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ABSTRACT

TOPICS IN HIGGS BUNDLES AND MODULES OVER EVEN CLIFFORD

ALGEBRA

Jia-Choon Lee

Ron Donagi

Tony Pantev

The first part of the thesis is a joint work with Sukjoo Lee. It was shown by Diaconescu,

Donagi and Pantev that Hitchin systems of type ADE are isomorphic to certain Calabi-

Yau integrable systems. In this paper, we prove an analogous result in the setting of

meromorphic Hitchin systems of type A which are known to be Poisson integrable systems.

We consider a symplectization of the meromorphic Hitchin integrable system, which is

a semi-polarized integrable system in the sense of Kontsevich and Soibelman. On the

Hitchin side, we show that the moduli space of unordered diagonally framed Higgs bundles

forms an integrable system in this sense and recovers the meromorphic Hitchin system

as the fiberwise compact quotient. Then we construct a new family of quasi-projective

Calabi-Yau threefolds and show that its relative intermediate Jacobian fibration, as a semi-

polarized integrable system, is isomorphic to the moduli space of unordered diagonally

framed Higgs bundles.

The second part of the thesis studies the relation between the moduli spaces of modules

over the sheaf of even Clifford algebra and the Prym variety, both associated to a conic

bundle. In particular, we construct a rational map from the moduli space of modules over
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the sheaf of even Clifford algebra to the special subvarieties in Prym varieties, and check

that the rational map is birational in some cases. As an application, we get an explicit

correspondence between instanton bundles on cubic threefolds and twisted Higgs bundles.
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Chapter 1

Semi-polarized meromorphic

Hitchin and Calabi-Yau integrable

systems

1.1 Introduction

1.1.1 Introduction

Since the seminal work of Hitchin [Hit87b][Hit87a], Higgs bundles and their moduli spaces

have been studied extensively. There have been numerous deep results on the moduli space

of Higgs bundles related to other areas of mathematics such as the P = W conjecture

[CHM12][CMS19], the fundamental lemma in the Langlands program [Ngô06][Ngô10], the

geometric Langlands conjecture [KW07] and mirror symmetry [HT03][DP12]. One of the

striking properties of these moduli spaces is that they admit a holomorphic symplectic
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form and the structure of an integrable system, called the Hitchin system. In particular,

the generic fiber of an integrable system is an abelian variety which turns out to be the

Jacobian or (generalized) Prym variety of an associated spectral or cameral curve. This

picture generalizes to the meromorphic situation where we allow the Higgs field to have

poles along some divisors. While the meromorphic Hitchin system is no longer symplectic,

it is still Poisson and integrable with respect to the Poisson structure.

On the other hand, Donagi-Markman and Donagi-Diaconescu-Pantev (DDP) intro-

duced in [DM96a][DM96b][Dia+06][DDP07] integrable systems coming from some fami-

lies of projective or quasi-projective Calabi-Yau threefolds, called Calabi-Yau integrable

systems. A generic fiber is a complex torus or an abelian variety [Dia+06][DDP07], now

obtained as the intermediate Jacobian of a Calabi-Yau threefold in the family.

It is shown in [DDP07] that for adjoint groups G of type ADE, there is an isomor-

phism between G-Hitchin systems and suitable Calabi-Yau integrable systems, which we

call the DDP correspondence. An interesting aspect of the construction in [DDP07] is that

although the relevant Calabi-Yau threefold is non-compact, the (a priori mixed) Hodge

structure on its third cohomology happened to be pure of weight one up to Tate twist.

Because of this, the corresponding intermediate Jacobian is a compact torus (in fact an

abelian variety). Since the data of a weight 1 Hodge structure is equivalent to the data of

an abelian variety, this isomorpshism can be rephrased as an isomorphism between varia-

tions of weight 1 Hodge structures equipped with the abstract Seiberg-Witten differential,

see for example [DDP07] [Bec20].

It is worth mentioning that the origin of this story comes from physics, specifically,

large N duality [Dia+06]. Recently, the correspondence has also found its place in the
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study of T-branes in F-theory [AHK14][And+17].

The isomorphism between Hitchin and Calabi-Yau integrable systems has been gener-

alized successfully to groups of type BCFG by the work of Beck et al. [Bec20][Bec19][BDW20]

using the technique of foldings.

1.1.2 Main results

The goal of this paper is to extend the DDP correspondence to the setting of meromorphic

SL(n,C)-Hitchin system h :M(n,D)→ B where D is a reduced divisor of the base curve.

The best case scenario will be to construct a family of non-compact Calabi-Yau threefolds

over the same base B and show that the associated Calabi-Yau integrable system is

isomorphic to the meromorphic Hitchin system as Poisson integrable systems. However,

since the deformation space of such non-compact Calabi-Yau’s is strictly smaller than the

base B, we do not expect to get a natural family which induces the Possion integrable

system (see [KS14]).

Instead, we consider the notion of semi-polarized integrable systems introduced by

Kontsevich-Soibelman [KS14]. These are non-compact versions of symplectic integrable

systems whose fiber is a semi-abelian variety, an extension of an abelian variety by an affine

torus. The main advantage is that they canonically induce the Poisson integrable systems

as their compact quotients. In Section 2, we study this structure from the Hodge theoretic

viewpoint. Since the data of a semi-polarized semi-abelian variety is equivalent to the

data of a semi-polarized Z-mixed Hodge structure of type {(−1,−1), (−1, 0), (0,−1)}

(see Appendix), the semi-polarized integrable system can be described as an admissible

variation of Z-mixed Hodge structures of such type with an abstract Seiberg-Witten
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differential as in the classical case.

The main objects on the Hitchin side are the moduli space of diagonally framed Higgs

bundles (resp. unordered), introduced by Biswas-Logares-Peón-Nieto [BLP19][BLP20]1,

and we denote these moduli space by M∆(n,D) (resp. M∆(n,D)). The moduli space

M∆(n,D) is a subspace of the moduli space of framed Higgs bundles MF (n,D) whose

object is a triple (E, θ, δ) where (E, θ) is a SL(n,C)-Higgs bundle and δ is a framing of E

at D. As the name suggests, an object in M∆(n,D) is a framed Higgs bundle such that

the residue of its Higgs field is diagonal with respect to the framing δ. The unordered

version M∆(n,D) is obtained as the quotient of M∆(n,D) by S
|D|
n where S|D|n is the

product of symmetric groups Sn acting on the space of the framings by permuting the

order of components. The following diagram summarizes the relation among the moduli

spaces:
M∆(n,D) MF (n,D)

M∆(n,D) M(n,D)

B

q f1

f2

h∆ h

(1.1.1)

where q : M∆(n,D) → M∆(n,D) is the quotient map, f1 and f2 are the maps of

forgetting the framings and h∆ := h ◦ f2 : M∆(n,D) → B is the Hitchin map on the

moduli space of unordered diagonally framed Higgs bundles that we will study. In this

paper, we will mainly work over the locus Bur ⊂ B of smooth cameral curves which are

unramified over D and have simple ramifications. In particular, for a triple (E, θ, δ) over

b ∈ Bur, the residue of θ over D has distinct eigenvalues. We shall write the restrictions

as M∆(n,D)ur := (h∆ ◦ q)−1(Bur) and M∆(n,D)ur := h−1
∆ (Bur).

1In [BLP20], what we call ”diagonally framed” is referred to as ”relatively framed” in [21].
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We will show that M∆(n,D)ur and M∆(n,D)ur are symplectic using deformation

theoretic arguments. They also carry a smooth semi-polarized integrable system structure

over the locus Bur. The following is the first result of the paper.

Theorem 1.1.1. (Proposition 1.3.25, Corollary 1.3.28) The moduli space of unordered

diagonally framed Higgs bundle M∆(n,D) is symplectic. The Hitchin fibration

hur∆ :M∆(n,D)ur → Bur

forms a smooth semi-polarized integrable system whose fiber is a semi-abelian variety.

In order to prove this, we study the fiber (hur∆ )−1(b) over each b ∈ Bur via the spectral

correspondence between unordered diagonally framed Higgs bundles on Σ and framed

line bundles on the associated spectral cover pb : Σ̃b → Σ. The framed line bundles on

Σ̃b are then parametrized by the Prym variety Prym(Σ̃◦b ,Σ◦) associated to the restricted

spectral cover p◦b := pb|Σ̃◦
b

: Σ̃◦b → Σ◦ where Σ̃◦b := Σ̃b \ p−1
b (D) and Σ◦ := Σ \ D. More

precisely, Prym(Σ̃◦b ,Σ◦) is a semi-abelian variety defined as the kernel of the punctured

norm map Nm◦ : Jac(Σ̃◦b)→ Jac(Σ◦).

Proposition 1.1.2. (Proposition 1.3.12, Spectral correspondence) A generic fiber h−1
∆ (b)

is canonically isomorphic to the semi-abelian variety Prym(Σ◦b ,Σ◦). In particular, the

first homology H1(Prym(Σ◦b ,Σ◦)) admits a Z-mixed Hodge structure of type {(−1,−1), (−1, 0), (0,−1)}.

On the Calabi-Yau side, we construct a family of Calabi-Yau threefolds π : X → B by

using the elementary modification technique in [Smi15]. To produce the relevant Calabi-

Yau integrable systems, we should restrict the family π : X → B to Bur, denoted by

πur : X ur → Bur, whose fiber is smooth and its third homology admits a Z-mixed Hodge
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structures of type {(−1,−1), (−1, 0), (0,−1)} up to Tate twist. Now, by taking fiberwise

intermediate Jacobians, we obtain a family of semi-abelian varieties πur : J (X ur/Bur)→

Bur. The local period map induces an integrable system structure of this family.

The main result of the paper is to establish an isomorphism between the two semi-

polarized integrable systems:

Theorem 1.1.3. (Theorem 1.5.1) There is an isomorphism of smooth semi-polarized

integrable systems

J (X ur/Bur) M∆(n,D)ur

Bur

∼=

πur

hur∆

(1.1.2)

The idea is to compare the admissible variations of Z-mixed Hodge structures asso-

ciated to the two semi-polarized integrable systems, by using the gluing techniques in

[DDP07], [Bec20]. To complete the proof, we check that the comparison map intertwines

the abstract Seiberg-Witten differentials on each side.

1.1.3 Related work

The ideas of the spectral correspondence for unordered diagonally framed Higgs bundles

and the infinitesimal study of their moduli spaces are drawn from [BLP19]. We follow

their approach closely in Section 1.3.3. However, we provide an improvement of their

result in order to show that M∆(n,D)ur and M∆(n,D)ur are symplectic which was not

proved before. We also focus more on the Hodge structures of the relevant Hitchin fibers

to prove Theorem 1.1.3.

A general construction of the moduli space of unordered diagonally framed Higgs

bundlesM∆(n,D) comes from symplectic implosion [GJS02] associated to the level group
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action on MF (n,D), viewed as the cotangent bundle of the moduli of framed bundles

[Mar94]. One can obtain the Hitchin fibration over the full base B, but it is a stratified

space and very singular which makes it difficult to control. Indeed, as we only need the

smooth part for our main result, we focus on Higgs fields that are diagonalizable over D

throughout the paper.

Kontsevich-Soibelman proposed a different construction of the relevant Calabi-Yau

integrable system as an affine conic bundle over a holomorphic symplectic surface con-

taining a given spectral curve (see [KS14]). This can be done by blowing up intersections

of spectral curves and the preimage of the divisor D in the total space of the twisted

cotangent bundle KΣ(D). After removing the proper transform of the preimage, one gets

the desired symplectic holomorphic surface. This model is birationally equivalent to the

one we introduce in Section 4.

1.1.4 Plan

We first recollect the basics of integrable systems and introduce the notion of a semi-

polarized integrable system in Section 2. In Section 3, we study the integrable system

structure of the moduli space of unordered diagonally framed Higgs bundle. Also, we give

both the spectral and cameral descriptions for completeness. In Section 4, we construct

the semi-polarized Calabi-Yau integrable systems by using the technique of elementary

modification. It is then followed by a Hodge theoretic computation. Finally, in Section

5, we give a proof of Theorem 1.1.3.

7



1.1.5 Notation

• Σ - a non-singular curve of genus g.

• D - an effective divisor of d reduced points.

• Σ◦ - the complement of the divisor D in Σ.

• M(n,D) - the moduli space of KΣ(D)-twisted SL(n,C)-Higgs bundles.

• MF (n,D) - the moduli space of framed Higgs bundles.

• M∆(n,D) - the moduli space of diagonally framed Higgs bundles.

• M∆(n,D) - the moduli space of unordered diagonally framed Higgs bundles.

• B = ⊕ni=2H
0(Σ,KΣ(D)⊗i) - the Hitchin base.

• Bur ⊂ B - the subset consists of smooth cameral curves which are unramified over

D and have simple ramifications. Throughout the paper, we will always assume an

element b ∈ B is sitting in Bur.

• pb : Σ̃b → Σ - the spectral cover for b ∈ B.

• p̃b : Σ̃b → Σ - the cameral cover for b ∈ B.

1.2 Semi-polarized integrable systems

In this section, we recall the notion of a semi-polarized integrable system, originally intro-

duced in [KS14]. This is a non-compact generalization of the notion of algebraic integrable
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system [Hit87a] which provides a new way to view integrable systems in the Poisson set-

ting. Similarly to the classical setting where algebraic integrable systems can be associated

with variations of polarized weight one Hodge structures, we also have a Hodge-theoretic

description of semi-polarized integrable systems. To make the paper self-contained, we

shall begin reviewing basics of algebraic integrable systems by following [Bec20][Bec19].

1.2.1 Integrable systems and variations of Hodge structures

Definition 1.2.1. Let (M2n, ω) be a holomorphic symplectic manifold of dimension 2n

and B be a connected complex manifold of dimension n. A holomorphic map π : M → B

is called an algebraic integrable system if it satisfies the following conditions.

1. π is proper and surjective;

2. there exists a Zariski open dense subset B◦ ⊂ B such that the restriction

π◦ := π|M◦ : M◦ → B◦, M◦ := π−1(B◦)

has smooth connected Lagrangian fibers and admits a relative polarization of index

0.

In particular, if B◦ = B, then (M,ω, π) is called a smooth algebraic integrable system.

The second condition that a generic fiber is Lagrangian puts rather restrictive con-

straints on the geometry of the fiber. To see this, first consider ker(dπ◦), the sheaf of vector

fields on M◦ which are tangent to the fibers of π◦. Since the fibers of π◦ are Lagrangians,

the holomorphic symplectic form ω induces an isomorphism ker(dπ◦) ∼= (π◦)∗T∨B◦ via

v 7→ ω(v,−). By taking pushforward to B◦, we have an isomorphism of coherent sheaves
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π◦∗ker(dπ◦) ∼= π◦∗(π◦)∗T∨B◦. In fact, one can apply the projection formula and see

π◦∗(π◦)∗T∨B◦ ∼= T∨B◦ because the fibers of π◦ are connected. Thus, the sheaf π◦∗ker(dπ◦)

is isomorphic to T∨B◦, hence locally free. We denote it by V and call it a vertical bundle

of π◦.

Next, choose a sufficiently small open subset U ⊂ B◦ and two local sections u, v : U →

V such that they are Hamiltonian vector fields u = X(π◦)∗f , v = X(π◦)∗g for the functions

f, g : U → C. As the fibers of π◦ are Lagrangians, we have [u, v] = Xω(u,v) = 0. It implies

that the Lie algebra (V, [−,−]) is abelian so that one can define a group action of V on

M◦ via the fiberwise exponential map. In other words, the flows of the vector fields along

the fibers of π◦ corresponding to the sections of V act on M◦ while preserving the fibers

of π◦.

The submanifold

Γ = {v ∈ V| ∃x ∈M◦such that v · x = x}

forms a full lattice in each fiber and induces a family of abelian varieties A(π◦) := V/Γ→

B◦ which acts simply transitively on π◦ : M◦ → B◦. Therefore, a generic fiber of π :

M → B is non-canonically isomorphic to an abelian variety.

From now on, we will focus on smooth integrable systems (B◦ = B). From the

viewpoint of Hodge theory, a family of polarized abelian varieties can be obtained from

a variation of weight 1 polarized Z-Hodge structures V = (VZ, F •VO, Q) over B where

VO := VC ⊗ OB and F • is the Hodge filtration. This is done by taking the relative

Jacobian fibration so that we have the family

p : J (V) := Tot(VO/(F 1VO + VZ))→ B (1.2.1)
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whose vertical bundle is V := VO/F
1VO → B.

A natural question is a condition for the family p : J (V) → B being an integrable

system. In other words, we need a symplectic form on J (V) where fibers are connected

Lagrangians. This can be achieved by the following theorem.

Theorem 1.2.2. [Bec20] Let V = (VZ, F •VO, Q) be a variation of weight 1 polarized Z-

Hodge structures over B and ∇GM be the Gauss-Manin connection on VO. Assume that

there exists a global section λ ∈ H0(B, VO) such that

φλ :TB → F 1VO

µ 7→ ∇GMµ λ

is an isomorphism. Then the polarization Q induces a canonical symplectic form ωλ on

J (V) such that the induced zero section becomes Lagrangian. Moreover, the symplectic

form is independent of the polarization Q up to symplectomorphisms.

Consider the dual variation of Hodge structure of V, V∨ = HomVHS(V,ZB)(−1) over

B. The polarization Q identifies V = VO/F
1VO with F 1V ∨O . Consider the compositions

ι : V ψQ−−→ F 1V ∨O
φ∨λ−−→ T∨B. (1.2.2)

where ψQ is the identification induced by the polarization Q and φ∨λ is dual of φλ. Then

the lattice VZ in V embeds into T∨B as a Lagrangian submanifold. Therefore, we ob-

tain a symplectic structure from the canonical one on T∨B by descending to J (VO) ∼=

T∨B/ι(VZ). We call such λ an abstract Seiberg-Witten differential [Bec20][Don97].
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1.2.2 Semi-polarized integrable systems and variations of mixed Hodge

structures

One can generalize the notion of an algebraic integrable system by allowing fibers to be

non-proper. This is the main object of our study, first introduced in [KS14]. We recall

the definition in a form convenient for our story.

Definition 1.2.3. Let (M2n+2k, ω) be a holomorphic symplectic manifold of dimension

2n + 2k and B be a connected complex manifold of dimension n + k. A holomorphic

map π : M → B is called a semi-polarized integrable system if it satisfies the following

conditions.

1. π is flat and surjective;

2. there exists a Zariski open dense subset B◦ ⊂ B such that the restriction

π◦ := π|M◦ : M◦ → B◦, M◦ := π−1(B◦)

has smooth connected Lagrangian fibers;

3. each fiber of π◦ is a semi-abelian variety which is an extension of a n-dimensional

polarized abelian variety by a k-dimensional affine torus.

In particular, if B◦ = B, then (M,ω, π) is called a smooth semi-polarized integrable

system.

Similar to the classical case, the main example comes from an admissible variation

of torsion-free Z-mixed Hodge structures. Let V = (VZ,W•VZ, F •VO) be an admissible

variation of Z-mixed Hodge structures of type {(−1,−1), (−1, 0), (0,−1)} over B where

VO := VC ⊗OB and GrW−1VC is polarizable. In other words, we have
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• 0 = W−3 ⊂W−2 ⊂W−1 = VZ

• 0 = F 1 ⊂ F 0 ⊂ F−1 = VO

and can choose a relative polarization on GrW−1VO. Throughout this paper, we choose a

semi-polarization on VZ, a degenerate bilinear form Q : VZ × VZ → ZB which yields the

relative polarization on GrW−1VO. We call it a variation of semi-polarized Z-mixed Hodge

structures. Moreover, one can obtain a semi-abelian variety from a Z-mixed Hodge struc-

ture of type {(−1,−1), (−1, 0), (0,−1)} by taking the Jacobian (see Appendix). Therefore,

we have a family of semi-abelian varieties by taking the relative Jacobian fibration

p : J (V) := Tot(VO/(F 0VO + VZ))→ B (1.2.3)

with its compact quotient pcpt : Jcpt(V) := Tot(W−1VO/(W−1VO ∩ F 0VO + VZ))→ B.

To define an abstract Seiberg-Witten differential, we consider the dual variation of Z-

mixed Hodge structures V∨ = (V ∨Z ,W•V ∨Z , F •V ∨O ) := HomVMHS(V,ZB) of V. Note that

we don’t take a Tate twist so that it is of type {(0, 1), (1, 0), (1, 1)}. Unlike the classical

case, the Seiberg-Witten differential is defined as a global section of the dual vector bundle

V ∨O .

Definition 1.2.4. Let V = (VZ,W•VZ, F •VO, Q) be an admissible variation of semi-

polarized Z-mixed Hodge structures of type {(−1,−1), (−1, 0), (0,−1)} over B, and ∇GM

be the Gauss-Manin connection on VO. We define an abstract Seiberg-Witten differen-

tial as a global section of the dual bundle V ∨O , λ ∈ H0(B, V ∨O ), such that the following

morphism

φλ :TB → F 1V ∨O

µ 7→ ∇GMµ λ

(1.2.4)
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is an isomorphism.

It is clear that the vertical bundle V of J (V)→ B can be identified with (F 1V ∨O )∨ via

the canonical non-degenerate pairing, VO/F 0VO⊗F 1V ∨O → OB. Consider the composition

ι : V → (F 1V ∨O )∨
φ∨λ−−→ T∨B

under which the lattice VZ ⊂ V embeds into T∨B as a Lagrangian submanifold. Similar

to Theorem 1.2.2, we obtain a symplectic form from the canonical one on T∨B with

Lagrangian condition on a generic fiber. Moreover, the total space J (V) has a canonical

Possion structure associated to the given symplectic form. As the action of the affine

torus on J (V) is Hamiltonian, free and proper, the quotient space Jcpt(V) is a Poisson

manifold. Thus, Jcpt(V) has a Poisson integrable system structure whose symplectic

leaves are locally parametrized by φ−1
λ (GrW2 V ∨O ∩F 1V ∨O ) (see [KS14, Section 4.2] for more

details). This proves the following proposition.

Proposition 1.2.5. Let V = (VZ,W•VZ, F •VO, Q) be an admissible variation of semi-

polarized Z-mixed Hodge structures of type {(−1,−1), (−1, 0), (0,−1)} over B and

λ ∈ H0(B, V ∨O ) be the Seiberg-Witten differential. Then, the relative Jacobian fibration

p : J (V) := Tot(VO/(F 0VO + VZ))→ B (1.2.5)

forms a semi-polarized integrable system. In particular, the compact quotient Jcpt(V)→ B

admits a Poisson integrable system structure.

Remark 1.2.6. The reason we take a global section of the dual vector bundle in the defi-

nition of Seiberg-Witten differential is that, unlike the classical case, the semi-polarization

Q does not induce the canonical identification between V and V∨. Moreover, this is also
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motivated by the geometric examples we will consider where VZ and V ∨Z are torsion-free

integral homology and cohomology of a non-singular quasi-projective variety, respectively.

Remark 1.2.7. In [KS14], Kontsevich and Soibelman introduce the notion of a central

charge Z ∈ H0(B, V ∨O ) which induces an local embedding of the base into V ∨O . It is

equivalent to the data of an abstract Seiberg-Witten differential which suits our story

better.

1.3 Moduli space of diagonally framed Higgs bundles

In this section, we will study the moduli space of (unordered) diagonally framed Higgs

bundles and the associated Hitchin map as introduced in [BLP19]. In particular, we will

give the spectral and Hodge theoretic description of the generic Hitchin fiber. Then we

prove that it is a semi-polarized integrable system in two different ways: using deformation

theory and using abstract Seiberg-Witten differentials. As mentioned in Section 1, parts

of this section will follow the approach of [BLP19]. For basic properties of Hitchin systems

and spectral covers, we refer to [DM96b].

1.3.1 The moduli space of (unordered) diagonally framed Higgs bundles

We fix Σ to be a smooth curve of genus g, D a reduced divisor on Σ and Σ◦ := Σ \D.

Definition 1.3.1. A framed SL(n,C)-Higgs bundle on Σ is a triple (E, θ, δ), where E is

a vector bundle of rank n with trivial determinant, δ : ED ∼−→ ⊕ni=1OD is an isomorphism,

i.e. a framing at D, and θ ∈ Γ(Σ, End0(E)⊗KΣ(D)) is a traceless Higgs field.

A morphism between framed Higgs bundles (E, θ, δ) and (E′, θ′, δ′) is a map f : E →
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E′ such that δ ◦ f |D = δ′ and θ′ ◦ f = (f ⊗ IdKΣ(D)) ◦ θ.

Remark 1.3.2. A framed GL(n,C)-Higgs bundle and PGL(n,C)-Higgs bundle are de-

fined in a similar way.

In order to discuss moduli spaces, we first define the stability conditions we will be

using. We shall follow the definition of stability conditions in [BLP19]. Essentially, the

stability condition for a framed Higgs bundle is just the stability condition for a KΣ(D)-

twisted Higgs bundle. More precisely, we say that a framed Higgs bundle (E, θ, δ) is

stable (semistable respectively) if for every θ-invariant proper subbundle F ⊂ E, that is,

θ(F ) ⊂ F ⊗K(D), we have µ(F ) < µ(E) (µ(F ) ≤ µ(E) respectively). Here we write µ

for the slope µ(E) = deg(E)/dim(E).

The following lemma and the next corollary can be found in [BLP19, Lemma 2.3]. We

record them here for future reference. Let (E, θ) and (E, θ′) be KΣ(D)-valued semistable

Higgs bundles on Σ with µ(E) = µ(E′).

Lemma 1.3.3. Let f : E → E′ be a OΣ-modules homomorphism such that

1. θ′ ◦ f = (f ⊗ IdKΣ(D)) ◦ θ,

2. there is a point x0 ∈ Σ such that f |x0 = 0,

then f vanishes identically.

Corollary 1.3.4. A semistable framed Higgs bundle admits no non-trivial automorphism.

Proof. Indeed, suppose (E, θ, δ) admits an automorphism h, then the morphism h− IdE

vanishes on D. By the Lemma 1.3.3 above, h − IdE vanishes identically or equivalently

h = IdE .
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We denote g := sln (gln respectively) and gE := End0(E) (End(E) respectively). For

our discussion, we will only consider the case of sln. Let t be the vector subspace of

diagonal traceless n × n matrices and q be the orthogonal complement of t with respect

to the Killing form, i.e. the vector subspace of n× n matrices whose diagonal entries are

all zero. We have g = t ⊕ q. Given a framing δ of E, we can define the δ-restrictions to

D as the compositions:

gE � gE ⊗OD
adδ−−→ g⊗OD � q⊗OD

gE � gE ⊗OD
adδ−−→ g⊗OD � t⊗OD

where the maps g⊗OD � q⊗OD and g⊗OD � t⊗OD are given by the projections for

the decomposition g = t⊕ q.

Given a framed bundle (E, δ), we define subsheaves g′E , g
′′
E ⊂ gE as the kernels

0→ g′E → gE → qD := i∗q→ 0

0→ g′′E → gE → tD := i∗t→ 0

where i : D ↪→ Σ is the inclusion. In other words, a section of endomorphism in g′E (g′′E

respectively) restricted to p ∈ D is diagonal (anti-diagonal respectively) with respect to

δ.

Definition 1.3.5. We say that a framed Higgs bundle (E, θ, δ) is diagonally framed if

θ ∈ H0(Σ, g′E ⊗KΣ(D)) ⊂ H0(Σ, gE ⊗KΣ(D)).

By the results of [Sim94b][Sim94a] [BLP19, Section 2], it is shown that the moduli

space of semistable framed SL(n,C)-Higgs bundlesMF (n,D) exists as a fine moduli space

that is a smooth irreducible quasi-projective variety. The moduli space we are interested
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in is the moduli space of semistable diagonally framed SL(n,C)-Higgs bundle, denoted

by M∆(n,D). It is clear that M∆(n,D) is a subvariety of MF (n,D).

Remark 1.3.6. Unless mentioned otherwise, we will assume all diagonally framed Higgs

bundles are semistable with structure group SL(n,C) throughout the paper.

For each p ∈ D, there is a natural Sn-action on ⊕ni=1Op by permuting the order of the

components

σ : ⊕ni=1Op
∼−→ ⊕ni=1Op, (s1, ..., sn) 7→ (sσ(1), ..., sσ(n)), where σ ∈ Sn.

For each p ∈ D, this induces a Sn-action on the space of framings

σ · δ = σ ◦ δ : E|p → ⊕ni=1Op
σ−→ ⊕ni=1Op.

Hence, the moduli spaces M∆(n,D) and MF (n,D) admit a S|D|n -action: for σ ∈ S|D|n ,

σ : (E, θ, δ) 7→ (E, θ, σ · δ), where σ · δ : E|D → ⊕ni=1OD → ⊕ni=1OD.

Since the group is finite, we can consider the quotient MF (n,D)/(S|D|n ). The effect of

taking quotient is that, for a fixed Higgs bundle, framings that differ only in reordering

of components will be identified. More precisely, a morphism between unordered framed

Higgs bundles (E, θ, δ) and (E′, θ′, δ′) is a map f : E → E′ such that

δ ◦ f |D = σ ◦ δ′ for some σ ∈ S|D|n , θ′ ◦ f = (f ⊗ IdKΣ(D)) ◦ θ.

In other words, MF (n,D)/(S|D|n ) now parametrizes unordered framed Higgs bundles.

However, this group action is not free. In order to get a free action by S|D|n , we will assume

that the associated spectral curve is smooth and unramified over D, or equivalently, the
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residue of θ at D has distinct eigenvalues. More precisely, we define Bur to be the locus of

smooth cameral curves (see Section 1.3.4) which are unramified over D and have simple

ramifications. Of course, the associated spectral curve for b ∈ Bur is automatically a

smooth spectral curve that is unramified over D, and the necessity to work with smooth

cameral curve with simple ramifications will be explained in Section 5. Moreover, we

restrict to the subvariety M∆(n,D)ur := h
−1
∆ (Bur) where h∆ denotes the composition

M∆(n,D) ↪→MF (n,D) f1−→M(n,D) h−→ B and f1 denotes the forgetful map.

Lemma 1.3.7. The S|D|n -action on M∆(n,D)ur is free.

Proof. Consider (E, θ, δ) ∈ M∆(n,D)ur and suppose that there exists σ ∈ S|D|n and an

isomorphism α : (E, θ, δ)→ (E, θ, σ◦δ). The compability condition δ◦α|D = σ◦δ implies

that δ◦α|D ◦δ−1 = σ, while the compatibility condition θ◦α = (α⊗IdKΣ(D))◦θ restricted

to D is equivalent to θδ ◦ σ = σ ◦ θδ where θδ := δ−1θ|Dδ. The last relation θδ ◦ σ = σ ◦ θδ

is clearly not possible as θδ is diagonal with distinct eigenvalues at each p ∈ D.

Since the S|D|n -action on M∆(n,D)ur is finite and free, we get a geometric quotient

M∆(n,D)ur := M∆(n,D)ur/(S|D|n ). The variety M∆(n,D)ur parametrizes unordered

diagonally framed Higgs bundles.

Clearly, there is a morphism f2 :M∆(n,D)ur →M(n,D)ur := h−1(Bur) by forgetting

the framings. For our purpose of proving Theorem 1.1.3, we will need to study the com-

position of the forgetful map f2 and the Hitchin map h, denoted by hur∆ :M∆(n,D)ur f2−→
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M(n,D)ur hur−−→ Bur. We summarize the relation among the moduli spaces over Bur:

M∆(n,D)ur MF (n,D)ur

M∆(n,D)ur M(n,D)ur

Bur

q f1

f2

hur∆ hur

(1.3.1)

where MF (n,D)ur := (h ◦ f1)−1(Bur).

1.3.2 Spectral correspondence

We explain the spectral correspondence for unordered diagonally framed Higgs bundles

(see Proposition 1.3.12). After that, we describe the Hodge structures of a generic Hitchin

fiber which will be used in the proof of the main theorem.

Definition 1.3.8. Let D be an effective reduced divisor on C. A D-framed line bundle on

a curve C is a pair (L, β) where L is a line bundle and β : L|D ∼−→ OD is an isomorphism.

Remark 1.3.9. Unless mentioned otherwise, we will call (L, β) a framed line bundle

whenever the divisor D is clear from the context.

Proposition 1.3.10. Let C be a smooth curve and D a reduced divisor on C. Let

C◦ = C \ D, j : C◦ → C and i : D → C be the natural inclusions. The isomorphism

classes of degree 0 framed line bundles on C are parametrized by the generalized Jacobian

Jac(C◦) := H0(C,ΩC(logD))∨
H1(C◦,Z) . (1.3.2)

Proof. By duality, we can identify

Jac(C◦) = H0(C,ΩC(logD))∨
H1(C◦,Z)

∼=
H1(C,O(−D))
H1(C,D,Z)
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Consider the exponential sequence

0→ j!Z→ OC(−D) exp(2πi(−))−−−−−−−→ O∗C(−D)→ 0

where O∗C(−D) is defined as the subsheaf of O∗C consisting of functions with value 1 on

D. It induces a long exact sequence

· · · →H1(C, j!Z) ∼= H1(C,D,Z)→ H1(C,OC(−D))→ H1(C,O∗C(−D))

c1−→H2(C, j!Z) ∼= H2(C,D,Z)→ H2(C,OC(−D))→ H2(C,O∗C(−D))→ · · ·

where the map c1 : H1(C,O∗C(−D)) → H2(C, j!Z) ∼= H2(C,D,Z) ∼= H2(C,Z) ∼= Z

can be interpreted as the first Chern class map. The group H1(C,O∗C(−D)) naturally

parametrizes all framed line bundles. Indeed, the sheaf O∗C(−D) sits in a short exact

sequence

1→ O∗C(−D)→ O∗C → i∗C∗ → 1

which induces a quasi-isomorphism O∗C(−D) → F • := [O∗C → i∗C∗] and hence an

isomorphism H1(C,O∗C(−D)) ∼= H1(C,F •). By choosing a Čech covering (Uα), a 1-

cocyle in Z1(Uα, F •) is a pair of fαβ ∈ H0(Uαβ,O∗C) and ηα ∈ H0(Uα, i∗C∗) such that

ηα/ηβ = fαβ|D. The data fαβ represents a line bundle. By assumption, fαβ|D = 1 implies

that ηα|D = ηβ|D ∈ C∗. Since a framing of a line bundle at a point is equivalent to a

choice of a non-zero complex number, (ηα) defines a framing of the line bundle at D. In

other words, the pair (fαβ, ηα) represents a framed line bundle, and a class in H1(C,F •)

represents an isomorphism class of the framed line bundle.

In particular, we find that

Jac(C◦) ∼=
H1(C,O(−D))
H1(C,D,Z)

∼= ker(c1 : H1(C,O∗C(−D))→ Z)

which paramatrizes degree 0 framed line bundles.
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We will apply the previous discussion to C = Σb , a spectral curve of Σ corresponding

to b ∈ Bur.

Remark 1.3.11. Unless mentioned otherwise, we will omit the the subscript b in Σb and

Σ◦b in this section for convenience, as it is irrelevant to our discussion.

Since we are mainly interested in SL(n,C)-Higgs bundles, we will need to consider the

Prym variety of the spectral cover p : Σ → Σ. The norm map Nm : Jac(Σ̃) → Jac(Σ)

induces a morphism of short exact sequences

0 (C∗)nd−1 Jac(Σ̃◦) Jac(Σ̃) 0

0 (C∗)d−1 Jac(Σ◦) Jac(Σ) 0

Nm◦ Nm

where d = |D| and Nm◦ : Jac(Σ̃◦)→ Jac(Σ◦) is defined by taking norms on line bundles

and determinants on framings. Recall that Nm(L) = det(p∗L) ⊗ det(p∗OΣ)∨ and for a

framed line bundle (L, β) ∈ Jac(Σ◦), the natural framing

p∗L|x
∼−→

⊕
y∈p−1(x)

Ly
∼−→
β

⊕
y∈p−1(x)

Oy

induces a framing on det(p∗L)|x over each x ∈ D. Also, there is a natural framing

on det(p∗OΣ)∨|x induced from the identity Id : OΣ|p−1(x) → OΣ|p−1(x). Both framings

determine a framing on Nm(L) and hence the map Nm◦.

By taking the kernel of this morphism, we get a commutative diagram:

0 (C∗)(n−1)d Prym(Σ̃◦/Σ◦) Prym(Σ̃/Σ) 0

0 (C∗)nd−1 Jac(Σ̃◦) Jac(Σ̃) 0

0 (C∗)d−1 Jac(Σ◦) Jac(Σ) 0

Nm◦ Nm

(1.3.3)

where Prym(Σ̃◦/Σ◦) := ker(Nm◦).
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Proposition 1.3.12. (Spectral correspondence [BLP19]).

For a fixed b ∈ Bur, there is a one-to-one correspondence between degree zero framed

line bundles on Σ̃b and unordered diagonally framed Higgs bundles on Σ. Moreover, the

following results hold:

1. The fiber h−1
∆,GL(n)(b) is isomorphic to Jac(Σ̃◦b);

2. The fiber h−1
∆,SL(n)(b) is isomorphic to Prym(Σ̃◦b/Σ◦).

Proof. For simplicity, we assume D = {x}, D = p−1(x) in this proof. Let L be a line

bundle on Σ̃b and (E, θ) a Higgs bundle on Σ. Recall that there is a bijection between

line bundles on Σ̃b and Higgs bundles on Σ

Line bundle L on Σ̃b Higgs bundle (E, θ) on Σ

p∗

coker(p∗θ−λId)

(1.3.4)

where λ denotes the tautological section of KΣ(D). It remains to verify the bijection on

framings.

Pushing forward a D-framed line bundle (L, β) gives an unordered framed Higgs bun-

dle (p∗L, p∗λ, δ) where

δ : E|x ∼−→
⊕

y∈p−1(x)
Ly

∼−→
β

⊕
y∈p−1(x)

Oy

is well-defined as an unordered framing. With respect to the unordered framing, the Higgs

field p∗λ is diagonal as θ|x := p∗λ defines multiplication by λi on each eigenline Li.

Conversely, given an unordered diagonally framed Higgs bundle (E, θ, δ), since we

assume that θ|x has distinct eigenvalues, for each λi ∈ p−1(D), the natural composition

ker(p∗θ − λiId)→ E|x → coker(p∗θ − λiId)
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is an isomorphism. The assumption that θ|x is diagonal with respect to δ implies that

there is a component Ox
αi
↪−→ ⊕ni Ox such that

ker(p∗θ − λiId) E|x

Ox ⊕ni Ox
αi

∼= ∼=

In particular, we get a framing Ox ∼−→ coker(p∗θ − λiId) for each λi.

Finally, claims (1), (2) follow from Proposition 1.3.10.

Hodge structures

Recall that since Σ̃◦ is non-compact, H1(Σ̃◦,Z) carries the Z-mixed Hodge structure

whose Hodge filtration is given by

F 0 = H1(Σ̃◦,C) ⊃ F 1 = H0(Σ̃,Ω1
Σ̃(logD)) ⊃ F 2 = 0. (1.3.5)

This induces the mixed Hodge structure on (H1(Σ̃◦,Z))∨ which is isomorphic to

H1(Σ̃◦,Z)/(torsion) ∼= H1(Σ̃◦,Z) by the universal coefficient theorem. Note that

Ext(H0(Σ̃◦,Z),Z) = Ext(Z,Z) = 0, so there is no torsion in this case. The Hodge

filtration of this dual mixed Hodge structure is given by

F−1 = H1(Σ̃◦,C)∨ ⊃ F 0 =

 H1(Σ̃◦,C)
H0(Σ̃,Ω1

Σ̃
(logD))

∨ ⊃ F 1 = 0

Note that the weight filtration on H1(Σ̃◦,Z) is

W−3 = 0 ⊂W−2 = Znd−1 ⊂W−1 = H1(Σ̃◦,Z).

Thus we can define as in [Car79] the Jacobian of this Hodge structure as

J(H1(Σ̃◦,Z)) := H1(Σ̃◦,C)
F 0 +H1(Σ̃◦,Z)

(1.3.6)
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Lemma 1.3.13. There is an isomorphism between

J(H1(Σ̃◦,Z)) ∼= Jac(Σ̃◦)

Proof. Indeed,

J(H1(Σ̃◦,Z)) = H1(Σ̃◦,C)
F 0 +H1(Σ̃◦,Z)

= F−1

F 0 +H1(Σ̃◦,Z)
∼=
H0(Σ̃,Ω1

Σ̃
(log(D)))

H1(Σ̃◦,Z)
.

Taking the first integral homology of every term in the diagram (1.3.3), we get

0 (Z)(n−1)d H∆,SL(n) HSL(n) 0

0 (Z)nd−1 H1(Σ̃◦,Z) H1(Σ̃,Z) 0

0 (Z)d−1 H1(Σ◦,Z) H1(Σ,Z) 0

Nm◦ Nm

where we define

H∆,SL(n) := H1(Prym(Σ̃◦/Σ◦),Z) ∼= ker(Nm◦ : H1(Σ̃◦,Z)→ H1(Σ◦,Z)), (1.3.7)

HSL(n) := H1(Prym(Σ̃/Σ),Z) ∼= ker(Nm : H1(Σ̃,Z)→ H1(Σ,Z)). (1.3.8)

Since the norm map is a morphism of mixed Hodge structures and taking the Jacobian

is functorial, we immediately get the following result.

Corollary 1.3.14. The Prym lattice H∆,SL(n) is torsion free and admits the Z-mixed

Hodge structure of type {(−1,−1), (−1, 0), (0,−1)} induced by the map H1(Nm◦) : H1(Σ̃◦,Z)→

H1(Σ◦,Z). In particular, the Jacobian J(H∆,SL(n)) is isomorphic to Prym(Σ̃◦/Σ◦).
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Remark 1.3.15. Note that the mixed Hodge structure of the above type on H∆,SL(n)

is equivalent to the data of semi-abelian variety J(H∆,SL(n)). A review is included in

Appendix (1.6).

Remark 1.3.16. The Prym lattice H∆,SL(n) admits a sheaf-theoretic formulation which

will be needed in later sections. Consider the short exact sequence

0→ K → p∗Z
Tr−→ Z→ 0

The trace map p∗Z
Tr−→ Z is defined by

p∗Z(U) = Z(p−1(U))→ Z(U), (s1, ..., sn) 7→
n∑
i=1

si

if U is away from the ramification divisor, where si is a section on each component of

p−1(U).

This short exact sequence induces a long exact sequence:

0→ H0
c (Σ,K)→ H0

c (Σ, p∗ZΣ̃) ∼= H0
c (Σ̃,Z)→ H0

c (Σ,Z)

→ H1
c (Σ,K)→ H1

c (Σ, p∗Z) ∼= H1
c (Σ̃,Z)→ H1

c (Σ,Z)

Since the cokernel of the map H0
c (Σ̃,Z)→ H0

c (Σ,Z) is torsion and H1
c (Σ,Z) is torsion-free,

it follows that the maximal torsion free quotient H1
c (Σ,K)tf := H1

c (Σ,K)/H1
c (Σ,K)tors can

be identified as follows

H1
c (Σ,K)tf ∼= ker(H1

c (Σ̃,Z)→ H1
c (Σ,Z)) ∼= ker(H1(Σ̃,Z)→ H1(Σ,Z))

by Poincaré duality. Note that we could have used cohomology instead of compactly

supported cohomology since the curve Σ is compact, but the above argument also works
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for the noncompact curve Σ◦. In particular, the same argument implies that

H1
c (Σ◦,K|Σ◦)tf ∼= ker(H1(Σ̃◦,Z)→ H1(Σ◦,Z)) ∼= H∆,SL(n). (1.3.9)

Note that H1
c (Σ◦,K|Σ◦)tf can also be written as H1(Σ, D,K)tf.

1.3.3 Deformation theory

In this section, we show that the moduli space of diagonally framed Higgs bundleM∆(n,D)

is symplectic. For the following discussion in this section, we fix a diagonally framed Higgs

bundle (E, θ, δ). Recall that we assume b ∈ Bur which means that the associated cam-

eral curve is smooth, unramified over D, and has simple ramification. In particular, the

residue of θ at D is diagonal with distinct eigenvalues with respect to the framing δ.

Denote by Σ[ε] the fiber product Σ× Spec(C[ε]).

Definition 1.3.17. An infinitesimal deformation of diagonally framed Higgs bundle is a

triple (Eε, θε, δε) such that

• Eε is a locally free sheaf on Σ[ε],

• θε ∈ H0(Σ[ε], g′Eε,D[ε] ⊗ p
∗
ΣKΣ(D)),

• δε : E|D[ε] → O⊕nD[ε] is an isomorphism,

• (Eε, θε, δε)|D×0 ∼= (E, θ, δ),

where as before g′Eε,D[ε] is defined as the kernel of the map gEε � q⊗OD[ε] induced by δε

and pΣ : Σ[ε]→ Σ denotes the natural projection.
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Proposition 1.3.18. The space of infinitesimal deformations of a diagonally framed

Higgs bundle (E, θ, δ) is canonically isomorphic to H1(C•) where

C• : C0 = gE(−D) [·,θ]−−→ C1 = g′E ⊗KΣ(D) (1.3.10)

Proof. Recall that [Mar94] the space of infinitesimal deformation of a framed Higgs bun-

dles (E, θ, δ) is canonically isomorphic to H1(C•F ) where

C•F : C0
F = gE(−D) [·,θ]−−→ C1

F = gE ⊗KΣ(D). (1.3.11)

Choose a Čech cover U := (Uα) of Σ which induces cover U [ε] := (Uα[ε]) of Σ[ε]. Im-

posing further the condition that the Higgs bundles are diagonally framed implies that

θ ∈ g′E ⊗KΣ(D) ⊂ gE ⊗KΣ(D). Suppose that a 1-cocycle (ḟαβ, ϕ̇α) in Z1(U [ε], C•F ) rep-

resents an infinitesimal deformation of (E, θ, δ) as framed Higgs bundles where ḟαβ ∈

H0(Uαβ[ε], gE(−D)) and ϕ̇α ∈ H0(Uα[ε], gE ⊗ p∗ΣKΣ(D)). Then (ḟαβ, ϕ̇α) is an in-

finitesimal deformation of (E, θ, δ) as diagonally framed Higgs bundles if and only if

ϕ̇α ∈ H0(Uα[ε], g′E ⊗ p∗ΣKΣ(D)). Hence, it follows that H1(C•) parametrizes the infinites-

imal deformations of diagonally framed Higgs bundles.

Recall that the Serre duality says that H1(C•) ∼−→ (H1(Č•))∨ where

Č• : (g′E)∨ ⊗OΣ(−D) [−,θ]t−−−→ g∨E ⊗KΣ(D) (1.3.12)

is the Serre dual to C•. Combining the Serre duality isomorphism with the isomorphism

in the next proposition, we get a non-degenerate skew-symmetric pairing on H1(C•).

Proposition 1.3.19. There is a canonical isomorphism

H1(Č•) ∼= H1(C•). (1.3.13)
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Proof. We consider an auxiliary complex2

C•1 : g′′E → gE ⊗KΣ(D)

and show that this is isomorphic to both C• and Č•.

First, consider the morphism of complexes t : C• → C•1 :

C• gE ⊗OΣ(−D) g′E ⊗KΣ(D)

C•1 g′′E gE ⊗KΣ(D)

t t0 t1

Both t0 and t1 are injective. The diagram clearly commutes away from D, hence commutes

everywhere. In particular, around D, choose an open subset U that trivializes all the

bundles, we see that the maps become the natural maps

t(−D)⊕ q(−D) (t⊕ q(−D))⊗KΣ(D)|U

t(−D)⊕ q (t⊕ q)⊗KΣ(D)|U

t0|U t1|U

where we abuse notations by denoting t and q the trivial bundles with fibers t and q,

respectively. The cokernel of t is

coker(t) : qD
[·,θ]|D−−−−→ qD ⊗KΣ(D)

Lemma 1.3.20.

Hi(coker(t)) = 0, for all i.

Proof. Since the complex is supported at D, it reduces to a complex of C-vector spaces.

Assume D consists of a single point for simplicity. The complex reduces to

q
[·,θ]|D−−−−→ q.

2The complex C•1 here coincides with the complex ”C∆
• ” that is defined in [BLP19, Section 5].
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Recall our assumption that the associated spectral curve is unramified overD. The restric-

tion θ|D of the Higgs field to D is a diagonal matrix with distinct eigenvalues with respect

to δ. In particular, θ|D is regular and semisimple, so its centralizer

Zg(θ|D) = {x ∈ g|[x, θ|D] = 0} is a Cartan subalgebra and coincides with t. Since

ker([·, θ]|D : g → g) = Zg(θ|D) = t which intersects q trivially, it follows that the re-

stricted map ([·, θ]|D)|q : q → q is an isomorphism. Hence, all the cohomologies of the

complex coker(t) must be zero.

The long exact sequence induced by 0→ C• → C•1 → coker(t)→ 0 is:

0→ H0(C•)→ H0(C•1 )→ H0(coker(t)) = 0

→ H1(C•)→ H1(C•1 )→ H1(coker(t)) = 0→ ...

and hence H0(C•) ∼= H0(C•1 ) and H1(C•) ∼= H1(C•1 ).

Finally, we claim that there is an isomorphism of complexes C•1 ∼= Č•

C•1 g′′E gE ⊗KΣ(D)

Č• (g′E)∨ ⊗OΣ(−D) (gE)∨ ⊗KΣ(D)

∼= r0 r1 (1.3.14)

The map r0 is defined as follows. Consider the composition of morphisms

g′′E ↪→ gE
∼−→ g∨E ↪→ (g′E)∨ → (g′E)∨ ⊗OD. (1.3.15)

where the isomorphism gE → g∨E is given by the trace pairing. If we know that this

composition is zero, then we will get a map

r0 : g′′E → ker((g′E)∨ → (g′E)∨ ⊗OD) = (g′)∨E ⊗OΣ(−D).
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Away from D, the map (1.3.15) is clearly zero. Around D, we can find an open subset U

such that each sheaf in the composition is trivial, then

g′′E |U gE |U g∨E |U (g′E)∨|U ((g′E)∨ ⊗OD)|U

t(−D)⊕ q t⊕ q t∨ ⊕ q∨ t∨ ⊕ q∨(D) (t∨ ⊗OD)⊕ (q∨ ⊗OD(D))

∼= ∼= ∼= ∼= ∼=

Each component of the bottom row clearly composes to zero, hence the whole composition

is zero. Locally over U , the map r0 : g′′E → (g′E)∨⊗OΣ(−D) is induced by the trace pairing:

t
∼−→ t∨ and q

∼−→ q∨,

r0|U : g′′E |U ∼= t(−D)⊕ q
∼−→ t∨(−D)⊕ q∨ ∼= (g′E)∨ ⊗OΣ(−D)|U

Since r0 is clearly an isomorphism away from D, it follows that r0 is an isomorphism.

The commutativity can be argued in the same way. Again, the diagram commutes

away from D. Around D, the bundles trivialize and we get the diagram

t(−D)⊕ q t⊕ q⊗KΣ(D)|U

t∨(−D)⊕ q∨ t∨ ⊕ q∨ ⊗KΣ(D)|U

which commutes on the nose.

All of this together gives

H1(C•) ∼= H1(C•1 ) ∼= H1(Č•). (1.3.16)

as claimed.

Let ω∆ : H1(C•)×H1(C•)→ C be the non-degenerate skew-symmetric pairing induced

by Serre duality and the isomorphism in Proposition 1.3.19.

Proposition 1.3.21. The nondegenerate 2-form ω∆ is closed.
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Proof. Consider the following inclusion of complexes C• u
↪−→ C•F :

C• gE ⊗OΣ(−D) g′E ⊗KΣ(D)

C•F gE ⊗OΣ(−D) gE ⊗KΣ(D)

u u0 u1

where as before C•F is the complex whose first hypercohomology controls the deformations

of the framed Higgs bundle (E, θ, δ). By the same argument as in Proposition 1.3.19,

since u0 is isomorphic and u1 is injective whose cokernel has zero-dimensional support

and concentrated in degree one, we have an injection

i : H1(C•) ↪→ H1(C•F ).

Note that Serre duality induces a non-degenerate bilinear pairing on H1(C•F ) which cor-

responds to the well-known symplectic form ωF on MF (n,D), see [BLP19]. We claim

that the pairing ω∆ is obtained by restricting ωF to H1(C•) ⊂ H1(C•F ). In other words,

the corresponding 2-form on M∆(n,D) is obtained by pulling back the symplectic form

ωF on MF (n,D). It then follows that ωF is closed as well.

Our claim is equivalent to the commutativity of the following diagram:

H1(C•F ) H1(Č•F )∨ H1(C•F )∨

H1(C•) H1(Č•)∨ H1(C•1 )∨ H1(C•)∨
i∨i

The left square diagram commutes by the functoriality of Serre duality. Then it remains to

check the commutativity of the right square diagram. This follows from the commutativity

of the diagram of complexes:

Č•F C•F

Č• C•1 C•
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Away from D, the diagram clearly commutes. Around D, we again trivialize the bundles

and the diagram looks like

t∨(−D)⊕ q∨(−D)→ (t∨ ⊕ q∨)L t(−D)⊕ q(−D)→ (t⊕ q)L

t∨(−D)⊕ q∨ → (t∨ ⊕ q∨)L t(−D)⊕ q→ (t⊕ q)L t(−D)⊕ q(−D)→ (t⊕ q(−D))L

where we denote by L the operation ”⊗KΣ(D)”.

Proposition 1.3.22.

1. H0(C•) = H2(C•) = 0. In particular, the deformations of a diagonally framed Higgs

bundle (E, θ, δ) are unobstructed.

2. dim(H1(C•)) = (n2 − 1)(2g − 2 + d) + (n− 1)d.

Proof. (1) Since morphisms between diagonally framed Higgs bundles are in particular

morphisms between framed Higgs bundles, automorphisms of diagonally framed Higgs

bundles are the same as automorphisms as framed Higgs bundles. So Corollary 1.3.4

implies that the diagonally framed Higgs bundles are rigid. Hence, H0(C•) = 0.

On the other hand, again by Serre duality,

H2(C•) ∼= (H0(Č•))∨ ∼= (H0(C•1 ))∨

where the second isomorphism comes from the isomorphism of the complex (1.3.14).

Finally, recall that from the long exact sequence above, we have that H0(C•) ∼= H0(C•1 )

which vanishes as we just proved, hence H2(C•) = 0.

(2) By the definition of g′E , we have a short exact sequence
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0→ gE ⊗OΣ(−D)→ g′E → i∗t→ 0

and thus

χ(g′E ⊗KΣ(D)) = χ(g′E) + (n2 − 1)deg(KΣ(D))

= χ(t⊗OD) + χ(gE(−D)) + (n2 − 1)deg(KΣ(D))

= (n− 1)d+ χ(gE) + (n2 − 1)deg(OΣ(−D)) + (n2 − 1)deg(KΣ(D))

= χ(gE) + (n− 1)d+ (n2 − 1)(2g − 2).

By (1), χ(C•) = H1(C•), so

H1(C•) = χ(g′E ⊗KΣ(D))− χ(gE(−D))

= χ(gE) + (n− 1)d+ (n2 − 1)(2g − 2)− χ(gE) + (n2 − 1)d

= (n2 − 1)(2g − 2 + d) + (n− 1)d.

Remark 1.3.23. In the case of g = gln, a similar computation shows that

H1(C•) = n2(2g − 2 + d) + nd.

Remark 1.3.24. A direct computation by applying the Riemann-Roch theorem shows

that

dim(B) =
n∑
i=2

h0(Σ, (K(D))⊗i) = (2g − 2 + d)
(
n(n+ 1)

2 − 1
)

+ (n− 1)(1− g)

= 1
2
(
(n2 − 1)(2g − 2 + d) + (n− 1)d

)
= 1

2dim(H1(C•)).
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Proposition 1.3.25. The open subset M∆(n,D)ur of the moduli space M∆(n,D) is a

smooth quasi-projective variety of dimension (n2− 1)(2g− 2 + d) + (n− 1)d. The tangent

space T[(E,θ,δ)]M
∆(n,D)ur is canonically isomorphic to H1(C•). Moreover, M∆(n,D)ur

admits a symplectic form ω∆ which is the restriction of the symplectic form ωF on

MF (n,D).

Proof. All the claims follow immediately from Proposition 1.3.18, 1.3.21 and 1.3.22. The

argument to show that ω∆ is a restriction of ωF is contained in the proof of Proposition

1.3.21.

Proposition 1.3.26. The fiber of the map h∆ :M∆(n,D)ur → Bur is Lagrangian with

respect to ω∆.

Proof. Denote by (h1, ..., hl) := h◦f1 :MF (n,D)→M(n,D)→ Cl = B the composition

of the forgetful map and the Hitchin map. According to [BLP19, Theorem 5.1], the

functions hi Poisson-commute. Since the symplectic form ω∆ on M∆(n,D)ur is the

restriction of the symplectic form ωF onMF (n,D), the functions hi Poisson-commute as

well when restricted to M∆(n,D)ur.

Since the dimension of the fiber h−1
∆ (b) for b ∈ Bur is exactly 1

2dim(M∆(n,D)ur) by

Remark (1.3.24), it suffices to show that ω∆ restricted to h
−1
∆ (b) vanishes to prove our

claim. This follows from Poisson-commutativity of (hi)|M∆(n,D)ur .

Proposition 1.3.27. The tangent space T[(E,θ,δ)]M∆(n,D)ur is canonically isomorphic

to H1(C•). Moreover, the symplectic form ω∆ on M∆(n,D)ur is invariant under the

S
|D|
n -action. In particular, ω∆ descends to a symplectic form ω′∆ on M∆(n,D)ur.
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Proof. In the proof of Proposition 1.3.18, given an infinitesimal deformation (Eε, θε, δε),

the assignment of a 1-cocyle (ḟαβ, ϕ̇α) in H1(C•) is independent of the reordering of

components. That means we have the following commutative diagram

T[(E,θ,δ)]M
∆(n,D)ur H1(C•)

T[(E,θ,σ·δ)]M
∆(n,D)ur H1(C•)

∼

dσ =

∼

for σ ∈ S|D|n . The differential of the quotient map

dq : T[(E,θ,δ)]M
∆(n,D)ur → T[(E,θ,S|D|n ·δ)]

M∆(n,D)ur

is an isomorphism. Hence, the canonical identification T[(E,θ,δ)]M
∆(n,D)ur ∼= H1(C•)

descends to the tangent space T[(E,θ,S|D|n ·δ)]
M∆(n,D)ur via dq and yields a canonical

isomorphism T[(E,θ,S|D|n ·δ)]
M∆(n,D)ur ∼= H1(C•). Since the group action of S|D|n is trivial

on H1(C•), the symplectic form ω∆ on M∆(n,D)ur is invariant under S|D|n .

Corollary 1.3.28. The map hur∆ :M∆(n,D)ur → Bur forms a semi-polarized integrable

system.

Proof. By the spectral correspondence proved in Proposition 1.3.12, the fibers are semi-

abelian varieties. Since ω′∆ descends from the symplectic form ω∆, it follows immediately

from Proposition 1.3.26 that the fiber of the map hur∆ :M∆(n,D)ur → Bur is Lagrangian

with respect to ω′∆.

Remark 1.3.29. For a fixed b ∈ Bur, the fiber (hur∆ )−1(b) is a semi-abelian variety

Prym(Σ̃◦b ,Σ◦) which admits a (C∗)(n−1)d-action. This group action can be seen by view-

ing Prym(Σ̃◦b ,Σ◦) as parametrizing framed line bundles on Σ̃b which correspond to un-

ordered diagonally framed SL(n,C)-Higgs bundles under spectral correspondence. Then
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(C∗)(n−1)d acts simply transitively on the space of framings over D for each fixed line bun-

dle, and the quotient map is equivalent to the natural map Prym(Σ̃◦b ,Σ◦)→ Prym(Σ̃b,Σ)

of forgetting the framings. Applying this fiberwise quotient by (C∗)(n−1)d to the fibra-

tion M∆(n,D)ur → Bur, we see that the quotient map is precisely the forgetful map

f1 :M∆(n,D)ur →M(n,D)ur. Thus, this provides a geometric interpretation of the fact

that the Poisson integrable systemM(n,D)ur → Bur is realized as the fiberwise compact

quotient of the semi-polarized integrable systemM∆(n,D)→ Bur as discussed in Section

1.2.2.

1.3.4 Cameral description

Although the spectral curve description is more intuitive and straightforward, it only

works for classical groups. To describe the general fiber of Hitchin system for any reductive

group G as well as prove DDP-type results, it is more natural to use the cameral curve

description and generalized Prym variety. In this section, we focus on the extension of

classical results in our case (A-type). We refer to [DG02][DP12] for more basics and

details about the cameral description.

In this section, we use general notation from algebraic group theory with an eye

towards a generalization of the previous arguments to any reductive group G (see Remark

1.3.32).

As the Hitchin base B can be considered as the space of sections of KΣ(D)⊗ t/W , we

have the following commutative diagram

Σ̃ Ũ := Tot(KΣ(D)⊗ t)

Σ×B U := Tot(KΣ(D)⊗ t/W )

p̃ φ

ev

(1.3.17)
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where Σ̃ is the universal cameral curve of Σ. By projecting to B, we have a family of

cameral curves Σ̃→ B whose fiber is a W -Galois cover of the base curve Σ. An interesting

observation is that in the meromorphic case, one can consider the universal cameral pair

(Σ̃, D̃ := p̃−1(D×B)), which allows us to extend the notion of generalized Prym variety

[Don93]. Let’s recall the definition of the generalized Prym variety. For a generic b ∈ B,

we define a sheaf of abelian groups Tb by

Tb(U) := {t ∈ p̃b∗(ΛG ⊗O∗Σ̃)W (U)|α(t)|Mα = +1 ∀α ∈ R(G)}

where R(G) is a root system and ΛG is the cocharater lattice and Mα is the ramification

locus of p̃b : Σ̃b → Σ fixed by the reflection S2 ∈ W corresponding to α. We define the

generalized Prym variety of Σ̃b over Σ as the sheaf cohomology H1(Σ, Tb).

Theorem 1.3.30 ([DG02][HHP10]). For b ∈ B◦, the fiber h−1(b) in the meromorphic

Hitchin system is isomorphic to the generalized Prym variety H1(Σ, Tb):

h−1(b) ∼= H1(Σ, Tb)

where B◦ is the locus of smooth cameral curves with simple ramifications.

Let iD : D ↪→ Σ←↩ Σ \D : jD be inclusions. Associated to the cameral pair (Σ̃b, D̃b),

one can extend the generalized Prym variety to H1(Σ, jD!j
∗
DTb) which is isomorphic to

h−1
∆ (b).

Proposition 1.3.31. For b ∈ Bur, the unordered diagonally framed Hitchin fiber (h∆)−1(b)

is isomorphic to H1(Σ, jD!j
∗
DTb). In particular, it is a semi-abelian variety which corre-

sponds to the Z-mixed Hodge structure

(H1(Σ, D, (p̃b∗ΛSL(n))W )tf, H
1(Σ̃b, D̃b, t)W )
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whose weight and Hodge filtration are induced from Hodge structure of H1(Σ̃b, t)W and

H0(D̃b, t)W .

Proof. For completeness, we use the spectral description of unordered diagonally framed

Higgs bundles. The fiber (h∆)−1(b) is isomorphic to the Jacobian of the relative Z-mixed

Hodge structure on H1(Σ, D,Kb) where Kb := ker(Tr : p̄b∗Z → Z) (see Remark 1.3.16).

To relate with the cameral description, we consider an isomorphism of sheaves,

(p̃b∗ΛSL(n))W ∼= Kb (1.3.18)

proved in Lemma 1.5.4. It induces the isomorphism of Z-mixed Hodge structures on the

relative sheaf cohomology:

H1(Σ, D, (p̃b∗ΛSL(n))W ) ∼= H1(Σ, D,Kb).

They agree on the torsion free part, hence we obtain the result by complexifying the

lattice.

Remark 1.3.32. In the forthcoming paper [LL], we develop the theory of diagonally

framed Higgs bundle for arbitrary reductive group G and its abelianization by following

[DG02]. In summary, note that an additional data of diagonal framing amounts to spec-

ifying W -equivariant section of T -bundle at D. This can be formulated as H0(Db, T ) =

H0(D, (p̃b∗ΛSL(n))W ⊗ C∗) modulo the action of the center Z(G). Moreover, the distin-

guished triangle in the constructible derived category of Σ, Db
c(Σ)

jb!j
∗
b → id→ ib∗i

∗
b

induces the long exact sequence as follows

H0(Σ, jb!j∗bTb)→ H0(Σ, Tb)
i∗D−→ H0(D, Tb)→ H1(Σ, jb!j∗bTb)→ H1(Σ, Tb)→ 0. (1.3.19)
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Here, H0(Σ, Tb) is the space of W -equivariant maps, HomW (Σ̃b, T ), which takes values 1

on Mα

Σ̃b
for every root α. Note that

Z(G) = {t ∈ TW |α(t) = 1 for all α ∈ R(G)}.

Therefore, the cokernel of i∗D : H0(Σ, Tb)→ H0(D, Tb) can be identified with T |D|/Z(G),

a level subgroup. Clearly this is a copy of C∗’s, so we have the semi-abelian variety

H1(Σ, jb!j∗bTb) as an extension of H1(Σ, Tb) by T |D|/Z(G). In order to get the complete

description of the general fiber, we should verify the precise torsor structure. For type A,

this can be done easily with the help of spectral description.

1.3.5 Abstract Seiberg-Witten differential

Using the cameral description, one can define an abstract Seiberg-Witten differential.

Note that in the classical case, the Seiberg-Witten differential is a holomorphic one-form

which is obtained by the tautological section of the pullback of KΣ under Tot(KΣ)→ Σ.

Similarly, in the meromorphic case, the tautological section of the pullback of KΣ(D)

under Tot(KΣ(D)) → Σ gives the logarithmic 1-form θ. For each b ∈ B, we define the

Seiberg-Witten differential to be the restriction

λ∆,b := θ|Σ̃b ∈ H
0(Σ̃b, t⊗ ΩΣ̃b

(log D̃b))W = F 1H1(Σ̃b \ D̃b, t)W

where (H1(Σ\D, (p̃b,∗ΛSL(n))W ), H1(Σ̃b \D̃b, t)W ) is the Z-mixed Hodge structure associ-

ated to the cameral pair (Σ̃b, p̃
−1
b (D)). This is the dual to the one we described earlier and

is of type {(0, 1), (1, 0), (1, 1)}. For simplicity, let’s denote it by V ∨b = H1(Σ̃b \ D̃b, t)W .

Note that having a variation of Z-mixed Hodge structures overB corresponds to having

the classifying map to mixed period domain; Φ : B → D/Γ. It admits a holomorphic lift
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[MU87] Φ̃ : B → D which factors through relative Kodaira-Spencer map κ : TB,b →

H1(Σ̃b, TΣ̃b
(− log D̃b))

TB,b TD,Φ̃(b)

H1(Σ̃b, TΣ̃b
(− log D̃b))

dΦ̃

κ m∨ (1.3.20)

where m∨ : H0(Σ̃b, t ⊗ ΩΣ̃b
(log D̃b))W ⊗ H1(Σ̃b, TΣ̃b

(− log D̃b)) → H1(Σ̃b,OD̃b)
W is the

logarithmic contraction.

Proposition 1.3.33. For each b ∈ Bur, applying the Gauss-Manin connection to λ∆,

one can obtain an isomorphism

∇GM : TbB
∼=−→ F 1V ∨b

µ 7→ ∇GMµ (λ∆,b)

Proof. The idea is to follow the local computation as in the original proof of the classical

case [HHP10]. We can apply the same arguments because we restrict to cameral covers

with no ramification over the divisors. First, given µ ∈ TbB, one can compute ∇GMµ by

using the above diagram (1.3.20). Let’s consider

Cµ := pr ◦ ∇GMµ : F 1 → V ∨b → V ∨b /F
1

Cµ(α) = α ∪ κ(µ).

One can see that ∇GMµ (λ∆) ∈ F 1 for all µ ∈ TbB by noticing that Cµ(λ∆,b) = 0. This also

follows from Griffiths’ transversality of variation of mixed Hodge structures [PS08, Section

14.4]. On the other hand, using the isomorphism TbB ∼= F 1V ∨b
∼= H0(Σ̃b, t⊗KΣ̃b

(D̃b))W ,

we can assign a logarithmic one form αµ to every µ ∈ TbB. From the definition of the
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Seiberg-Witten differential form, it now follows that

∇GMµ (λ∆,b) = αµ

for all µ ∈ TbB.

1.4 Calabi-Yau integrable systems

1.4.1 Construction

In this section, we shall generalize Smith’s elementary modification idea [Smi15] to con-

struct a (semi-polarized) Calabi-Yau integrable system.

First, we describe the construction of a family of Calabi-Yau threefolds. Let V :=

Tot(KΣ(D)⊕ (KΣ(D))n−1 ⊕KΣ(D)) and consider the short exact sequence

0→ OΣ(−D) α−→ OΣ → iD∗OD → 0.

Suppose u is a local frame of OΣ(−D). In terms of a local coordinate z around a point

of D where z = 0, α(u) is represented by f · u where f is a locally defined function

that vanishes at z = 0. We define an elementary modification W of V along the first

component:

W := Tot(KΣ(D−D)⊕ (KΣ(D))n−1⊕KΣ(D))→ Tot(KΣ(D)⊕ (KΣ(D))n−1⊕KΣ(D))

and denote the projection map by πW : W → Σ.

For b = (b2(z), ..., bn(z)) ∈ B = ⊕ni=2H
0(Σ,KΣ(D))⊗i, we define the threefold Xb as

the zero locus of a section in Γ(W,π∗WKΣ(D)⊗n):

Xb := {α(x)y − sn − π∗W b2(z)sn−2 − ...− π∗W bn(z) = 0} ⊂W (1.4.1)
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with the projection πb : Xb → Σ. Here we denote by x, y and s the tautological sections

of KΣ, (KΣ(D))n−1 and KΣ(D), respectively. Note that each term in the equation (1.4.1)

is a section of π∗WKΣ(D)⊗n. More explicitly, we have

x ∈ Γ(W,π∗WKΣ), α(x) ∈ Γ(W,π∗WKΣ(D)), y ∈ Γ(W,π∗W (KΣ(D))n−1)

s ∈ Γ(W,π∗WKΣ(D)), π∗bi ∈ Γ(W,π∗W (KΣ(D))i)

This construction gives rise to a family of quasi-projective threefolds

pr2 ◦ π : X → B.

Next, we show that the threefold Xb is indeed a non-singular Calabi-Yau threefold.

Proposition 1.4.1. The threefold Xb has trivial canonical bundle.

Proof. By the adjunction formula,

KXb = KW ⊗ π∗W (KΣ(D))⊗n|Xb .

where πW : W → Σ. Note that

KW = π∗W det(W∨)⊗ π∗WKΣ ∼= π∗W (K−n−1
Σ (−nD))⊗ π∗WKΣ ∼= π∗W (K−nΣ (−nD)).

So it follows that

KXb = π∗W (K−nΣ (−nD))⊗ π∗W (KΣ(D))⊗n|Xb ∼= OXb .

Proposition 1.4.2. For each b ∈ Bur, the threefold Xb is non-singular.
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Proof. This is a local statement, so we can restrict to neighbourhoods in Σ. Around a

point of D with local coordinate z, the local model of Xb is

{f(z)xy − sn − b̃2(z)sn−2 − ...− b̃n(z) = 0} ⊂ C3
(x,y,s) × Cz,

where b̃i are now functions of z, and f(z) is function with zero only at z = 0. We check

smoothness by examining the Jacobian criterion. The equation

∂

∂s

(
sn − b̃2(z)sn−2 − ...− b̃n(z)

)
= 0

implies that, for each z, the equation sn − b̃2(z)sn−2 − ...− b̃n(z) = 0 must have repeated

solutions, this happens only when z is at a critical value. The remaining equations in the

Jacobian criterion are

f(z)y = 0, f(z)x = 0, f ′(z)xy + ∂

∂z

(
sn − b̃2(z)sn−2 − ...− b̃n(z)

)
= 0

When x = y = 0, the equation ∂
∂z

(
sn − b̃2(z)sn−2 − ...− b̃n(z)

)
= 0 has no solution since

we assume that the spectral curve associated to b is smooth. Hence, it must be the case

f(z) = 0 or equivalently z = 0. However, since we assume b ∈ Bur, this cannot happen

and Xb is non-singular around D.

Away from D, a similar argument shows that the threefold is non-singular over the

local neighbourhood. Hence, Xb is non-singular everywhere.

Again, by examining the defining equation (1.4.1), we can list the types of fibers of

the map πb : Xb → Σ:

• For p ∈ D with coordinate z = 0, the fiber is defined by the equation

sn − b̃2(z)sn−2 − ...− b̃n(z) = 0, i.e. disjoint union of n copies of C2.
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• For a critical value p of πb, the fiber is defined by xy−∏m
i=1(s−si)ki where ∑m

i=1 ki =

n (m < n). Hence, the fiber is a singular surface with Aki−1-singularity at si.

• For p away from D and the discriminant locus of πb, the fiber is defined by (xy −

sn)− b̃2(z)sn−2 − ...− b̃n(z) = 0 and smooth, so it is isomorphic to a smooth fiber

of the universal unfolding of An−1-singularity C2/Zn.

Next, we study the mixed Hodge structure of Xb. Let’s denote the complement of

π−1
b (D) by X◦b . The long exact sequence of compactly supported cohomologies associated

to the pair (Xb, π
−1
b (D)) is

· · · → H2
c (π−1

b (D),Z)→ H3
c (X◦b ,Z)→ H3

c (Xb,Z)→ H3
c (π−1

b (D),Z)→ · · ·

As H2
c (π−1

b (D),Z) = H3
c (π−1

b (D),Z) = 0, we have an isomorphism of Z-mixed Hodge

structures

H3
c (Xb,Z) ∼= H3

c (X◦b ,Z) (1.4.2)

Moreover, the Leray spectral sequence for compactly supported cohomology associated to

π◦b := πb|X◦
b

: X◦b → Σ◦ implies

H3
c (X◦b ,Z) ∼= H1

c (Σ◦, R2π◦b!Z) (1.4.3)

because the (compactly supported) cohomology of a fiber is non-trivial only for degree 0

and 2 [DDP07, Lemma 3.1]. As the Leray spectral sequence is compatible with mixed

Hodge structures ([Ara05], [De 09, Corollary 2.10]), it is enough to compute the Hodge

type of H1
c (Σ◦, R2π◦b!Z). For this, we need to deal with critical values of π◦b and the

monodromy around D. First, note that the critical values do not determine Hodge type.

This is because a local system F having finite monodromies M (only around the critical
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values) can be trivialized by pulling back to an order |M | covering πM : Σ̃M → Σ. Then

the sheaf cohomology H1(Σ,F) is the same as H1(Σ̃M , π
∗
MF)M whose Hodge type is

determined by H1(Σ̃M , π
∗
MF). Applying this to our case, we can ignore the critical values

and it is enough to consider only the monodromy of R2π◦b!Z around D to compute the

Hodge type. Since Xb is constructed via elementary modification from another threefold

which has smooth fibers everywhere around D, we see that the monodromy of R2πb!Z

around D is trivial. As H1
c (Σ◦, R2π◦b!Z) ∼= H1(Σ, D,R2πb!Z), it admits the Z-mixed Hodge

structure of type {(−2,−2), (−2,−1), (−1,−2)} due to the relative version of Zucker’s

theorem [Zuc79]. Therefore, we have the following result.

Proposition 1.4.3. For b ∈ Bur, the third homology group H3(Xb,Z) admits a Z-mixed

Hodge structure of type {(−2,−2), (−2,−1), (−1,−2)}. Moreover, the third cohomology

group H3(Xb,Z) admits a Z-mixed Hodge structure of type {(1, 2), (2, 1), (2, 2)}.

The homology version of the second intermediate Jacobian of Xb is defined to be

Jacobian associated to the Z-mixed Hodge structure of H3(Xb,Z)(1)

J2(Xb) := J(H3(Xb,Z)(1)) = H3(Xb,C)
F−1H3(Xb,C) +H3(Xb,Z) (1.4.4)

Remark 1.4.4. The homology group H3(Xb,Z)(1) turns out to have torsion (see The-

orem 1.5.2). To get the Z-mixed Hodge structure on the lattice of the semi-abelian

variety J2(Xb), we should consider the Z-mixed Hodge structure on the torsion-free part

H3(Xb,Z)tf(1).

Corollary 1.4.5. For b ∈ Bur, the homology version of the second intermediate Jacobian

J2(Xb) is a semi-abelian variety.
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Remark 1.4.6. (Adjoint Type) Unlike the classical case, the cohomological intermediate

Jacobian on H3(Xb,Z) is not a semi-abelian variety. This is one of the new features, so

we need to consider different data to describe the case of PGL(n,C), the adjoint group of

type A. It turns out that the right object is a mixture of compactly supported cohomology

and ordinary cohomology associated to πb : Xb → Σ:

H1
c (Σ, R2πb∗Z) ∼= H1

c (Σ◦, R2π◦b∗Z).

1.4.2 Calabi-Yau integrable systems

Having constructed the family of Calabi-Yau threefolds X ur → Bur, we can consider

the relative intermediate Jacobian fibration πur : J (X ur/Bur) → Bur whose fiber is

J2(Xb) = H3(Xb,C)/(F−1H3(Xb,C)+H3(Xb,Z)). One way to equip it with an integrable

system structure is to find an abstract Seiberg-Witten differential (see Section 2). In

the case of an intermediate Jacobian fibration, this can be achieved by finding a global

nowhere-vanishing holomorphic volume form in each fiber. The resulting semi-polarized

integrable system will again be called the Calabi-Yau integrable system.

Consider the subfamily of Calabi-Yau threefolds

(X ◦)ur := X ur \ π−1(D ×Bur) ⊂ X ur → Bur.

whose fiber is X◦b := Xb \ π−1
b (D). From the relation (1.4.2), it is enough to find

global holomorphic volume forms for the family (X ◦)ur → Bur. The idea is that the

family (X ◦)ur → Bur can be constructed alternatively by gluing Slodowy slices as in

[DDP07][Bec20], which is the key ingredient used for the existence of global volume forms.
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Claim 1.4.7. The family of quasi-projective Calabi-Yau threefolds πur : (X ◦)ur → Bur

can be obtained by gluing Slodowy slices.

Recall that in the classical case [Slo80], the Slodowy slice S ⊂ g provides a semi-

universal C∗-deformation σ : S → t/W of simple singularities via the adjoint map σ : g→

t/W . However, if we denote by dj the standard (C∗-action) weights of the generators of

the coordinate ring C[χ1, ..., χj ] of t/W , then the weights on C[χ1, ..., χj ] must be chosen

as 2dj for σ to be C∗-equivariant (see [BDW20, Remark 2.5.3], [Slo80]).

Now we choose a theta characteristic L on Σ, i.e. L2 ∼= KΣ. Since L2|Σ◦ ∼= KΣ|Σ◦ ∼=

KΣ(D)|Σ◦ , we have an isomorphism of associated bundles over Σ◦

L|Σ◦ ×C∗ t/W ∼= KΣ(D)|Σ◦ ×C∗ t/W

where the weights of the C∗-action on both sides are different: the left hand side has

weights 2dj and the right hand side has weights dj . As the map σ : S → t/W is C∗-

equivariant, we can glue it along Tot(L) to obtain

σ : S := Tot(L×C∗ S)→ Tot(L×C∗ t/W )

and its restriction

σ|Σ◦ : S|Σ◦ := Tot(L×C∗S)|Σ◦ → Tot(L|Σ◦×C∗t/W ) ∼= Tot(KΣ(D)|Σ◦×C∗t/W ) = U |Σ◦ .

Pulling back under the evaluation map from Σ×B, one gets a family of quasi-projective

threefolds (Y◦)ur as follows:

(Y◦)ur S|Σ◦

Σ◦ ×Bur U |Σ◦
π′ σ|Σ◦

ev

(1.4.5)
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Lemma 1.4.8. We have an isomorphism of the families (Y◦)ur ∼= (X ◦)ur over Bur and,

in particular, Y ◦b ∼= X◦b where Y ◦b is a member of the family Y◦.

Proof. For type A, we have a semi-universal C∗-deformation of An−1 singularities (see

[KM92, Theorem 1]) as follows:

σ′ : H := {xy − sn − b2sn−2 − ...− bn = 0} ⊂ C3 × Cn−1 → Cn−1 ∼= t/W

(x, y, s, b2, ..., bn) 7→ (b2, ..., bn)
(1.4.6)

The map σ′ is C∗-equivariant if we endow the following C∗-actions on C3 and Cn−1:

(x, y, s) 7→ (λ2x, λ2(n−1)y, λ2s), (b2, ..., bn) 7→ (λ4b2, ..., λ
2nbn). (1.4.7)

Since the semi-universal C∗-deformation of a simple singularity is unique up to isomor-

phism, the two deformations σ and σ′ are isomorphic. In other words, the Slodowy slice

S contained in g is isomorphic to the hypersurface H in C3 ×Cn−1 as semi-universal C∗-

deformation. Note that it is important to choose the C∗-action on Cn−1 ∼= t/W and C3

as above for S and H to be isomorphic as C∗-deformation (see [BDW20, Remark 2.5.3]).

Next, let’s turn to the global situation. We again have the isomorphism of associated

bundles

L|Σ◦ ×C∗ C∗ ∼= KΣ(D)|Σ◦ ×C∗ C∗

with the weights of the C∗-action on the left hand side being twice the weights on the

right hand side. Hence, the associated bundle L|Σ◦ ×C∗ C3 is

L2|Σ◦ ⊕ L2(n−1)|Σ◦ ⊕ L2|Σ◦ ∼= (KΣ(D)⊕KΣ(D)⊗n−1 ⊕KΣ(D))|Σ◦ ∼= V |Σ◦

Also, since the elementary modification is an isomorphism i.e. V |Σ◦ ∼= W |Σ◦ away from

D, the previous construction (1.4.1) of the family π◦ : (X ◦)ur → Bur as a family of
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hypersurfaces in the total space of W |Σ◦ is equivalent to the construction as the pullback

of the gluing of H and σ′ over KΣ(D)|Σ◦ :

(X ◦)ur H|Σ◦ ⊂ Tot(KΣ(D)|Σ◦ ×C∗ C3)×Tot(KΣ(D)|Σ◦ ×C∗ t/W )

Σ◦ ×Bur U |Σ◦ = Tot(KΣ(D)|Σ◦ ×C∗ t/W )
π◦ (σ′)|Σ◦

ev

(1.4.8)

where we define σ′ : H = Tot(KΣ(D)×C∗H)→ U and all the C∗-actions in the diagram

are understood as having half the weights in (1.4.7). By the argument that S and H are

isomorphic as C∗-deformation, we have that σ|Σ◦ : S|Σ◦ = Tot(L|Σ◦ ×C∗ S)→ U |Σ◦ and

σ′|Σ◦ : H|Σ◦ → U |Σ◦ are also isomorphic. By pulling back this isomorphism along the

evaluation map to Σ◦ ×Bur, we get the isomorphism (Y◦)ur ∼= (X ◦)ur.

Proposition 1.4.9. The relative intermediate Jacobian fibration πur : J (X ur/Bur) →

Bur is a semi-polarized integrable system.

Proof. By the relation (4.2), it is enough to show that there exists a Seiberg-Witten dif-

ferential associated to the subfamily (X ◦)ur → Bur. In other words, we need to construct

a holomorphic volume form λCY
◦ on (X ◦)ur which yields the nowhere vanishing holo-

morphic volume form λ◦CY,b ∈ H0(X◦b ,KX◦
b
) for each b ∈ Bur and satisfies the condition

(1.2.4).

First, the holomorphic volume form λCY
◦ is obtained from the holomorphic 3-form λ

on S. Note that the Kostant-Kirillov form on g induces the nowhere vanishing section in

ν ∈ H0(S,Kσ). One can glue the sections over L by tensoring with local frames in the

pullback of KΣ, which turns out to be the holomorphic 3-form λ on S [DDP07][Bec20].

By restricting λ to Σ◦, it becomes a global holomorphic 3-form whose pullback to (X ◦)ur
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is the desired volume form λ◦CY .

Next, the proof that λ◦CY becomes the Seiberg-Witten differential relies on our main

result (Theorem 1.5.1). In particular, we identify the volume form λ◦CY with the Seiberg-

Witten differential for the Hitchin system so that the form λ◦CY automatically satisfies the

condition (1.2.4). Therefore, it follows from Proposition (1.2.5) that J (X ur/Bur)→ Bur

is a semi-polarized integrable system.

1.5 Meromorphic DDP correspondence

1.5.1 Isomorphism of semi-polarized integrable systems

The goal of this section is to prove an isomorphism between the two semi-polarized inte-

grable systems that have been studied so far: the moduli space of unordered diagonally

framed Higgs bundles M∆(n,D)ur → Bur and the relative intermediate Jacobian fibra-

tion J (X ur/Bur) → Bur of the family of Calabi-Yau threefolds X ur → Bur. The main

result is stated as follows.

Theorem 1.5.1. There is an isomorphism of semi-polarized integrable systems:

J (X ur/Bur) M∆(n,D)ur

Bur

∼=

πur

hur∆

(1.5.1)

Recall that we have shown in Proposition 1.3.12 and Corollary 1.3.14 that (hur∆ )−1(b) ∼=

Prym(Σ◦b ,Σ◦) ∼= J(H∆,SL(n),b) whereH∆,SL(n),b := H1(Prym(Σ◦b ,Σ◦),Z) = H1(Σ◦,Kb|Σ◦)tf

and Kb := ker(Tr : pb∗Z → Z). By definition, the fiber (πur)−1(b) = J2(Xb) =

J(H3(Xb,Z)(1)). The specialization of Theorem 1.5.1 to b ∈ Bur is equivalent to an

isomorphism between the semi-abelian varieties J2(Xb) and Prym(Σ◦b ,Σ◦), or equiv-
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alently, between the Z-mixed Hodge structures H3(X,Z)tf(1) and H∆,SL(n),b of type

{(−1,−1), (−1, 0), (0,−1)}. We begin by proving the following result.

Theorem 1.5.2. For b ∈ Bur, there is an isomorphism of Z-mixed Hodge structures:

(H3(Xb,Z)tf(1),WCY
• , F •CY ) ∼= (H∆,SL(n),b,W

∆,b
• , F •∆,b). (1.5.2)

Proof. We first fix some notations. Denote by Σ1 := Σ◦ \ Br(p̃◦b), Σ̃1
b := Σ̃◦b \ Ram(p̃◦b)

the complement of the ramification and branch divisors in Σ◦b , Σ̃◦b respectively. Since the

branch divisor of the spectral cover pb : Σb → Σ is contained in the branch divisor of the

cameral cover p̃◦b : Σ̃◦b → Σ◦, we write Σ1
b := Σ◦b \ (p◦b)−1Br(p̃◦b). The restricted maps of

the spectral cover p1
b : Σ̃1

b → Σ1 and the cameral cover p̃1
b : Σ̃1

b → Σ1 are then unramified.

Similarly, we write X1
b ⊂ X◦b the complement of (π◦b )−1(D) in X◦b and the restricted map

as π1
b : X1

b → Σ1.

Step 1. As argued in (1.4.2) and (1.4.3) of the previous section, we have the isomorphisms

of Z-mixed Hodge structures of type {(−1,−1), (−1, 0), (0,−1)}

H3(Xb,Z)(1) ∼= H3
c (Xb,Z)(1) ∼= H3

c (X◦b ,Z)(1) ∼= H1
c (Σ◦, R2π◦b!Z)(1). (1.5.3)

Step 2.

Lemma 1.5.3. Over Σ◦, we have an isomorphism of sheaves,

R2π◦b !Z ∼= (p̃◦b∗ΛSL(n))W . (1.5.4)

Proof. In the classical work of [Slo80], Slodowy provided a detailed study of the topology

of the maps in the following diagram via its simultaneous resolution:

S̃ S

t t/W

σ̃ σ

φ

(1.5.5)
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It can be shown that there is an isomorphism of constructible sheaves

R2σ1
∗Z ∼= (φ1

∗ΛSL(n))W (1.5.6)

over an open subset t1/W ⊂ t/W defined as the image of another open subset t1 ⊂ t

under φ. Here we denote φ1 := φ|t1 and σ1 : σ−1(t1/W )→ t1/W . For details, see [Bec20,

Lemma 5.1.3].

Next, we glue the maps σ and φ along KΣ(D)|Σ◦ as in (1.3.17) and (1.4.8)

S|Σ◦ = Tot(L|Σ◦ ×C∗ S)

Ũ |Σ◦ := Tot(KΣ(D)|Σ◦ ×C∗ t) U |Σ◦ = Tot(KΣ(D)|Σ◦ ×C∗ t/W ) ∼= Tot(L|Σ◦ ×C∗ t/W )

σ|Σ◦

φ|Σ◦

(1.5.7)

Let us define U1 := Tot(KΣ(D)×C∗ t
1/W ) ⊂ U . Since the varieties here are glued using

the same cocyle of L|Σ◦ (again, in taking the associated bundles here, L|Σ◦ as a C∗-bundle

acts with twice the weights of the action by KΣ(D)|Σ◦), the isomorphism of constructible

sheaves (1.5.6) over t1/W also glues together to another isomorphism of constructible

sheaves over U1|Σ◦ :

R2(σ)!Z ∼= (φ∗ΛSL(n))W . (1.5.8)

As argued in Claim (1.4.7), σ|Σ◦ : S|Σ◦ → U |Σ◦ is equivalent to (σ′)|Σ◦ : H|Σ◦ → U |Σ◦ ,

so we obtain

R2(σ′)!Z ∼= (φ∗ΛSL(n))W (1.5.9)

over U1|Σ◦ . In both (1.5.8) and (1.5.9), we drop the notation of the restrictions of σ, σ′

and φ to U1|Σ◦ for convenience.

Recall from Claim (1.4.7) that π◦b : X◦b → Σ◦ can be obtained by pulling back from

σ′|Σ◦ : H|Σ◦ → U |Σ◦ along the composition of the inclusion and the evaluation map
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Σ◦ × {b} ↪→ Σ◦ × B → U |Σ◦ . For b ∈ Bur, the section b : Σ → U factorizes through

U1 and then restricts to b|Σ◦ : Σ◦ → U1|Σ◦ , so the isomorphism (1.5.9) specializes to

R2π◦b!Z ∼= (p̃◦b∗ΛSL(n))W by pulling back along b|Σ◦ .

Step 3.

Lemma 1.5.4. Over Σ◦, we have an isomorphism of sheaves,

(p̃◦b∗ΛSL(n))W ∼= Kb|Σ◦ . (1.5.10)

Proof. To simplify the notation, we will write K◦b := Kb|Σ◦ in this proof. Recall that there

is an isomorphism (see [Don93, (6.5)]) between the two sheaves away from the branch

locus:

p1
b∗Z ∼= (p̃1

b∗R)W (1.5.11)

where R := Z[W/W0] denote the free abelian group generated by the set of right (or left)

cosets W/W0. Then we see that

Kb|Σ1 = ker(p1
b∗Z→ Z) ∼= ker((p̃1

b∗R)W → Z) ∼= (p̃1
b∗ΛSL(n))W ,

the last isomorphism holds because ker(R→ Z) = ΛSL(n).

Denote by j : Σ1 → Σ◦ the inclusion map. We first write K◦b as j∗j∗K◦b . Indeed,

as p◦b∗Z = j∗p
1
b∗Z and Z ∼= j∗Z, applying the functor j∗ to the short exact sequence

0→ j∗K◦b → p1
b∗Z

Tr|Σ1−−−→ Z→ 0, we get

0→ j∗j
∗K◦b → j∗p

1
b∗Z = p1

b∗Z
Tr−→ j∗Z = Z→ R1j∗j

∗K◦b → ...

In particular, it follows that j∗j∗K◦b ∼= ker(Tr) = K◦b .
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Hence, we get

(p̃◦b∗ΛSL(n))W ∼= j∗(p̃1
b∗ΛSL(n))W ∼= j∗j

∗K◦b ∼= K◦b

which means that the isomorphism (1.5.11) above extends from Σ1 to Σ◦.

Step 4. Finally, since the isomorphic local systems R2π◦b!Z ∼= (p̃◦b∗ΛSL(n))W ∼= Kb|Σ◦ have

trivial monodromy at D, one can argue as in [DDP07, Lemma 3.1] and the argument for

Proposition 1.4.3 that it induces the Z-mixed Hodge structure of type {(−1,−1), (−1, 0), (0,−1)}

on

H1
c (Σ◦, R2π◦b!Z)(1) ∼= H1

c (Σ◦, (p̃◦b∗ΛSL(n))W ) ∼= H1
c (Σ◦,Kb|Σ◦).

Hence, taking the torsion free part, we achieve the isomorphism of Z-mixed Hodge struc-

tures

H3(Xb,Z)tf(1) ∼= H1
c (Σ◦,Kb|Σ◦)tf ∼= H∆,SL(n),b.

By the equivalence between semi-abelian varieties and torsion free Z-mixed Hodge

structures of type {(−1,−1), (−1, 0), (0,−1)}, we immediately get the following result:

Corollary 1.5.5. We have an isomorphism of semi-abelian varieties

J2(Xb) ∼= h−1
∆ (b) ∼= Prym(Σ̃◦b/Σ◦). (1.5.12)

Now we return to the main theorem.

Proof of Theorem 1.5.1. Clearly, the argument in Theorem 1.5.2 works globally for the

family of CY threefolds pr2 ◦ πur : X ur → Σ × Bur → Bur and the family of punctured
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spectral curves pr2◦pur : Σ◦ → Σ◦×Bur → Bur, so it yields an isomorphism of admissible

variations of Z-mixed Hodge structures:

R3(pr2 ◦ πur)!Z(1) ∼= R1(pr2)!(K) (1.5.13)

where K := ker(Tr : pur∗ Z→ Z). By taking the relative Jacobian fibrations of both sides,

we immediately get an isomorphism of varieties:

J (X ur/Bur) Prym(Σ◦,Σ◦) ∼=M∆(n,D)ur

Bur

∼=

πur

hur∆

(1.5.14)

where Prym(Σ◦,Σ◦) is the relative Prym fibration of the family of punctured spectral

curves Σ◦ → Bur. By the spectral correspondence proved in Proposition 1.3.12, we have

Prym(Σ◦,Σ◦) ∼=M∆(n,D)ur.

It remains to verify that the morphism J (X ur/Bur) → M∆(n,D)ur intertwines the

abstract Seiberg-Witten differentials constructed on each side. This can be easily obtained

by modifying the classical results in [DDP07] [Bec20] to our punctured case. Note that

both the abstract Seiberg-Witten differentials come from the tautological section on Ũ .

In order to compare them, we again look at the simulteneous resolution of S → t/W :

S̃ S

t t/W

σ̃ σ

φ

(1.5.15)

and recall that σ̃ is C∞-trivial.

Taking a step further in (1.5.7), we can glue all the maps in the simultaneous resolution

diagram to a commutative diagram

S̃|Σ◦ S|Σ◦

Ũ |Σ◦ U |Σ◦

Ψ

σ̃|Σ◦ σ|Σ◦

φ|Σ◦

(1.5.16)
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where S̃|Σ◦ := Tot(L|Σ◦ ×C∗ S̃).

The map Ψ induces an inclusion of cohomologies

Ψ∗ : H3((X ◦)ur/Bur,C)→ H3((X̃ ◦)ur/Bur,C) (1.5.17)

so that we can lift λ◦CY to X̃ ◦. As both are induced from the tautological section on Ũ ,

under the following isomorphism

H3((X̃ ◦)ur/Bur,C) ∼= H1(Σ̃◦, t)

the two abstract Seiberg-Witten differentials λ◦CY and λ∆ coincide [Bec20, Theorem 5.2.1].

Remark 1.5.6. (Adjoint type) The above argument is easily applied to the adjoint

case, PGL(n,C), so that there is an isomorphism between (unordered) diagonally framed

PGL(n,C)-Hitchin system and Calabi-Yau integrable system. On the Hitchin side, we

consider dual Prym sheaf K∨. The key is to construct the relevant family of semi-abelian

varieties on the Calabi-Yau side as mentioned in Remark 1.4.6.

1.6 Appendix: Summary of Deligne’s theory of 1-motives

In [Del74], Deligne gave a motivic description of variations of (polarized) Z-mixed Hodge

structures of type {(−1,−1), (−1, 0), (0,−1), (0, 0)}. We recall the arguments in [Del74]

and study the special case which is of main interest in this paper.

Definition 1.6.1. An 1-motive M over C consists of

1. X free abelian group of finite rank, a complex abelian variety A, and a complex

affine torus T.
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2. A complex semi-abelian variety G which is an extension of A by T.

3. A homomorphism u : X → G.

We will denote a 1-motive by (X,A, T,G, u) or M = [X u−→ G].

Proposition 1.6.2. The category of (polarizable) mixed Hodge structures of type

{(−1,−1), (−1, 0), (0,−1), (0, 0)} is equivalent to the category of 1-motives.

Proof. Given a 1-motive M , Deligne constructed a mixed Hodge structure (T (M)Z,W, F )

of type {(−1,−1), (−1, 0), (0,−1), (0, 0)} as follows. Define a lattice T (M)Z as the fiber

product
T (M)Z X

Lie(G) G

β

α u

exp

(1.6.1)

The weight filtration on T (M)Z is given by setting W−1T (M)Z := H1(G,Z) = ker(β)

and W−2T (M)Z = H1(T,Z). Also, by linearly extending α : T (M)Z → Lie(G) to C, we

define F 0(T (M)Z ⊗ C) := ker(αC). By construction GrW−1(T (M)Z) = H1(A,Z) with the

usual Hodge filtration and is therefore polarizable.

Conversely, if H := (HZ,W, F ) is a mixed Hodge structure of the given type with

GrW−1(HZ) polarizable, then one can construct a 1-motive by taking

1. A := GrW−1(HC)/(F 0GrW−1(HC) + GrW−1(HZ))

2. T := GrW−2(HC)/GrW−2(HZ)

3. G := HC/(F 0HC +HZ)

4. X := GrW0 (HZ)
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In particular, if X is trivial, the 1-motive M is equivalent to a semi-abelian variety

G. By Proposition 1.6.2, we have an equivalence between the abelian category of semi-

abelian varieties and the abelian category of (polarizable) Z-mixed Hodge structures of

type {(−1,−1), (−1, 0), (0,−1)}.

Example 1.6.3. A typical example coming from geometry is the mixed Hodge structure

on the first homology group of a punctured curve. Let C be a Riemann surface and D ⊂ C

be a reduced divisor. The first homology group HZ = H1(C \ D,Z) carries a Z-mixed

Hodge structure of type {(−1,−1), (−1, 0), (0,−1)} where GrW−1(HC) = H1(C,Z) ⊗ C.

Moreover, it admits a degenerate intersection pairing Q : HZ ×HZ → Z whose kernel is

W−2HC ∩HZ. Note that it induces a polarization on GrW−1(HC) and so gives rise to the

type of object in proposition 1.6.2. In other words, we get a semi-abelian variety G by

taking the Jacobian of (HZ,W•, F
•) as follows

G := J(H) = HC/(F 0HC +HZ)

A := Jcpt(H) = GrW−1HC/(GrW−1F
0HC +HZ)

T := W−2HC/W−2HZ

We call such integral mixed Hodge structure a semi-polarized Z-mixed Hodge structure.

Moreover, consider the dual mixed Hodge structureH∨ which is of type {(0, 1), (1, 0), (1, 1)}.

Geometrically it corresponds to the first cohomology H1(C \ D) of the punctured Rie-

mann surface C \D. The associated Jacobian J(H∨) = H∨C/(F 1H∨C +HZ) is no longer a

semi-abelian variety, but just a complex torus.
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Chapter 2

Conic bundles, modules over even

Clifford algebra, and special

subvarieties of Prym varieties

2.1 Introduction

It is well-known that a smooth cubic threefold is irrational since the famous work of

Clemens and Griffiths. They observed that if a threefold is rational, then its intermediate

Jacobian must be isomorphic to a product of Jacobians of curves. The problem is then

reduced to comparing the intermediate Jacobians of cubic threefolds with the Jacobians

of curves as principally polarized abelian varieties by studying the singularity loci of their

theta divisors.

Let us consider a cubic hypersurface Yn ⊂ Pn+1 of dimension n for a moment. The
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bounded derived category Db(Yn) of Yn admits a semiorthogonal decomposition:

Db(Yn) ∼= 〈Ku(Yn),OYn ,OYn(1), ...,OYn(n− 2)〉 (2.1.1)

where Ku(Yn) := 〈OYn ,OYn(1), ...,OYn(n− 2)〉⊥ is now known as the Kuznetsov compo-

nent. In dimension four, it is conjectured by Kuznetsov that a smooth cubic fourfold is

rational if and only if the Kuznetsov component Ku(Y4) is equivalent to the category of

a K3 surface. While the conjecture has been checked to hold in some cases, the general

conjecture remains unsolved.

Since Ku(Yn) is expected to capture the geometry of Yn, an attempt to extract in-

formation out of the triangulated category Ku(Yn) is to construct Bridgeland stability

conditions on Ku(Yn) and consider its moduli spaces of stable objects. In dimension

three, it can be shown that Ku(Y3) reconstructs the Fano surface of lines of Y3 as a

moduli space of stable objects with suitable stability conditions. The reconstruction of

Fano surface of lines then determines the intermediate Jacobian J(Y3) [Ber+12]. Alter-

natively, it is observed that instanton bundles are objects in Ku(Y3). Then by the work of

Markushevich-Tikhomirov and others [MT98][IM00][Dru00][Bea02], it is shown that the

moduli space of instanton bundles on a cubic threefold is birational to the intermediate

Jacobian J(Y3). So Ku(Yn) can be thought of as the categorical counterpart of the in-

termediate Jacobian whose success in the rationality problem of cubic threefolds fits well

into the philosophy of Kuznetsov’s conjecture in n = 4.

A cubic hypersurface Yn is defined by a homogeneous degree 3 polynomial in n + 2

variables x0, ..., xn+1. Suppose Yn contains the line defined by x2 = ... = xn+1 = 0, then
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we can write the polynomial as

t1x
2
0 + 2t2x0x1 + t3x

2
1 + 2q1x0 + 2q2x1 + f = 0

where ti, qj , f are polynomials in variables x2, ..., xn+1 of degree 1, 2, 3 respectively. This

means that we can think of it as a family of quadratic polynomials. More geometrically,

let l0 ⊂ Yn be a line that is not contained in a plane in Yn. Then the blow-up Ỹn :=

Bll0(Yn) ⊂ Bll0(Pn+1) of Yn along l0 projects to a projective space Pn−1, denoted by

p : Ỹn → Pn−1. The map p is a conic bundle whose discriminant locus ∆n is a degree

5 hypersurface. The idea of realizing a cubic hypersuface birationally as a conic bundle

can be used to study its rationality. Following the idea of Mumford, it is shown that

the intermediate Jacobian J(Y3) ∼= J(Ỹ3) is isomorphic to Prym(∆̃3,∆3) where ∆̃3 is

the double cover parametrizing the irreducible components of the degenerate conics over

∆3. By analyzing the difference between Prym varieties and the Jacobian of curves as

principally polarized abelian varieties, it is again shown that a smooth cubic threefold is

irrational.

The conic bundle structure of a cubic hypersurface also provides us information at the

level of derived category. A quadratic form on a vector space defines the Clifford algebra

which decomposes into the even and odd parts. We can apply the construction of Clifford

algebra relatively for the conic bundles Ỹn which is viewed as a family of conics over Pn−1,

and obtain a sheaf of even Clifford algebras B0 on Pn−1. The bounded derived category

Db(P2,B0) of B0-modules appears as a component of the semiorthogonal decomposition

of the conic bundle Ỹn:

Db(Ỹn) = 〈Db(Pn−1,B0), p∗Db(Pn−1)〉. (2.1.2)
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In the case n = 3, 4, by comparing the semiorthogonal decompositions in (2.1.1), (2.1.2)

and the one for blowing up, one can show that there are embedding functors

Ξn : Ku(Yn) ↪→ Db(Pn−1,B0) (2.1.3)

for n = 3, 4 (see [Ber+12], [Bay+21]). The functors Ξn is useful in the study of Ku(Yn).

For example, when n = 3, 4, the construction of Bridgeland stability conditions carried

out in [Ber+12][Bay+21] uses the embedding functors Ξn as one of the key steps. Also, in

the work of Lahoz-Macr̀ı-Stellari [LMS15], the functor Ξ3 is used to provide a birational

map between the moduli space of instanton bundles and the moduli space of B0-modules.

Motivated by the relations found in the case of cubic threefold as described above:

Prym/intermediate Jacobian, intermediate Jacobian/moduli space of instanton bundles,

and instanton bundles/B0-modules, it is natural to search for a relation between B0-

modules and the Prym varieties. In this paper, we will focus on three dimensional conic

bundles (not necessarily obtained from a cubic threefold) and study the relation between

the moduli spaces of B0-modules and the Prym varieties. Let p : X → P2 be a three

dimensional conic bundle over P2, ∆ the discriminant curve on P2 and π : ∆̃ → ∆ the

double cover parametrizing the irreducible components of degenerate conics over ∆. We

consider the moduli space Md,e of semistable B0-modules with fixed Chern character

(0, 2d, e), which means that the B0-modules are supported on plane curves. By taking the

Fitting support, we get a morphism Υ : Md,e → |OP2(d)|.

On the other hand, by the work of Welters [Wel81] and Beauville [Bea82], each linear

system on ∆ defines the special subvarieties in the Prym variety Prym(∆̃,∆) of the

étale double cover π : ∆̃ → ∆. We apply the construction to the linear system |Ld| =
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|OP2(d)|∆|. For each k, there is an induced morphism π(k) : ∆̃(k) → ∆(k). As the linear

system |Ld| can be considered as a subvariety in ∆(k) for k = deg(∆) · d, we define the

variety of divisors lying over |Ld| as Wd = (π(k))−1(|Ld|). Then the image of Wd under the

Abel-Jacobi map α̃ : ∆̃(k) → Jk∆̃ lies in the two components of (the translate of) Prym

varieties, which are the special subvarieties. The variety Wd consists of two irreducible

components Wd = W 0
d ∪ W 1

d , each of which maps to |Ld|. For d < deg(∆), we have

|OP2(d)| ∼= |Ld|, and we denote by Ud ⊂ |OP2(d)| the open subset of smooth degree d

curves intersecting ∆ transversally. The main construction in this paper is to construct

a morphism

Φ : Md,e|Ud →W i
d|Ud (2.1.4)

for d = 1, 2, and show that it is an isomorphism. Moreover, we have the following:

Theorem 2.1.1. For d = 1, 2, the moduli space Md,e is birational to one of the two

components W i
d of Wd. Moreover, if Md,e is birational to W i

d, then Md,e+1 is birational

to W 1−i
d . In particular, the birational type of Md,e only depends on d and (e mod 2).

By composing with the Abel-Jacobi map α̃ : ∆̃(k) → Jk∆̃, we obtain a rational map

α̃ ◦ Φ : Md,e 99K Prym(∆̃,∆) (2.1.5)

whose image is an open subset of the special subvarieties.

Next, we apply the result above to the case of cubic threefolds. In [Kuz12] and

[LMS15], it is observed that instanton bundles are objects in Ku(Y3). The authors use

the functor Ξ : Ku(Y3) ↪→ Db(P2,B0) to deduce a birational map between the moduli

space MY3 of instanton bundles on Y3 and the moduli space M2,−4 of B0-modules. In this
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case, the rational map M2,−4 99K Prym(∆̃,∆) actually turns out to be birational. Hence,

by composing the birational maps, we get

MY3 99K Prym(∆̃,∆) (2.1.6)

As a point in Prym(∆̃,∆) can be interpreted as a ξ-twisted Higgs bundle on ∆ by the spec-

tral correspondence [BNR89], the birational map (2.1.6) gives an explicit correspondence

between instanton bundles on Y3 and ξ-twisted Higgs bundles on ∆.

Moreover, as mentioned above, the moduli space of instanton bundles is birational

to the intermediate Jacobian J(Y3), so the birational map here gives a modular in-

terpretation of the classical isomorphism J(Y3) ∼= Prym(∆̃,∆) in terms of instanton

bundles, B0-modules and Higgs bundles. From this viewpoint, we can think of the

classical isomorphism J(Y3) ∼= Prym(∆̃,∆) as a consequence of the embedding functor

Ξ3 : Ku(Y3) ↪→ Db(P2,B0).

Philosophically, the result allows us to think of Db(P2,B0) as the categorical coun-

terpart of Prym(∆̃,∆) associated to a conic bundle, just as Ku(Y3) is the categorical

counterpart of J(Y3).

2.1.1 Convention

Throughout this paper we work over the complex numbers C. All modules in this paper

are assumed to be left modules. For a morphism f : X → Y of two spaces (schemes or

stacks) and a subspace Z ⊂ Y , we will denote by X|Z := X ×Y Z the fiber product and

f |Z : X|Z → Z.
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2.2 Special subvarieties in Prym varieties

In this section, we recall the special subvariety construction of Prym varieties following

the work of Welters [Wel81] and Beauville [Bea82]. Let π : Σ̃ → Σ be an étale double

cover of two smooth curves. Then we denote by Nm : JΣ̃ → JΣ the norm map on the

Jacobians of curves and also its translation Nm : JdΣ̃→ JdΣ by abusing notation.

Suppose grd is a linear system of degree d and (projective) dimension r. Consider the

Abel-Jacobi maps:

α̃ : Σ̃(d) → JdΣ̃, x̃1 + ...x̃d 7→ O(x̃1 + ...x̃d)

α : Σ(d) → JdΣ, x1 + ...+ xd 7→ O(x1 + ...+ xd)

they fit in the following commutative diagram

Σ̃(d) JdΣ̃

Σ(d) JdΣ

α̃

π(d) Nm

α

(2.2.1)

We assume that the linear system grd contains a reduced divisor, so that grd is not contained

in the branch locus of π(d) by Bertini’s theorem.

Now the linear system grd
∼= Pr is naturally a subvariety of Σ(d), we define W =

(π(d))−1(grd) as the preimage of grd in Σ̃(d). The image of W under α̃ is denoted by

V = α̃(W ). Recall that the kernel ker(Nm) consists of two disjoint components, each

of which is isomorphic to the Prym variety, and we denote them by Pr0 and Pr1. By

construction, we have that V ⊂ ker(Nm), so V also has two disjoint components V i ⊂ Pri

where i = 0, 1. Hence, W also breaks into a disjoint union of two subvarieties W 0 and W 1

such that α̃(W i) = V i. Welters [Wel81] called W the variety of divisors on Σ̃ lying over

grd and the two irreducible components W 0 and W 1 the halves of the variety of divisors
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W . The subvarieties V i are called the special subvarieties of Pri associated to the linear

system grd.

Remark 2.2.1. By [Mum71, Lemma 1], a line bundle L ∈ ker(Nm) can always be written

as L ∼= M ⊗ σ∗(M∨) such that if deg(M) ≡ 0 (resp. 1) mod 2, then L ∈ Pr0 (resp. Pr1).

It follows that if L ∈ Pri, then L⊗O(x− σ(x)) ∈ Pr1−i where x ∈ Σ. This implies that

if x1 + ... + xd ∈ W i, then the divisor σ(x1) + ... + xd = (σ(x1) − x1) + (x1 + ... + xd)

is contained in W 1−i. In particular, we see that if we switch an even number of points

xi in x1 + ... + xd ∈ W i, then the resulting divisor lies in the same component, i.e.

∑
i∈I σ(xi) +∑

j 6∈I xj ∈W 1−i if x1 + ...+ xd ∈W i and I has even cardinality.

Let Σ := Z/2Z × Σ be the constant group schemes over Σ. The trivial double cover

p : Σ → Σ also induces a morphism on its d-th symmetric products Σ(d) → Σ(d). Let

U ⊂ Σ(d) be the open subset of reduced effective divisors.

Proposition 2.2.2. The scheme G′ := Σ(d)|U is a group scheme over U .

Proof. Note that the map G′ → U is étale. The multiplication map m : Σ ×Σ Σ → Σ

induces the map m(d) : (Σ ×Σ Σ)(d) → Σ(d). On the other hand, the natural projections

prj : Σ ×Σ Σ → Σ induces the maps pr(d)
j : (Σ ×Σ Σ)(d) → Σ(d) and so r : (p(d) ◦

pr
(d)
1 )−1(U) → G′ ×U G′ by universal property. It is easy to see that r is bijective on

closed points. As G′ and U are smooth, so G′ ×U G′ is also smooth and hence normal.

Therefore, r is an isomorphism. Then we define the multiplication map on G′ to be

G′ ×U G′
r−1
−−→ (p(d) ◦ pr(d)

1 )−1(U) m(d)|U−−−−→ G′

The trivial double cover Σ→ Σ always has a section Σ→ Σ mapping to q−1(0) where
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q : Σ → Z/2Z is the projection map. The identity map is defined as the restriction of

Σ(d) → Σ(d) to U , i.e. e : U → G′.

The inverse map is simply the identity map ι : G′ → G′.

The map q : Σ→ Z/2Z induces G′ → Σ(d) q(d)
−−→ (Z/2Z)(d) and there is the summation

map Z/2Z(d) → Z/2Z, and we denote by s : G′ → Z/2Z the composition of the two maps.

Then we define the preimage G := s−1(0).

Corollary 2.2.3. The scheme G is a group scheme over U .

We can denote a closed point of G as ∑(λi, xi) such that ∑λi = 0 in Z/2Z where

λi ∈ Z/2Z and xi ∈ Σ. In other words, G is the group U -scheme of even cardinality

subsets of reduced divisors in Σ.

Proposition 2.2.4. Let grd be a linear system and consider the half W i ⊂ Σ̃(d) of the

variety of divisors W lying over grd. If we denote by U0 := U ∩ grd and G0 := G|U0,

then W i|U0 is a pseudo G0-torsor on U0 i.e. the induced morphism G0 ×U0 W
i|U0 →

W i|U0 ×U0 W
i|U0 is an isomorphism.

Proof. To simplify notation we denote Ũ := Σ̃(d)|U . The construction is similar to the

multiplication map defined in Proposition 2.2.2. We first define a group action G′×U Ũ →

Ũ . The involution action σ : Σ ×Σ Σ̃ → Σ̃ induces the map σ(d) : (Σ ×Σ Σ̃)(d) → Σ̃(d).

The natural projections pr1 : Σ×Σ Σ̃→ Σ and pr2 : Σ×Σ Σ̃→ Σ̃ induce the maps pr(d)
j :

(Σ×Σ Σ̃)(d) → Σ̃(d). Then we get by universal property t : (p(d) ◦ pr(d)
1 )−1(U)→ G′×U Ũ .

Again, we can easily check that the map t is bijective on closed points and G′ ×U Ũ is

smooth and hence normal, the map t is an isomorphism. We define the group action as

G′ ×U Ũ
t−1
−−→ (p(d) ◦ pr(d)

1 )−1(U) σ(d)|U−−−−→ Ũ
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This defines another group action by restricting to G ⊂ G′. Finally, by Remark 2.2.1,

we see that the restriction of the group action by G to G0 defines a group action

G0 ×U0 W
i|U0 →W i|U0

that is simply transitive on closed points, where Ũ0 := Σ̃(d)|U0 . Then it follows by the

normality ofW i|U0×U0W
i|U0 that the induced morphismG0×U0W

i|U0 →W i|U0×U0W
i|U0

is an isomorphism.

Example 2.2.5. Consider the linear system |KΣ| i.e. the linear system of canonical

divisors. In this case, we have d = 2g − 2 and r = g. Observe that dim(W ) = dim(Pr)

and the fiber of the morphisms W i → Pri at a point [D] ∈ Pri is |D|. It can be shown

that [Mum71] [Mum74][Bea02]:

1. α̃|W 1 : W 1 → Pr1 is birational.

2. α̃|W 0 : W 0 → Pr0 maps onto a divisor Θ ⊂ Pr0 and is generically a P1-bundle.

2.3 Modules over sheaf of even Clifford algebra

2.3.1 Sheaf of even Clifford algebra

Let π : Q→ S be a conic bundle over a scheme S with simple degenerations, i.e. the fibers

of degenerate conics have corank 1, which will be assumed throughout the paper. There is

a rank 3 vector bundle F on S, together with an embedding of a line bundle q : L→ S2F∨

which is also thought of as a section in S2F∨ ⊗ L∨. Then Q is embedded in P(F ) =

Proj(S2F∨) as the zero locus of q ∈ H0(S, S2F∨⊗L∨) = H0(P(F ),OP(F )/S(2)⊗ (π′)∗L∨)

where we denote π′ : P(F )→ S.
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We define the sheaf of even Clifford algebra by following the approach of [ABB14]1.

Consider the two ideals J1 and J2 of the tensor algebra which are generated by

v ⊗ v ⊗ f − 〈q(v, v), f〉, u⊗ v ⊗ f ⊗ v ⊗ w ⊗ g − 〈q(v, v), f〉u⊗ w ⊗ g (2.3.1)

respectively, where the sections u, v, w ∈ F and f, g ∈ L. Then the even Clifford algebra

is defined as the quotient algebra

B0 := T •(F ⊗ F ⊗ L)/(J1 + J2). (2.3.2)

The sheaf of algebra has naturally a filtration

OX = F0 ⊂ F1 = B0 (2.3.3)

obtained as the image of the truncation of the tensor algebra T≤i(F ⊗ F ⊗ L) in B0.

Moreover, the associated graded piece F1/F0 ∼= ∧2F ⊗ L. As an OS-module, we actually

have B0 ∼= OS ⊕ (∧2F ⊗ L) which can be seen by defining the splitting ∧2F ⊗ L →

F ⊗ F ⊗ L → T •(F ⊗ F ⊗ L)/(J1 + J2) where ∧2F is thought of as a subbundle of

antisymmetric 2-tensors of F ⊗ F .

2.3.2 Root stacks

The main objects in this paper are B0-modules, i.e. modules over the sheaf of even Clifford

algebra B0. In order to study the category of B0-modules, it is easier to work with a root

stack cover of S. The advantage is that the category of B0-modules is equivalent to the

category of modules over a sheaf of Azumaya algebras on the root stack. For details on

root stacks, we refer the reader to [Cad07].
1Note that we write a line bundle-valued quadratic form as σ : L → S2E∨ where the authors in

[ABB14] write it as L∨ → S2E∨
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Let L be a line bundle on a scheme X and s ∈ H0(X,L) and r a positive integer.

The pair (L, s) defines a morphism X →
[
A1/Gm

]
, and the r-th power maps on A1 and

Gm induces a morphism θr :
[
A1/Gm

]
→
[
A1/Gm

]
. Following [Cad07], we define the r-th

root stack XL,s,r as the fiber product

X ×[A1/Gm],θr

[
A1/Gm

]
.

The r-th root stack XL,s,r is a Deligne-Mumford stack. Locally on X, when L is

trivial, XL,s,r is just the quotient stack [Spec (OX [t]/(tr − s)) /µr] where µr is the group

of r-th roots of unity acting on t by scalar action. The root stack XL,s,r has X as its

coarse moduli space. There is a tautological sheaf T on XL,s,r satisfying T r ∼= ψ∗L where

ψ : XL,s,r → X is the projection. Then every line bundle on XL,s,r is isomorphic to

ψ∗G ⊗ T k where k is unique and G is unique up to isomorphism. For our purposes, we

will mainly consider the case M = OX(D) for an effective Cartier divisor D and s = sD

is the section vanishing at D. In this case, we will simply write XOX(D),sD,r = XD,r and

the tautological sheaf T as O(Dr ).

Similarly, it is pointed out in [Cad07] that there is an equivalence of categories between

the category of morphisms X → [An/Gn
m] and the category whose objects are n-tuples

(Li, si)ni=1, where Li is a line bundle onX and si ∈ H0(X,Li) and morphisms (Li, si)ni=1 →

(L′i, s′i)ni=1 are n-tuples (ϕi)ni=1 where ϕi(si) = ti. If we let D := (D1, ..., Dn) be an n-

tuple of effective Cartier divisors and ~r = (r1, ..., rn), then the n-tuples (OX(Di), sDi)ni=1

will determine a morphism X → [An/Gn
m] . Also, the morphisms on An and Gn

m sending

(x1, ..., xn) 7→ (xr11 , ..., x
rn
n ) induces a morphism θ~r : [An/Gm]→ [An/Gm]. We define XD,~r
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as the fiber product

X ×[An/Gnm],θ~r [An/Gn
m] .

This can be interpreted as iterating the r-th root stack construction for n = 1. There

are the tautological sheaves O
(
Di
ri

)
on XD,~r satisfying O

(
Di
ri

)ri ∼= ψ∗OX(Di). Every line

bundle F on XD,~r can be written as

F ∼= ψ∗G⊗
r∏
i=1
O
(
Di

ri

)ki

where 0 ≤ ki ≤ ri are unique and G is unique up to isomorphis and ψ : XD,~r → X is the

projection.

Lemma 2.3.1. Let D = D1 + ... + Dn where Di are pairwise disjoint effective Cartier

divisors. If r = r1 = ... = rn, we have

XD,~r
∼−→ XD,r.

Proof. An object of XD,r over scheme T consists of the quadruples (f,N, t, ϕ) where

f : T → X is a morphism, N a line bundle, t ∈ H0(T,N) and ϕ : N r ∼−→ f∗O(D) is an

isomorphism.

On the other hand, an object of XD,~r consists of (f, (Ni)ni=1, (si)ni=1, (ϕi)ni=1) where

f : T → X a morphism, Ni is a line bundle, si ∈ H0(T,Ni) and ϕi : N ri
i
∼−→ f∗i O(Di)

is an isomorphism. We see that there is a natural morphism α : XD,~r → XD,r over X

sending

(f, (Ni)ni=1, (si)ni=1, (ϕi)ni=1) 7→ (f,
n⊗
i=1

Ni,
n⊗
i=1

si,
n⊗
i=1

ϕi). (2.3.4)

To see that this is an isomorphism, we restrict to each open neighborhood Ui of Di away

from Dj (j 6= i) such that O(Dj)|Ui
∼−→ O for j 6= i and O(Di)|Ui

∼−→ O(D1 + ..+Dn)|Ui .
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Then it is clear that the functor (2.3.4) over Ui is essentially surjective i.e. the image of

the quadruples (f, (Ni)ni=1, (si)ni=1, (ϕi)ni=1) where Nj
∼= O and sj = 1 for j 6= i is dense.

Example 2.3.2. Let X = Spec(R), L = OX and s be a section of OX . Then XL,s,r
∼=

[SpecR′/µr], where R′ = R[t]/(tr−s), and γ · t = γ−1t and γ ·a = a for a ∈ R and γ ∈ µr.

A quasi-coherent sheaf on [SpecR′/µr] is a R′-module M with a µr-action on M such that

for γ ∈ µr, b ∈ R′,m ∈M , we have

γ · (b ·m) = (γ · b) · (γ ·m).

As µr is diagonalizable, there is a Z/rZ-grading M ∼= M0⊕ ...⊕Mr−1 where γ ·mi = γimi

for mi ∈ Mi. Note that the components are indexed by the group of characters of µr,

which is Z/rZ. Similarly, R′ ∼= R′0 ⊕ ...⊕R′r−1 where R′0 = R. In particular, we see that

γ : M →M is an R-module homomorphism, and so each Mi is an R-module.

Example 2.3.3. When there exists a line bundle N such that f : N⊗r ∼= L, we can take

the cyclic cover for section s, defined as

φ : X̃ := Spec (AX)→ X, AX := OX ⊕N∨ ⊕ ...⊕ (N∨)r−1

where the algebra structure of AX is given by the map (N∨)⊗r f∨−−→ (L)∨ s∨−→ O.

By [Bor07, Théorème 3.4], we know that

[
X̃/µr

]
∼= XL,s,r.

Suppose X is a smooth curve and D = p1 + ... + pk is a reduced divisor and r = 2.

The cyclic cover φ : X̃ → X is branched at pi, we denote by wi the ramification points

such that φ(wi) = pi. The points wi are also the fixed points under the involution of X̃.
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Since the root stack XD,2 is the quotient stack
[
X̃/µ2

]
, a line bundle on

[
X̃/µ2

]
is

the same as a µ2-equivariant line bundle on X̃. On O
X̃

(wi), there is a group action on

Tot(O(wi)) which fixes the canonical section vanishing at wi, we will denote by L(wi)

the line bundle O(wi) together with this µ2-equivariant sheaf structure. In particular,

the induced µ2-action on the fiber of O(wi) is −Id. The pull back of a line bundle F on

X to X̃ is equipped with a natural µ2-equivariant sheaf structure, whose induced action

on the fiber at wi is Id and the µ2-equivariant bundle is again denoted by φ∗F . Since

φ∗N ∼= O (∑iwi), we can write

O(wi) ∼= O

2wi +
∑
i 6=j

wj

⊗ φ∗N∨ ∼= O
∑
i 6=j

wj

⊗ φ∗(N∨ ⊗O(pi)).

So we see that L
(∑

i 6=j wj
)
⊗ φ∗(N∨ ⊗ O(pi)) has the same underlying line bundle as

L(wi).

As discussed above, every line bundle on XD,2 is of the form ψ∗F ⊗ O
(∑

i∈I
pi
2
)
.

In terms of the language of µ2-equivariant line bundles, we see that O
(pi

2
)

on XD,2

corresponds to L(wi) on X̃. Moreover, the pushforward ψ∗Ê of a vector bundle Ê on

XD,2 is the µ2-invariant subbundle of the µ2-equivariant bundle φ∗Ẽ, denoted by (φ∗Ẽ)µ2 ,

where Ẽ is the µ2-equivariant vector bundle corresponding to Ê.

Proposition 2.3.4. ([Bor07, Proposition 3.12]) Suppose that div(s) is an effective Cartier

divisor. Let F be a locally free sheaf on XL,s,r. For each point x ∈ X, there exists a Zariski

open neighborhood U of x such that F|γ−1(U) is a direct sum of invertible sheaves.

In the case of a conic bundle π : Q→ S, recall that we assume the fibers of degenerate

conic must have corank 1. We denote by S1 ⊂ S the discriminant locus of degenerate

conics. We define the 2-nd root stack of S along S1 as Ŝ := SS1,2 and ψ : Ŝ → S the
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projection. Then it is shown in [Kuz08, Section 3.6] that there is a sheaf of algebra B̂0 on

Ŝ such that ψ∗B̂0 = B0, so there is an equivalence of categories

ψ∗ : Coh(Ŝ, B̂0) ∼−→ Coh(S,B0) (2.3.5)

Moreover, the sheaf of algebra B̂0 is a sheaf of Azumaya algebra.

Suppose C ⊂ S is a smooth curve, we restrict the conic bundle Q → S to a smooth

curve C ⊂ S. We get the root stack Ĉ := CS1∩C,2
∼= Ŝ|C and denote by B̂0 the restriction

B̂0|Ĉ by abuse of notation. The sheaf of algebra B̂0 on Ĉ is a trivial Azumaya algebra.

That means there exists a rank 2 vector bundle E0 on Ĉ (root stack construction is

preserved under pull back) such that B̂0 ∼= End(E0) and it induces the equivalence of

categories:

Coh(C) ∼−→ Coh(Ĉ, B̂0) ∼−→ Coh(C,B0)

F 7−→ F ⊗ E0 7−→ ψ∗(F ⊗ E0)

In particular, we have the following:

Corollary 2.3.5. The rank of a B0-module ψ∗(F ⊗ E0) on C must be a multiple of 2.

Let U be an open neighbourhood of p ∈ S1 ∩ C where S1 intersects C transversally.

According to Proposition 2.3.4, E0|ψ−1(U)
∼= L1 ⊕ L2 for some line bundle Li on ψ−1(U).

Each Li defines a character χi,p : µ2 → C∗ of µ2 at the fiber of p.

Proposition 2.3.6. χ1,p(−1) · χ2,p(−1) = −1.

Proof. Since we are interested in the fiber of E0, we work in an affine neighbourhood

Z = Spec(R) of p and the double cover Z̃ = Spec(R′) where R′ := R[t]/(t2 − s)) and

div(s) = p. So that the root stack restricted over Z is simply Ẑ = [Spec(R[t]/(t2−s))/µ2].
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We can further reduce to the localization of R at p, we will again write the local ring as

R and its unique maximal ideal m which contains s.

As explained in Example 2.3.2, the rank 2 vector bundle E0 on Ẑ is an R′-module

M with a µ2-action such that M ∼= M0 ⊕M1 where Mi are R-modules. By Proposition

2.3.4, we can write M ∼= R′[l1] ⊕ R′[l2] as Z/2Z-graded R′-modules where li ∈ {0, 1},

or equivalently, choose e1 ∈ Ml1 and e2 ∈ Ml2 such that M ∼= R′e1 ⊕ R′e2. Since

χi,p(−1) = (−1)li for i = 1, 2, it suffices to check l1 + l2 = 1 ∈ Z/2Z.

Suppose the contrary that l1 = l2 = 0 (or l1 = l2 = 1). Recall that E0 satisfies

ψ∗End(E0) ∼= B0 as sheaf of algebras. Since the conic of Q over p is degenerate, its even

Clifford algebra B0|p is not isomorphic to the endomorphism algebra of rank 2.

On the other hand, there is a natural morphism

α : ψ∗End(E0)→ End(ψ∗E0).

Since E0 corresponds to a Z/2Z-graded R′-module, End(E0) also corresponds to a Z/2Z-

graded R′-module and so ψ∗End(E0) corresponds to the µ2-invariant part i.e. (End(E0))0

which is an R-module. In terms of the R′-basis {e1, e2}, (End(E0))0 consists of the

homogeneous R-module homomorphisms δ of degree 0:

e1 7→ u0e1 + u′0e2

e2 7→ v0e1 + v′0e2

where u0, u
′
0, v0, v

′
0 ∈ R′0 = R. Similarly, the module ψ∗E0 is the µ2-invariant part of

R′e1 ⊕R′e2 which is freely generated by {f1 = e1, f1 = e2} (or {f1 = te1, f2 = te2} when

l1 = l2 = 1) as R-modules. For l1 = l2 = 0, δ ∈ ψ∗End(E0) is mapped to an image in
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End(ψ∗E0) of the form

f1 = e1 7→ u0e1 + u′0e1 = u0f1 + u′0f1

f2 = e2 7→ v0e2 + v′0e2 = v0f2 + v′0f2

Since u0, v0, u
′
0, v
′
0 are arbitrary elements in R, the image of α will be the endomorphism

algebra over R i.e. α is an isomorphism of R-algebras, which is a contradiction. For

l1 = l2 = 1, the image of α is also surjective for the same reason.

2.3.3 Moduli space of B0-modules

Recall the definition of a sheaf of rings of differential operators from Simpson’s paper

[Sim94c]. Suppose S is a noetherian scheme over C, and let f : X → S be a scheme of

finite type over S. A sheaf of rings of differential operators on X over S is a sheaf of (not

necessarily commutative) OX -algebras Λ over X, with a filtration Λ0 ⊂ Λ1 ⊂ ... which

satisfies the following properties:

1. Λ = ⋃∞
i=0 Λi and Λi · Λj ⊂ Λi+j .

2. The image of the morphism OX → Λ is equal to Λ0.

3. The image of f−1(OS) in OX is contained in the center of Λ.

4. The left and right OX -module structures on Gri(Λ) := Λi/Λi−1 are equal.

5. The sheaves of OX -modules Gri(Λ) are coherent.

6. The sheaf of graded OX -algebras Gr(Λ) := ⊕∞
i=0Gri(Λ) is generated by Gr1(Λ) in
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the sense that the morphism of sheaves

Gr1(Λ)⊗OX ....⊗OX Gr1(Λ)→ Gr1(Λ)

is surjective.

Stability condition on Λ-modules are similar as coherent sheaves. Let d = d(E) denote

the dimension of the support of E and p(E , n) the Hilbert polynomial of E . The leading

coeffcient of p(E , n) is written as r(E)/d! where r(E) is the rank of E . A Λ-module E is

p-semistable (resp. p-stable) if it is of pure dimension, and if for any sub-Λ-module F ⊂ E

with 0 < r(F) < r(E), there exists an N such that

p(F , n)
r(F) ≤

p(E , n)
r(E) (2.3.6)

(resp. <) for n ≥ N .

Proposition 2.3.7. The sheaf of OP2-algebra B0 is a sheaf of rings of differential opera-

tors.

Proof. Recall that as an OP2-module, B0 ∼= OP2 ⊕ ∧2(E ⊗ L) with the filtration Λ0 =

OP2 ,Λi = B0 for i ≥ 1. Properties (1), (2), and (5) are clearly satisfied. The center of B0

is Λ0, so (3) is also satisfied. The left and right OP2-module on B0 coincide by definition,

so the induced left and right OP2-module structure also coincide on Gri(Λ). Finally, since

Gri(Λ) = 0 for i > 1, property (6) is satisfied trivially.

Since B0 is a sheaf of rings of differential operators, [Sim94c, Theorem 4.7] guarantees

the existence of a moduli space of semistable B0-modules with a fixed Hilbert polynomial

whose closed points correspond to Jordan equivalence class of B0-modules. In this paper,
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we will be primarily interested in the moduli space of semistable B0-module with Chern

character (0, 2d, e), denoted by Md,e.

By taking the Fitting support, we get the support morphism

Υ : Md,e → |O(2d)|.

However, as explained in Remark 2.3.5, the rank of a B0-module as a coherent sheaf on

its support must be a multiple of 2. It is easy to show that if i : C → P2 is the inclusion

of a divisor C, then c1(i∗G) = deg(C)rk(G) for a coherent sheaf G on C. So we see that

Υ factors through |O(d)|:

Υ : Md,e → |O(d)| ↪→ |O(2d)|.

Theorem 2.3.8 ([LMS15]). The moduli space Md,e is irreducible. Let Ud ⊂ |OP2(d)| be

the open subset of smooth degree d curves which intersect ∆ transversally and C ∈ U .

Then

Υ−1(C) ∼=
⊔
I

Pic−|I|/2C.

where I runs over the even cardinality subsets of {1, ..., dk} and k := deg(∆).

Proof. The proof of irreduciblity can be found in [LMS15, Theorem 2.11]. We will recall

the description of the fiber Υ−1(C) in [LMS15, Theorem 2.11] and provide more details as

it will be important for our purposes in later sections. A B0-module M ∈ Υ−1(C) is rank

2 vector bundle supported on C, so we can restrict our attention to B0-modules on C.

Note that a B0-module M that is a rank 2 vector bundle on C is automatically p-stable.

First, p-stability on C is reduced to slope stability on curve: let µ(M) = deg(M)/r(M),

then M is slope (semi)stable if for all B0-submodule N , we have µ(N) < (≤)µ(M). Now,
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the rank of any B0-module must be a multiple of 2, so a B0-submodule N of M must

have r(N) = 2. Then M/N is a sheaf of dimension zero with length l, which implies that

µ(N) = µ(M)− l/2 < µ(M).

As explained in previous section, there is a rank 2 vector bundle E0 on the 2nd-root

stack Ĉ := CC∩∆,2 and an equivalence of category ψ∗ : Coh(Ĉ, End(E0)) ∼−→ Coh(C,B0)

where ψ : Ĉ → C is the projection morphism. That means we are looking for line bundles

L̂ on Ĉ such that ch(i∗ψ∗(E0 ⊗ L̂)) = (0, 2d, e) where i : C → P2 the inclusion map. It

is clear that ch0(i∗ψ∗(E0 ⊗ L̂)) = 0 and ch1(i∗ψ∗(E0 ⊗ F )) = 2d. To compute ch2, we use

the fact that is easily computed by the Grothendieck-Riemann-Roch theorem:

ch2(i∗G) = deg(G)− d2

2 rk(G) (2.3.7)

for a vector bundle G on C. So it is equivalent to finding all L̂ on Ĉ such that e =

deg(ψ∗(E0 ⊗ L̂)− d2 or deg(ψ∗(E0 ⊗ L̂)) = e+ d2.

Case 1: When k = deg(∆) is even, in which case OP2(k)|C admits a square root

OP2(k/2)|C , so we can take the the cyclic cover φ : C̃ → C of order 2 branched at

C ∩ ∆ with an involution action. As explained in Example 2.3.3 the root stack Ĉ is

isomorphic to the quotient stack
[
C̃/µ2

]
. Moreover, the morphism φ : C̃ → C factors as

C̃
η−→ Ĉ

ψ−→ C.

Let wi ∈ C̃, pi = φ(wi) ∈ C ∩ ∆ be the ramification and branch points respectively.

Recall that a line bundle L̂ on Ĉ can be written as ψ∗F ⊗O
(∑

λi
pi
2
)

such that F is a line

bundle on C, where λi ∈ {0, 1}. As a µ2-equivariant line bundle L̂ = φ∗(F )⊗ L (∑λiwi)
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on C̃ (following the notation in Example 2.3.3),

c1
(
φ∗
(
E0 ⊗ φ∗(F )⊗ L

(∑
λiwi

))µ2) = c1
(
F ⊗ φ∗

(
E0 ⊗ L

(∑
λiwi

))µ2)
= 2c1(F ) + c1

(
φ∗
(
E0 ⊗ L

(∑
λiwi

))µ2)
(2.3.8)

Since we have the short exact sequence

0→ φ∗ (E0)µ2 → φ∗
(
E0 ⊗ L

(∑
λiwi

))µ2 →
⊕

φ∗
(
E0 ⊗ L

(∑
λiwi

)
⊗Owi

)µ2 → 0

and c1 (φ∗ (E0 ⊗Owi)
µ2) = 1 by Proposition 2.3.6, which implies

c1
(
φ∗
(
E0 ⊗Owi ⊗ L

(∑
λiwi

))µ2) = 1,

the last expresssion of (2.3.8) becomes

2c1(F ) + c1 (φ∗(E0)µ2) + |I| .

where I is the subset of {1, 2, ..., dk} such that λi = 1 for i ∈ I and |I| is its cardinality.

Since E0 on Ĉ is determined up to tensorization by a line bundle, this expression means

that we can assume deg ((φ∗E0)µ2) = e+ d2.

We also see that the condition deg(ψ∗(E0 ⊗ L̂)) = e+ d2 becomes

e+ d2 = 2deg(F ) + deg(ψ∗(E0)) + |I| =⇒ 0 = 2deg(F ) + |I|,

which is the same as saying that the degree of L̂ as a line bundle on C̃ is 0. The condition

2deg(F ) + |I| = 0 only makes sense if |I| is even. We also see that for each fixed I,

the set of line bundles satisfying the condition above is Pic−|I|/2(C). Thus, Υ−1(C) ∼=
⊔
I Pic−|I|/2(C) where I runs over the set of even cardinality subsets of dk.

Case 2: When k = deg(∆) is odd, we will use the trick by choosing an auxiliary line H ⊂

P2 which intersects C transversally and Da := H ∩ C is disjoint from D := C ∩∆. Then
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the line bundle OC(D +Da) ∼= OP2(k + 1)|C has a natural square root OP2((k + 1)/2)|C ,

so we can again consider the cyclic cover C̃ branched at C ∩ (∆ + H). The root stack

C := CD+Da,2 is now isomorphic to the quotient stack
[
C̃/µ2

]
. We again denote by Ĉ

the root stack CC∩∆,2. By Lemma 2.3.1, the stack C is isomorphic to CD,Da,(2,2) which

is constructed as a fiber product, so CD,Da,(2,2) projects to C. We denote the composition

by f : C ∼−→ CD,Da,(2,2) → Ĉ.

C̃

C Ĉ C

q φ

f ψ

Let L̂ be a line bundle on Ĉ, we want to find all such line bundles such that ch(ψ∗(E0⊗

L̂)) = (0, 2d, e). The same reasoning as in the previous case implies that this is equivalent

to finding deg(ψ∗(E0 ⊗ L̂)) = e + d2. By [Cad07, Theorem 3.1.1 (3)] (the proof there

works for any vector bundle), we know that M̂ ∼= f∗f
∗M̂ for any vector bundles on Ĉ, so

ψ∗(E0 ⊗ L̂) = ψ∗f∗
(
f∗
(
E0 ⊗ L̂

))
= φ∗

(
f∗
(
E0 ⊗ L̂

))µ2

As C ∼=
[
C̃/µ2

]
, f∗

(
E0 ⊗ L̂

)
on C is a µ2-equivariant vector bundle on C̃ whose induced

µ2-characters at the fixed points wi ∈ Da is trivial. In other words, the problem now is to

find all line bundles on C̃ of the form φ∗(F )⊗O(∑λiwi) where wi ∈ φ−1(D) such that

deg
(
φ∗
(
E0 ⊗ φ∗(F )⊗O

(∑
λiwi

))µ2) = e+ d2.

The same argument as in Case 1 applies and implies that 2deg(F ) + |I| = 0 where I is

the subset of {1, ..., dk} such that λi = 1 and |I| is its cardinality. Hence, Υ−1(C) is again

isomorphic to ⊔I Pic−|I|/2(C). Note that although we use the auxiliary line H and the

divisor Da in the argument, the result is independent of them.
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Remark 2.3.9. Note that the isomorphism Υ−1(C) ∼=
⊔
I Pic−τI/2(C) here is not canonical,

as E0 is only determined up to tensorization by line bundles.

Proposition 2.3.10. The moduli space Md,e|Ud over Ud is smooth of dimension d2 + 1.

Proof. This is a consequence of [LMS15, Theorem 2.12] which states that the stable locus

Ms
d,e is smooth of dimension d2 +1. As argued in the proof of Theorem 2.3.8, a B0-module

in Υ−1(C) is automatically stable, so Md,e|Ud ⊂Ms
d,e.

Suppose d = 1, 2. For d < deg(∆), if we call the line bundle Ld := OP2(d)|∆ on ∆,

it is easy to see that |OP2(d)| ∼= |Ld|. Recall the group scheme G|Ud over Ud defined in

Section 2.

Corollary 2.3.11. With the same notation as above, for d = 1, 2, Υ−1(C) is a G|C-

torsor.

Proof. For d = 1, 2, the Picard group Pica(C) is trivial for any a. Let ∑ pi = C ∩∆ be

the divisor corresponding to C under |OP2(2)| ∼= |Ld|. We can denote a closed point of

G|C by ∑(λi, pi) where λi ∈ Z/2Z and ∑λi = 0. Since we can write M = ψ∗M̂ , the

group G|C acts on Υ−1(C) by

(∑
(λi, pi)

)
·M = ψ∗

(
M̂ ⊗O

(∑
λi
pi
2

)
⊗ h−

1
2
∑

λi
C

)

where hC = ψ∗OC(1). To see that G|C acts simply transitively, fix E0 such that for

M ∈ Υ−1(C), M ∼= ψ∗(E0 ⊗ L̂), then the action becomes

(∑
(λi, pi)

)
·M = ψ∗

(
E0 ⊗ L̂⊗O

(∑
λi
pi
2

)
⊗ h−

1
2
∑

λi
C

)

which is clearly simply transitive by the description of Υ−1(C) in the proof of Theorem

2.3.8.
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2.4 Moduli spaces of B0-modules and special subvarieties of

Prym varieties

In this section, we will construct the rational map from the moduli space Md,e to the

Prym variety Prym(∆̃,∆). The key observation is that our B0-modules are supported

on plane curves C which intersect the discriminant curve ∆ in finitely many points. The

B0-modules restrict to a representation of even Clifford algebra over each of these points,

These representations then define a lift of the intersection C ∩ ∆ ⊂ ∆ to ∆̃, which will

be a point in the variety of divisors lying over the linear system |OP2(C)|∆|, and maps to

Prym(∆̃,∆). So we begin by studying studying the representation theory for our purpose.

2.4.1 Representation theory of degenerate even Clifford algebra

In this subsection, we will restrict our attention to the fiber of the sheaf of even Clifford

algebra B0 over a fixed p ∈ C ∩∆ which is a C-algebra denoted by A. Note that all the

fibers over points in C ∩∆ are isomorphic as C-algebra since the fiber B0|p over a point

p ∈ C ∩∆ is defined by a degenerate quadratic form of corank 1 and all quadratic forms

of corank 1 are isomorphic over C. Let V be a vector space of dimension 3, and q ∈ S2V ∗

a quadratic form of rank 2. The even Clifford algebra is defined as a vector space C⊕∧2V

together with an algebra structure defined as follows. First, we can always find a basis

{e1, e2, e3} of V such that q is represented as the matrix diag(1, 1, 0) and we denote by

{1, x := ie1 ∧ e2, y := ie2 ∧ e3, z := e1 ∧ e3} the basis of C⊕∧2V . The relations are given

by

x2 = 1, y2 = z2 = 0, xy = −z, xz = −y, xy = −yx, xz = −zx, yz = zy = 0. (2.4.1)

84



Since A is an finite dimensional associative algebra, we can understand it via quivers

and path algebras. We refer the reader to [ASS06] for the basics of quivers and path

algebras.

Proposition 2.4.1. The algebra A is isomorphic to the path algebra associated to the

following quiver Q

+ −
α

β

(2.4.2)

with relations αβ = βα = 0.

Proof. We begin by finding the idempotents i.e. elements in A such that x2 = x. This is

achieved by setting up the equations

(a0 + a1x+ a2y + a3z)2 = (a0 + a1x+ a2y + a3z)

and solving the equations in a0, a1, a2, a3. It is easy to check that the idempotents are:

0, 1, 1
2(1± x) + a2y + a3z

and

e+ := 1
2(1 + x), e− := 1

2(1− x).

is a complete set of primitive orthogonal idempotents of A. From the description of

idempotents, it is clear that the only central idempotents are 0, 1, so A is connected.

We also need to compute the radical of A. Observe that the ideal I = (y, z) is clearly

nilpotent, i.e. I2 = 0 and A/I ∼= C[x]/(x2 − 1) ∼= C ⊕ C. By [ASS06, Corollary 1.4(c)],

this implies that rad(A) = I = (y, z). It also follows that A is a basic algebra by [ASS06,

Proposition 6.2(a)].
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The arrows between +→ − of the associated quiver is described by

e−(rad(A)/rad(A)2)e+ = 1
2(1− x)(y, z)1

2(1 + x) = C(y + z).

Similarly, the arrows between − → + is described by

e+(rad(A)/(rad(A)2))e− = C(y − z)

and the arrows between − → − and +→ +

e−(rad(A)/(rad(A)2))e− = e+(rad(A)/(rad(A)2))e+ = 0. (2.4.3)

Hence, the associated quiver Q [ASS06, Definition 3.1] is given by

+ −
α

β

and we obtain a surjective map CQ→ A from the path algebra associated to the quiver

to A by sending the generators

e+ 7→
1
2(1 + x), e− 7→

1
2(1− x), α 7→ 1

2(y + z), β 7→ 1
2(y − z). (2.4.4)

It is easy to see that αβ = βα = 0 and since any other paths of higher length must contain

a factor of αβ or βα, we see that the kernel of kQ→ A must be J = (αβ, βα). Therefore,

we have an isomorphism CQ/J ∼= A.

Remark 2.4.2. We can prove the isomorphism in Proposition 2.4.1 directly by checking

the map defined in (2.4.4) is indeed an isomorphism of C-algebra. The detail with the

idempotents and the radical ideal in the proof above is just to display a more systematic

approach.
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Since we are mainly interested in B0-modules that are locally free of rank 2, the fiber of

such module over p ∈ C∩∆ is a representation of A on C2. In light of the interpretation of

A as a path algebra, we can easily classify all the isomorphism classes of representations

on C2. The isomorphism classes of representations of A ∼= CQ/J on C2 are listed as

follows:

1.

C C
1

0

2.

C C
0

1

3.

C C
0

0

4.

C2 0
0

0

5.

0 C2
0

0

2.4.2 Construction

Recall the geometric set-up: we have a rank 3 bundle F on P2 and an embedding of

line bundle q : L ↪→ S2F∨. This defines a conic bundle Q ⊂ P(F ) as the zero locus

of q ∈ H0(P2, S2F∨ ⊗ L∨) ∼= H0(P(F ),OP(F )/P2(2) ⊗ π∗L∨) in P(F ) where we denote
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π : P(F ) → P2. The discriminant curve is assumed to be smooth and denoted by ∆. As

an OP2-module, the sheaf of even Clifford algebra B0 on P2 is

B0 ∼= OP2 ⊕ ∧2F ⊗ L.

We will restrict our attention to B0-modules supported on a conic C ⊂ P2. Given such

a B0-module M on C, for each p ∈ C ∩∆ we consider the vector subspace

K := ker(B0|p → End(M)|p).

As we will see in Proposition 2.4.3 (1), K is a vector subspace of ∧2F |p⊗L|p. The natural

isomorphisms w : ∧2F
∼−→ det(F )⊗F∨ and F ∼−→ (F∨)∨ give rise to another vector space

K ′ := ker(F ∼−→ (F∨)∨
w∨p⊗det(F )|p⊗L|p−−−−−−−−−−−→ K∨ ⊗ L⊗ det(F ))

where wp : K ↪→ (∧2F ⊗ L)|p → (det(F )⊗ F∨ ⊗ L)|p is the composition of the inclusion

map and the isomorphism w restricted to p. Hence, P(K ′) is a linear subspace in P(F |p).

In the light of Proposition 2.4.3, K ′ is the two dimensional vector space in F |p that

corresponds to the line K in ∧2F |p (identified with (∧2F ⊗ L)|p).

Proposition 2.4.3.

1. K ⊂ ∧2F |p ⊗ L|p ⊂ O|p ⊕ ∧2F |p ⊗ L|p ;

2. dim(K) = 1 and dim(K ′) = 2;

3. The line P(K ′) ⊂ P(F |p) is one of the two irreducible components of the degenerate

conic Q|p ⊂ P(F |p).

Proof. First of all, we can always choose a basis {e1, e2, e3} of F |p and a trivialization

i : L|p ∼= C so that q|p is represented by diag(1, 1, 0). The trivialization i induces an
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isomorphism of C-algebras B0|p ∼= O|p ⊕ ∧2F |p where the latter is generated by 1 ∈ O|p

and {x := ie1 ∧ e2, y := ie2 ∧ e3, z := e1 ∧ e3} ⊂ ∧2F |p with relation

x2 = 1, y2 = z2 = 0, xy = −z, xz = −y, xy = −yx, xz = −zx, yz = 0.

The irreducible components of Q|p ⊂ P(F |p) are given by the projectivization of the

isotropic planes in F |p with respect to q. If we write a vector v ∈ F |p as ∑3
i=1 aiei, then

the two isotropic planes are given by the two equations

a1 + ia2 = 0, a1 − ia2 = 0 (2.4.5)

which correspond to the lines in ∧2F |p

C〈ie2 ∧ e3 + e1 ∧ e3〉 = C〈y + z〉, C〈ie2 ∧ e3 − e1 ∧ e3〉 = C〈y − z〉. (2.4.6)

To prove all the claims, it suffices to show that K ⊂ B0|p corresponds to one of the these

lines in the subspace ∧2F |p ⊂ O|p ⊕ ∧2F |p. Indeed, then K ′ will correspond the one of

the isotropic planes.

Recall that with the choice of basis {1, x, y, z} of O|p⊕∧2F |p, we have an isomorphism

CQ/J ∼−→ O|p ⊕ ∧2F |p:

e+ 7→
1
2(1 + x), e− 7→

1
2(1− x), α 7→ 1

2(y + z), β 7→ 1
2(y − z).

Then the kernel of B0|p → End(M)|p can be computed by the composition

CQ/J ∼−→ O|p ⊕ ∧2F |p
∼−→ B0|p → End(M)|p

which is a representation of the path algebra CQ/J . By Proposition 2.4.5, the isomor-

phism classes of the representation of CQ/J on C2 in this case must be either type (1)

and (2).
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1. For type (1), the kernel of CQ/J ∼−→ B0|p → End(M)|p is C〈β〉 which corresponds

to K = C〈y − z〉 ⊂ O|p ⊕ ∧2F |p.

2. For type (2), the kernel of CQ/J ∼−→ B0|p → End(M)|p is C〈α〉 which corresponds

to K = C〈y + z〉 ⊂ O|p ⊕ ∧2F |p.

All the claims follow immediately.

Remark 2.4.4. The trivialization i : L|p ∼= C does not cause any ambiguity in the identifi-

cations as we are only interested in identification of vector subspaces, other trivializations

will only differ in a scalar multiplication.

Proposition 2.4.5. The representation of B0|p obtained from a B0-module M as the fiber

M |p over p ∈ C|∆ must have isomorphism class of either type (1) or type (2).

Proof. Fix p ∈ C ∩∆. Let n = 3, 4, 5 and Mn be a B0-modules such that its fiber over

p is a B0-representation of type n isomorphism class. We can choose a local parameter

t ∈ OC,p as OC,p is a discrete valuation ring.

Then Mn induces the homomorphisms over the local ring OC,p and over the residue

field κ(p) (i.e. fiber)

ρn : B0⊗OC,p → End(Mn)⊗OC,p, ρ0
n : B0⊗κ(p) = B0|p → End(Mn)⊗κ(p) = End(Mn)|p.

Again, we can always choose a basis {e1, e2, e3} of F |p and a trivialization i : L|p ∼= C

so that q|p is represented by diag(1, 1, 0). The trivialization i induces an isomorphism

of C-algebras B0|p ∼= O|p ⊕ ∧2F |p where the latter is generated by 1 ∈ O|p and {x :=

ie1 ∧ e2, y := ie2 ∧ e3, z := e1 ∧ e3} ⊂ ∧2F |p with relation

x2 = 1, y2 = z2 = 0, xy = −z, xz = −y, xy = −yx, xz = −zx, yz = 0.
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Recall the algebra O|p ⊕ ∧2F |p is isomorphic to CQ/J generated by e+, e−, α, β. If

we call the isomorphism j : CQ/J ∼−→ O|p ⊕ ∧2F |p
∼−→ B0|p, then clearly ρ0

n(j(α)) =

ρ0
n(j(β)) = 0. It also follows that ρ0

n(y) = ρ0
n(j(α + β)) = 0 and similarly ρ0

n(z) = 0. So

that means ρn(y) = tPy and ρn(z) = tPz for some Py, Pz ∈ End(Mn)⊗OC,p.

As F is locally free of rank 3, by Nakayama lemma, we can lift the basis {e1, e2, e3}

of F |p to a basis (also denoted as {e1, e2, e3} by abuse of notation) of F ⊗OC,p over OC,p.

The quadratic form q is represented by the matrix

(fij) =


f11 f12 f13

f21 f22 f23

f31 f32 f33


(2.4.7)

where fij are elements in OC,p. By the choice of basis {e1, e2, e2}, we have f11|p 6= 0,

f22|p 6= 0 and fij |p = 0 for (i, j) 6= (1, 1), (2, 2). It follows that fij = tf ′ij for (i, j) 6=

(1, 1), (2, 2) and f ′ij ∈ OC,p. Then

yz = (ie2e3)(e1e3)

= if31e2e3 − ie2e1e3e3

= if31e2e3 − if33e2e1

= f31y − if33f21 + f33x

so it follows that

ρn(yz) = t2f ′31Py − it2f ′33f
′
21 + tf ′33ρn(x).

Since

ρn(yz) = ρn(y)ρn(z) = t2PyPz
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by equating the two expression, we get

t2PyPz = it2f ′31Py − it2f ′33f
′
21 + tf ′33ρn(x) =⇒ tPyPz = itf ′31Py − itf ′33f

′
21 + f ′33ρn(x).

Note that f ′33 is invertible in OC,p because otherwise det(fij) will have zeros of order 2

with respect to t, which is not allowed since we assume that C intersects ∆ transversally.

Hence, we can write ρn(x) = tPx for some Px ∈ End(Mn)⊗OC,p. In particular, we must

have ρ0
n(x2) = 0.

On the other hand, we have

x2 = (ie1e2)(ie1e2)

= −f21e1e2 + e1e1e2e2

= if21x+ f11f22

and so ρ0
n(x2) = (f11f22)|p 6= 0 as f21|p = 0, f11|p 6= 0 and f22|p 6= 0. Hence, a contradic-

tion.

For d = 1, 2, let Ud ⊂ |OP2(d)| be the subset of smooth curves of degree d which

intersect ∆ transversally. For d < deg(∆), if we call the line bundle Ld := OP2(d)|∆ on

∆, it is easy to see that |OP2(d)| ∼= |Ld|. Hence, we can consider the variety of divisors

Wd lying over |Ld| and its two components as W i
d for i = 0, 1.

For each B0-module M ∈ Md,e with support on C ∈ Ud, let j : C ∩ ∆ ↪→ C be the

inclusion, the assignment

M 7→ K := ker (j∗B0 → j∗End(M))

which is argued to be contained in j∗(∧2F ) and it defines exactly a point in Wd.
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This construction also works in family. Let T be a scheme and MT be a flat family

of B0-modules on P2 with Chern character (0, 2d, e) i.e. MT is a p∗B0-module on P2 × T

where p1 : P2×T → P2 is the projection. Then we get a map T →Md,e|Ud → |Ud| ⊂ ∆(k).

We can restrict the family of B0-modules to ∆×T ⊂ P2×T. Consider the universal divisor

D ⊂ ∆×∆(k)

∆ ∆(k)

By pulling back D along the map ∆×T → ∆×∆(k), we get another divisor DT ⊂ ∆×T

and denote the inclusion by iT : DT ↪→ ∆× T ↪→ P2 × T .

We will write FT := i∗T p
∗
1F and LT := i∗T p

∗
1L. The sheaf

KT := ker (i∗T p∗1B0 → i∗TEnd(M))

has constant fiber dimension one and is contained in the rank 3 vector bundle i∗T p∗1
(
∧2FT ⊗ LT

)
on DT by Proposition 2.4.3. Again, since there are the natural isomorphisms w : ∧2FT

∼−→

det(FT )⊗ F∨T and FT
∼−→ (F∨T )∨, we can define

K′T := ker(FT ∼−→ (F∨T )∨
w∨p⊗det(F )|p⊗L|p−−−−−−−−−−−→ K∨T ⊗ LT ⊗ det(FT ))

where wT : KT ↪→ ∧2FT ⊗LT → det(FT )⊗F∨T ⊗LT is the composition. As we checked in

Proposition 2.4.3 that each fiber of the projectivization P(K′T ) ⊂ P(FT ) is a component

of the fiber of a degenerate conic in the conic bundle Q → P2, so we have P(K′T ) ⊂

i∗T p
∗
1Q ⊂ P(FT ). Since ∆̃ → ∆ is the curve parametrizing the irreducible components of

Q|∆ → ∆, it follows that P(K′T ) over DT defines a divisor D̃T ⊂ ∆̃× T that maps to DT

via ∆̃×T → ∆×T . The divisor D̃T is a T -family of degree k divisors on ∆̃, so it defines a

map T → ∆(k) which factors through Wd|Ud since DT is induced from a map T → Ud. It
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is easy to check that the assignment from MT to T →Wd is functorial, hence we obtain

a morphism over Ud:
Md,e|Ud Wd|Ud

Ud

(2.4.8)

Since Md,e irreducible, the image of Φ is contained in one of the components W i
d of

Wd.

Proposition 2.4.6. The morphism Φ|C : Md,e|C = Υ−1(C) → W i
d|C over C ∈ Ud is a

morphism of G|C-torsors.

Proof. Let ∑(λi, pi) ∈ G|C and we write M ∈Md,e|C as M = ψ∗(E0 ⊗ L̂) by choosing a

rank 2 bundle E0 (recall that E0 is determined up to a line bundle). We need to show

that

Φ
(∑

(λi, pi) ·M
)

= Φ
(
ψ∗

(
E0 ⊗ L̂⊗O

(∑
i

λi
2 pi

)
⊗ h−

1
2
∑

λi
C

))
=
(∑

λipi
)
· Φ(M)

(2.4.9)

Since Φ(M) is determined at each point in C ∩ ∆, it suffices to check the equivariance

property over p. As we checked that ker(B0|p → End(ψ∗E0⊗ L̂)|p) always determines one

of the two preimages of p ∈ ∆ in the double cover ∆̃. To prove the proposition, it suffices

to show that

ker(B0|p → End(ψ∗E0 ⊗ L̂)|p) 6= ker(B0|p → End(ψ∗E0 ⊗ L̂⊗O(p/2)|p)

or equivalently,

ker(B0|p → End(ψ∗E0 ⊗ L̂)|p) 6= ker(B0|p → End(ψ∗E0 ⊗ L̂⊗O(−p/2)|p). (2.4.10)

In fact, we can simplify further by assuming L̂ = O
Ĉ

.
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The B0-module structure on ψ∗(E0⊗L̂) can be described concretely by the composition

of the isomorphism B0 ∼= ψ∗End(E0) ∼= ψ∗End(E0 ⊗ L̂) and the natural morphism

α : ψ∗End(E0 ⊗ L̂)→ End(ψ∗(E0 ⊗ L̂)).

In particular, we can define

α0 : ψ∗End(E0) ∼−→ ψ∗End
(
E0 ⊗O

(
−p2

))
→ End

(
ψ∗

(
E0 ⊗O

(
−p2

)))
α1 : ψ∗End(E0)→ End (ψ∗(E0))

Hence, to check that (2.4.10) holds, it is equivalent to show that ker(α0|p) 6= ker(α1|p).

To check these, we proceed as in Proposition 2.3.6 and work in an affine neighborhood

Z = Spec(R) of p and the double cover Z̃ = Spec(R′) where R′ := R[t]/(t2 − s)) and

div(s) = p. So that the root stack restricted over Z is simply Ẑ = [Spec(R[t]/(t2−s))/µ2].

We can further reduce to the localization of R at p, we will again write the local ring as

R and its unique maximal ideal m which contains s.

As argued in Proposition 2.3.6, E0 is a Z/2Z-graded R′-module N = N0⊕N1 and we

can choose e1 ∈ N0 and e2 ∈ N1 such that N ∼= R′e1 ⊕ R′e2. In terms of the R′-basis

{e1, e2}, ψ∗(End(E0)) ∼= (End(E0))0 consists of homogeneous R-module homomorphisms

δ of degree 0:

e1 7→ u0e1 + u1e2

e2 7→ v1e1 + v0e2

(2.4.11)

where ui, vi ∈ (R′)i. Then we can write u1 = tũ1 and v1 = tṽ1 where ũ1, ṽ1 ∈ (R′)0 = R.

As before, the module ψ∗E0 is freely generated by {f1 = e1, f2 = te2} as R-module.

Suppose that δ ∈ ψ∗End(E0) is of the form (2.4.11), then its image in End(ψ∗E0) under
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α will be maps of the form

f1 = e1 7→ u0e1 + ũ1(te2) = u0f1 + ũ1f2

f2 = te2 7→ ṽ1t(te1) + v0(te2) = sṽ1f1 + v0f2

If we choose the generators of ψ∗End(E0) to be the following R-valued matrices (with

respect to the basis {e0, e1})

I =

1 0

0 1

 , a :=

−1 0

0 1

 , b :=

0 t

t 0

 , c :=

 0 t

−t 0

 (2.4.12)

their images in End(ψ∗E0) are the corresponding R-matrices (with respect to the basis

{f0, f1}): 1 0

0 1

 ,
−1 0

0 1

 ,
0 s

1 0

 ,
 0 s

−1 0

 (2.4.13)

As the homomorphism O
(
−p

2
)
→ O

Ĉ
is represented as the inclusion of R′-module

homomorphism R′t ↪→ R′, the homomorphism E0 ⊗O
(
−p

2
)
→ E0 corresponds to taking

the R′-module homomorphism

R′(te1)⊕R′(te2)→ R′(e1)⊕R′(e2). (2.4.14)

Note that ψ∗
(
E0 ⊗O

(
−p

2
))

corresponds to the R-module R(sf1)⊕Rf2 as the µ2-invariant

submodule ofR′(te1)⊕R′(te2). Pushing the homomorphism (2.4.14) forward ψ∗
(
E0 ⊗O

(
−p

2
))
→

ψ∗E0 corresponds to taking the µ2-invariant part R(sf1) ⊕ Rf2 → Rf1 ⊕ Rf2 which is

represented by the R-valued matrix s 0

0 1


with respect to the bases {sf1, f2} of ψ∗E0 ⊗O(−p

2) and {f1, f2} of ψ∗E0.
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For any δ ∈ ψ∗(End(E0)), there are OZ-module homomorphisms α0(δ) : ψ∗(E0 ⊗

O(−p
2)) → ψ∗(E0 ⊗ O(−p

2)) and α1(δ) : ψ∗E0 → ψ∗E0. They form a commutative

diagram by the definition of a ψ∗End(E0)-module homomorphism

ψ∗(E0 ⊗O(−p
2)) ψ∗(E0 ⊗O(−p

2))

ψ∗E0 ψ∗E0

α0(δ)

α1(δ)

In terms of the bases {f1, f2}, {sf1, f2} of ψ∗F and ψ∗(F ⊗ O(−p
2)), the morphism

above can be written in
R⊕R R⊕R

R⊕R R⊕R

α0(δ)s 0

0 1


s 0

0 1


α1(δ)

When α1(b) =

0 s

1 0

, it is easy to check that α0(b) must be

0 1

s 0

. Similarly, we

have the follwoing α0(δ) when α1(δ) is the other generator:

α1(I) =

1 0

0 1

 =⇒ α0(I) =

1 0

0 1



α1(a) =

−1 0

0 1

 =⇒ α0(a) =

−1 0

0 1



α1(c) =

 0 s

−1 0

 =⇒ α0(c) =

 0 1

−s 0


Finally, when s = 0 i.e. over p, we have

1. the kernel of α1|p is spanned by (b+ c)|p,
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2. the kernel of α0|p is spanned by (b− c)|p.

Hence, ker(α0|p) 6= ker(α1|p) and we are done.

Corollary 2.4.7. For d = 1, 2, the moduli space Md,e is birational to one of the two

components W i
d of Wd. Moreover, if Md,e is birational to W i

d, then Md,e+1 is birational

to W 1−i
d . In particular, the birational type of Md,e only depends on d and (e mod 2).

Proof. Suppose W i
d|Ud is the component corresponding to the image of Φ, so we have

Φ : Md,e|Ud → W i
d|Ud . As W i

d|Ud is smooth and hence normal, and the morphism Φ

is bijective on closed points i.e. quasi-finite of degree 1, then the morphism Φ is an

isomorphism.

Suppose M = ψ∗M̂ and Φ(M) = x1 + ... + xdk ∈ W i
d where xi ∈ ∆̃ and k = deg(∆).

The computation in Theorem 2.3.8 shows that ch
(
ψ∗
(
M̂ ⊗O

(pi
2
)))

= (0, 2d, e+ 1). By

the proof of Proposition 2.4.6, we see that Φ
(
ψ∗
(
M̂ ⊗O

(pi
2
)))

= x1+...σ(xi)+...+xdk ∈

W 1−i
d . Hence, Md,e+1 maps birationally to W 1−i

d .

2.5 Cubic threefolds

We will apply the construction of the rational map Φ : Md,e 99KWd for the conic bundles

obtained by blowing up smooth cubic threefolds along a line. As a consequence, this yields

an explicit correspondence between instanton bundles on cubic threefolds and twisted

Higgs bundles on the discriminant curve.

Let Y ⊂ P4 be a cubic threefold and l0 ⊂ Y a general line. The blow-up σ : Ỹ :=

Bll0Y → Y of Y along l0 is known to be a conic bundle π : Ỹ → P2. In this case,

98



the rank 3 vector bundle is F = O⊕2
P2 ⊕ OP2(−1) and the line bundle is L = OP2(−1).

The discriminant curve ∆ of the conic bundle π : Ỹ → P2 is a degree 5 curve and its

étale double cover is denoted by ∆̃ → ∆. Then we can consider the variety of divisors

W2 ⊂ ∆̃(10) lying over the linear system |OP2(2)|∆|, its two componets W2 = W 0
2 ∪W 1

2 and

the associated sheaf of even Clifford algebra B0, and the moduli space Md,e as considered

in previous sections.

Proposition 2.5.1. Let e ∈ Z be even. The image of Φ : M2,e 99K W2 is contained in

the component W 1
2 . In particular, M2,−4 is birational to the Prym variety.

Proof. Note that in the case of Y , OP2(2)|∆ ∼= K∆, so can apply Example 2.2.5. Recall

that in Example 2.2.5 the Abel-Jacobi map α̃ : ∆̃(10) → J10∆̃ induces the morphisms

α̃|W 1 : W 1
2 → Pr1 maps birationally to the abelian variety Pr1 while α̃|W 0 : W 0

2 → Pr0 is

a generically P1-bundle over the theta divisor. By the work of [LMS15] (see Theorem 2.5.3

and Theorem 2.5.4), it is known that M2,−4 is birational to another abelian variety, namely

the intermediate Jacobian of the cubic threefold Y . In particular, the component of W2

that is birational to M2,−4 is birational to an abelian variety. But W 0
2 contains rational

curves, which cannot happen for a variety birational to an abelian variety. Hence, the

image of Φ must be contained W 1
2 . It follows immediately that the composition M2,−4 99K

W 1
2

α̃|W1−−−→ Pr1 is a birational map. By Corollary 2.4.7, the same holds for M2,e when e is

even.

Proposition 2.5.2. The image of Φ : M2,e+1 99KW2 is contained in the component W 0
2

and its image in Pr0 ∼= Prym(∆̃,∆) is an open subset of the theta divisor of the Prym
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variety.

Proof. This follows immediately from Corollary 2.4.7, Proposition 2.5.1, and Example

2.2.5.

2.5.1 Instanton bundles on cubic threefolds and twisted Higgs bundles

A rank 2 vector bundle E on Y is called an instanton bundle if E is Gieseker semistable

and c1(E) = 0 and c2(E) = 2.

Denote by MY the moduli space of stable instanton bundles and MY its compact-

ification by the moduli space of semistable instanton bundles. Now, the intermediate

Jacobian J3(Y ) of a cubic threefold Y has birationally a modular interpretation as the

moduli space MY of instanton bundles, via Serre’s construction by the works of Marku-

shevich, Tikhomirov, Iliev and Druel [MT98][IM00][Dru00][Bea02].

Theorem 2.5.3. The compactification of MY by the moduli space MY of rank 2 semistable

sheaves with c1 = 0, c2 = 2, c3 = 0 is isomorphic to the blow-up of J3(Y ) along a translate

of −F (Y ). Moreover, it induces an open immersion of MY into J3(Y ).

We recall a theorem in [LMS15] relating instanton bundles and B0-modules. Recall

that we can embed the Fano surface of lines F (Y ) in J3(Y ) as F (Y ) ↪→ Alb(F (Y )) ∼−→

J3(Y ) by picking l0 as the base point. We denote by F (Y ) the strict transform of F (Y )

under the blow-up in Theorem 2.5.3.

Theorem 2.5.4 ([LMS15]). The moduli space M2,−4 is isomorphic to the blow-up of MY

along the strict transform F (Y ) of F (Y ). In particular, MY is birational to M2,−4.
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For a stable instanton bundle E ∈ MY , the image Ξ3(E) ∈ M2,−4 is constructed

explicitly as follows. First, we define the functor

Ψ : Db(Ỹ )→ Db(P2,B0), E 7→ π∗((E)⊗O
Ỹ
E ⊗O

Ỹ
detF∨[1])

where E is a rank 2 vector bundle with a natural structure of flat left π∗B0-module. For

details of the definition, we refer to [Kuz08]. Then Ξ3(E) = Ψ(σ∗(E)). While Ξ3(E) is

a priori a complex, it turns out that Ξ3(E) is concentrated in only one degree [LMS15,

Lemma 3.9], so Ξ3(E) is indeed a B0-module.

On the other hand, recall that for an étale cover ∆̃ → ∆, there is an associated 2-

torsion line bundle π : ξ → ∆ such that ∆̃ is recovered as the cyclic cover of ξ and the

section 1 ∈ ξ i.e. ∆̃ is embedded in Tot(ξ) as the zero locus of π∗s − 1 where s is the

tautological section of π∗ξ. Recall that a rank 2 traceless ξ-twisted Higgs bundle on a curve

Σ is a pair (V, φ) consisting of a rank 2 vector bundle V and φ ∈ H0(Σ, End0(V ) ⊗ ξ).

Since we will only deal with this case, We simply call it a twisted Higgs bundle. The

spectral correspondence [BNR89] says that pushing forward a line bundle N on ∆̃ gives

a twisted Higgs bundle (p∗N, p∗λ) on ∆, where λ is the tautological section of ξ. In fact,

Prym(∆̃,∆) parametrizes all twisted Higgs bundle on ∆ with spectral curve the π∗s− 1.

Since the Hitchin base H0(∆, ξ⊗2) = H0(∆,O∆) = C, all smooth spectral curves (defined

away from 0 ∈ C) are isomorphic to each other.

Combining the functor Ξ3 which induces a birational map MY 99K M2,−4, the bira-

tional map Φ : M2,−4 99K W 1
2 , the Abel-Jacobi map α̃ : ∆̃ → J10∆̃ and the spectral

correspondence, we obtain an explicit correspondence between instanton bundles on Y

and ξ-twisted Higgs bundles on ∆:
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Instanton bundles on Y

B0-modules on P2

Line bundles on ∆̃

ξ-twisted Higgs bundles on ∆

Ξ3

α̃ ◦ Φ

p∗

The correspondence of different objects here holds as birational map between the corre-

sponding moduli spaces.
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Vol. 44. 1974, pp. 5–77.

[Dia+06] D.-E. Diaconescu, R. Dijkgraaf, R. Donagi, C. Hofman, and T. Pantev. “Ge-

ometric transitions and integrable systems”. In: Nuclear Physics B 752.3

(2006), pp. 329–390.

[DDP07] D. E. Diaconescu, R. Donagi, and T. Pantev. “Intermediate Jacobians and

ADE Hitchin systems”. In: Math. Res. Lett. 14.5 (2007), pp. 745–756.

[Don93] R. Donagi. “Decomposition of spectral covers”. In: Astérisque 218 (1993),
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