- 1. For every positive integer n, let $f_n(x)$ be the function on \mathbb{R} given by $f_n(x) := \frac{x^n}{n!}$.
 - (a) Determine the subset $S \subseteq \mathbb{R}$ consisting of all of real numbers a such that the sequence $(f_n(a))_{n>1}$ converges. For each $a \in S$, find the limit.
 - (b) Determine whether the sequence of functions $(f_n(x))_{n\geq 1}$ converges uniformly on the subset $S \subseteq \mathbb{R}$ defined in (a).

Justify your assertions.

Solution. (a) $S = \mathbb{R}$, and $\lim_{n\to\infty} \frac{a^n}{n!} = 0$ for every $a \in \mathbb{R}$: for every $a \neq 0$ and every $n \geq 2|a|$, we have $\left|\frac{f_{n+1}(a)}{f_n(a)}\right| \leq \frac{|a|}{n+1} < \frac{1}{2}$.

(b) No. Otherwise there exists a positive integer $n_0 > 0$ such that $\left|\frac{a^n}{n!}\right| < 1$ for all $n \ge n_0$ and all $a \in \mathbb{R}$, which is obviously false for $a = n_0$.

2. Let $f(x) = x^6 - 1$.

- (a) Find all maximal ideals in the polynomial ring $\mathbb{Q}[x]$ that contain f(x).
- (b) Find all maximal ideals in the polynomial ring $\mathbb{C}[x]$ that contain f(x).

Solution. (a) $f(x) = (x-1)(x+1)(x^2+x+1)(x^2-x+1)$, and these 4 factors are all irreducible in $\mathbb{R}[x]$, therefore irreducible in $\mathbb{Q}[x]$. There are 4 maximal ideals in $\mathbb{Q}[x]$ which contain f(x), generated by these 4 irreducible factors.

(b) In $\mathbb{C}[x]$ we have

$$f(x) = (x-1)(x+1)(x-e^{\pi\sqrt{-1}/3})(x-e^{-\pi\sqrt{-1}/3})(x-e^{2\pi\sqrt{-1}/3})(x-e^{-2\pi\sqrt{-1}/3}),$$

and there are 6 maximal ideals in $\mathbb{C}[x]$ which contain f(x), generated by these 6 irreducible factors.

3. Let f be the function on [-1, 1] defined by

$$f(x) = \begin{cases} 3x^2 & \text{if } 0 < x \le 1\\ -1 + 2x & \text{if } -1 \le x \le 0 \end{cases}$$

Let F be the function on [-1, 1] defined by

$$F(x) = \int_{-1}^{x} f(t) dt.$$

- (a) Is the function F continuous at x = 0?
- (b) Is the function F differentiable at x = 0?

Justify your assertions.

Solution. (a) Yes: Clearly $|f(x)| \leq 3$ for all $x \in [-1, 1]$. From

$$|F(x) - F(0)| = |\int_0^x f(t) \, dt| \le 3 \, |x|$$

for all $x \in [-1, 1]$, one sees that $\lim_{x\to 0} F(x) = F(0)$.

(b) No, F is not differentiable: f is piecewise continuous on [-1, 1], so by the fundamental theorem of calculus we have

$$\lim_{x \to 0^+} \frac{F(x) - F(0)}{x} = \lim_{x \to 0^+} f(x) = 0,$$

and

$$\lim_{x \to 0^{-}} \frac{F(x) - F(0)}{x} = \lim_{x \to 0^{-}} f(x) = -1.$$

So $\lim_{x\to 0} \frac{F(x)-F(0)}{x}$ does not exist.

4. Let \vec{v}_0 be the vector (1, 1, 1) in \mathbb{R}^3 . Let T be the linear operator on \mathbb{R}^3 defined by cross product with \vec{v}_0 :

$$T(\vec{w}) := \vec{v}_0 \times \vec{w}$$

for every element $\vec{w} \in \mathbb{R}^3$. For every real number $x \in \mathbb{R}$, define a linear operator U_x on \mathbb{R}^3 by

$$U_x := \exp(xT) = \sum_{n \ge 0} \frac{x^n T^m}{n!}.$$

- (a) Find the matrix representation A of T with respect to the standard basis of \mathbb{R}^3 .
- (b) Show that for every $x \in \mathbb{R}$, the operator U_x is orthogonal.

(Recall that a real 3×3 matrix B is *orthogonal* if $B \cdot B^t = I_3 = B^t \cdot B$; and an operator on \mathbb{R}^3 is *orthogonal* if it is equal to "multiplication on the left by an orthogonal 3×3 matrix".)

Solution. (a) Let $\vec{i}, \vec{j}, \vec{k}$ be the standard basis of \mathbb{R}^3 . We have

$$T(\vec{i}) = -\vec{k} + \vec{j}, \ T(\vec{j}) = -\vec{i} + \vec{k}, \ T(\vec{k}) = -\vec{j} + \vec{i},$$

$$A = \begin{pmatrix} 0 & -1 & 1\\ 1 & 0 & -1\\ -1 & 1 & 0 \end{pmatrix}.$$
 Notice that $A^t = -A.$

(b) Let B be the matrix representation of A. Then $\exp(xA)$ is the matrix representation of U_x . Since $A^t = -A$, we see that

$$\exp(xA^t) \cdot \exp(xA) = \exp(xA) \cdot \exp(xA^t) = \exp(xA + xA^t) = \exp(0 \cdot I_3) = I_3$$

Therefore U_x is orthogonal for every $x \in \mathbb{R}$.

SO Z

5. Consider the improper integral

$$\iint_{\mathbb{R}^2} \frac{dx \, dy}{(1+x^2+y^2)^{\alpha}}$$

on \mathbb{R}^2 , with a real parameter $\alpha > 0$. Determine whether this improper integral converges for $\alpha = 1$ and whether it converges for $\alpha = 2$.

(Hint: Use polar coordinates.)

Solution. We will determine all parameters $\alpha > 0$ for which the improper integral converges. The condition turns out to be $\alpha > 1$. So the improper integral diverges for $\alpha = 1$ and converges for $\alpha = 2$.

Since the integrand is non-negative, it suffices to show that there exists a positive real number $M_{\alpha} > 0$ such that

$$\iint_{D_c} \frac{dx \, dy}{(1+x^2+y^2)^{\alpha}} \le M_{\alpha}$$

for every circular disk $D_c := \{(a, b) \in \mathbb{R}^2 \mid a^2 + b^2 \leq c^2\}$ of radius c > 0 centered about the origin. Since $2^{-\alpha} \leq \frac{1}{(1+x^2+y^2)^{\alpha}} \leq 1$ for all (x, y) in the closed unit disk, the above condition is equivalent to the existence of a positive real number $N_{\alpha} > 0$ such that

$$\iint_{D_c \smallsetminus D_1} \frac{dx \, dy}{(1 + x^2 + y^2)^{\alpha}} \le N_{\alpha}$$

for all c > 1. Using polar coordinates, we have

$$\iint_{D_c \sim D_1} \frac{dx \, dy}{(1 + x^2 + y^2)^{\alpha}} = 2\pi \int_1^c \frac{r \, dr}{(1 + r^2)^{\alpha}}$$

Since $\frac{1}{2} \leq \frac{1}{1+r^2} \leq 1$ for all $r \geq 1$, the condition is equivalent to the condition that

$$\int_{1}^{c} \frac{r \, dr}{r^{2\alpha}}$$

is bounded as $c \to \infty$, which is easily seen to be equivalent to $\alpha > 1$.

Note: In this solution, it's not actually necessary to split off the unit disc; one can apply the polar coordinates argument for the integral from 0 to ∞ (or from 0 to c and take a limit).

6. Let $E := \{(x, y) \in \mathbb{R}^2 | x^2 + xy + y^2 \leq 1\}$, with the topology given by the standard metric on \mathbb{R}^2 . Let E^0 be the interior of the subset $E \subseteq \mathbb{R}^2$.

(Recall that E^0 is the subset consisting of all points $P \in E$ such that there exists $\epsilon > 0$ such that the open disk $D(P;\epsilon)$ in \mathbb{R}^2 of radius $\epsilon > 0$ centered at P is contained in E.)

- (a) Determine whether E (respectively E^0) is connected, and whether E (respectively E^0) is compact. (Your answer should have 4 parts.)
- (b) Prove that $E^0 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + xy + x^2 < 1\}$, and E is equal to the closure in \mathbb{R}^2 of E^0 .

Solution. (a) The quadratic form $Q(x, y) := x^2 + xy + y^2$ on \mathbb{R}^2 is positive definite, because $x^2 + xy + y^2 = (x + \frac{y}{2})^2 + \frac{3y^2}{4}$, therefore defines a metric d_Q on \mathbb{R}^2 . Given any two points $P_1 = (x_1, y_1), P^2 = (x_2, y_2) \in E$, the line segment $\overline{P_1, P_2}$ is contained in E by the triangle inequality for d_Q . So E is connected. The same argument shows that E^0 is connected. (Alternatively, E is an ellipse together with the enclosed region, and so it is convex, as is its interior.)

The set E is a closed and bounded subset of \mathbb{R}^2 , so it is compact. On the other hand E^0 is not a closed subset of \mathbb{R}^2 , so E^0 is not compact.

(b) It is clear from the triangle inequality for d_Q (or by continuity of polynomials) that $\{(x,y) \in \mathbb{R}^2 | x^2 + xy + x^2 < 1\}$ is contained in the interior of E. On the other hand for any given point $P = (a,b) \in E$ with $a^2 + ab + b^2 = 1$ and any given $\epsilon > 0$, the point $((1 + \frac{\epsilon}{2})a, (1 + \frac{\epsilon}{2})b)$ is in the disk $D((a,b);\epsilon)$ but not in E. So E^0 is the interior of E.

Similarly, for every point $P = (a, b) \in E$ with $a^2 + ab + b^2 = 1$ and every $\epsilon > 0$, the point $((1 - \frac{\epsilon}{2})a, (1 - \frac{\epsilon}{2})b)$ is in $E^0 \cap D((a, b); \epsilon)$. So E is contained in the closure of E^0 .

7. Let f be an increasing continuously differentiable function on the real line, and let g = f'. Let a = f(0), b = f(1), c = g(0), d = g(1). Let R be the region in the (x, y)-plane lying below the graph of y = g(x), above the x-axis, and between the lines x = 0 and x = 1. Let C be the boundary of R, oriented counterclockwise. Evaluate

$$\oint_C (xy^2 e^{x^2y^2} + 3x^2) dx + (x^2 y e^{x^2y^2} + 5x) dy.$$

Solution. Let $P = xy^2 e^{x^2y^2} + 3x^2$ and $Q = x^2y e^{x^2y^2} + 5x$. By Green's theorem, the contour integral is equal to

$$\iint_{R} (Q_x - P_y) \, dx \, dy = 5 \iint_{R} dx \, dy = 5 \cdot \operatorname{area}(R) = 5 \int_{0}^{1} f'(x) \, dx = 5(b-a).$$

8. Let $U \in M_3(\mathbb{Q})$ be a 3×3 matrix with coefficients in \mathbb{Q} such that $U^5 = I_3$, where I_3 is the 3×3 identity matrix. Prove that $U = I_3$.

(Hint: You may use the factorization $T^5 - 1 = (T - 1)(T^4 + T^3 + T^2 + T + 1)$ in the polynomial ring $\mathbb{Q}[T]$, and the fact that $T^4 + T^3 + T^2 + T + 1$ is irreducible in $\mathbb{Q}[T]$.)

Solution. The minimal polynomial f(x) of U is a monic polynomial in $\mathbb{Q}[x]$ which divides $x^5 - 1$ by assumption, and has degree at most 3 by Cayley–Hamilton. On the other hand $x^5 - 1 = (x-1)(x^4 + x^3 + x^2 + x + 1)$, and $\Phi_4(x) := x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{Q}[x]$ (by Eisenstein's criterion applied to $\Phi_4(x+1)$ for the prime number 5). So the minimal polynomial f(x) is equal to x - 1, thus $U = I_3$.

9. Let f be a piecewise continuous function on \mathbb{R} such that f(x+1) = -f(x) for all $x \in \mathbb{R}$. Determine whether the limit

$$\lim_{a \to \infty} \int_0^1 f(ax) \, dx$$

exists. If it does, find it.

Solution. The assumption implies that $\int_c^{c+n} f(x) dx = 0$ for every even positive integer n and every $c \in \mathbb{R}$. We have

$$\int_0^1 f(ax) \, dx = a^{-1} \cdot \int_0^a f(t) \, dt = a^{-1} \int_0^{a-n_a} f(t) \, dt$$

where n_a is the largest even positive integer not exceeding a. Therefore $|\int_0^1 f(ax) dx| \le a^{-1} \int_0^2 |f(t)| dt$ for a > 0, and $\lim_{a \to \infty} \int_0^1 f(ax) dx = 0$.

10. Let $\operatorname{GL}_2(\mathbb{R})$ be the group of all invertible 2×2 matrices with entries in \mathbb{R} . Let H be the subgroup of $\operatorname{GL}_2(\mathbb{R})$ consisting of all diagonal 2×2 matrices $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$ with $x, y \neq 0$.

- (a) Determine explicitly the *center* $Z(GL_2(\mathbb{R}))$ of the group $GL_2(\mathbb{R})$.
- (b) Determine explicitly the normalizer subgroup N_{GL2(ℝ)}(H) of GL₂(ℝ), and the index (N_{GL2(ℝ)}(H) : H).
 (Recall that N_{GL2(ℝ)}(H) consists of all elements g ∈ GL₂(ℝ) such that g ⋅ H ⋅ g⁻¹ = H.)

Solution. (a) Consider the condition $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ for all $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})$. Because $\operatorname{GL}_2(\mathbb{R})$ is dense in $\operatorname{M}_2(\mathbb{R})$, the above condition is equivalent to the condition that the same equality holds for all $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in \operatorname{M}_2(\mathbb{R})$. This is four linear equations in variables x, y, z, w. For instance the (1, 1)-entry of both sides gives ax + bz = ax + cy for all $x, y, z, w \in \mathbb{R}$, therefore b = c = 0. Similarly the (2, 1)-entry gives cx + dz = az + cw for all $x, y, z, w \in \mathbb{R}$, therefore d = a. We have shown that $\operatorname{Z}(\operatorname{GL}_2(\mathbb{R})) \subseteq \mathbb{R}^{\times} \cdot \operatorname{I}_2$. On the other hand it is clear that $\mathbb{R}^{\times} \cdot \operatorname{I}_2 \subseteq \operatorname{Z}(\operatorname{GL}_2(\mathbb{R}))$. Therefore $\operatorname{Z}(\operatorname{GL}_2(\mathbb{R})) = \mathbb{R}^{\times} \cdot \operatorname{I}_2$, the group of non-zero constant 2×2 real matrices.

(b) The necessary and sufficient condition for an element $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of $\operatorname{GL}_2(\mathbb{R})$ to be in $\operatorname{N}_{\operatorname{GL}_2(\mathbb{R})}(H)$ is that for all $x, y \in \mathbb{R}^{\times}$, the two off-diagonal entries of $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ are both 0. An easy computation shows that this condition is: ab = 0 and cd = 0; equivalently either b = c = 0 or a = d = 0. The index of H in $\operatorname{N}_{\operatorname{GL}_2(\mathbb{R})}(H)$ is 2, with $\left\{ \operatorname{I}_2, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$ as a set of representatives.

- 11. For each of the following, give a proof or a counterexample.
 - (a) If $(a_n)_{n\geq 1}$ is a sequence of positive real numbers such that the series $\sum a_n$ converges, then the series $\sum a_n^2$ converges.
 - (b) If $(a_n)_{n\geq 1}$ is a sequence of arbitrary real numbers such that the series $\sum a_n$ converges, then the series $\sum a_n^2$ converges.
 - (c) If f is a continuous function on \mathbb{R} , and if $a_n = \frac{1}{n} \sum_{j=1}^n f(j/n)$ for all positive integers n, then the sequence $(a_n)_{n>1}$ converges.

Solution. (a) Proof: $\sum a_n^2$ converges by the comparison test (with $\sum_n a_n$), since $0 < a_n < 1$ for all sufficiently large n.

(b) Counterexample: Let $a_n = (-1)^n n^{-1/2}$. Then the alternating series $\sum_n a_n$ converges, while the series $\sum_n a_n^2 = \sum_n \frac{1}{n}$ diverges.

(c) Proof: The sequence $(a_n)_{n\geq 1}$ of Riemann sums for the integral $\int_0^1 f(x) dx$ converges to $\int_0^1 f(x) dx$, because f(x) is continuous on [0, 1].

12. Let A be the 4×4 real matrix

$$A = \frac{1}{2} \begin{pmatrix} 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 1 \end{pmatrix}.$$

- (a) Show that the minimal polynomial of A is $x^2 x + 1$.
- (b) Let K be the \mathbb{R} -linear span in $M_4(\mathbb{R})$ of A and the identity matrix I_4 . Show that K is a subring of $M_4(\mathbb{R})$, and is isomorphic to \mathbb{C} .

(Hint: Use (a).)

(c) Let $V \subseteq M_4(\mathbb{R})$ be the subset of $M_4(\mathbb{R})$ consisting of all real 4×4 matrices B such that AB = BA. Show that V is stable under left and right matrix multiplication by elements of K (i.e., $kv, vk \in V$ for $k \in K$ and $v \in V$), and that V is a vector space over K.

Solution. (a) An easy computation shows that $A^2 = A - I_4$, so the minimal polynomial of A divides $x^2 - x + 1$. Since A is visibly not a scalar multiple of I_4 , the minimal polynomial of A is $x^2 - x + 1$. Alternatively, it follows because $x^2 - x + 1$ is irreducible over \mathbb{R} .

(b) Clearly $K = \mathbb{R} \cdot I_4 + \mathbb{R} \cdot A$ is closed under addition, and it is closed under multiplication because $A^2 = A - I_4 \in K$. We have an obvious surjective ring homomorphism α from $\mathbb{R}[x]/(x^2 - x + 1)$ to K that sends x to A, and α is a bijection because both its source and target have dimension 2.

The existence of a ring isomorphism $\mathbb{R}[x]/(x^2-x+1) \cong \mathbb{C}$ follows from the fact that x^2-x+1 is irreducible in $\mathbb{R}[x]$ (e.g., because the discriminant of $x^2 - x + 1$ is negative). There are two such \mathbb{R} -linear ring isomorphisms, each sending $x \mod x^2 - x + 1$ to $(1 \pm \sqrt{-3})/2$, the two primitive sixth roots of unity in \mathbb{C} .

(c) It is straightforward to see that a stronger statement holds: V is a subring of $M_4(\mathbb{R})$, i.e. V is stable under matrix multiplication, and V contains K.

(A side remark: The matrix A is the matrix representation of the operator "multiplication on the left by the norm-one element $u = \frac{1}{2}(1 + i + j + k)$ " on the ring of Hamilton's quaternions $\mathbb{H} = \mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$. The element u has norm one, $u - \frac{1}{2}$ is purely imaginary, $u^2 = u - 1$, and $u^4 = u^2 - 2u + 1 = -u$. The fact that u has norm one implies that A is an orthogonal matrix, which is also clear by inspection.)