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Instructions:


Sign and print your name above.


This part of the examination consists of six problems, each worth ten points. You should
work all of the problems. Show all of your work. Try to keep computations well-organized
and proofs clear and complete — and justify your assertions. Each problem should be given
its own page (or more than one page, if necessary).


If a problem has multiple parts, earlier parts may be useful for later parts. Moreover, if you
skip some part, you may still use the result in a later part.


Be sure to write your name both on the exam and on any extra sheets you may submit.
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1. Let R be the region in the first quadrant of the x, y-plane (where x ≥ 0, y ≥ 0
bounded between the axes and the curve y = 1− x2. Let C be the boundary of
R, oriented counterclockwise. Evaluate the line integral∮


C


(
e2x + xy


)
dx+


(
sin(y2) + x2


)
dy,


Solution: Let RI denote the interior of R. By Green’s Theorem, the integral
equals ∫ ∫


RI


∂x
(
sin(y2) + x2


)
− ∂y


(
e2x + xy


)
dA


=


∫ 1


0


∫ 1−x2


0


x dy dx =


∫ 1


0


x(1− x2) dx


=
(
x2/2− x4/4


)
|10 =


1


2
− 1


4
=


1


4
.


2. Suppose that fn(x) is continuous on [a, b], n = 1, 2, · · · , and the series
∑∞


n=1 fn(x)
is uniformly convergent on (a, b). Is it true that


∑∞
n=1 fn(x) also converges uni-


formly on [a, b]? If so, please give a proof; otherwise, find a counterexample.


Solution: Yes, the series must also converge uniformly on the closed interval
[a, b]. To see this, for all ε > 0, since the series converges uniformly on (a, b),
there exists N ∈ N such that for all n > N and all k ∈ N,


|fn+1(x) + fn+2(x) + · · ·+ fn+k(x)| < ε, ∀x ∈ (a, b).


Letting x→ a+ and by the continuity assumption, one has


|fn+1(a) + fn+2(a) + · · ·+ fn+k(a)| ≤ ε.


Similarly for the point b. In conclusion, we have showed that for all ε > 0, there
exists N ∈ N, such that ∀n > N and k ∈ N,


|fn+1(x) + fn+2(x) + · · ·+ fn+k(x)| ≤ ε, ∀x ∈ [a, b].


Therefore, the series converges uniformly on [a, b].


3. Which of the following rings are fields? Justify your answers.


(a) The quotient ring Q[x]/I when I is the ideal Q[x] · (x2 + 1).


(b) The quotient ring Q[x]/J when J is the ideal Q[x] · (x2 − 1).


(c) The ring of meromorphic functions f on C.


2







(d) The ring of elements of Mat2(Q) that commute with the matrix


(
0 −1
1 0


)
.


Solution: The ring in (1) is a field, since x2 + 1 is irreducible in Q[x] and I is
a maximal ideal. The ring in (2) is not a field since x2 − 1 = (x− 1)(x + 1) so
Q[x] · (x2 − 1) has zero divisors. The ring in (3) is a field since the inverse of
a non-zero meromorphic function is meromorphic. To analyze the ring in (4),
suppose (


a b
c d


)
·
(


0 −1
1 0


)
=


(
b −a
d −c


)
equals (


0 −1
1 0


)
·
(
a b
c d


)
=


(
−c −d
a b


)
This is true if and only if


b = −c and a = d.


So the ring in part (4) is the ring of all linear combinations


a


(
1 0
0 1


)
+ b ·


(
0 −1
1 0


)
with a, b ∈ Q. Since (


0 −1
1 0


)2


= −
(


1 0
0 1


)
the ring in part (4) is isomorphic to Q(i), which is a field.


4. Compute ∫ ∞
0


x sinx


x2 + a2
dx


for a > 0. Justify your answer.


Solution: Let


f(z) =
zeiz


z2 + a2
.


For X1, X2, Y > 0, consider the contour integral of f along the counterclockwise
boundary of the rectangle with corners X2, X2 + iY , −X1, −X1 + iY . Since
|eiz| = e−y for z = x + iy, The integral on the two vertical lines are bounded
by C


X1
and C


X2
respectively, for some constant C > 0. The integral along the top


line is bounded by Ce−Y (X1 +X2)/Y , which tends to zero as Y →∞ for fixed
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X1, X2. By first sending Y → ∞ and then X1, X2 → ∞, the contour integral
converges to


∫∞
−∞


x sinx
x2+a2


dx. By Cauchy Residue Theorem,∫ ∞
−∞


xeix


x2 + a2
dx = 2πiRes(f ; ia) = 2πi lim


x→ia


xeix


x+ ia
= iπe−a.


So ∫ ∞
0


x sinx


x2 + a2
dx =


1


2


∫ ∞
−∞


x sinx


x2 + a2
dx =


πe−a


2
.


5. (a) Is F4 a subfield of F8? Is F9 a subfield of F81? If yes in either case, what is
the degree of the field extensions?


(b) Take a power of a prime number q = pn. Let k be a positive integer that
divides n, and let f ∈ Fp be a monic irreducible polynomial of degree k.
Prove that f divides eq(x) = xq − x.


(c) Factor e16(x) = x16 − x over F4.


Solution


(a) F4 is not a subfield of F8 because 8 is not a power of 4. F9 is a subfield of
F81 because 81 = 92, and the degree of this field extension is 2.


(b) Fp[x]/(f(x)) ∼= Fpk . Since k|n and q = pn, we have Fpk ⊂ Fq. The polyno-
mial f , being monic and irreducible over Fp, is the minimal polynomial of
some element α ∈ Fpk , and every element of Fq is a root of e16, so e16(α) = 0,
and thus f |e16.


(c) Let ω be the primitive third root of unity, so F4 = F2[ω] = {0, 1, ω, ω2},
and ω2 = ω + 1. By the previous problem, every irreducible polynomial
f ∈ F2 of degree k with k|4 divides e16, so we need to find all irreducible
polynomials of degrees 1, 2 and 4:


• Degree one: x, x+ 1;


• Degree two: x2 + x+ 1;


• Degree four: x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1.


So we get six polynomials of degrees summing up to 16, and each divides
e16, hence we get a decomposition


e16(x) = x(x+ 1)(x2 +x+ 1)(x4 +x+ 1)(x4 +x3 + 1)(x4 +x3 +x2 +x+ 1),


but not all of the factors are irreducible over F4, for example x2 + x+ 1 =
(x+ω)(x+ω2). None of the linear polynomials in F4[x] divides our degree
four factors, so we need to check whether any of the degree two irreducible
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polynomials in F4[x] divide those. Here is the list of degree two irreducible
polynomials in F4[x]:


x2 +ωx+1, x2 +ω2x+1, x2 +x+ω, x2 +ωx+ω, x2 +x+ω2, x2 +ω2x+ω2.


In fact, we can multiply some of the pairs and get:


(x2 + ωx+ 1)(x2 + ω2x+ 1) = x4 + x3 + x2 + x+ 1,


(x2 + x+ ω)(x2 + x+ ω2) = x4 + x+ 1,


(x2 + ωx+ ω)(x2 + ω2x+ ω2) = x4 + x3 + 1.


Thus we can split e16 into a product of linear and quadratic terms that are
irreducible in F4[x]:


e16(x) = x(x+ 1)(x+ ω)(x+ ω2)(x2 + x+ ω)(x2 + x+ ω2)


(x2 + ωx+ ω)(x2 + ω2x+ ω2)(x2 + ωx+ 1)(x2 + ω2x+ 1).


6. Solve the following ordinary differential equation


d2y


dx2
= 2y3, y(0) = 1,


dy


dx


∣∣∣∣
x=0


= −1.


[Hint: Multiply dy/dx on both sides and perform integration.]


Solution: Multiplying dy/dx and performing integration gives


1


2


(
dy


dx


)2


=
1


2
y4 + C1,


and the constant is determined by the initial conditions, C1 = 0. Since dy/dx <
0 and y > 0 at x = 0, we choose


dy


dx
= −y2.


Dividing both sides by −y2 and integrating both sides gives


1


y
= x+ C2,


and again the constant is determined by the initial condition, C2 = 1. Therefore,
we have the solution


y(x) =
1


1 + x
.
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7. Prove or give a counterexample of each of the statements a) and b) below.


(a) (5 points) Let M be a metric space, and write A for the closure of a subset
A ⊆M . Then A ∩B = A ∪B, for all subsets A,B of M .


(b) (5 points) Let f : X → Y be a continuous map between metric spaces. If
B ⊆ Y is compact, then so is f−1(B) ⊆ X.


Solution: a) This statement is false. For example, take A = Q, and B = R\Q.
Then A ∩B = ∅, but A = B = R implying


A ∩B = R 6= ∅ = A ∩B.


b) This statement is also false. For example, if X = R, then for any constant
function f : R→ Y , x→ c, the preimage f−1(c) = R is not compact.


8. Let A =


 4 0 0
0 1 0
−1 −1 1


.


(a) Find the Jordan canonical form J of A.


(b) Find a matrix P such that A = PJP−1.


Solution: (a) The eigenvalues of A are λ = 4 and λ = 1 (with multiplicity 2).


For λ = 4, we have


A− 4I =


 0 0 0
0 −3 0
−1 −1 −3


 ,
so an eigenvector is


 3
0
−1


.


For λ = 1, we have A− I =


 3 0 0
0 0 0
−1 −1 0


, which has rank 2, so there is only


one linearly independent eigenvector,


 0
0
1


. This means that the Jordan form


of A is J =


 4 0 0
0 1 1
0 0 1


.
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(b) We have the eigenvectors for λ = 4 and λ = 1, and we need a generalized


eigenvector for λ = 1. Since (A−I)2 =


 9 0 0
0 0 0
−3 0 0


, we can take our generalized


eigenvector to be v1 =


0
1
0


 (since this is in ker(A− I)2 but not in ker(A− I)).


Then v2 = (A− I)v1 =


 0
0
−1


 and so P =


 3 0 0
0 0 1
−1 −1 0



9. Let G be a group of order 48 = 24 · 3.


(a) If P is a Sylow 2-subgroup of G, what is the index n = [G : P ]? Justify.


(b) Describe the non-trivial homomorphism G → Sn induced by G acting on
G/P .


(c) Prove that G is not a simple group.


Solution


(a) The order of a Sylow 2-subgroup of G is 24, so by Lagrange’s theorem, we
have n = [G : P ] = 24 · 3/24 = 3.


(b) Let e ∈ G denote the identity element in G and ε ∈ S3 the identity permu-
tation, and let a, b ∈ G be two elements generating the two nontrivial cosets
of P , so G/P = {P, aP, bP}. Let f : G → Sn denote the homomorphism.
We will say that S3 acts on {P, aP, bP} via identifying P with 1, aP with
2 and bP with 3. Then for x ∈ G, f(x) is the permutation that sends P
to xP , aP to xaP , and bP to xbP . Since f(a) doesn’t stabilize P , we have
f(a) 6= ε, so f is not the trivial homomorphism.


(c) Since |G| = 48 > 6 = |S3|, the homomorphism from Part 2 is not injective.
By the result of Part 2, the kernel of f is not equal to G, and it is a normal
subgroup. So G is not simple.


10. Prove that the two periodic functions agree:


π2


sin2 πz
=


+∞∑
−∞


1


(z − n)2
.


Hint: Start by showing the function


g(z) =
π2


sin2 πz
−


+∞∑
−∞


1


(z − n)2
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is periodic and entire.


Solution: Let


g(z) =
π2


sin2 πz
−


+∞∑
−∞


1


(z − n)2
.


Since limz∈→n g(z) is finite for each n, the function g is entire. Note that g(z) =
g(z + 1). For z = x + iy, we can check that 1


sin2 πz
tend to 0 uniformly in


x ∈ [0, 1] as |y| → ∞. The same holds for the series
∑+∞
−∞


1
(z−n)2 . Therefore g


is a bounded entire function, hence by Liouville Theorem must be a constant.
Since limy→∞ g(iy) = 0 we have g = 0 everywhere.


11. Let x = x(y, z), y = y(x, z), z = z(x, y) be the implicit functions determined by
the equation F (x, y, z) = 0. Prove that


∂x


∂y
· ∂y
∂z
· ∂z
∂x


= −1.


Solution: From the Implicit Function Theorem, one has that


∂yF (x, y, z) + ∂xF (x, y, z) · ∂x(y, z)


∂y
= 0,


in other words,


∂x


∂y
= −


∂F
∂y


∂F
∂x


.


Similarly, one has
∂y


∂z
= −


∂F
∂z
∂F
∂y


,
∂z


∂x
= −


∂F
∂x
∂F
∂z


.


Therefore, the product of the three partial derivatives is equal to −1.


12. Let


I(R) =


∫∫
R2≤x2+y2≤4R2


1 + x2


2022 + x4 + y4
dxdy


Find limR→∞ I(R) or show this limit does not exist. [Use the fact that
∫ 2π


0
(cos4 t+


sin4 t)−1dt = 2π
√


2.]


Solution: Using the symmetry we have


2I(R) =


∫∫
R2≤x2+y2≤4R2


2 + x2 + y2


2022 + x4 + y4
dxdy.
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Changing of variables with polar coordinate yields


2I(R) =


∫ 2π


0


∫ 2R


R


2 + r2


2022 + r4(cos4 t+ sin4 t)
rdrdt.


As R → ∞, the range of integration goes to infinity and the leading order
behavior of the integrand is


2r + r3


2022 + r4(cos4 t+ sin4 t)
=


1


r(cos4 t+ sin4 t)
+O


(
1


r3


)
.


Therefore, we have


lim
R→∞


2I(R) = lim
R→∞∞


∫ 2R


R


dr


r


∫ 2π


0


dt


cos4 t+ sin4 t
.


The first integral satisfies


lim
R→∞∞


∫ 2R


R


log(2R)− log(R) = log(2).


Therefore, the limit goes to


lim
R→∞


I(R) = π
√


2 log 2.
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