1. Given real numbers a, b, c, d, consider the differential equation $E(a, b, c, d)$ given by $y^{\prime \prime}+(a \sin x-3) y^{\prime}+\left(b e^{x}+2\right) y+c \cos x=d$.
(a) Find the set S of all $(a, b, c, d) \in \mathbb{R}^{4}$ such that the solutions to the differential equation $E(a, b, c, d)$ form a real vector space $V(a, b, c, d)$ under addition and scalar multiplication of functions.
(b) Pick some $(a, b, c, d) \in S$ (your choice), and find a basis for the vector space $V(a, b, c, d)$.

Explain your assertions.

Solution. (a) The differential equation $E(a, b, c, d)$ is linear, and is homogeneous if and only if $c=d=0$. So $S=\left\{(a, b, c, d) \in \mathbb{R}^{4} \mid c=d=0\right\}$.
(b) Take $(0,0,0,0) \in S$. Here $V(0,0,0,0)$ is the set of solutions to the differential equation $y^{\prime \prime}-3 y^{\prime}+2 y=0$. This is a constant coefficient homogeneous linear differential equation, and a basis for the solutions is given by $\left\{e^{x}, e^{2 x}\right\}$, since $r=1,2$ are the solutions to the polynomial equation $r^{2}-3 r+2=0$.
2. (a) Give an example of a non-abelian group G, generated by two elements g, h, such that the center of G is non-trivial.
(b) Show that no such example can exist if one additionally requires that g is in the center of G.

Solution. (a) We can take G to be the dihedral group of order 8, generated by g, h subject to the relations $g^{4}=1, h^{2}=1, g h=h g^{-1}$. This is non-abelian, but g^{2} is in the center.
(b) If G is generated by g, h, and if g is in the center of G, then every element can be written in the form $g^{i} h^{j}$ for i, j integers, by commuting g past h. One then has $\left(g^{i} h^{j}\right)\left(g^{i^{\prime}} h^{j^{\prime}}\right)=g^{i+i^{\prime}} h^{j+j^{\prime}}=\left(g^{i^{\prime}} h^{j^{\prime}}\right)\left(g^{i} h^{j}\right)$, again commuting g past h. So the group is abelian.
3. Let $f(x)=1 / x$ for $x \neq 0$. On which of the following intervals is the function f uniformly continuous? Explain your assertions.
(i) $1 \leq x \leq 2$.
(ii) $1<x<2$.
(iii) $0<x<1$.

Solution. (i) A continuous function is uniformly continuous on any closed interval $[a, b]$, so f is uniformly continuous on [1, 2].
(ii) A function that is uniformly continuous on a set S is also uniformly continuous on each subset of S, and so f is uniformly continuous on $(1,2)$.
(iii) The function f is not uniformly continuous on $(0,1)$. To see this, take $\varepsilon=1$. For any $\delta>0$, let $\bar{\delta}=\min (1 / 2, \delta)$, and take $x_{1}=\bar{\delta} / 2$ and $x_{2}=\bar{\delta}$. Then $\left|x_{1}-x_{2}\right|=\bar{\delta} / 2<\delta$, but $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|=1 / \bar{\delta}>1=\varepsilon$. This contradicts uniform continuity.
4. For each of the following either give an example of a real square matrix M with the given properties or explain why none exists:
(a) M is not similar over \mathbb{R} to an upper triangular matrix.
(b) M is similar over \mathbb{R} to an upper triangular matrix but is not similar over \mathbb{R} to a diagonal matrix.
(c) M is not similar over \mathbb{C} to an upper triangular matrix.
(d) M is similar over \mathbb{C} to an upper triangular matrix but is not similar over \mathbb{C} to a diagonal matrix.

Solution. (a) We can take M to be the rotation matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. It is not similar to a real triangular matrix since it has no real eigenvalues.
(b) We can take M to be the triangular matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. This is not similar to a diagonal matrix since its eigenvalues are both equal to 1 but M is not similar to the identity matrix.
(c) This does not exist: every square matrix is similar to an upper triangular matrix over an algebraically closed field.
(d) We can take M to be the triangular matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, by the same reasoning as in part (b).
5. Let $f(x)=x^{2}+2 y^{2}-2 x y+2 x$, let D be the closed disc $x^{2}+y^{2} \leq 10$, and let D^{\prime} be the interior of D.
(a) Does the restriction of f to D achieve a maximum? (I.e., is there a point $(a, b) \in D$ such that $f(a, b) \geq f(x, y)$ for all $(x, y) \in D ?$) Similarly, does
it achieve a minimum on D ? Justify your assertions. (You are not asked to find the maximum and minimum if you assert that they exist.)
(b) Does the restriction of f to D^{\prime} achieve a maximum, and does it achieve a minimum? If it does, find where the maximum (resp. minimum) is achieved. Justify your assertions.

Solution. (a) The function f is continuous (being a polynomial), and the closed disc D is compact (being closed and bounded in \mathbb{R}^{2}); so f achieves both a maximum and a minimum on D.
(b) Any maximum or minimum of f on the open set D^{\prime} will be a relative maximum or minimum, and so will be at a critical point of f. The critical points of f in \mathbb{R}^{2} occur where $f_{x}=f_{y}=0$; and here $f_{x}=2 x-2 y+2$, $f_{y}=4 y-2 x$. So the unique critical point is at $(x, y)=(-2,-1) \in D^{\prime}$. Since $f_{x x}=2, f_{x y}=-2$, and $f_{y y}=4$, we have $f_{x x} f_{y y}-f_{x y}^{2}>0$ and $f_{x x}>0$, so this point is a relative minimum by the second derivative test. In fact, the graph of f is a paraboloid, and its unique critical point on \mathbb{R}^{2} is its unique extremum. So f has a minimum on D^{\prime} at $(-2,-1)$ and it has no maximum on D^{\prime}.
6. Let $f(x, y)=e^{x y^{5}}+x^{10}+\cos \left(y^{2}\right)$, let $g=\partial f / \partial x$, and let $h=\partial f / \partial y$. Let C be the path in the plane from the origin to the point $(1,0)$ given by the portion of the graph of $y=\sin ^{3}(\pi x)$ over the interval $0 \leq x \leq 1$. Evaluate $\int_{C} g d x+h d y$. Explain your computations. [Hint: This does not require a brute force calculation of the integral.]

Solution. Since $g d x+h d y=d f=\nabla f \cdot d \mathbf{r}$, the value of the line integral depends only on the endpoints, and is equal to $f(1,0)-f(0,0)=(1+1+1)-$ $(1+0+1)=1$. (Alternatively, we may apply Green's Theorem to the region R lying below C and above the x-axis. Since $g_{y}=f_{x y}=f_{y x}=h_{x}$, it follows that $\int_{\partial R} g d x+h d y=0$. So $\int_{C} g d x+h d y$ is equal to the integral along the line segment $[0,1]$, which is $\int_{x=0}^{1} \frac{d}{d x} f(x, 0) d x=\left.f(x, 0)\right|_{x=0} ^{1}=3-2=1$.)
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function, with graph Γ.
(a) Show that $\{(x, y) \mid y>f(x)\}$ is an open subset of \mathbb{R}^{2}.
(b) Show that the complement of Γ in \mathbb{R}^{2} is disconnected.

Solution. (a) Suppose that (a, b) lies in the given set S. Thus $c:=b-f(a)>0$. By continuity there exists $\varepsilon>0$ such that $f(x)<f(a)+\frac{c}{2}=b-\frac{c}{2}$ for $|x-a|<\varepsilon$. So the open rectangle $(a-\varepsilon, a+\varepsilon) \times\left(b-\frac{c}{2}, b+\frac{c}{2}\right)$ is an open neighborhood of (a, b) in S. Hence S is open.
(b) By replacing f by $-f$ in part (a), we also have that the set of points S^{\prime} lying below the graph is open. The complement of the graph is thus the disjoint union of the two open sets S, S^{\prime}, and so it is disconnected.
8. Let V be the span of the four vectors $(1,-1,0,1),(2,-1,1,6),(-1,2,1,3)$, $(1,0,1,5)$ in \mathbb{R}^{4}. With respect to the usual inner product on \mathbb{R}^{4}, find an orthogonal basis of V, and find the point on V closest to $(1,1,1,1)$.

Solution. Using row reduction we get

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & 1 \\
2 & -1 & 1 & 6 \\
-1 & 2 & 1 & 3 \\
1 & 0 & 1 & 5
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 1 & 1 & 4 \\
0 & 1 & 1 & 4 \\
0 & 1 & 1 & 4
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 1 & 1 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and so a basis for V is given by $v=(1,-1,0,1), w=(0,1,1,4)$. Now apply Gram-Schmidt to get an orthogonal basis of V : $v_{1}=v=(1,-1,0,1), v_{2}=$ $w-\frac{v \cdot w}{v \cdot v} v=(0,1,1,4)-(1,-1,0,1)=(-1,2,1,3)$.
The closest point to $z=(1,1,1,1)$ on V is the orthogonal projection of z onto V. Using the orthogonal basis v_{1}, v_{2} of V, we find that this point is $(1,1,1,1)-\frac{1}{3}(1,-1,0,1)-\frac{5}{15}(-1,2,1,3)=\left(1, \frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)$.
9. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. For each of the following, give either a proof or a counter-example:
(a) If $\sum_{n=1}^{\infty} a_{n}$ is convergent but not absolutely convergent, then $\sum_{n=1}^{\infty} n a_{n}$ is divergent.
(b) If $\sum_{n=1}^{\infty} a_{n}$ is convergent but not absolutely convergent, then $\sum_{n=1}^{\infty} n^{2} a_{n}$ is divergent.

Solution. (a) This is false. For example let $a_{n}=(-1)^{n} \frac{1}{n \log (n+1)}$. Then $\sum_{n=1}^{\infty} a_{n}$ is convergent (by the alternating series test), and is not absolutely convergent (by the integral test). But $\sum_{n=1}^{\infty} n a_{n}$ is convergent (by the alternating series test).
(b) This is true: If instead $\sum_{n=1}^{\infty} n^{2} a_{n}$ is convergent, then the terms approach 0 , and so are bounded; so there is a constant $C>0$ such that $\left|n^{2} a_{n}\right|<C$, or equivalently $\left|a_{n}\right|<C / n^{2}$, for all n. But then $\sum_{n=1}^{\infty} a_{n}$ would be absolutely convergent by comparison with $\sum_{n=1}^{\infty} C / n^{2}$.
10. (a) Show that if \mathfrak{m} is a maximal ideal in $\mathbb{Q}[x]$, then $\mathbb{Q}[x] / \mathfrak{m}$ is a field extension of \mathbb{Q} of finite degree.
(b) Conversely, show that if K is a field extension of \mathbb{Q} of finite degree, then K is isomorphic to $\mathbb{Q}[x] / \mathfrak{m}$ for some maximal ideal \mathfrak{m} of $\mathbb{Q}[x]$.

Solution. (a) Since $\mathbb{Q}[x]$ is a PID, $\mathfrak{m}=(f)$ for some $f(x) \in \mathbb{Q}[x]$; and f is irreducible since \mathfrak{m} is maximal. Let n be the degree of f. Then $\mathbb{Q}[x] / \mathfrak{m}=$ $\mathbb{Q}[x] /(f)$ is a field because \mathfrak{m} is maximal; and it has degree n over \mathbb{Q}, being a \mathbb{Q}-vector space with basis $1, x, \ldots, x^{n-1}$.
(b) Since \mathbb{Q} has characteristic zero, the extension K / \mathbb{Q} is separable. By the primitive element theorem, the finite separable field extension K is generated over \mathbb{Q} by a single element α. Let $f(x) \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q}. Then f generates the kernel of the surjective homomorphism $\mathbb{Q}[x] \rightarrow K$ given by $g(x) \mapsto g(\alpha)$, and so K is isomorphic to $\mathbb{Q}[x] /(f)$. Since K is a field, the ideal (f) is maximal. So K is isomorphic to $\mathbb{Q}[x] / \mathfrak{m}$ with $\mathfrak{m}=(f)$ a maximal ideal.
11. Let $f(x)$ be a differentiable function on the real line such that $f(0)=0$ and $f^{\prime}(0)=1$. Prove directly, from the definition of the derivative, that there exists a positive real number c such that $f(x)>0$ for all x with $0<x<c$.

Solution. We are given that $1=f^{\prime}(0)=\lim _{h \rightarrow 0} f(h) / h$, so there exists $c>0$ such that all x with $0<x<c$ satisfy $\left|\frac{f(x)}{x}-1\right|<1 / 2$. Hence these x satisfy $f(x) / x>1 / 2$; i.e., $f(x)>x / 2>0$.
12. Let v, w be elements of a finite dimensional real vector space V. Prove that there is a linear transformation $T: V \rightarrow \mathbb{R}^{2}$ such that $T(v)=(1,0)$ and $T(w)=(0,1)$ if and only if v, w are linearly independent vectors.

Solution. If there is such a linear transformation T, and if $a, b \in \mathbb{R}$ are not both 0 , then $T(a v+b w)=a T(v)+b T(w)=(a, b) \neq(0,0)$. Hence $a v+b w \neq 0$. This shows that v, w are linearly independent.
Conversely, if v, w are linearly independent, then there is a basis $v_{1}, v_{2}, \ldots, v_{n}$ of V with $v_{1}=v$ and $v_{2}=w$. We can define a linear transformation $T: V \rightarrow \mathbb{R}^{2}$ by taking v to $(1,0)$, taking w to $(0,1)$, and taking the other basis vectors to 0 .

