a],[b−1,b]
= 0 will force u(1, 3) = 0 and further

u|R[1,a],[1,3]
= 0. By repeating this argument, u|R[1,a],[1,2]∪R[1,a],[b−1,b]

= 0 will force

u(s, t) = 0 for each (s, t) ∈ R[1,2],[3,b] and then u ≡ 0 in R[1,a],[1,b] by Lemma 3.5.4.

To see (3.5.16), let us first calculate u|R[1,a],{3} . Using equation (3.5.9) for t = 2,

we have u(s, 3) + u(s − 2, 3) = 0 for any odd number s ∈ [3, a]. Since u(1, 3) = 1,

inductively we have

u(s, 3) = (−1)
s−1

2 (3.5.17)

for odd s ∈ [1, a]. Let us calculate further u|R[1,a],{4} . Using equations (3.5.9) and

(3.5.17) for t = 3, we have u(s, 4) + u(s− 2, 4) = (−1)
s−2

2 (4 + V (s− 1, 3)− λ) for any

even number s ∈ [3, a]. Inductively, for even s ∈ [1, a],

u(s, 4) = (−1)
s−2

2

u(2, 4) +
∑

2<s′<s, s′ is odd

(4 + V (s′, 3)− λ)

 . (3.5.18)

By equations (3.5.17) and (3.5.18), we can write u|R[1,a],[3,4]
= u(1) + u(2) + u(2, 4)u(3)
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with u(i) ∈ `2(R[1,a],[3,4]) for i = 1, 2, 3. Here, u(1)|R[1,a],{3} = 0 and u(1)|R[1,a],{4} = A(~V )

in which A is a triangular matrix and the vector

~V = (V (3, 3), V (5, 3), · · · , V (a− ia, 3)) (3.5.19)

satisfies ia ∈ {1, 2} and a − ia is an odd number. Moreover, u(2)(s, 3) = (−1)
s−1

2 for

odd s ∈ [1, a] and u(2)(s, 4) = (−1)
s−2

2
(s−2)(4−λ)

2
for even s ∈ [1, a]; u(3)|R[1,a],{3} = 0

and u(3)(s, 4) = (−1)
s−2

2 for even s ∈ [1, a]. Note that, u(2) and u(3) are independent

of potential V (in the sense of random variables). By Lemma 3.5.4, u|R[1,a],[b−1,b]
is

determined linearly by u|∂wR[1,a],[3,b]
. Hence, there are linear operators M0,M1 such

that

u|R[1,a],[b−1,b]
= M0(u(1) + u(2) + u(2, 4)u(3)) +M1(u|R[1,2],[5,b]

). (3.5.20)

Since u(1) is the zero extension of A(~V ) and u(2, 4)u(3) is determined linearly by

u(2, 4), we have

u|R[1,a],[b−1,b]
= M(A(~V )) +M0(u(2)) +M2(u|R[1,2],[4,b]

) (3.5.21)

with linear operators A, M , M0 and M2 all independent of V |R[1,a],{3} . Thus we have

u|R[1,a],[b−1,b]
= 0 implies

M(A(~V )) +M0(u(2)) +M2(u|R[1,2],[4,b]
) = 0. (3.5.22)
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It will be proved later that M can be regarded as a triangular matrix and the operator

MA is injective. Thus (3.5.22) implies

~V = −(MA)−1(M0(u(2)) +M2(u|R[1,2],[4,b]
)) (3.5.23)

with (MA)−1 defined on the range of MA.

However, the rank of operator M2 is at most |R[1,2],[4,b]| which is bounded by b ≤ a
10

.

Thus, conditioning on V |R[1,a],[1,b]\R[1,a],{3} ,

{
−(MA)−1(M0(u(2)) +M2(v)) : v ∈ `2(R[1,2],[4,b])

}

is an affine subspace with dimension no larger than a
10

. Recall (3.5.19), ~V is V |R[1,a],{3}-

measurable and can be regarded as a random element in a Boolean cube with dimen-

sion larger than a
3
. Thus by Lemma 3.1.6, with probability no less than 1−2

a
10
−a

3
+1 >

1− exp(−ca), (3.5.23) fails for any u|R[1,2],[4,b]
. Our claim follows.

The proof of Lemma 3.5.8 below makes the above argument quantitative. Lemma

3.5.8 is also the key in proving Lemma 3.5.20. We start by defining the operator M

in (3.5.21) and prove its triangular matrix structure.

Definition 3.5.9. Given S1 ⊂ S2 ⊂ Z̃2, we use P S2
S1

: `2(S2) → `2(S1) to denote the

restriction operator from S2 to S1. i.e. P S2
S1

(u) = u|S1 for u ∈ `2(S2). We use IS2
S1

to

denote the adjoint operator (P S2
S1

)†, i.e. IS2
S1

(u) = u on S1 and IS2
S1

(u) = 0 on S2 \ S1

for each u ∈ `2(S1).
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Definition 3.5.10. Given energy λ ∈ [0, 8], real number V̄ and integers a, k, k′ such

that a > 1 and k < k′, we define the linear operator

Mk,k′

[1,a] : `2(R[1,a],{k})→ `2(R[1,a],{k′})

as follows:

Mk,k′

[1,a] = P
R[1,a],[k−1,k′]
R[1,a],{k′}

E[1,a],[k−1,k′]I
∂wR[1,a],[k−1,k′]
R[1,a],{k}

. (3.5.24)

Lemma 3.5.11. Given energy λ ∈ [0, 8], real number V̄ and integers a, k, k′ such that

a > 1 and k < k′, the linear operator Mk,k′

[1,a] is V |R[2,a−1],[k,k′−1]
-measurable.

Proof. Lemma 3.5.4 implies that the extension operator E[1,a],[k−1,k′] is V |R[2,a−1],[k,k′−1]
-

measurable, thus Mk,k′

[1,a] is also V |R[2,a−1],[k,k′−1]
-measurable.

Given (s, t) ∈ Z̃2, we use δ(s,t) to denote the function that equals 1 on (s, t) and 0

elsewhere.

Proposition 3.5.12. Suppose we have energy λ ∈ [0, 8], real number V̄ > 2 and integers

a, k, k′, s, s′ such that a ≥ 4, k < k′, (s, k), (s′, k′) ∈ Z̃2 and 4 ≤ s, s′ ≤ a. Then

|〈δ(s′,k′),M
k,k′

[1,a]δ(s,k)〉| =


0 if s′ < s

1 if s′ = s

(3.5.25)

and

|〈δ(s′,k′),M
k,k′

[1,a]δ(s,k)〉| ≤ ((k′ − k + 2)V̄ )C1(s′−s) if s′ > s. (3.5.26)
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Here, C1 is the constant in Lemma 3.5.6.

Proof. Denote R1 = R[1,a],[k−1,k′]. Assume the function u : R1 → R satisfies u|∂wR1 =

δ(s,k) and Hu = λu in R[2,a−1],[k,k′−1]. It suffices to show that

u(s′, k′) = 0 if s′ < s (3.5.27)

u(s′, k′) = (−1)
k′−k

2 if s′ = s (3.5.28)

|u(s′, k′)| ≤ ((k′ − k + 2)V̄ )C1(s′−s) if s′ > s. (3.5.29)

Firstly, since u = 0 on ∂wR[1,s−1],[k−1,k′], we have u = 0 on R[1,s−1],[k−1,k′] by Lemma

3.5.4. Thus (3.5.27) holds. Secondly, we inductively prove u(s, k + 2i) = (−1)i for

i = 0, 1, · · · ,
⌊
k′−k

2

⌋
. This is true for i = 0 since u|∂wR1 = δ(s,k). Suppose u(s, k+2i) =

(−1)i for some i <
⌊
k′−k

2

⌋
. Since s ≥ 4, we can use the equation Hu = λu at the

point (s− 1, k + 2i+ 1). By (3.5.27), we have u(s, k + 2i) + u(s, k + 2i+ 2) = 0 and

thus u(s, k+ 2i+ 2) = (−1)i+1. By induction we have
∣∣u (s, k + 2

⌊
k′−k

2

⌋)∣∣ = 1. Since

s = s′ implies k − k′ is even, (3.5.28) follows.

Finally we suppose s′ > s. By (3.5.27) and (3.5.28), ‖u‖`∞(∂wR[s−1,s′],[k−1,k′])
= 1.

Then by (3.5.12) in Lemma 3.5.6,

‖u‖`∞(R[s−1,s′],[k−1,k′])
≤ (V̄ (k′ − k + 2))C1(s′−s).

In particular, |u(s′, k′)| ≤ (V̄ (k′ − k + 2))C1(s′−s) and (3.5.29) follows.

Corollary 3.5.13. Suppose we have energy λ ∈ [0, 8], real number V̄ > 2 and integers
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a, k, k′ such that a ≥ 6 and k < k′. Assume k and k′ have the same parity. Suppose

S1 ⊂ R[4,a−1],{k′}

and let S2 = {(s, k) : (s, k′) ∈ S1} ⊂ R[4,a−1],{k}. Then

‖(PR[1,a],{k′}
S1

Mk,k′

[1,a]I
R[1,a],{k}
S2

)−1‖ ≤ a(2V̄ (k′ − k + 2))2C1a. (3.5.30)

Proof. By Proposition 3.5.12, P
R[1,a],{k′}
R[4,a−1],{k′}

Mk,k′

[1,a]I
R[1,a],{k}
R[4,a−1],{k}

can be regarded as an upper

triangular matrix (aij)1≤i,j≤d such that |aii| = 1 and

|aij| ≤ ((k′ − k + 2)V̄ )2C1|i−j|

for 1 ≤ i, j ≤ d. Here, d = |R[4,a−1],{k}| ≤ a.

Since P
R[1,a],{k′}
S1

Mk,k′

[1,a]I
R[1,a],{k}
S2

can be regarded as a principal submatrix which is

also an upper triangular matrix, our conclusion follows from Lemma 3.5.2.

Lemma 3.5.14. Suppose we have real numbers λ, V̄ , integers a > 1 and 2 < b∗ < b.

Denote R1 = R[1,a],[1,b], R2 = R[1,a],[1,b∗+1] and R3 = R[1,a],[1,b∗−1]. Then the following

linear operator from `2(∂wR3)→ `2(R[1,a],{b})

PR1
R[1,a],{b}

ER1I
∂wR1
∂wR3

−M b∗+1,b
[1,a] PR2

R[1,a],{b∗+1}
ER2I

∂wR2
∂wR3

(3.5.31)

is independent of V |R[1,a],{b∗}
(in the sense of random variables).
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Lemma 3.5.14 allows us to write the operator PR1
R[1,a],{b}

ER1I
∂wR1
∂wR3

as the sum of

two operators: a V |R[1,a],{b∗}
-measurable operator and a V |R[1,a],{b∗}

-independent op-

erator. Here, the V |R[1,a],{b∗}
-measurable operator can be written as the composition

of a V |R[1,a],{b∗}
-independent operator M b∗+1,b

[1,a] and the operator PR2
R[1,a],{b∗+1}

ER2I
∂wR2
∂wR3

.

Thus intuitively, Lemma 3.5.14 says that the V |R[1,a],{b∗}
-measurable “part” of opera-

tor PR1
R[1,a],{b}

ER1I
∂wR1
∂wR3

is “contained” in PR2
R[1,a],{b∗+1}

ER2I
∂wR2
∂wR3

. The proof is by direct

calculation.

Proof of Lemma 3.5.14. Denote R4 = R[1,a],[b∗,b] and let u ∈ `2(∂wR3). Let v =

ER1I
∂wR1
∂wR3

(u), then by uniqueness in Lemma 3.5.4,

v|R[1,a],{b} = PR4
R[1,a],{b}

ER4(v|∂wR4). (3.5.32)

Let v1 = v|R[1,a],{b∗}
and v2 = v|R[1,a],{b∗+1} . Note that v|R[1,2],[b∗,b]

= 0. By (3.5.32) and

linearity of ER4 ,

v|R[1,a],{b}

= PR4
R[1,a],{b}

ER4I
∂wR4
R[1,a],{b∗}

(v1) + PR4
R[1,a],{b}

ER4I
∂wR4
R[1,a],{b∗+1}

(v2)

= PR4
R[1,a],{b}

ER4I
∂wR4
R[1,a],{b∗}

(v1) +M b∗+1,b
[1,a] (v2).

(3.5.33)

Here, we used Definition 3.5.10.

By uniqueness in Lemma 3.5.4, v2 = PR2
R[1,a],{b∗+1}

ER2I
∂wR2
∂wR3

(u). Thus the image of

u under the operator (3.5.31) is v|R[1,a],{b} −M b∗+1,b
[1,a] (v2). Thus by (3.5.33), in order to
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prove the conclusion, it suffices to prove that the linear operator

u 7→ PR4
R[1,a],{b}

ER4I
∂wR4
R[1,a],{b∗}

(v1)

is independent of V |R[1,a],{b∗}
.

To see this, note that ER4 is independent of V |R[1,a],{b∗}
by Lemma 3.5.4. On the

other hand, let R5 = R[1,a],[1,b∗], then by uniqueness in Lemma 3.5.4 again, we have

v1 = PR5
R[1,a],{b∗}

ER5I
∂wR5
∂wR3

(u). Since ER5 is also independent of V |R[1,a],{b∗}
by Lemma

3.5.4, the conclusion follows.

Proof of Lemma 3.5.8. For each (s′, t′) ∈ R[1,2],[3,b], let E (s′,t′)
tr denote the following

event: 

Hu = λ0u in R[2,a−1],[2,b−1]

u(s′, t′) = 1

u(s, t) = 0 on R[1,a],[1,2]

|u(s, t)| ≤ (aV̄ )10C1(t−t′) on R[1,2],[1,t′−1]

(3.5.34)

implies |u| ≥ (aV̄ )−
1
2
α1a on a 1

106 fraction of R[1,a],[b−1,b].

Claim 3.5.15.
⋂{E (s′,t′)

tr : (s′, t′) ∈ R[1,2],[3,b]

}
⊂ Etr(R[1,a],[1,b]) for α1 > 20C1.

Proof of the claim. Assume E (s,t)
tr holds for each (s, t) ∈ R[1,2],[3,b], we prove that

Etr(R[1,a],[1,b]) also holds.

Given any u : R[1,a],[1,b] → R satisfying (3.5.15), let (s′, t′) ∈ R[1,2],[3,b] maximize
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(aV̄ )−10C1t′|u(s′, t′)|. Then ‖u‖`∞(R[1,2],[1,b]) = 1 implies

|u(s′, t′)| ≥ (aV̄ )−10C1b.

Let ũ = u
u(s′,t′)

, then ũ satisfies (3.5.34) and thus |ũ| ≥ (aV̄ )−
1
2
α1a on a 1

106 fraction of

R[1,a],[b−1,b]. Hence |u| ≥ (aV̄ )−( 1
2
α1+10C1)a on a 1

106 fraction of R[1,a],[b−1,b]. The claim

follows from α1 > 20C1.

Claim 3.5.16. If t′ ∈ {b− 1, b}, then P
[
E (s′,t′)
tr

∣∣ V |Θ = V ′
]

= 1.

Proof. If t′ ∈ {b− 1, b} and u satisfies (3.5.34), we claim that

‖u‖`∞(R[1,a],{t}) ≤ (aV̄ )5C1(t−t′) (3.5.35)

for each t = 1, · · · , t′− 1 and we prove (3.5.35) by induction. For t = 1, 2, this is true

since u = 0 on R[1,a],[1,2]. Suppose our claim holds up to t < t′ − 1, using equation

(3.5.9) on R[1,a],{t} and inductive hypothesis, we have

|u(s, t+ 1) + u(s+ 2, t+ 1)| ≤ |16 + V̄ |(aV̄ )5C1(t−t′) (3.5.36)

for s ∈ [1, a− 2] with the same parity as t+ 1. By (3.5.34),

|u(s0, t+ 1)| ≤ (aV̄ )10C1(t+1−t′)
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for s0 ∈ {1, 2} with the same parity as t+ 1. Recursively using (3.5.36), we have

|u(s, t+ 1)| ≤ s(16 + V̄ )(aV̄ )5C1(t−t′) ≤ (aV̄ )5C1(t+1−t′)

for any s ∈ [1, a] with the same parity as t+ 1. Thus induction proves (3.5.35) and

‖u‖`∞(R[1,a],{t′−2,t′−1})
≤ (aV̄ )−5C1 .

Using equation (3.5.9) on R[1,a],{t′−1}, we have

|u(s, t′) + u(s+ 2, t′)| ≤ |16 + V̄ |(aV̄ )−5C1 ≤ (aV̄ )−2 (3.5.37)

for s ∈ [1, a − 2] with the same parity as t′. Since u(s′, t′) = 1, using (3.5.37)

recursively, we have |u(s, t′)| ≥ 1
2

for any s ∈ [1, a] with the same parity as t′. Thus

E (s′,t′)
tr holds since t′ ∈ {b− 1, b}.

Claim 3.5.17. Suppose (s′, t′) ∈ R[1,2],[3,b−2]. Let s′′ ∈ {1, 2} and b0 ∈ {b − 1, b} both

have the same parity as t′ + 1. Then there exist

1. operators A1 : `2(R[1,2],[1,t′−1]) → `2(R[1,a],{b0}) and A2 : `2(R[1,2],[t′+1,b]) →

`2(R[1,a],{b0}) which are independent of V |R[1,a],{t′}
,

2. vector v∗ ∈ `2(R[1,a],{b0}) which is independent of V |R[1,a],{t′}
,
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3. vector ~Vt′ ∈ Rd0 with d0 = |R[1,a],{t′+1}| − 1 defined by

~Vt′ =

d0∑
i=1

V (s′′ + 2i− 1, t′)ei (3.5.38)

where {ei : 1 ≤ i ≤ d0} is the standard basis of Rd0,

4. A0 : Rd0 → `2(R[1,a],{t′+1}) defined as follows: for any (s, t′ + 1) ∈ R[1,a],{t′+1}

and i ∈ {1, · · · , d0},

〈δ(s,t′+1), A0ei〉 =


(−1)

s−s′−1
2 if s > s′′ and 1 ≤ i ≤ s−s′′

2

0 otherwise,

(3.5.39)

such that the following holds.

For any u satisfying (3.5.34), there exists u∗ ∈ `2(R[1,a],{t′+1}) with

‖u∗‖ ≤ (aV̄ )−5, (3.5.40)

such that

u|R[1,a],{b0}
= M t′+1,b0

[1,a] (u∗+A0(~Vt′))+A1(u|R[1,2],[1,t′−1]
)+A2(u|R[1,2],[t′+1,b]

)+v∗. (3.5.41)

Proof. Assume u satisfies (3.5.34). Denote R1 = R[1,a],[1,b]. Let u0 = δ(s′,t′) on ∂wR1,

u1 = u|R[1,2],[1,t′−1]
and u2 = u|R[1,2],[t′+1,b]

. Then u is determined by u1 and u2 since we
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R2

t′− 1

t

1

t′

s

R0

b

t′+1

Figure 3.3: An illustration for tilted rectangles. Here, we have R0 = R[1,a],[t′,b] and
R2 = R[1,a],[1,t′+1] which are contained in R1 = R[1,a],[1,b].

can decompose

u|∂wR1 = u′1 + u′2 + u0, (3.5.42)

where u′1 = I∂
wR1

R[1,2],[1,t′−1]
u1 and u′2 = I∂

wR1
R[1,2],[t′+1,b]

u2. Thus

u = ER1(u′1) + ER1(u′2) + ER1(u0)

and

u|R[1,a],{b0}
(3.5.43)

= PR1
R[1,a],{b0}

ER1(u′1) + PR1
R[1,a],{b0}

ER1(u′2) + PR1
R[1,a],{b0}

ER1(u0). (3.5.44)
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We analyse each of three terms in (3.5.44) and will arrive at equation (3.5.41). More

specifically, we will derive the correspondence between terms in (3.5.41) and (3.5.44)

as follows:

1. PR1
R[1,a],{b0}

ER1(u′1) = A1(u1) +M t′+1,b0
[1,a] (u∗),

2. PR1
R[1,a],{b0}

ER1(u′2) = A2(u2),

3. PR1
R[1,a],{b0}

ER1(u0) = v∗ +M t′+1,b0
[1,a] A0(~Vt′).

Here, A0, A1, A2, u∗, v∗ and ~Vt′ satisfy the properties in the conditions of this claim.

The first term in (3.5.44): The strategy here is to apply Lemma 3.5.14. Note that

PR1
R[1,a],{b0}

ER1(u′1) = PR1
R[1,a],{b0}

ER1I
∂wR1
R[1,2],[1,t′−1]

(u1). (3.5.45)

Denote R2 = R[1,a],[1,t′+1] (see Figure 3.3), using Lemma 3.5.14 with b∗ = t′, we can

write

PR1
R[1,a],{b0}

ER1I
∂wR1
R[1,2],[1,t′−1]

= A1 +M t′+1,b0
[1,a] PR2

R[1,a],{t′+1}
ER2I

∂wR2
R[1,2],[1,t′−1]

. (3.5.46)

Here, A1 : `2(R[1,2],[1,t′−1])→ `2(R[1,a],{b0}) is a linear operator which is independent of

V |R[1,a],{t′}
. We claim that

‖PR2
R[1,a],{t′+1}

ER2I
∂wR2
R[1,2],[1,t′−1]

u1‖2 ≤ (V̄ a)−5. (3.5.47)
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To see this, let v1 = ER2I
∂wR2
R[1,2],[1,t′−1]

u1. We inductively prove that

|v1(s, t)| ≤ (aV̄ )5C1(t−t′) (3.5.48)

for each (s, t) ∈ R[1,a],[1,t′−1]. For t = 1, 2, this is true since v1 = 0 on R[1,a],[1,2].

Suppose (3.5.48) is true for t and t + 1 and suppose t + 2 < t′, using inductive

hypothesis and (3.5.9) on R[1,a],{t+1}, we have

|v1(s, t+ 2) + v1(s+ 2, t+ 2)| ≤ |16 + V̄ |(aV̄ )5C1(t+1−t′)

for each s ∈ [1, a− 2] with the same parity as t. Since by (3.5.34),

|v1(s1, t+ 2)| ≤ (aV̄ )10C1(t+2−t′)

for s1 ∈ {1, 2} with the same parity as t+ 2. We recursively have

|v1(s, t+ 2)| ≤ s(16 + V̄ )(aV̄ )5C1(t+1−t′) ≤ (aV̄ )5C1(t+2−t′) (3.5.49)

for each s ∈ [1, a] with the same parity as t+2. Thus by induction we have |v1(s, t)| ≤

(aV̄ )−5C1 for (s, t) ∈ R[1,a],[1,t′−1]. Finally, since v1 = 0 on R[1,2],[t′,t′+1], we have

‖v1‖`∞(∂wR[1,a],[t′−2,t′+1])
≤ (aV̄ )−5C1 .
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Thus (3.5.47) follows from Lemma 3.5.6 and C1 ≥ 10.

In conclusion, by (3.5.45), (3.5.46) and (3.5.47),

PR1
R[1,a],{b0}

ER1(u′1) = A1(u1) +M t′+1,b0
[1,a] (u∗), (3.5.50)

where u∗ = PR2
R[1,a],{t′+1}

ER2I
∂wR2
R[1,2],[1,t′−1]

(u1) with

‖u∗‖2 ≤ (aV̄ )−5. (3.5.51)

The second term in (3.5.44): We have

PR1
R[1,a],{b0}

ER1(u′2) = A2(u2) (3.5.52)

where A2 = PR1
R[1,a],{b0}

ER1I
∂wR1
R[1,2],[t′+1,b]

. We claim that A2 is independent of V |R[1,a],{t′}
.

To see this, let v2 = ER1I
∂wR1
R[1,2],[t′+1,b]

(u2). Since I∂
wR1

R[1,2],[t′+1,b]
(u2) = 0 on ∂wR[1,a],[1,t′], we

have v2 ≡ 0 on R[1,a],[1,t′] by Lemma 3.5.4. Using equation (3.5.9) for v2 on R[1,a],{t′},

we get

v2(s, t′ + 1) = (−1)
s−s′′

2 u2(s′′, t′ + 1) (3.5.53)

for s ∈ [1, a] with the same parity as s′′. By (3.5.53) and v2|R[1,a],{t′}
= 0 and Lemma

3.5.4, the linear transform

I∗ : u2 7→ v2|∂wR[1,a],[t′,b]
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is independent of V |R[1,a],{t′}
. Note that

v2|R[1,a],{b0}
=P

R[1,a],[t′,b]
R[1,a],{b0}

E[1,a],[t′,b](v2|∂wR[1,a],[t′,b]
)

=P
R[1,a],[t′,b]
R[1,a],{b0}

E[1,a],[t′,b]I
∗(u2).

By Lemma 3.5.4, E[1,a],[t′,b] is independent of V |R[1,a],{t′}
. Since

A2 = P
R[1,a],[t′,b]
R[1,a],{b0}

E[1,a],[t′,b]I
∗,

thus A2 is independent of V |R[1,a],{t′}
.

The third term in (3.5.44): Let v0 = ER1(u0). The strategy here is to express

v0|R[1,a],[t′,t′+1]
as a function of ~Vt′ . We have

v0|R[1,a],[1,t′−1]
= E[1,a],[1,t′−1](u0|∂wR[1,a],[1,t′−1]

) = 0. (3.5.54)

Using equation (3.5.8) on the segment R[2,a−1],{t′−1}, by (3.5.54), we have

v0(s, t′) + v0(s+ 2, t′) = 0

for each (s, t′) ∈ R[1,a−2],{t′}. Thus recursively from v0(s′, t′) = 1, we have

v0(s, t′) = (−1)
s−s′

2 (3.5.55)
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for (s, t′) ∈ R[1,a],{t′}. Using equation (3.5.8) on the segment R[2,a−1],{t′}, we have

v0(s+ 1, t′ + 1) + v0(s− 1, t′ + 1) = (V (s, t′)− λ0 + 4)v0(s, t′)

for each (s, t′) ∈ R[2,a−1],{t′}. Recall s′′ ∈ {1, 2} has the same parity as t′ + 1. Then

recursively from v0(s′′, t′ + 1) = 0 and (3.5.55) we have

v0(s1, t
′ + 1) (3.5.56)

=(−1)
s1−s

′−1
2

∑
s′′<s<s1
s 6≡s′′ mod 2

(V (s, t′)− λ0 + 4) (3.5.57)

=(−1)
s1−s

′−1
2

(4− λ0)(s1 − s′′)
2

+ (−1)
s1−s

′−1
2

s1−s
′′

2∑
i=1

V (s′′ + 2i− 1, t′) (3.5.58)

for any s1 ∈ (s′′, a] with the same parity as s′′. By (3.5.38) and (3.5.39), we can

rewrite (3.5.58) as

v0|R[1,a],{t′+1}
= v∗ + A0(~Vt′), (3.5.59)

where v∗ ∈ `2(R[1,a],{t′+1}) satisfies

v∗(s, t
′ + 1) = (−1)

s−s′−1
2

(4− λ0)(s− s′′)
2

,

for s ∈ [1, a] with the same parity as s′′. Hence we have

v0|R[1,a],[t′,t′+1]
= v∗∗ + I

R[1,a],[t′,t′+1]

R[1,a],{t′+1}
A0(~Vt′), (3.5.60)
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where v∗∗|R[1,a],{t′+1}
= v∗ and v∗∗(s, t

′) = (−1)
s−s′

2 for s ∈ [1, a] with the same parity

as s′.

Denote R0 = R[1,a],[t′,b0] (see Figure 3.3), then

v0|R[1,a],{b0}
= PR0

R[1,a],{b0}
ER0I

∂wR0
R[1,a],[t′,t′+1]

v0|R[1,a],[t′,t′+1]
.

Together with (3.5.60), we have

v0|R[1,a],{b0}

= PR0
R[1,a],{b0}

ER0I
∂wR0
R[1,a],[t′,t′+1]

(v∗∗) + PR0
R[1,a],{b0}

ER0I
∂wR0
R[1,a],{t′+1}

A0(~Vt′)

= PR0
R[1,a],{b0}

ER0I
∂wR0
R[1,a],[t′,t′+1]

(v∗∗) +M t′+1,b0
[1,a] A0(~Vt′)

= v∗ +M t′+1,b0
[1,a] A0(~Vt′).

(3.5.61)

Here, we used the Definition 3.5.10 of M t′+1,b0
[1,a] , and in the last equation we denoted

v∗ = PR0
R[1,a],{b0}

ER0I
∂wR0
R[1,a],[t′,t′+1]

(v∗∗)

which is independent of V |R[1,a],{t′}
by Lemma 3.5.4. In conclusion,

PR1
R[1,a],{b0}

ER1(u0) = v0|R[1,a],{b0}
= v∗ +M t′+1,b0

[1,a] A0(~Vt′). (3.5.62)
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Finally plug (3.5.50),(3.5.52) and (3.5.62) into equation (3.5.44), we have

u|R[1,a],{b0}
= M t′+1,b0

[1,a] (u∗ + A0(~Vt′)) + A1(u1) + A2(u2) + v∗ (3.5.63)

which is equation (3.5.41) and our claim follows.

Now let c4 <
1

107 . Fix (s′, t′) ∈ R[1,2],[3,b−2]. Since Θ is (c4,−)-sparse in R[1,a],[1,b],

|Θ ∩R[1,a],{t′}| ≤ c4a ≤
a

107
. (3.5.64)

Pick b0 ∈ {b− 1, b} and s′′ ∈ {1, 2} with the same parity as t′ + 1. Denote

Θ∗ = {(s, b0) : (s− 1, t′) ∈ Θ} ∩R[4,a−1],{b0}. (3.5.65)

For any S ⊂ R[4,a−1],{b0}, let E (s′,t′)
S denote the event:

(3.5.34) implies ‖u‖`2(S) ≥ (aV̄ )−
1
3
α1a. (3.5.66)

Claim 3.5.18. For any a ≥ 107, we have

⋂{
E (s′,t′)
S : S ⊂ R[4,a−1],{b0} \Θ∗, |R[1,a],{b0} \ S| =

⌊
a/105

⌋}
⊂ E (s′,t′)

tr .

Proof of the claim. Assume the event E (s′,t′)
tr does not hold. Then we can find u ∈
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`2(R[1,a],[1,b]) satisfying (3.5.34) but

|{(s, t) ∈ R[1,a],{b−1,b} : |u(s, t)| ≥ (aV̄ )−α1a}| ≤ 10−6a.

Hence by (3.5.64),

|Θ∗ ∪ {(s, t) ∈ R[1,a],{b0} : |u(s, t)| ≥ (aV̄ )−α1a}|

≤ 10−7a+ 10−6a

≤ 10−5a− 5.

Thus there is S ⊂ R[4,a−1],{b0} \ Θ∗ such that |R[1,a],{b0} \ S| = ba/105c and

‖u‖`∞(S) ≤ (aV̄ )−α1a. This implies

‖u‖`2(S) ≤ a(aV̄ )−α1a < (aV̄ )−
1
3
α1a.

Hence E (s′,t′)
S does not hold.

Claim 3.5.19. For large enough a, P
[
E (s′,t′)
S

∣∣ V |Θ = V ′
]
≥ 1 − exp(−a/50) holds for

any subset S ⊂ R[4,a−1],{b0} \Θ∗ such that |R[1,a],{b0} \ S| = ba/105c.

Proof of the claim. Denote R1 = R[1,a],[1,b]. It is sufficient to prove that

P
[
E (s′,t′)
S

∣∣ V |Θ∪(R1\R[1,a],{t′})

]
≥ 1− exp(−a/50) (3.5.67)
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for any S ⊂ R[4,a−1],{b0} \ Θ∗ such that |R[1,a],{b0} \ S| ≤ a/50. We pick an arbitrary

S0 ⊂ R[4,a−1],{b0} \Θ∗ with

|R[1,a],{b0} \ S0| ≤ a/50. (3.5.68)

Let

S ′0 = {(s, t′ + 1) : (s, b0) ∈ S0} ⊂ R[4,a−1],{t′+1}

and

MS0 = P
R[1,a],{b0}
S0

M t′+1,b0
[1,a] I

R[1,a],{t′+1}
S′0

.

By Corollary 3.5.13,

‖M−1
S0
‖ ≤ a(2(b0 − t′ + 1)V̄ )2C1a ≤ (aV̄ )3C1a. (3.5.69)

Let d0 = |R[1,a],{t′+1}| − 1 and {ei}d0
i=1 be the standard basis in Rd0 . For any S ⊂

{1, · · · , d0}, let PS be the orthogonal projection onto the span of {ei : i ∈ S} and P †S

be its adjoint. Denote

S0 = {(s− s′′)/2 : (s, t′ + 1) ∈ S ′0} ⊂ {1, · · · , d0}, (3.5.70)

and let

AS0 = P
R[1,a],{t′+1}
S′0

A0P
†
S0

where A0 is defined in (3.5.39). By (3.5.39), AS0 can be regarded as a triangular
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matrix and by simple calculations, we have

‖A−1
S0
‖ ≤ a. (3.5.71)

Denote A′ = I
R[1,a],{t′+1}
R[1,a],{t′+1}\S′0

P
R[1,a],{t′+1}
R[1,a],{t′+1}\S′0

and Sc0 = {1, · · · , d0} \ S0. Then we can de-

compose the identity operator on `2(R[1,a],{t′+1}) by I(1) = A′+ I
R[1,a],{t′+1}
S′0

P
R[1,a],{t′+1}
S′0

,

and the identity operator on Rd0 by I(2) = P †S0
PS0 + P †Sc0PS

c
0
.

Suppose u satisfies (3.5.34). By Claim 3.5.17, there exists u∗ ∈ `2(R[1,a],{t′+1})

with ‖u∗‖ ≤ (aV̄ )−5 and we have

u|R[1,a],{b0}
= M t′+1,b0

[1,a] (u∗+A0(~Vt′))+A1(u|R[1,2],[1,t′−1]
)+A2(u|R[1,2],[t′+1,b]

)+v∗ (3.5.72)

such that A0, A1, A2, v
∗ are all independent of V |R[1,a],{t′}

and vector ~Vt′ ∈ Rd0 is

V |R[1,a],{t′}
-measurable. By the argument above, we can expand the first term in

(3.5.72) (or (3.5.41)) as follows:

M t′+1,b0
[1,a] (u∗ + A0(~Vt′))

=M t′+1,b0
[1,a] I(1)(u∗ + A0(~Vt′))

=M t′+1,b0
[1,a]

(
A′ + I

R[1,a],{t′+1}
S′0

P
R[1,a],{t′+1}
S′0

)
(u∗ + A0(~Vt′))

=M t′+1,b0
[1,a] A′(u∗ + A0(~Vt′)) +M t′+1,b0

[1,a] I
R[1,a],{t′+1}
S′0

P
R[1,a],{t′+1}
S′0

(u∗)

+M t′+1,b0
[1,a] I

R[1,a],{t′+1}
S′0

P
R[1,a],{t′+1}
S′0

A0(~Vt′),

(3.5.73)
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and the last term in the last equation of (3.5.73) can be further expanded:

M t′+1,b0
[1,a] I

R[1,a],{t′+1}
S′0

P
R[1,a],{t′+1}
S′0

A0(~Vt′)

=M t′+1,b0
[1,a] I

R[1,a],{t′+1}
S′0

P
R[1,a],{t′+1}
S′0

A0I
(2)(~Vt′)

=M t′+1,b0
[1,a] I

R[1,a],{t′+1}
S′0

P
R[1,a],{t′+1}
S′0

A0

(
P †S0

PS0 + P †Sc0PS
c
0

)
(~Vt′)

=M t′+1,b0
[1,a] I

R[1,a],{t′+1}
S′0

AS0PS0(~Vt′)

+M t′+1,b0
[1,a] I

R[1,a],{t′+1}
S′0

P
R[1,a],{t′+1}
S′0

A0P
†
Sc0
PSc0(~Vt′).

(3.5.74)

Plug (3.5.73) and (3.5.74) into (3.5.41), after projecting onto S0, we have

u|S0

=MS0AS0(A−1
S0
P
R[1,a],{t′+1}
S′0

(u∗) + PS0(~Vt′))

+P
R[1,a],{b0}
S0

M t′+1,b0
[1,a] A′(u∗ + A0(~Vt′)) +MS0P

R[1,a],{t′+1}
S′0

A0P
†
Sc0
PSc0(~Vt′)

+P
R[1,a],{b0}
S0

A1(u|R[1,2],[1,t′−1]
) + P

R[1,a],{b0}
S0

A2(u|R[1,2],[t′+1,b]
)

+v∗|S0 .

(3.5.75)

Let Γ ⊂ `2(S0) be the direct sum of the ranges of the following four operators appeared

in the third and fourth lines of (3.5.75):

P
R[1,a],{b0}
S0

M t′+1,b0
[1,a] A′, MS0P

R[1,a],{t′+1}
S′0

A0P
†
Sc0
PSc0 , P

R[1,a],{b0}
S0

A1, P
R[1,a],{b0}
S0

A2.

Let us denote

Γ− v∗|S0 = {−v∗|S0 + x : x ∈ Γ} ⊂ `2(S0)
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and define the event Edist as

dist(PS0(~Vt′), (MS0AS0)−1(Γ− v∗|S0)) ≥ V̄

4
a−1 (3.5.76)

where dist is the Euclidean distance. We claim that Edist ⊂ E (s′,t′)
S0

by choosing α1 >

15C1 (recall definition (3.5.66) of E (s′,t′)
S ). To see this, assume Edist holds. (3.5.75)

implies

‖u‖`2(S0)

≥ dist
(
MS0AS0(A−1

S0
P
R[1,a],{t′+1}
S′0

(u∗) + PS0(~Vt′)),Γ− v∗|S0

)
≥ ‖(MS0AS0)−1‖−1 dist

(
A−1
S0
P
R[1,a],{t′+1}
S′0

(u∗) + PS0(~Vt′), (MS0AS0)−1(Γ− v∗|S0)
)

≥ (aV̄ )−4C1a dist
(
A−1
S0
P
R[1,a],{t′+1}
S′0

(u∗) + PS0(~Vt′), (MS0AS0)−1(Γ− v∗|S0)
)
.

(3.5.77)

Here, we used (3.5.69) and (3.5.71). By (3.5.40) and (3.5.71), we have

‖A−1
S0
P
R[1,a],{t′+1}
S′0

(u∗)‖ ≤ ‖A−1
S0
‖‖u∗‖ ≤ a(aV̄ )−5 ≤ a−4.

Thus (3.5.77) further implies

‖u‖`2(S0) ≥ (aV̄ )−4C1a
(

dist
(
PS0(~Vt′), (MS0AS0)−1(Γ− v∗|S0)

)
− a−4

)
. (3.5.78)
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By letting α1 > 15C1, Edist (or (3.5.76)) implies

‖u‖`2(S0) ≥ (aV̄ )−4C1a

(
V̄

4
a−1 − a−4

)
≥ (aV̄ )−5C1a ≥ (aV̄ )−

1
3
α1a.

This proves our claim that Edist ⊂ E (s′,t′)
S0

. Thus in order to prove (3.5.67) with S = S0,

it suffices to prove

P
[
Edist

∣∣ V |Θ∪(R1\R[1,a],{t′})

]
≥ 1− exp(−a/50). (3.5.79)

To see this, we first prove an upper bound for the dimension of Γ. The ranks of opera-

tors P
R[1,a],{b0}
S0

A1 and P
R[1,a],{b0}
S0

A2 are less than b since the dimensions of their domains

are less than b. On the other hand, the ranks of operators MS0P
R[1,a],{t′+1}
S′0

A0P
†
Sc0
PSc0

and P
R[1,a],{b0}
S0

M t′+1,b0
[1,a] A′ are at most a/50 since we have |Sc0|, |R[1,a],{t′+1} \S ′0| ≤ a/50.

Since b ≤ a/10, the dimension of Γ is at most b+ b+ a/50 + a/50 ≤ 2
5
a.

Together with Claim 3.5.17, these imply that (MS0AS0)−1(Γ− v∗|S0) ⊂ RS0 is an

affine subspace with dimension at most 2
5
a and is independent of V |R[1,a],{t′}

. On the

other hand, since S0 ⊂ R[4,a−1],{b0} \ Θ∗, by definition (3.5.65) of Θ∗ and equations

(3.5.38) and (3.5.70), PS0(~Vt′) is independent of V |Θ. Moreover, by (3.5.68), we have

a ≥ |S0| ≥ d0 − a/50 ≥ 2

5
a+

1

20
a.

Thus by Lemma 3.1.6, conditioning on V |Θ∪(R1\R[1,a],{t′})
, with probability no less than
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1− 2−
1
20
a+1 ≥ 1− exp(−a/50), we have

dist(PS0(~Vt′), (MS0AS0)−1(Γ− v∗|S0)) ≥ V̄

4
a−1

which is (3.5.76). Hence (3.5.79) holds and Claim 3.5.19 follows.

Now, by Claim 3.5.18 and Claim 3.5.19, and letting c4 be small enough,

P
[(
E (s′,t′)
tr

)c ∣∣ V |Θ]
≤

∑
S⊂R[4,a−1],{b0}\Θ∗
|R[1,a],{b0}\S|=ba/105c

P
[(
E (s′,t′)
S

)c ∣∣ V |Θ]

≤
∑

S⊂R[4,a−1],{b0}\Θ∗
|R[1,a],{b0}\S|=ba/105c

exp(−a/50)

≤
(

a

ba/105c

)
exp(−a/50)

≤ exp(−2c4a)

for any large enough a.
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Finally, by Claim 3.5.15 and Claim 3.5.16,

P
[
Etr(R[1,a],[1,b])

∣∣ V |Θ = V ′
]

≥ 1−
∑

(s′,t′)∈R[1,2],[3,b]

P
[(
E (s′,t′)
tr

)c ∣∣ V |Θ = V ′
]

≥ 1− b exp(−2c4a)

≥ 1− exp(−c4a).

Our conclusion follows.

Lemma 3.5.20. There are constants α2 > 1 > c5 > 0 such that, if

1. integers a > b > α2 with 10b ≤ a ≤ 60b,

2. λ0 ∈ [0, 8], V̄ ≥ 2,

3. Θ ⊂ Z2 is (c5,−)-sparse in R[1,a],[1,b],

4. V ′ : Θ→ {0, V̄ },

5. Eni(R[1,a],[1,b]) denotes the event that,



|λ− λ0| ≤ (aV̄ )−α2a

Hu = λu in R[2,a−1],[2,b−1]

|u| ≤ 1 on R[1,a],[1,2]

|u| ≤ 1 on a 1− 10−7 fraction of R[1,a],[b−1,b]

(3.5.80)

implies |u| ≤ (aV̄ )α2a in R[1,a],[1,b],
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then P
[
Eni(R[1,a],[1,b])

∣∣ V |Θ = V ′
]
≥ 1− exp(−c5a).

Proof. Denote R1 = R[1,a],[1,b]. Set c5 = c4 where c4 is the constant in Lemma 3.5.8

and α2 to be determined. We prove that Etr(R1) ⊂ Eni(R1) where Etr(R1) is defined

in Lemma 3.5.8. Suppose event Etr(R1) holds and u satisfies (3.5.80). By Lemma

3.5.4, there is u1 : R1 → R such that


Hu1 = λu1 in R[2,a−1],[2,b−1]

u1 = u on R[1,a],[1,2]

u1 = 0 on R[1,2],[3,b].

(3.5.81)

By Lemma 3.5.6, ‖u1‖`∞(R1) ≤ (aV̄ )C1b since ‖u1‖`∞(∂wR1) ≤ 1. Let u2 = u− u1, then

|u2| ≤ 1 + (aV̄ )C1b (3.5.82)

on a 1− 10−7 fraction of R[1,a],[b−1,b]. Define u3 : R1 → R as follows:


Hu3 = λ0u3 in R[2,a−1],[2,b−1]

u3 = 0 on R[1,a],[1,2]

u3 = u2 on R[1,2],[3,b].

(3.5.83)
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By Lemma 3.5.7,

‖u3 − u2‖`∞(R1)

≤ (aV̄ )C2b‖u3‖`∞(∂wR1)|λ− λ0|

≤ (aV̄ )C2b−α2a‖u3‖`∞(∂wR1)

≤ (aV̄ )−2α1a‖u3‖`∞(R[1,2],[3,b]),

(3.5.84)

as long as α2 > 2α1 + C2. By the definition of Etr(R1),

|u3| ≥ (aV̄ )−α1a‖u3‖`∞(R[1,2],[3,b])

on a 10−6 fraction of R[1,a],[b−1,b]. Thus by (3.5.84),

|u2| ≥
(
(aV̄ )−α1a − (aV̄ )−2α1a

)
‖u3‖`∞(R[1,2],[3,b]) ≥ (aV̄ )−2α1a‖u3‖`∞(R[1,2],[3,b])

on a 10−6 fraction of R[1,a],[b−1,b]. By (3.5.82),

(aV̄ )−2α1a‖u3‖`∞(R[1,2],[3,b]) ≤ 1 + (aV̄ )C1b

and thus

‖u2‖`∞(R[1,2],[3,b]) = ‖u3‖`∞(R[1,2],[3,b]) ≤ (aV̄ )2α1a + (aV̄ )C1b+2α1a.
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Since u2 = 0 on R[1,a],[1,2], by Lemma 3.5.6, we have ‖u2‖`∞(R1) ≤ 2(aV̄ )2C1b+2α1a.

Finally,

‖u‖`∞(R1) ≤ ‖u1‖`∞(R1) + ‖u2‖`∞(R1)

≤ (aV̄ )C1b + 2(aV̄ )2C1b+2α1a

≤ (aV̄ )α2a

as long as α2 > 2α1 + 3C1. Thus Etr(R1) ⊂ Eni(R1) and our conclusion follows from

Lemma 3.5.8.

3.5.4 Growth lemma

Definition 3.5.21. Given a tilted square R[a1,a2],[b1,b2] and integer k ∈ Z+, we define

kR[a1,a2],[b1,b2] to be R[a3,a4],[b3,b4] where a3 =
⌈

(k+1)a1−(k−1)a2

2

⌉
, a4 =

⌊
(k+1)a2−(k−1)a1

2

⌋
,

b3 =
⌈

(k+1)b1−(k−1)b2
2

⌉
and b4 =

⌊
(k+1)b2−(k−1)b1

2

⌋
.

For a tilted square Q̃, the following lemma allows us to estimate ‖u‖`∞(2Q̃) from an

upper bound of ‖u‖`∞(Q̃), provided the portion of points with |u| > 1 is small enough

in 4Q̃. The proof is similar to that of [DS20, Lemma 3.18] and [BLMS17, Lemma

3.6].

Lemma 3.5.22. For every small ε > 0, there is a large α > 1 such that, if

1. Q̃ tilted square with `(Q̃) > α,

2. Θ ⊂ Z2 is ε-sparse in 2Q̃,

247



R5

R6

R4

R1

R2

4R[1,a],[1,a]

R9

R8

R7

R3

Figure 3.4: An illustration of covering argument.

3. λ0 ∈ [0, 8] and V̄ ≥ 2,

4. V ′ : Θ→ {0, V̄ },

5. Eε,αex (Q̃,Θ) denotes the event that,



|λ− λ0| ≤ (`(Q̃)V̄ )−α`(Q̃)

Hu = λu in 2Q̃

|u| ≤ 1 in 1
2
Q̃

|u| ≤ 1 in a 1− ε fraction of 2Q̃ \Θ

(3.5.85)

implies |u| ≤ (`(Q̃)V̄ )α`(Q̃) in Q̃,

then P
[
Eε,αex (Q̃,Θ)

∣∣ V |Θ = V ′
]
≥ 1− exp(−ε`(Q̃)).

Proof. We identify Q̃ with 2R[1,a],[1,a]. Define R1 = R[1,a],[1,a], R2 = R[1,a],[a+1,2a],

R3 = R[1−a,0],[1,a], R4 = R[1,a],[1−a,0], R5 = R[a+1,2a],[1,a], R6 = R[a+1,2a],[a+1,2a], R7 =
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R[1−a,0],[a+1,2a], R8 = R[1−a,0],[1−a,0] and R9 = R[a+1,2a],[1−a,0]. See Figure 3.4 for an

illustration. For some large a and 1 ≤ i, j ≤ 9, let E ′ex(i, j) denote the event that



|λ− λ0| ≤ (aV̄ )−αa

Hu = λu in Ri ∪Rj

|u| ≤ 1 in Ri

|{(s, t) ∈ Rj : |u(s, t)| > 1}| ≤ 100εa2

(3.5.86)

implies |u| ≤ (aV̄ )
1
2
αa in Rj.

Claim 3.5.23. Let S = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 6), (3, 7), (4, 8), (5, 9)}. Then we

have
⋂

(i,j)∈S E ′ex(i, j) ⊂ Eε,αex (2R1,Θ).

Proof of the claim. The strategy here is to use a covering argument from elementary

geometry. Assume event
⋂

(i,j)∈S E ′ex(i, j) holds and u satisfies (3.5.86). Our goal is to

prove |u| ≤ (`(2R1)V̄ )α`(2R1) in 2R1.

Since Θ is ε-spares in 4R[1,a],[1,a] and |u| ≤ 1 in a 1− ε fraction of 4R[1,a],[1,a] \ Θ,

we have |{(s, t) ∈ 4R[1,a],[1,a] : |u(s, t)| > 1}| ≤ 100εa2. Then the event E ′ex(1, 2) ∩

E ′ex(1, 3) ∩ E ′ex(1, 4) ∩ E ′ex(1, 5) implies |u| ≤ (aV̄ )
1
2
αa in

⋃
1≤j≤5Rj. Finally, the event

E ′ex(2, 6) ∩ E ′ex(3, 7) ∩ E ′ex(4, 8) ∩ E ′ex(5, 9) implies |u| ≤ (aV̄ )αa in
⋃

1≤j≤9Rj. Since

2R1 ⊂
⋃

1≤j≤9Rj, the claim follows.

Denote E ′ex(1, 2) by E ′ex and let S be the set in the Claim 3.5.23. By Claim

3.5.23, it is sufficient to prove that P
[
E ′ex(i, j)

∣∣ V |Θ = V ′
]
≥ 1 − exp(−εa) for each
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R[1,a],[bk−1,bk+1]

4R[1,a],[1,a]

R[1,a],[1,a]

Figure 3.5: A schematic for the proof of Lemma 3.5.22

(i, j) ∈ S. By symmetry, we only need to prove for the case where (i, j) = (1, 2), i.e.

P
[
E ′ex(1, 2)

∣∣ V |Θ = V ′
]
≥ 1− exp(−εa).

By Lemma 3.5.20 and a union bound, the event

Eni =
⋂

[c,d]⊂[1, 5
2
a]

a
60
≤d−c≤ a

10

Eni(R[1,a],[c,d])

satisfies P[Eni
∣∣V |Θ = V ′] ≥ 1−exp(−c5a+C log(a)) where c5 is the constant in Lemma

3.5.20. It suffices to prove that, for every small ε < 1
4
c5, there is a large α such that

Eni ⊂ E ′ex(1, 2). Assume Eni and (3.5.86) hold, our goal is to prove |u| ≤ (aV̄ )
1
2
αa in

R2 = R[1,a],[a+1,2a].

Claim 3.5.24. Suppose ε < 10−12. Then there is a sequence b0 ≤ · · · ≤ b25 ∈ [a, 5
2
a−2]

such that

1. b0 = a
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2. b25 ≥ 2a

3. 1
60
a ≤ bk+1 − bk ≤ 3

40
a for 0 ≤ k < 25

4. |u| ≤ 1 on a 1− 10−7 fraction of R[1,a],[bk+1−1,bk+1] for 0 ≤ k < 25

Proof of the claim. Let b0 = a. For each k ∈ {1, · · · , 25}, let interval

Jk =

(
a+

2k

40
a, a+

2k + 1

40
a

]
.

Since |u| > 1 on at most 100εa2 points in R[1,a],[1,2a], we have

#{(s, t) ∈ R[1,a],Jk : |u(s, t)| > 1} < 104ε
∣∣R[1,a],Jk

∣∣

for each k = 1, · · · , 25. The pigeonhole principle implies that, there is bk ∈ Jk ∩ Z

such that

#{(s, t) ∈ R[1,a],[bk−1,bk] : |u(s, t)| > 1} < 105ε
∣∣R[1,a],[bk−1,bk]

∣∣ .
Since ε < 10−12, we have

#{(s, t) ∈ R[1,a],[bk−1,bk] : |u(s, t)| > 1} < 10−7
∣∣R[1,a],[bk−1,bk]

∣∣

for each k = 1, · · · , 25. On the other hand, bk+1 − bk ∈
[

1
40
a, 3

40
a
]
⊂
[

1
60
a, 3

40
a
]

for

0 ≤ k < 25. Finally, b25 > a+ 5
4
a > 2a and our claim follows.
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With the claim in hand, we apply Eni(R[1,a],[bk−1,bk+1]) to conclude

‖u‖`∞(R[1,a],[bk−1,bk+1]) ≤ (aV̄ )α2a(1 + ‖u‖`∞(R[1,a],[bk−1,bk]))

for k = 0, · · · , 24. Since ‖u‖`∞(R[1,a],[1,a]) ≤ 1, by induction, we obtain

‖u‖`∞(R[1,a],[1,2a]) ≤ 225(aV̄ )25α2a < (aV̄ )
1
2
αa

by setting α > 100α2.

3.5.5 Covering argument

The proof of Lemma 3.3.5 below is a random version of [BLMS17, Proposition 3.9].

Definition 3.5.25. Given a tilted square R[a1,a2],[b1,b2] with a2 − a1 = b2 − b1 > 0, we

call the point (⌊
a1 + a2

2

⌋
,

⌊
b1 + b2

2

⌋
+ i

)
∈ Z̃2

the center of R[a1,a2],[b1,b2]. Here, i ∈ {0, 1} such that
⌊
a1+a2

2

⌋
−
⌊
b1+b2

2

⌋
− i is an even

number.

Proof of Lemma 3.3.5. Let α′ > 1 > ε′ > 0 be a pair of valid constants in Lemma

3.5.22. Let

ε1 < 10−30ε′ (3.5.87)

and suppose ε < ε1. We impose further constraints on ε1, α during the proof.
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Assume without loss of generality that Q = Qn(0). Given integers |s1|, |t1| ≤

10−10`(Q)
1
3 and |s2|, |t2| ≤ ε`(Q)

2
3 , let Qs1,t1,s2,t2 be the tilted square with center

(
100

⌈
`(Q)

2
3

⌉
s1 + 2

⌈
ε−1
⌉
s2, 100

⌈
`(Q)

2
3

⌉
t1 + 2

⌈
ε−1
⌉
t2

)

and length being any integer satisfying

(4ε)−1 ≤ `(Qs1,t1,s2,t2) ≤ (2ε)−1. (3.5.88)

Then for different pairs (s1, t1, s2, t2) and (s′1, t
′
1, s
′
2, t
′
2),

Qs1,t1,s2,t2 ∩Qs′1,t
′
1,s
′
2,t
′
2

= ∅. (3.5.89)

Meanwhile, for any s2, t2 ∈
[
−ε`(Q)

2
3 , ε`(Q)

2
3

]
,

dist(Qs1,t1,s2,t2 , Qs′1,t
′
1,s2,t2

) > 50`(Q)
2
3 (3.5.90)

when (s1, t1) 6= (s′1, t
′
1). Let

Es1,t1,s2,t2ex =
⋂
{Eα′,ε′ex (Q′,Θ) : Q′ ⊇ Qs1,t1,s2,t2 , `(Q

′) ≤ `(Q)
2
3}.
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By Lemma 3.5.22 and (3.5.88), for each s1, t1, s2, t2,

P
[
Es1,t1,s2,t2ex

∣∣ V |Θ = V ′
]
≥ 1−

∑
l≥(4ε)−1

10l2 exp(−ε′l) > 9

10
(3.5.91)

by choosing ε < ε1 small enough. Here, we used the fact that for any integer l,

the number of tilted squares with length l that contain Qs1,t1,s2,t2 is less than 10l2.

Note that, for each tilted Q′, Eα′,ε′ex (Q′,Θ) is V |2Q′-measurable. Thus for any s′2, t
′
2 ∈[

−ε`(Q)
2
3 , ε`(Q)

2
3

]
, by (3.5.90), we have

{
Es1,t1,s′2,t′2ex : |s1|, |t1| ≤ 10−10`(Q)

1
3

}

is a family of independent events. We denote by Es
′
2,t
′
2

ex the following event

at least half of events in
{
Es1,t1,s′2,t′2ex : |s1|, |t1| ≤ 10−10`(Q)

1
3

}
happen. (3.5.92)

Then by (3.5.91) and a large deviation estimate,

P
[
Es′2,t′2ex

∣∣ V |Θ = V ′
]
≥ 1− exp(−c`(Q)

2
3 ) (3.5.93)

for a numerical constant c. Let

Eex

=
⋂
{Es2,t2ex : |s2|, |t2| ≤ ε`(Q)

2
3} ∩

⋂
{Eα′,ε′ex (Q′,Θ) : `(Q′) ≥ `(Q)

2
3 , Q′ ⊂ Q}.
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Then by Lemma 3.5.22 and (3.5.93),

P[Eex
∣∣ V |Θ = V ′] ≥ 1− exp(−c′`(Q)

2
3 + C log `(Q)) ≥ 1− exp(−c′′`(Q)

2
3 )

for constants c′, c′′ depending on ε′. Hence, it is sufficient to prove that

Eex ⊂ Eε,αuc (Q,Θ).

Thus we assume Eex holds and u satisfies (3.3.4). Our goal is to prove

‖u‖`∞( 1
100

Q) ≤ (`(Q)V̄ )α`(Q). (3.5.94)

Let Q denote the subset of all Qs1,t1,s2,t2 ’s such that Es1,t1,s2,t2ex happens. Then by

definition of Eex and (3.5.92), we have

|Q| ≥ 10−21ε2`(Q)2. (3.5.95)

Claim 3.5.26. For any Qs1,t1,s2,t2 ∈ Q and Q′′ ⊂ Q with Q′′ ⊇ Qs1,t1,s2,t2, we have

Eα′,ε′ex (Q′′,Θ) holds.

Proof. If `(Q′′) ≤ `(Q)
2
3 , then Es1,t1,s2,t2ex ⊂ Eα′,ε′ex (Q′′,Θ). Otherwise,

⋂
{Eα′,ε′ex (Q′,Θ) : `(Q′) ≥ `(Q)

2
3 , Q′ ⊂ Q} ⊂ Eα′,ε′ex (Q′′,Θ).
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The claim follows from the definition of Eex.

Let

Qsp = {Q′ ∈ Q : ∃Q′′ ⊂ Q such that Q′′ ⊇ Q′ and Θ is not ε-sparse in Q′′}.

Write Qsp = {Q(i)
sp : 1 ≤ i ≤ K1}. For each 1 ≤ i ≤ K1, choose Q

(i)
spm ⊂ Q to be a

tilted square in which Θ is not ε-sparse and Q
(i)
sp ⊂ Q

(i)
spm. By Vitalli covering theorem,

there exists J ′ ⊂ {1, · · · , K1} such that

Q(i1)
spm ∩Q(i2)

spm = ∅

for each i1 6= i2 ∈ J ′ and

|
⋃
{Q(i)

spm : i ∈ J ′}|

≥ 1

100
|
⋃
{Q(i)

spm : 1 ≤ i ≤ K1}|

≥ 1

100
|
⋃
{Q(i)

sp : 1 ≤ i ≤ K1}|.

(3.5.96)

Since Θ is ε-regular in Q,

|
⋃
{Q(i)

spm : i ∈ J ′}| ≤ ε`(Q)2.

Thus by (3.5.96), |⋃{Q(i)
sp : 1 ≤ i ≤ K1}| ≤ 100ε`(Q)2. Note that by (3.5.89),
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{Q(i)
sp : 1 ≤ i ≤ K1} are pairwise disjoint. Thus by (3.5.88),

K1 ≤ 104ε3`(Q)2. (3.5.97)

By choosing ε < 10−26, (3.5.95) and (3.5.97) imply

|Q \ Qsp| > 10−22ε2`(Q)2. (3.5.98)

Now for any Q′ ∈ Q \ Qsp and any Q′′ ⊂ Q with Q′′ ⊇ Q′, Θ is ε-sparse in Q′′. In

particular, Θ is ε-sparse in Q′ and by (3.5.88) and Definition 3.3.3, Θ∩Q′ = ∅. Thus

by (3.3.4), ∣∣∣{|u| > 1} ∩
⋃
{Q′ : Q′ ∈ Q \ Qsp}

∣∣∣ < ε3`(Q)2. (3.5.99)

Equations (3.5.99), (3.5.89) and (3.5.98), together with ε < 10−26, guarantee that

there is Qgood ⊂ (Q \ Qsp) with

|Qgood| > 10−23ε2`(Q)2 (3.5.100)

such that

‖u‖`∞(Q′) ≤ 1

for each Q′ ∈ Qgood.

We call a tilted square Q′ ⊂ Q “tamed” if the following holds:
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1. the center of Q′ is in 1
50
Q,

2. Q′ ⊇ Q′′ for some Q′′ ∈ Qgood,

3. Q′ ⊂ Q′′′ ⊂ Q implies Θ is ε-sparse in Q′′′,

4. ‖u‖`∞(Q′) ≤ (`(Q′)V̄ )α`(Q
′).

Let Qta be the set of tamed squares. Then Qgood ⊂ Qta. We call Q′ ∈ Qta maximal

if any Q′′ ∈ Qta with Q′′ ⊇ Q′ implies Q′′ = Q′.

Claim 3.5.27. Suppose maximal Q′ ∈ Qta with `(Q′) ≤ 1
24
`(Q). Then |u| > 1 on at

least a ε′ fraction of 4Q′ \Θ.

Proof. Since Q′’s center is in 1
50
Q, `(Q′) ≤ 1

24
`(Q) implies 4Q′ ⊂ Q. Assume |u| ≤ 1

on a 1 − ε′ fraction of 4Q′ \ Θ. Since Q′ ⊇ Q′′ for some Q′′ ∈ Q, by Claim 3.5.26,

Eα′,ε′ex (2Q′,Θ) holds. Moreover, Q′ containing some Q′′ ∈ Qgood implies Θ is ε′-sparse

in 4Q′ and thus Eα′,ε′ex (2Q′,Θ) implies

‖u‖`∞(2Q′) ≤ (2`(Q′)V̄ )2α′`(Q′)(1 + ‖u‖`∞(Q′)) ≤ (`(2Q′)V̄ )α`(2Q
′),

as long as α > 10α′. Thus 2Q′ is also tamed and this contradicts with the maximality

of Q′.

Write Qgood = {Q(i) : 1 ≤ i ≤ K2} and by (3.5.100),

K2 > 10−23ε2`(Q)2. (3.5.101)
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For each 1 ≤ i ≤ K2, pick a maximal Q
(i)
max ∈ Qta with Q(i) ⊂ Q

(i)
max. Assume

`(Q(i0)
max) >

1

24
`(Q) (3.5.102)

for some 1 ≤ i0 ≤ K2. By definition of Qta, the center of Q
(i0)
max is in 1

50
Q and (3.5.102)

implies 1
100
Q ⊂ Q

(i0)
max. Hence

‖u‖`∞( 1
100

Q) ≤ ‖u‖`∞(Q
(i0)
max)
≤ (`(Q(i0)

max)V̄ )α`(Q
(i0)
max) ≤ (`(Q)V̄ )α`(Q)

and our conclusion (3.5.94) follows.

Now we assume `(Q
(i)
max) ≤ 1

24
`(Q) for each 1 ≤ i ≤ K2 and we will arrive at

contradiction. By Vitalli covering theorem, there is J ′′ ⊂ {1, · · · , K2} such that

4Q(i1)
max ∩ 4Q(i2)

max = ∅

for i1 6= i2 ∈ J ′′ and

∑
i∈J ′′
|4Q(i)

max|

≥ 1

100
|
⋃
{4Q(i)

max : 1 ≤ i ≤ K2}|

≥ 1

100
|
⋃
{Q(i) : 1 ≤ i ≤ K2}|.

(3.5.103)
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By Claim 3.5.27, for each 1 ≤ i ≤ K2, |u| > 1 on a ε′ fraction of 4Q
(i)
max \Θ. Thus

|{|u| > 1} \Θ| ≥ε′
∑
i∈J ′′
|4Q(i)

max \Θ| (3.5.104)

≥1

2
ε′
∑
i∈J ′′
|4Q(i)

max| (3.5.105)

≥ 1

200
ε′|
⋃
{Q(i) : 1 ≤ i ≤ K2}| (3.5.106)

≥ 1

200
ε′K2(4ε)−2 (3.5.107)

≥10−30ε′`(Q)2. (3.5.108)

Here, (3.5.105) is because Θ is ε-sparse in 4Q
(i)
max; (3.5.106) is due to (3.5.103);

(3.5.107) is due to (3.5.88) and (3.5.89); (3.5.108) is due to (3.5.101). However,

by (3.5.87), (3.5.108) contradicts with |{|u| > 1} \Θ| ≤ ε3`(Q)2 in (3.3.4).
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