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1. For every positive integer n, let f,(x) be the function on R given by f,(x) :=

(a) Determine the subset S C R consisting of all of real numbers a such that the sequence
(fn(a))n>1 converges. For each a € S, find the limit.

(b) Determine whether the sequence of functions (f,(z)) converges uniformly on the

subset S C R defined in (a).

n>1

Justify your assertions.

Solution. (a) S = R, and lim, % = 0 for every a € R: for every a # 0 and every

n > 2|al, we have |f’}:7(1(§31)| < nlii'l < 3.

(b) No. Otherwise there exists a positive integer ng > 0 such that ‘%T,L‘ < 1 for all n > nyg
and all a € R, which is obviously false for a = ng.



2. Let f(z) =25 — 1.

(a) Find all maximal ideals in the polynomial ring Q[z] that contain f(x).

(b) Find all maximal ideals in the polynomial ring C[z] that contain f(z).

Solution. (a) f(x) = (x — 1)(z + 1)(2® + 2 + 1)(2% — x + 1), and these 4 factors are all
irreducible in R[z], therefore irreducible in Q[z]. There are 4 maximal ideals in Q[z] which
contain f(z), generated by these 4 irreducible factors.

(b) In C[z] we have

J(@) = (@ = Da + D@ = e @ = T (@ - VI @ - eI,

and there are 6 maximal ideals in C[z| which contain f(z), generated by these 6 irreducible
factors.



3. Let f be the function on [—1, 1] defined by

32 if 0<z<1
f(z) = .
—14+2z if —-1<2<0

Let F' be the function on [—1, 1] defined by

F(z) = /_1 F(t) dt.

(a) Is the function F' continuous at z = 07

(b) Is the function F' differentiable at z = 07

Justify your assertions.

Solution. (a) Yes: Clearly |f(z)| < 3 for all x € [-1,1]. From

F(z) — F(0)| = | /0 " f(t) dt) < 32

for all x € [—1, 1], one sees that lim,_,o F'(z) = F(0).

(b) No, F'is not differentiable: f is piecewise continuous on [—1,1], so by the fundamental
theorem of calculus we have

F(z)-F
lim Flz) = FO) = lim f(z) =0,
z—0t x z—0+t
and F F(0
lim Flz) = F(0) = lim f(z)=-1.
z—0~ x z—0~

So lim,_.o w does not exist.



4. Let @y be the vector (1,1,1) in R3. Let T be the linear operator on R? defined by cross
product with j:
T(w) = 170 X

for every element 1 € R3. For every real number x € R, define a linear operator U, on R?
by
T
Uy = exp(aT) = Z py

n>0

(a) Find the matrix representation A of T' with respect to the standard basis of R3.

(b) Show that for every = € R, the operator U, is orthogonal.

(Recall that a real 3 x 3 matrix B is orthogonal if B- B = I3 = B®- B; and an operator
on R3 is orthogonal if it is equal to “multiplication on the left by an orthogonal 3 x 3
matrix”.)

Solution. (a) Let i, ],k be the standard basis of R3. We have

- -

T(i) =—-k+j, T(j)=—i+k T(k)=—j+1,
0o -1 1
soA=1]1 0 —1]. Notice that At = —A.
-1 1 0

(b) Let B be the matrix representation of A. Then exp(zA) is the matrix representation of
U,. Since A* = — A, we see that

exp(zA') - exp(zA) = exp(rA) - exp(zA’) = exp(zA + zA") = exp(0-13) =13

Therefore U, is orthogonal for every x € R.



5. Consider the improper integral

// dx dy
]R2 + xQ + Yy )
on R?, with a real parameter a > 0. Determine whether this improper integral converges

for « = 1 and whether it converges for @ = 2.

(Hint: Use polar coordinates.)

Solution. We will determine all parameters o > 0 for which the improper integral con-
verges. The condition turns out to be a > 1. So the improper integral diverges for a = 1
and converges for a = 2.

Since the integrand is non-negative, it suffices to show that there exists a positive real

number M, > 0 such that
dx d
// W <M,
L (14224 y?)e

for every circular disk D, := {(a,b) € R? | a® + b*> < ¢} of radius ¢ > 0 centered about the
origin. Since 27% < m < 1 for all (x,y) in the closed unit disk, the above condition
is equivalent to the existence of a positive real number N, > 0 such that

// _drdy
Doy (1422 4+92)°

for all ¢ > 1. Using polar coordinates, we have

// dx dy _QW/C rdr
pepy (L2 +y2)e 7y (1+72)e

. 1 1
Since 5 < 7 <

Crdr
1 ?"20‘

is bounded as ¢ — oo, which is easily seen to be equivalent to o > 1.

Note: In this solution, it’s not actually necessary to split off the unit disc; one can apply the
polar coordinates argument for the integral from 0 to oo (or from 0 to ¢ and take a limit).



6. Let B := {(z,y) € R? |22+ 2y +1? < 1}, with the topology given by the standard metric
on R2. Let E° be the interior of the subset F C R2.

(Recall that E° is the subset consisting of all points P € E such that there exists ¢ > 0
such that the open disk D(P;e¢) in R? of radius € > 0 centered at P is contained in E.)

(a) Determine whether E (respectively EY) is connected, and whether E (respectively
EY) is compact. (Your answer should have 4 parts.)

(b) Prove that E° = {(x,y) € R?| 2% + xy + 22 < 1}, and E is equal to the closure in R?
of EY.

Solution. (a) The quadratic form Q(x,y) := 2%+ xy+y? on R? is positive definite, because
> +ay+y? = (v + %)2 + %, therefore defines a metric dg on R?. Given any two points
Py = (71,11), P? = (22,142) € E, the line segment P;, P, is contained in E by the triangle
inequality for dg. So E is connected. The same argument shows that E? is connected.
(Alternatively, E is an ellipse together with the enclosed region, and so it is convex, as is
its interior.)

The set F is a closed and bounded subset of R?, so it is compact. On the other hand E° is
not a closed subset of R?, so E is not compact.

(b) It is clear from the triangle inequality for dg (or by continuity of polynomials) that
{(z,y) € R*| 2?2 + 2y + 2? < 1} is contained in the interior of E. On the other hand for
any given point P = (a,b) € E with a® + ab + b> = 1 and any given € > 0, the point
(14 S)a, (1 + 5)b) is in the disk D((a,b);€) but not in E. So E is the interior of E.

Similarly, for every point P = (a,b) € E with a® + ab + b?> = 1 and every € > 0, the point

(1= $)a, (1= 5)b) is in E° N D((a,b);€). So E is contained in the closure of E.



7. Let f be an increasing continuously differentiable function on the real line, and let g = f.
Let a = f(0), b = f(1), ¢ = ¢(0), d = g(1). Let R be the region in the (x,y)-plane lying
below the graph of y = g(x), above the z-axis, and between the lines = 0 and = 1. Let
C be the boundary of R, oriented counterclockwise. Evaluate

yﬁ (333/26:”23’2 + 3z?)dz + (3623/6”"“2742 + 5x)dy.
C

Solution. Let P = :UernyQ +322 and Q = x2ye°””292 +5x. By Green’s theorem, the contour
integral is equal to

// da:dy—S//dxdy—5 area(R —5/ f'(z)dz = 5(b— a).



8. Let U € M3(Q) be a 3 x 3 matrix with coefficients in Q such that U® = I3, where I3 is
the 3 x 3 identity matrix. Prove that U = Is.

(Hint: You may use the factorization 7° — 1 = (T — 1)(T* + T2 + T? + T + 1) in the
polynomial ring Q[T], and the fact that 7% + T3 + T? + T + 1 is irreducible in Q[T].)

Solution. The minimal polynomial f(x) of U is a monic polynomial in Q[z] which divides
2® — 1 by assumption, and has degree at most 3 by Cayley-Hamilton. On the other hand
P—1=(x-1D)(a*+23+ 22 +2+1), and ®y(x) := 2* + 23+ 2% + 2+ 1 is irreducible in Q[z]
(by Eisenstein’s criterion applied to ®4(x + 1) for the prime number 5). So the minimal
polynomial f(z) is equal to = — 1, thus U = I3.



9. Let f be a piecewise continuous function on R such that f(x +1) = —f(z) for all z € R.

Determine whether the limit .

lim flaz)dx

a—00 0

exists. If it does, find it.

Solution. The assumption implies that fcc+n f(x)dx = 0 for every even positive integer n
and every c € R. We have

/01 flaz)ds = a~t - /Oa Ft)dt = a! /Oa_na F(6) dt

where n, is the largest even positive integer not exceeding a. Therefore | fol flaz)dz| <
a=! f02 |f(t)] dt for a > 0, and lim, 0 fol f(azx)dz = 0.



10. Let GL2(R) be the group of all invertible 2 x 2 matrices with entries in R. Let H be
the subgroup of GL2(R) consisting of all diagonal 2 x 2 matrices <g 2) with z,y # 0.

(a) Determine explicitly the center Z(GL2(R)) of the group GLa(R).

(b) Determine explicitly the normalizer subgroup Ngp,®)(H) of GL2(R), and the index
(Nar,m) (H) : H).
(Recall that Ny, (r) (H) consists of all elements g € GLy(R) such that g-H-g~! = H.)

Solution. (a) Consider the condition a by (zoy) _ (T oy (e for all
c d z w z w c d

(i 5}) € GL2(R). Because GLa(R) is dense in My(R), the above condition is equiva-

lent to the condition that the same equality holds for all <z g}) € My(R). This is four

linear equations in variables z,y,z,w. For instance the (1,1)-entry of both sides gives
ar + bz = ax + cy for all x,y,z,w € R, therefore b = ¢ = 0. Similarly the (2,1)-entry
gives cx + dz = az + cw for all x,y,z,w € R, therefore d = a. We have shown that
Z(GL2(R)) € R* - I. On the other hand it is clear that R* - Iy C Z(GL2(R)). Therefore
Z(GL2(R)) = R* - Iy, the group of non-zero constant 2 x 2 real matrices.

b

d) of GL2(R) to be in

(b) The necessary and sufficient condition for an element <CCL

Nary®)(H) is that for all z,y € R*, the two off-diagonal entries of (Z Z) . <g 2) .

(_dc _ab> are both 0. An easy computation shows that this condition is: ab = 0 and

cd = 0; equivalently either b = ¢ =0 or a = d = 0. The index of H in Ngr,g)(H) is 2, with

—1
{IQ, <(1) 0 > } as a set of representatives.



11. For each of the following, give a proof or a counterexample.

(a) If (an)n>1 is a sequence of positive real numbers such that the series > a,, converges,

: 2
then the series ) aZ converges.

(b) If (an)n>1 is a sequence of arbitrary real numbers such that the series » _ a,, converges,

~ 2
then the series Y aZ converges.

(c) If f is a continuous function on R, and if a, = % > j=1 f(j/n) for all positive integers

n, then the sequence (an) converges.

n>1

Solution. (a) Proof: 3" a2 converges by the comparison test (with 3" ay,), since 0 < a,, < 1
for all sufficiently large n.

(b) Counterexample: Let a, = (—1)"n~'/2. Then the alternating series 3" a, converges,
while the series 3 a2 =" L diverges.

(c) Proof: The sequence (an) of Riemann sums for the integral fol f(x) dx converges to

n>1
fol f(z) dz, because f(z) is continuous on [0, 1].



12. Let A be the 4 x 4 real matrix

1 -1 1
1 1 -1
-1 1 1

0N
Il
|
— = =

(a) Show that the minimal polynomial of A is 22 — x + 1.

(b) Let K be the R-linear span in My(R) of A and the identity matrix I4. Show that K
is a subring of My (R), and is isomorphic to C.

(Hint: Use (a).)

(c) Let V' C My(R) be the subset of My4(R) consisting of all real 4 x 4 matrices B such
that AB = BA. Show that V is stable under left and right matrix multiplication by
elements of K (i.e., kv, vk € V for k € K and v € V), and that V is a vector space
over K.

Solution. (a) An easy computation shows that A2 = A —14, so the minimal polynomial of
A divides 2 — x 4 1. Since A is visibly not a scalar multiple of 14, the minimal polynomial
of Ais 22 — z + 1. Alternatively, it follows because 2> — z + 1 is irreducible over R.

(b) Clearly K = R-I4 +R- A is closed under addition, and it is closed under multiplication
because A2 = A —I; € K. We have an obvious surjective ring homomorphism « from
R[x]/(z?> — 2 + 1) to K that sends = to A, and « is a bijection because both its source and
target have dimension 2.

The existence of a ring isomorphism R[x]/(2%2—z+1) = C follows from the fact that 22 —x+1
is irreducible in R[x] (e.g., because the discriminant of #2 — x + 1 is negative). There are
two such R-linear ring isomorphisms, each sending x mod 22 — = + 1 to (1 £ 1/=3)/2, the
two primitive sixth roots of unity in C.

(c) It is straightforward to see that a stronger statement holds: V' is a subring of My(R),
i.e. V is stable under matrix multiplication, and V' contains K.

(A side remark: The matrix A is the matrix representation of the operator “multiplication
on the left by the norm-one element u = %(1 + i+ 7+ k)’ on the ring of Hamilton’s
quaternions H = R+ Ri+Rj +Rk. The element v has norm one, u — % is purely imaginary,
u? =u—1, and u* = u? — 2u+ 1 = —u. The fact that « has norm one implies that A is an

orthogonal matrix, which is also clear by inspection.)
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