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ABSTRACT

BIRATIONAL GEOMETRY OF GENUS ONE FIBRATIONS AND STABILITY

OF PENCILS OF PLANE CURVES

Aline Zanardini

Antonella Grassi, Advisor

In the first part of this thesis we give a complete classification of relative log

canonical models for genus one fibrations in dimensions two and three. More

concretely, we generalize the work in [2] by considering both (i) the case where it is

not assumed the existence of a section, but of a multisection instead; and (ii) the

case of threefolds in one dimension higher. In the second part, we investigate the

stability of pencils of plane curves in the sense of geometric invariant theory. One of

our main results relates the stability of a pencil of plane curves P to the log

canonical threshold of pairs (P2, Cd), where Cd is a curve in P , thus extending an

idea of Hacking [23] and Kim-Lee [27]. Part of our approach consists in observing

that we can sometimes determine whether a pencil P is (semi)stable or not by

looking at the stability of the curves lying on it. As a beautiful application, we

completely describe the stability of Halphen pencils of index two – classical

geometric objects first introduced by Halphen in 1882 [24]. Inspired by the work of

Miranda in [40], we provide explicit stability criteria in terms of the geometry of

their associated rational elliptic surfaces.
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Preface

The present thesis is divided into two parts, the unifying theme being the geometry

of genus one fibrations (Definition I.2.0.1). We work over C throughout, and each part

is intended to be self-contained. In particular, each part has its own introduction.

In Part I we give a complete classification of relative log canonical models

(Definition I.3.1.1) for genus one fibrations in dimensions two and three, which is

the first step in constructing their moduli spaces via the Minimal Model Program

(MMP) as proposed by Kollár-Shepherd-Barron [37] (KSB compactification).

In Part II we investigate the stability of pencils of plane curves in the sense of

geometric invariant theory (GIT). In particular, we give a complete description of the

stability of Halphen pencils of index two (Definition II.3.1.4). Inspired by [40], we

provide explicit stability criteria in terms of the geometry of their associated rational

elliptic surfaces (RES). This part consists of the content of three papers [54–56].

The results obtained in this thesis naturally lead us to the question of how to

relate the KSB and GIT moduli spaces for RES of index two. We plan to address

this question in a future project.
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Part I

Birational geometry of genus one

fibrations
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Chapter I.1

Introduction

One of the main questions in Birational Geometry consists in describing convenient

birational models for algebraic varieties. By Chow’s lemma, every algebraic variety

is birational to some projective variety, and in fact (over a field of characteristic

zero) Hironaka’s theorem implies every algebraic variety is birational to a smooth

projective variety. Therefore, it suffices to consider birational models for smooth

projective varieties. In dimension one, each birational class contains a unique (up

to isomorphism) smooth projective curve. In other words, if two smooth projective

curves are birational, then they are isomorphic. In higher dimensions, however, this

fails and leads to the notion of minimal models: is there a unique simplest algebraic

variety in each birational class?

A similar but more general problem is to consider pairs (X,∆), where X is a

normal algebraic variety and ∆ ⊂ X is a natural choice of divisor with only mild

singularities. One can also consider a relative version of the latter problem, where a
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projective morphism f : X → S is part of the input data. This leads to the notion

of relative log canonical (lc) models – the type of singularities in ∆ that we allow are

called log canonical singularities (Definition I.3.0.3).

In the present thesis we are interested in describing and classifying relative lc

models for pairs (X,∆), where X admits a genus one fibration f : X → S (Definition

I.2.0.1) and the boundary divisor ∆ is supported in a section or multisection for the

fibration plus some weighted fiber(s). Note that these objects, hence ∆, are intrinsic

to the genus one fibration.

We follow the ideas first introduced in [2] and [3] where the authors considered

elliptically fibered surfaces with a section. We generalize their results by considering

both the case where it is not assumed the existence of a section, but of a multisection

instead, and the case of threefolds in one dimension higher. Our results build on

Kodaira’s classification of singular fibers (Table I.2.1), on Miranda’s construction of

smooth models for elliptic threefolds [41] and on a relative version of the abundance

conjecture in dimensions two and three [14,48].

One of our goals is to understand how these relative log canonical models vary

with the choice of the weight. The results we obtain generalize the results in [2]

and illustrate the fact that such models depend not only on the type of the marked

fiber, but also on the geometry of the intersection between the section/multisection

and the marked fiber. Another interesting feature is the appearance of an important

birational invariant called log canonical threshold (Definition I.3.0.4).
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Our exposition is organized as follows: Chapter I.2 describes the background

material needed on genus one fibrations. In Chapter I.3 we recall the basic notions

concerning log canonical pairs and we present a general overview of the log Minimal

Model Program (log MMP) in the relative setting. Next, in Chapter I.4 we run the

relative log minimal models program for genus one fibrations in dimension two. In

Chapter I.5 we give a classification (Theorem I.5.0.1) of relative log canonical models

of elliptic surface pairs (f : X → C, aMM + aF ) of index dX = 2, where M is a

multisection of degree equals dX and aM = 1/dX = 1/2. Finally, in Chapter I.6

we provide a classification (Theorem I.6.0.15) of relative lc models of certain elliptic

threefold pairs (f : X → S, S+aF1 +bF2), where X is a smooth model as constructed

by Miranda in [41], S is a choice of section and, following Miranda’s terminology, we

have a collision of fibers F1 +F2. In Section I.6.2 we also consider some non-Miranda

type collisions.

5



Chapter I.2

Generalities on genus one fibrations

In this chapter we summarize the basic theory of genus one fibrations.

Definition I.2.0.1. A genus one fibration is a surjective proper morphism f : X → S

between normal projective varieties, with connected fibers, and such that almost all

fibers are smooth curves of genus one. We further assume f is relatively minimal –

meaning there are no (−1) curves supported in any fiber.

Remark I.2.0.2. When f : X → S as above admits a (global) section1 we often use

the terminology elliptic fibration to reflect the fact that in this case the generic fiber

is an elliptic curve over the function field of the base.

Examples in dimensions two include the product of any two elliptic curves, all

surfaces of Kodaira dimension one, Enriques surfaces, Kodaira surfaces, and

Dolgachev surfaces. Another beautiful example is the following:
1i.e. a morphism π : S → X such that f ◦ π = idS

6



Example I.2.0.3. Consider a pencil of plane cubics λC + µC ′ = 0. Any such pencil

defines a rational map P2 → P1 given by p 7→ (C(p) : C ′(p)) which is not defined

precisely at the nine intersection points C ∩ C ′. Blowing-up P2 at these nine points

resolves the indeterminacy yielding a rational elliptic surface f : X → P1 (with

section).

Any genus one fibration has finitely many singular fibers. The possible non-

multiple singular fibers have been classified by Kodaira and Néron [32, 33, 45] and

Table I.2.1 below gives the full classification. Over a field of characteristic zero, any

multiple fiber is of type In for some n ≥ 0 [16, Proposition 5.1.8].

Kodaira Type Number of Components Dual Graph

I0 1 (smooth)

I1 1 (with a node)

In n ≥ 2 Ãn−1

II 1 (with a cusp)

III 2 Ã1

IV 3 Ã2

I∗n n+ 5 D̃4+n

IV ∗ 7 Ẽ6

III∗ 8 Ẽ7

II∗ 9 Ẽ8

Table I.2.1: Kodaira’s Classification
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Definition I.2.0.4. Given a genus one fibration f : X → S we define the index of

the fibration, and denote it by dX , as the positive generator of the ideal {D ·Xη ; D ⊂

Pic(X)} E Z, where Xη denotes the generic fiber.

Note that dX = 1 if and only if f admits a section. Moreover, by assuming that

X is projective we have that dX is always finite.

Remark I.2.0.5. If K denotes the function field of S, then dX is the minimal degree

of a separable extension L/K such that Xη(L) 6= ∅. We also have that dX is the

index of the image of the restriction map Pic(X)→ Pic(Xη)

Pic0(Xη)
' Z, where the latter

isomorphism is given by the degree.

In the present thesis we are mainly interested in the case when dX > 1, and we

will mainly focus in the case dX = 2. In fact, latter in Part II, Chapter II.3 we will

further restrict our attention to the situation where X is a rational surface.

I.2.1 The associated Jacobian fibration

One can associate to any genus one fibration without a section, another genus

one fibration that has a section – called the associated Jacobian fibration. Below we

explain this construction and the main reference we follow is [51, Sections 10.3 and

10.5].

Let f : X → S be a genus one fibration of index m > 1. Then the generic fiber Xη

is a smooth genus one curve over the function field of S that has no rational points

8



over this field. Let Jac(Xη) denote the corresponding Jacobian variety of divisors of

degree 0 on Xη that is, the connected component of the identity of Pic(Xη). One

can construct an elliptic fibration J → S with a section whose generic fiber Jη is

isomorphic to Jac(Xη). This fibration comes with a rational map ϕ : J ×S X → X

that commutes with the projections to S and has the following properties:

(i) ϕ is regular on the set of smooth points of fibers of both J and X

(ii) if Xb is a (non-multiple) fiber of X, then the restriction of ϕ to J#
b ×X

#
b defines

a fixed-point-free and transitive action of the group J#
b on X#

b . Here J#
b (rep.

X#
b ) means the subset of simple points of Jb (resp. Xb) that is, we remove

singular points and multiple components.

Note that by construction X#
b is a torsor over J#

b . That is, X
#
b is a homogeneous

space of the group J#
b whose elements act without fixed points. In particular, given

a point x ∈ X#
b the map p 7→ ϕ(p, x) defines an isomorphism between X#

b and J#
b ,

which however depends on the choice of a point x.

Definition I.2.1.1. The fibration J → S is called the associated Jacobian fibration

(to f : X → S)2.

In general, genus one fibrations are classified by their Jacobian fibrations by

introducing a group structure in the set of all genus one fibrations with a given

Jacobian fibration. Given f : X → S as above, its class in such group, which we
2if Y is a rational surface, then it follows that J is also a rational surface [16, Proposition 5.6.1

(ii)]

9



denote by H1(S,J ), corresponds to a choice of a closed point p ∈ S and an element

εm of order m in J#
P . In fact these ideas can be formalized into a more general result

(Lemma I.2.1.4), but in order to state such result we need to first introduce the

following definition and some notations.

Definition I.2.1.2. Given an elliptic curve E over a function field k, we denote by

WC(E/k) the Weil-Châtelet group of isomorphism classes of torsors over E which

are defined over k.

Remark I.2.1.3. The Weil-Châtelet group WC(E/k) can be defined directly from

Galois cohomology as H1(Gal(k̄/k), E), where k̄ is an algebraic (resp. separable)

closure of k and k has zero (resp. positive) characteristic.

Given a proper smooth algebraic variety S (over some algebraically closed field)

and a closed point s ∈ S, we denote by Rs the strict Henselization3 of the local ring

OS,s and we define ηs
.
= Spec(ks), where ks denotes the function field of Rs.

Note that there are natural inclusions ηs = Spec(ks)→ Spec(Rs)→ S. So, given

any elliptic fibration J → S, we can consider the restriction of J to both Spec(Rs)

and ηs. In particular, we define Js(s̄)
.
= J ×η ηs, where η is the generic point of S.

Lemma I.2.1.4 ([16, Corollary 5.4.6],[51, p. 207]). If J → S is an elliptic fibration

with a section and with at least one singular fiber, then the map

τ : H1(S,J )→
⊕
s∈S

WC(Js(s̄)/ks) =
⊕
s∈S

H1(Gal(k̄s/ks), Js(s̄))

3We can take Rs = lim−→
(U,u)

OU,u, where (U, u) runs over all étale neighborhoods of s ∈ S.

10



is surjective.

Note that for a fixed closed point s ∈ S, we have a natural map

τs : H1(S,J )→ WC(Js(s̄)/ks)

given by [X] 7→ [Xs(s̄)]. Moreover, for a fixed class [X] ∈ H1(S,J ) we have that

τs([X]) = 0 for almost all s ∈ S [16, Corollary 5.4.2]. In fact τs([X]) = 0 if and only

if the curve X ×η ηs has a section if and only if Xs is not multiple.

We call τs([X]) the local invariant of X at s and we can identify it with an

element of finite order (the multiplicity of Xs.) in the Jacobian of Xs.

Remark I.2.1.5 ([16],[51]). The kernel of τ parameterizes fibrations with a section

and which are isomorphic to J . Such group is isomorphic to the Brauer group of J

and is often referred to in the literature as the Tate-Shafarevich group of J (or of Jη).

Note that if J is a rational surface, because the Brauer group is a birational invariant

and Br(P2) = 0, we have that τ is also injective.

The next lemma will be important latter in Section I.4.2

Lemma I.2.1.6 ([6, Lemma 3.5 and Corollary 3.6]). Given a genus one fibration

f : X → S as above there exists M ⊂ X a multisection of degree dX . Moreover, the

order of [X] in H1(S,J ) is dX .

11



Chapter I.3

Relative log canonical models

We now recall the basic notions concerning log canonical pairs and we review

some basic facts about the log MMP in the relative setting. We state the definitions

and results we will use in our computations throughout Sections I.4.1 and I.4.2, and

Chapters I.5 and I.6. We refer to [35] and [36] for a more detailed exposition.

Let X be a normal algebraic variety of dimension n and let ∆ =
∑

diDi ⊂ X be

a Q-divisor, i.e. a Q-linear combination of prime divisors.

Definition I.3.0.1. Given any birational morphism µ : X̃ → X, with X̃ normal, we

can write KX̃ ≡ µ∗(KX + ∆) +
∑

aEE, where E ⊂ X̃ are distinct prime divisors,

aE
.
= a(E,X,∆) are the discrepancies of E with respect to (X,∆) and a

non-exceptional divisor E appears in the sum if and only if E = µ−1
∗ Di for some i

(in that case with coefficient a(E,X,∆) = −di).

Definition I.3.0.2. A log resolution of the pair (X,∆) consists of a proper

12



birational morphism µ : X̃ → X such that X̃ is smooth and µ−1
∗ (∆) ∪ Exc(µ) is a

simple normal crossings divisor 1.

Definition I.3.0.3. We say (X,∆) is log canonical (lc) if KX + ∆ is Q-Cartier

and given any log resolution µ : X̃ → X we have KX̃ ≡ µ∗(KX + ∆) +
∑

aEE with

all aE ≥ −1. In particular, if X is smooth and ∆ = diDi is simple normal crossings,

then (X,∆) is log canonical if and only if di ≤ 1 for all i.

Definition I.3.0.4. The number lct(X,∆)
.
= sup{ t ; (X, t∆) is log canonical} is

called the log canonical threshold of (X,∆).

Definition I.3.0.5. More generally, given a log canonical pair (X,∆) and a divisor

D ⊂ X, the number lct(X,∆, D)
.
= sup{t ; (X,∆ + tD) is lc} is called the log

canonical threshold of (X,D) with respect to the pair (X,∆).

Remark I.3.0.6. We can also consider a local version, lctp(X,∆), taking the

supremum over all t such that (X, t∆) is log canonical in an open neighborhood of p,

where p ∈ X is a closed point.

Example I.3.0.7. When X = C2 and we take as ∆ a plane curve C, then one can

easily compute lct(C2, C) from the Newton Polygon of C. For instance, if the Newton

Polygon in the xy−plane contains a vertical edge over the line x = x0 and that edge

intersects the line x = y, then lct(C2, C) =
1

x0

[38].

1that is, each component is smooth and each point étale locally looks like the intersection of

r ≤ n coordinate hyperplanes

13



We now observe that given a log pair (X,∆) (that is, X is a normal variety and

∆ =
∑

diDi is a Q−divisor with 0 ≤ di ≤ 1) and a log resolution µ : X̃ → X, the

discrepancies aE = a(E,X,∆) of any µ-exceptional divisor E satisfy monotonicity:

Lemma I.3.0.8 ([36, Lemma 2.27]). Given (X,∆) and ∆′ effective and Q−Cartier

we have that a(E,X,∆ + ∆′) ≤ a(E,X,∆).

Corollary I.3.0.9 ([36, Corollary 2.35(1)]). If (X,∆+∆′) is a log canonical pair and

∆′ is an effective and Q−Cartier divisor, then the pair (X,∆) is also log canonical.

In fact one can prove the next two results, which give us a way of comparing

discrepancies and will be useful latter on.

Lemma I.3.0.10 ([36, Lemma 2.30]). Let f : X̃ → X be a proper birational

morphism between normal varieties. Let ∆X̃ resp. ∆X be Q−divisors on X̃ resp. X

such that

KX̃ + ∆X̃ ≡ f ∗(KX + ∆X) and f∗∆X̃ = ∆X

Then for any divisor E over X, a(E, X̃,∆X̃) = a(E,X,∆X).

Lemma I.3.0.11 ([36, Lemma 3.38]). Consider a commutative diagram

X

ϕ   

ψ // X ′

ϕ′~~
Y

where X,X ′ and Y are normal varieties, ϕ and ϕ′ are proper and birational. Let ∆

(resp. ∆′) be a Q−Cartier divisor on X (resp. on X ′). Assume that

14



1. ϕ∗∆ = ϕ′∗∆
′

2. −(KX + ∆) is Q−Cartier and ϕ−nef, and

3. KX′ + ∆′ is Q−Cartier and ϕ′−nef

Then for any exceptional divisor E over Y , a(E,X,∆) ≤ a(E,X ′,∆′)

I.3.1 The (relative) log MMP

We are now ready to present the notion of relative log canonical model, the

definition is as follows:

Definition I.3.1.1. Let (X,∆) be a log canonical pair and f : X → S a proper

morphism. A pair (X lc,∆lc) that fits into a diagram as the one below

(X,∆)
ϕlc

//

f
""

(X lc,∆lc)

f lc
zz

S

is called a log canonical model of (X,∆) over S (or relative with respect to f) if

(i) f lc is proper

(ii) (ϕlc)
−1 has no exceptional divisors

(iii) ∆lc = ϕlc∗∆

(iv) KXlc + ∆lc is f lc−ample and

(v) a(E,X,∆) ≤ a(E,X lc,∆lc) for every ϕlc−exceptional divisor E ⊂ X

15



A natural question then is whether such objects exist and (if they do) whether

they are unique.

Theorem I.3.1.2 ([36, Theorem 3.52]). Let (X,∆) be a log canonical pair and let

f : X → S be a proper morphism. If it exists, a log canonical model (X lc,∆lc) is

unique and

X lc = ProjS

(⊕
m≥0

f∗OX(mKX + bm∆c)

)

Existence is given by the (relative) log MMP, which takes as an input a log

canonical pair (X,∆) and a projective morphism f : X → S and applies Theorem

I.3.1.3 below several times in order to get a birational model (f ′ : X ′ → S,∆′), with

K ′X + ∆′ an f ′−nef divisor (see also Remark I.3.1.4). Abundance (which holds in

dimensions 2 and 3, see e.g. [14] and [48]) then implies K ′X + ∆′ is f ′−semiample

and the image of (X ′,∆′) under the corresponding morphism to some PN is the

relative log canonical model. Note that such morphism contracts precisely those

curves C for which (K ′X + ∆′) · C = 0.

Theorem I.3.1.3 ([36, Theorem 3.25]). Let (X,∆) be a log canonical pair and let

f : X → S be a projective morphism. Assume dim X = 2 or 32. Then

(i) There exist countably many rational curves Cj ⊂ X contracted by f and such

that

NE(X/S) = NE(X/S)(KX+∆)≥0 +
∑
j

R≥0[Cj]

2Theorem I.3.1.3 holds for arbitrary dimensions, but to our purposes we only need the log MMP

for surface and threefold pairs.
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with 0 < −(KX + ∆) ·Cj ≤ 2 dimX and such that Rj
.
= R≥0[Cj] is an extremal

ray for each j.

(ii) Given any extremal ray R, there exists a unique morphism ϕR : X/S → Y/S

such that (ϕR)∗OX = OY and an irreducible curve C ⊂ X is contracted by ϕR

if and only if [C] ∈ R. The morphism ϕR is called an extremal contraction.

Above, NE(X/S) denotes the Mori cone of X relative to f . That is, the closure

of the convex cone N1(X)
.
= (Z1(X)/ ≡)⊗Z R generated by those classes of effective

irreducible curves (1-cycles) which are contracted by f . Further, we say a ray R of

such cone is an extremal ray if it satisfies the following condition: if x, y ∈ NE(X/S)

are such that x+ y ∈ R, then x, y ∈ R.

Remark I.3.1.4. In Theorem I.3.1.3, each extremal contraction ϕR which is

birational is either a divisorial contraction or a small contraction. In particular,

existence and termination of flips must also hold for a (relative) log canonical model

to exist.

More generally, we can define the relative log canonical model of a log pair by

considering a log resolution:

Definition I.3.1.5. Given a log pair (X,∆) and a proper morphism X → S, its

relative log canonical model is the relative log canonical model of (X̃, µ−1
∗ (∆)+Exc(µ)),

where µ : X̃ → X is any log resolution.
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Chapter I.4

Relative log canonical models for

genus one fibrations in dimension two

In this chapter we run the relative log MMP for genus one fibrations in dimension

two. More precisely, in Section I.4.1 we consider elliptic surfaces and the boundary

divisor ∆ we fix is supported in a section plus a weighted fiber. But different from [2]

we don’t take the fiber to be reduced. Section I.4.2 is then dedicated to running the

relative log MMP for explicit examples of elliptic surfaces pairs, where ∆ is supported

in a multisection plus a weighted fiber.
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I.4.1 Elliptic surfaces with section and the

Weierstrass model

Let f : X → C be a relatively minimal elliptic surface with a section S. For any

choice of fiber F and a weight 0 ≤ a ≤ 1, we will refer to the pair (X,S + aF ) as an

elliptic surface pair. Our goal in this Section is to run the relative log MMP for

elliptic surface pairs.

Contracting all the (finitely many) fiber components not meeting S yields so called

(minimal) Weierstrass model f ′ : W → C. and we will write (W,S ′ + aF ′) for the

corresponding pair in the Weierstrass model. That is, F ′ .= ϕ∗F and S ′ .= ϕ∗S, where

ϕ : X → W is the birational map defining W .

Now, because ϕ : X → W is a minimal resolution which is also crepant (since W

has only canonical singularities1), we can prove:

Proposition I.4.1.1. Given an elliptic surface pair (X,S + aF ) as above and a

choice of weight 0 ≤ a ≤ lct(X,F ), its relative log canonical model is the minimal

Weierstrass model independent of the type of the fiber F .

Proof. Note that the choice of the weight is such that (X,S + aF ) is log canonical.

Now, we know that ϕ : X → W is a minimal crepant resolution, hence

KX + S + aF = ϕ∗(KW + S ′ + aF ′)

1in fact only rational double points

19



where S ′ + aF ′ = ϕ∗(S + aF ). In particular, by Lemma I.3.0.10, we have

a(E,X, S + aF ) = a(E,W, S ′ + aF ′)

for any ϕ−exceptional divisor. But then, the pair (W,S ′ + aF ′) satisfies Definition

I.3.1.1, since (KW + S ′ + aF ′) · γ = 1 > 0 for any irreducible curve γ supported on a

fiber of f ′ : W → C. That is, KW + S ′ + aF ′ is f ′−ample.

Note that when F is of type In, II, III or IV , then F is reduced. The case

where the marked divisor F is taken to be reduced was studied in [2]. Proposition

I.6.1.1 above gives us an intrinsic way of partially recovering their result for 0 ≤ a ≤

lct(X,F ).

I.4.2 Elliptic surfaces with multisections

Given a projective surface X together with a genus one fibration f : X → C as in

Definition I.2.0.1 and a choice of multisection M of degree m > 1, let us assume M

intersects some fixed singular fiber F transversally. Taking the fiber F to be reduced

2 and with some weight 0 ≤ a ≤ 1, in this section we will still refer to the pair

(X,M + aF ) as an elliptic surface pair.

One of the goals of this section is then to compute the relative log canonical model

for several examples of pairs (X,M + aF ) as above as an illustration of the general

statements of Propositions I.4.2.10 and I.4.2.13.
2meaning we consider the reduced divisor associated to some geometric fiber, i.e. F = f−1(p)red

for some closed point p ∈ C
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First, in order to fix notations, note that whenever the pair (X,M + aF ) is not

log canonical we need to first take a log resolution

ϕ : (Z, M̃ + aF̃ + Exc(ϕ))→ (X,M + aF )

We will write F̃ (resp. M̃) to denote the strict transform (under ϕ) of F (resp. M)

and we will mark the exceptional divisor Exc(ϕ) with coefficient one. The relative lc

model of (X,M + aF ) is, by definition, the relative lc model of (Z, L̃+ aF̃ +Exc(ϕ))

(see Definition I.3.1.5).

Note also that relative log canonical model of a pair (X,M+aF ) always contracts

any irreducible fiber component that is not supported on F and which does not

intersect the multisection M . Therefore, in what follows, we will only describe the

boundary divisor of the relative lc model.

Definition I.4.2.1. Given an elliptic surface pair (X,M + aF ) consider its relative

log canonical model ϕlc : (X,M + aF ) → (X lc,M lc + F lc
a ). We say (X lc,M lc + F lc

a )

is a twisted model if F lc
a is supported in a non-reduced divisor Elc. We call it

an intermediate model if F lc
a is supported in a normal-crossings union of divisors

Alc + Elc, where Alc consists of the fiber components meeting the multisection M .

We observe that the following two results hold in general.

Proposition I.4.2.2. Consider an elliptic surface pair (X,M + aF ), with F a fiber

of type In, II, III or IV and 0 ≤ a ≤ lct(X,M,F ). Then the relative log canonical

model contracts every irreducible fiber component not meeting the multisection M .
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The same is true if we replace M by a “weighted multisection" aMM , for some weight

0 < aM ≤ 1.

In fact if we consider F possibly non-reduced3, then we have the following more

general statement, which is independent of the type of F :

Proposition I.4.2.3. Consider an elliptic surface pair (X,M + aF ), with F now a

fiber which we take not necessarily reduced and let 0 ≤ a ≤ lct(X,M,F ). Then the

relative log canonical model contracts every irreducible fiber component not meeting the

multisection M . Again, the same is true if we replace M by a “weighted multisection"

aMM , where 0 < aM ≤ 1 is a choice of weight.

Proof. If 0 ≤ a ≤ lct(X,M,F ), then the pair (X, aMM + aF ) is log canonical and

we have that (KX + aMM + aF ) · γ ≥ aM > 0 if γ meets the multisection and

(KX + aMM + aF1 + bF2) · γ = 0 otherwise. In particular, KX + aMM + aF is

already f−nef, hence f−semiample by abundance, and the relative log canonical

model contracts precisely the irreducible fiber components not meeting M .

Remark I.4.2.4. Note that the proof above also includes Proposition I.4.2.2 since

those types of fibers are already reduced.

Corollary I.4.2.5. Consider an elliptic surface pair (X,M + aF ) with F a fiber of

type In, II, III or IV and 0 ≤ a ≤ lct(X,M,F ). If the degree of M is greater or

equal than the number of irreducible components of F , then the relative log canonical
3meaning F = f−1(p) for some closed point p ∈ C, i.e., F is really a geometric fiber

22



model is the pair (X,M + aF ) itself. Again, one can replace M by aMM , for some

0 < aM ≤ 1 fixed.

Remark I.4.2.6. An analogous statement holds for the non-reduced case.

Remark I.4.2.7. If M ∩ F is supported in the smooth locus of F and M intersects

F transversally, then lct(X,M,F ) = lct(X,F ).

I.4.2.1 Elliptic K3 surfaces

A K3 surface is a projective smooth variety X of dimension 2 such that ωX ' OX

and H1(X,OX) = 0.

Examples.

(i) a smooth quartic surface X ⊂ P3

By adjunction, ωX = ωP3 ⊗ O(4)
∣∣
X
' OX . Moreover, the short exact

sequence

0 // O(−4) // O // OX // 0

of invertible sheaves on P3 induces a long exact in cohomology so that the

vanishing of H1(P3,O) and H2(P3,O(−4)) implies that H1(X,OX) = 0.

(ii) a divisor of bidegree (2, 3) in P1 × P2

Again, adjunction gives us ωX ' OX and the vanishing H1(X,OX) = 0

follows from the long exact sequence in cohomology that is induced from the

ideal sheaf sequence in P1 × P2 for the divisor of bidegree (2, 3).
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(iii) a degree 2 cover π : X → P2 branched along a curve of degree 6

If we apply the canonical bundle formula for branched covers to π : X → P2

we get that ωX = π∗(ωP2 ⊗ O(3)) ' OX . Moreover, π∗OX ' OP2 ⊕ O(−3)

together with the projection formula (for cohomology) give us H1(X,OX) = 0.

It is a well known fact (see e.g. [26]) that a K3 surface X admits an elliptic

fibration if and only if ∃L ∈ NS(X) such that L2 = 0. Moreover, if that is the case,

then the base curve has to be rational, i.e., ' P1. Further, any X → P1 elliptic K3 is

relatively minimal and does not have multiple fibers.

Other classical invariants are encoded in the Hodge diamond of a K3 surface:

1

0 0

1 20 1

0 0

1

I.4.2.1.1 Quartics in P3 containing a line

We will consider an example of an elliptic K3 surface X → P1 with a multisection

M ⊂ X of degree 3 and two fibers of type IV . In Lemma I.4.2.8 we will fix F to be one

of these fibers and we will compute the relative log canonical model of (X,M + aF )

for 0 ≤ a ≤ 1.

Let X ⊂ P3 be a smooth quartic, then X is a K3 surface. Let us assume that
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X contains a line L. Let |D| = {planes in P3 containing L}. For H ∈ |D| define

E
.
= H − L, then E2 = 0 and therefore X admits and elliptic fibration. Moreover, L

gives us a multisection of degree 3.

Explicitly [39, p. 235], let X = X(q1, q2) be given by q1(x, y) = q2(z, w), where

q1(x, y) = xy(x− y)(x− λy)

q2(z, w) = zw(z − w)(z − µw)

and λ, µ ∈ C.

Consider the following two elliptic curves: E1 : y2 = q1(x, 1) and E2 : y2 = q2(z, 1).

If E1 and E2 have different j−invariants, then X contains exactly 16 lines (and

assuming λ, µ 6= 1) [39, Proposition 1.4]:

`1 :


x = 0

z = 0

`2 :


x = 0

w = 0

`3 :


x = 0

z = w

`4 :


x = 0

z = µw

`5 :


y = 0

z = 0

`6 :


y = 0

w = 0

`7 :


y = 0

z = w

`8 :


y = 0

z = µw

`9 :


x = y

z = 0

`10 :


x = y

w = 0

`11 :


x = y

z = w

`12 :


x = y

z = µw

`13 :


x = λy

z = 0

`14 :


x = λy

w = 0

`15 :


x = λy

z = w

`16 :


x = λy

z = µw

Now, choose L = `1 and consider the plane H : z = tx so that we get an elliptic
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fibration

f : X → P1

[x : y : z : w] 7→ [x : z]

with fiber the plane cubic

y(x− y)(x− λy) = tw(tx− w)(tx− µw)

Note that f−1(0) = {`5, `9, `13} meeting at the point [1 : 0 : 0 : 0] that is, we have

a type IV fiber. Similarly, f−1(∞) = {`2, `3, `4} meeting at the point [0 : 0 : 0 : 1]

and again we have a type IV fiber.

Moreover, we can also argue that no other singular fiber can contain a line because

all other lines except L = `1 intersect only one of `2, `3, `4 (and only one of `5, `9, `13)

that is, they define sections.

In particular, we can only have type I1 or type II as possibilities for the other

singular fibers. We observe that this agrees with the classification given by Shimada

in [53]. We thus have the following nine possible configurations:

2IV + 8II 2IV + 7II + 2I1 2IV + 6II + 4I1

2IV + 5II + 6I1 2IV + 4II + 8I1 2IV + 3II + 10I1

2IV + 2II + 12I1 2IV + II + 14I1 2IV + 16I1

We can even say what the Picard number ρ(X) is for such elliptic surface. Theorem

1.3 in [39] tells us that ρ(X) only depends on the curves E1 and E2:

(i) ρ(X) = 18 if E1 and E2 are not isogenous,
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(ii) ρ(X) = 19 if E1 and E2 are isogenous and do not have complex multiplication

and

(iii) ρ(X) = 20 if E1 and E2 are isogenous and do have complex multiplication.

In particular, by the Shioda-Tate formula, we also know what the rank (
.
= r) of the

Mordell-Weil group is [39, Theorem 1.5] :

(i) r = 12 if E1 and E2 are not isogenous,

(ii) r = 13 if E1 and E2 are isogenous and do not have complex multiplication and

(iii) r = 14 if E1 and E2 are isogenous and do have complex multiplication.

Next, we observe that `1 ∩ `2 = `1 ∩ `3 = `1 ∩ `4 = {[0 : 1 : 0 : 0]}. That is, the

multisection L = `1 meets the type IV fiber over t =∞ at the triple point.

Similarly, `1 ∩ `5 = `1 ∩ `9 = `1 ∩ `13 = {[0 : 0 : 0 : 1]}.

In fact, the Riemann-Hurwitz formula applied to the degree 3 cover L→ P1 gives

us that the two type IV fibers are the only ones which are ramified. As a consequence,

combining Corollary I.4.2.5 and Lemma I.4.2.8 we can completely characterize the

relative log canonical model of the pair
(
X,L+

∑
aiFi

)
, where 0 ≤ ai ≤ 1 and Fi

are all the singular fibers of the fibration X → P1 constructed in this example.

If we fix just one of the two type IV fibers we obtain the following:

Lemma I.4.2.8. Consider f : X = X(q1, q2) → P1 as in the above example and fix

F one of the two type IV fibers. If ϕ : (Z, L̃+ aF̃ + Exc(ϕ))→ (X,L+ aF ) is a log

resolution, then the relative log canonical model is:
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(i) the pair (X,L+ aF ) itself for all 0 ≤ a ≤ 1/3 (See also Corollary I.4.2.5)

(ii) the log resolution for all 1/3 < a < 2/3 that is, the pair (Z, M̃ + aF̃ + Exc(ϕ))

(iii) a twisted model for all 2/3 ≤ a ≤ 1 and the log canonical model contracts F̃ .

Proof. The pair (X,L+ aF ) is not normal crossings, so before running the log MMP

we consider ϕ : (Z, L̃+ aF̃ +Exc(ϕ))→ (X,L+ aF ) a log resolution, where F̃ (resp.

L̃) denotes the strict transform of F (resp. L). The dual graph of the corresponding

fiber on the log resolution is given by

D1 E

D2

D3

where the component meeting the multisection is marked by the blue node.

The log resolution ϕ : Z → X is obtained after blowing-up the singular point of

F , hence we get only one exceptional divisor E with self-intersection −1 and we have

F̃ = D1 + D2 + D3, which are all −3 curves. Moreover, KZ = ϕ∗KX + E, so that

KZ ·Di = 1 and KZ · E = −1.

We can now run the log MMP. First, we compute (KZ + L̃+ aF̃ +E) · γ for any

irreducible curve γ supported in ϕ−1(F ).

We find:

(KZ + L̃+ aF̃ + E) ·Di = 2− 3a

(KZ + L̃+ aF̃ + E) · E = 3a− 1
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If 1/3 < a < 2/3, then the above tell us ∆
.
= (KZ + L̃ + aF̃ + E) is already

f ◦ϕ−ample. If a = 2/3, then such divisor is f ◦ϕ−nef hence, by abundance, the log

canonical model contracts all curves γ such that ∆ · γ = 0. Those are precisely the

Di.

Now, if 2/3 < a ≤ 1, then there exists a morphism µ : Z → Z ′ contracting all the

Di. Writing D′ .= µ∗D for any divisor D in Z it follows that µ∗E ′ = E + 1/3D1 +

1/3D2 +1/3D3. In particular, E ′ ·E ′ = 0 and K ′Z ·E ′ = 0 , by the projection formula.

As a consequence, (KZ′ + L′ + aF ′ +E ′) ·E ′ = L′ ·E ′ = 1 > 0, where L′ .= µ∗L̃ and,

similarly, F ′ .= µ∗F̃ .

But then ∆′ is f ′−ample, where f ′ : Z ′ → C is the associated fibration, and the

log canonical model is the twisted model.

Finally, if 0 ≤ a < 1/3, then there exists a morphism ε : Z → Z ′′ contracting E

which is precisely the blow-up and if a = 1/3, then ∆ is already f ◦ ϕ−nef hence, by

abundance, E gets contracted as well.

Remark I.4.2.9. Note that in this example the 3-section L intersects the singular

locus of F . In particular, 1/3 = lct(X,L, F ) 6= lct(X,F ) = 2/3.

Note that Lemma I.4.2.8 also applies to any elliptic surface pair (X,M + aF ),

where M is a multisection of degree 3 intersecting a fiber F of type IV at the triple

point. The proof above does not depend on a description of X. We have:

Proposition I.4.2.10. Let (X,M + aF ) be an elliptic surface pair where M is a
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multisection of degree 3 intersecting a fiber F of type IV at its triple point. If

ϕ : (Z, M̃ + aF̃ + Exc(ϕ))→ (X,M + aF )

is a log resolution, then the relative log canonical model is:

(i) the pair (X,M + aF ) itself for all 0 ≤ a ≤ 1/3 (See also Corollary I.4.2.5)

(ii) the log resolution for all 1/3 < a < 2/3 that is, the pair (Z, M̃ + aF̃ + Exc(ϕ))

(iii) a twisted model for all 2/3 ≤ a ≤ 1 and the log canonical model contracts F̃ .

Perhaps the main interesting feature of the above result lies in the following

observation: If we compare it to the classification in [2] for elliptic surface pairs with

a marked section, then we have replaced the Weierstrass model with the pair

(X,M + aF ) itself since M meets all three components of F . Further, we have

replaced the “intermediate model" by the log resolution (Z, M̃ + aF̃ + E).

In addition, note that we have lct(X,M,F ) = 1/3 so that (i) is a particular case

of the more general statement of Corollary I.4.2.5.

A similar picture also appears in the next example we consider.

I.4.2.1.2 Surfaces of bidegree (2, 3) in P1 × P2

In this next example we consider an elliptic K3 surfaceX → P1 with a multisection

M of degree 3 and that, generically, has six singular fibers of type IV and does not

admit a section. In Lemma I.4.2.11 we will fix F to be one of these fibers and we will

compute the relative log canonical model of (X,M + aF ) for 0 ≤ a ≤ 1.
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Let X ⊂ P1 × P2 be a divisor of bidegree (2, 3). If p1 : P1 × P2 → P1 and

p2 : P1 × P2 → P2 are the standard projections, then the divisors D1
.
= p∗1OP1(1) and

D2
.
= p∗2OP2(1) generate NS(X) and satisfy D2

1 = 0, D2
2 = 2 and D1 ·D2 = 3. That

is, D1 represents a fiber and D2 a multisection of degree 3.

Explicitly, consider the surface X defined by aX3 + bY 3 + cZ3 = 0, where [X : Y :

Z] are coordinates on P2 and a, b, c are homogeneous polynomials of degree 2. We

call such surface of Fermat type and if a, b and c are generic, then X has six singular

fibers of type IV .

By the discussion above, there are at least three multisections of degree 3. Namely,

the ones given by X = 0, Y = 0 and Z = 0. Moreover, the points where each 3-section

meets a singular fiber are inflection points of the cubic in P2, hence 3-torsion points.

There are 9 of them.

For f : X → P1 of Fermat type we fix a fiber F of type IV and M a 3-section.

We then have the following:

Lemma I.4.2.11. If ϕ : (Z, M̃ + aF̃ + Exc(ϕ)) → (X,M + aF ) is a log resolution,

then the relative log canonical model of the pair (X,M + aF ) is:

(i) the pair (X,M + aF ) itself for 0 ≤ a ≤ lct(X,F ) (See also Corollary I.4.2.5)

(ii) the log resolution for all lct(X,F ) < a < 1

(iii) a twisted model for a = 1 and the log canonical model contracts F̃ .
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Proof. The multisection M intersects F at all three components. Moreover, such

intersection M ∩ F is transversal and supported in the smooth locus of F . As a

consequence, one can check that the pair (X,M + aF ) is log canonical if and only if

0 ≤ a ≤ lct(X,F ).

Now, if γ is an irreducible curve supported on F , then

(KX +M + aF ) · γ = 1 > 0

that is, the divisor (KX +M + aF ) is f−ample. This proves (i).

If 2/3 = lct(X,F ) < a, then we need to consider

ϕ : (Z, M̃ + aF̃ + Exc(ϕ))→ (X,M + aF )

a log resolution, where F̃ (resp. M̃) denotes the strict transform of F (resp. M).

Below we represent the dual graph of the corresponding fiber

D1 E

D2

D3

where the components meeting the multisection are marked by the blue nodes.

The log resolution ϕ : Z → X is obtained after a unique blow-up of the singular

point of F , so that we have only one exceptional divisor E with self-intersection −1

and F̃ = D1 +D2 +D3, which are all −3 curves. Moreover, KZ = ϕ∗KX +E, so that

KZ ·Di = 1 and KZ · E = −1.

Next, we run the log MMP. We compute (KZ +M̃+aF̃ +E) ·γ for any irreducible

curve γ supported in ϕ−1(F ).
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We find:

(KZ + M̃ + aF̃ + E) ·Di = 3− 3a

(KZ + M̃ + aF̃ + E) · E = 3a− 2

In particular, if 2/3 < a < 1 , then the divisor ∆
.
= KZ+M̃+aF̃+E is f◦ϕ−ample

and the log canonical model is the log resolution, i.e., the pair (Z, M̃ +aF̃ +Exc(ϕ)).

If a = 1, then ∆ is f ◦ ϕ−nef and, by abundance, the log canonical model contracts

all the Di, yielding the "twisted model".

Remark I.4.2.12. We note that the example above was considered in [28] for

constructing an elliptic Calabi-Yau 4−fold without section as a product of two K3

surfaces, where one is taken to be of Fermat type.

Again, Lemma I.4.2.11 applies to any elliptic surface pair (X,M + aF ), where

M is a multisection of degree 3 intersecting a fiber F of type IV at all the three

components in smooth points. We have:

Proposition I.4.2.13. Let (X,M + aF ) be an elliptic surface pair where M is a

multisection of degree 3 intersecting a fiber F of type IV at all the three components

in smooth points. If ϕ : (Z, M̃ + aF̃ + Exc(ϕ)) → (X,M + aF ) is a log resolution,

then the relative log canonical model is:

(i) the pair (X,M + aF ) itself for 0 ≤ a ≤ lct(X,F ) = 2/3 (See also Corollary

I.4.2.5)

(ii) the log resolution for all lct(X,F ) < a < 1 that is, the pair (Z, M̃+aF̃+Exc(ϕ))
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(iii) a twisted model for a = 1 and the log canonical model contracts F̃ .

I.4.2.1.3 Double covers of P2 branched along a sextic

The last two examples of elliptic K3 surfaces we consider are given by double

covers X → P2 branched along six lines in general position.

We will construct examples with multisections M of degree 2 and of degree 3.

Moreover, after fixing a singular and reduced fiber F , we will compute the relative

log canonical model of (X,M + aF ) for 0 ≤ a ≤ 1. Their classification is the content

of Lemmas I.4.2.17 through I.4.2.20 below. Although we are making statements

referring to the explicit examples, these statements hold with generality. That is, our

classification only depends on the type of the marked singular fiber and how the fixed

multisection intersects it, but not on the surface itself.

Consider Li ⊂ P2, with i = 1, . . . , 6, six lines in general position, i.e., no three

of the lines are concurrent. Let Pi,j for i < j denote the 15 intersection points

determined by such lines. That is, Pi,j
.
= Li ∩ Lj (i < j). Then there exists a double

cover ϕ : Y → P2 whose branching divisor consists precisely of the lines Li and we

can construct a K3 surface X by resolving the 15 double points of Y . Moreover, the

rational map X 99K P2 factors through X → X/〈σ〉 ' P̃ , where σ is the induced

involution on X and P̃ is the blow-up of P2 at the points Pi,j. Further, explicit choices

of a base-point-free linear system |D| with D2 = 0 give elliptic fibrations X → P1.

Let Qi,j
.
= ϕ∗Pi,j and define li,j ⊂ X to be the exceptional divisor over the double

point Qi,j (for i < j). Let li be the rational curve so that 2li is the strict transform
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of ϕ∗Li. Then

Lemma I.4.2.14 ([31, Lemma 5.2]).

li · lj = δi,j li,j · lk,m = −2δi,kδj,m li · lk,m = δi,k + δi,m

In the examples below we construct elliptic K3 surfacesX → P1 with multisections

by conveniently choosing D as some linear combination of the rational curves li and

li,j:

Example I.4.2.15 ([31]).

(i) Choose D = l3,4 + 2l3 + 3l1,3 + 2l1,5 + 4l1 + 3l1,2 + 2l2 + l2,6. Then D corresponds

to a type III∗ fiber and l5 is a multisection of degree 2 for X → P1. Moreover,

such multisection intersects the type III∗ fiber as indicated by the blue node in

the graph below:

2l3

2l1,5

3l1,3 4l1 3l1,2 2l2 l2,6l3,4

(ii) By choosing D = l1,5 + l1,4 + 2l1 + 2l1,2 + 2l2 + 2l2,3 + 2l3 + l3,5 + l3,6 we get a fiber

of type I∗4 so that the corresponding fibration X → P1 has l5 as a two-section,

intersecting the I∗4 fiber as indicated by the blue nodes in the graph below:

2l1 2l1,2 2l2

l1,4

l1,5

2l2,3 2l3

l3,5

l3,6

Example I.4.2.16 ([31]).
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(i) Take D = l1,5+2l1+3l1,2+4l2+5l2,3+6l3+4l3,4+2l4+3l3,6. Then D corresponds

to a fiber of type II∗ and X → P1 has l6 as a trisection, intersecting the type

II∗ fiber as indicated in the graph below by the blue node:

2l4

3l3,6

4l3,4 6l3 5l2,3 4l2 3l1,2 2l1 l1,5

(ii) If we choose D = l3,4+2l3+3l1,3+4l1+2l1,5+3l1,2+2l2+l2,5, then D corresponds

to a fiber o type III∗ and the rational curve l5 is a trisection intersecting such

fiber as indicated by the blue nodes in the graph below:

2l3

2l1,5

3l1,3 4l1 3l1,2 2l2 l2,5l3,4

Lemma I.4.2.17. Let X → P1 be the elliptic K3 surface constructed in Example

I.4.2.15 (i). Write M = l5 and let F be the reduced divisor associated to the fiber of

type III∗. Then the relative log canonical model of the pair (X,M + aF )

1. contracts every irreducible fiber component not meeting M for a = 0

2. is an intermediate model for all 0 < a < 1

3. is a twisted model for a = 1
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Proof. With the notations from Example I.4.2.15 (i) we compute:

(KX + ∆) · l3,4 = −a

(KX + ∆) · l2,6 = −a

(KX + ∆) · l2 = 0

(KX + ∆) · l3 = 0

(KX + ∆) · l1,3 = 0

(KX + ∆) · l1,2 = 0

(KX + ∆) · l1 = a

(KX + ∆) · l1,5 = 1− a

where ∆
.
= M + aF . In particular, for a = 0 we see that the log canonical model

contracts every irreducible fiber component not meeting M . If a > 0 we conclude

that there exists a morphism µ : X → X1 contracting the curves l3,4 and l2,6. Using

the projection formula we find that

(KX1 + µ∗∆) · µ∗l2 = −a/2

(KX1 + µ∗∆) · µ∗l3 = −a/2

(KX1 + µ∗∆) · µ∗l1,3 = 0

(KX1 + µ∗∆) · µ∗l1,2 = 0

(KX1 + µ∗∆) · µ∗l1 = a

(KX1 + µ∗∆) · µ∗l1,5 = 1− a

and we see that there exists a morphism X1 → X2 further contracting the curves l2
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and l3. By computing the relevant intersection numbers (as above) one finds that

that there exists a third morphism X2 → X3 contracting the curves l1,3 and l1,2. If

ψ : X → X3 denotes the composition X → X1 → X2 → X3 of these three morphisms,

then

(KX3 + ψ∗∆) · ψ∗l1 = a− a/4− a/4 = a/2 > 0

(KX3 + ψ∗∆) · ψ∗l1,5 = 1− a

which finally tells us the log canonical model is an intermediate model for all 0 < a < 1

and a twisted model for a = 1. Moreover, with the notations introduced in Definition

I.4.2.1, we have that Alc = ϕlc∗ l1,5 and Elc = ϕlc∗ l1.

Lemma I.4.2.18. Let X → P1 be the elliptic K3 surface constructed in Example

I.4.2.15 (ii). Write M = l5 and let F be the reduced divisor associated to the fiber of

type I∗4 . Then the relative log canonical model of the pair (X,M + aF )

1. contracts every irreducible fiber component not meeting M for a = 0

2. is an intermediate model for all 0 < a < 1

3. is a twisted model for a = 1
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Proof. We use the same notations as in Example I.4.2.15 (ii) and compute:

(KX + ∆) · l1,4 = −a

(KX + ∆) · l1,5 = 1− a

(KX + ∆) · l3,5 = 1− a

(KX + ∆) · l3,6 = −a

(KX + ∆) · l1 = a

(KX + ∆) · l1,2 = 0

(KX + ∆) · l2 = 0

(KX + ∆) · l2,3 = 0

(KX + ∆) · l3 = a

where ∆
.
= M + aF .

The computations imply the log canonical model contracts every irreducible fiber

component not meeting M for a = 0.

If a > 0, then there exists a morphism µ : X → X ′ contracting the curves l1,4 and
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l3,6 and we find that

(KX′ + ∆′) · l′1,5 = 1− a

(KX′ + ∆′) · l′3,5 = 1− a

(KX′ + ∆′) · l′1 = a/2

(KX′ + ∆′) · l′1,2 = 0

(KX′ + ∆′) · l′2 = 0

(KX′ + ∆′) · l′2,3 = 0

(KX′ + ∆′) · l′3 = a/2

where we have written D′ .= µ∗D for any divisor D ⊂ X. In particular, we conclude

that the log canonical model is an intermediate model for all 0 < a < 1 and a twisted

model for a = 1. Moreover, with the notations introduced in Definition I.4.2.1,

Alc = ϕlc∗ (l1,5 + l3,5) and Elc = ϕlc∗ (l1 + l3).

Lemma I.4.2.19. Let X → P1 be the elliptic K3 surface constructed in Example

I.4.2.16 (i). Write M = l6 and let F be the reduced divisor associated to the fiber of

type II∗. Then the relative log canonical model of the pair (X,M + aF )

1. contracts every irreducible fiber component not meeting M for a = 0

2. is an intermediate model for all 0 < a < 1

3. is a twisted model for a = 1
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Proof. Using the same notations as in Example I.4.2.16 (i) we find that

(KX + ∆) · l4 = −a

(KX + ∆) · l1,5 = −a

(KX + ∆) · l3,6 = 1− a

(KX + ∆) · l3 = a

(KX + ∆) · l3,4 = 0

(KX + ∆) · l2,3 = 0

(KX + ∆) · l2 = 0

(KX + ∆) · l1,2 = 0

(KX + ∆) · l1 = 0

where ∆
.
= M+aF . In particular, we conclude that for a = 0 the log canonical model

contracts every irreducible fiber component not meeting M . If a > 0, we conclude

there exists a morphism µ : X → X1 contracting the curves l4 and l1,5. By the
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projection formula, it follows that

(KX1 + µ∗∆) · µ∗l3,4 = −a/2

(KX1 + µ∗∆) · µ∗l1 = −a/2

(KX1 + µ∗∆) · µ∗l3,6 = 1− a

(KX1 + µ∗∆) · µ∗l3 = a

(KX1 + µ∗∆) · µ∗l2,3 = 0

(KX1 + µ∗∆) · µ∗l2 = 0

(KX1 + µ∗∆) · µ∗l1,2 = 0

and we see that there exists a morphism X1 → X2 further contracting the curves l3,4

and l1. By computing the relevant intersection numbers (as above) one finds that

that there exists a sequence of morphisms X → X1 → X2 → . . . → X5 so that all

irreducible curves supported on F get contracted, except l3,6 and l3. Denoting by ψ

the composite morphism we compute

(KX5 + ψ∗∆) · ψ∗l3 = a− a/3− a/6 = a/2 > 0

(KX5 + ψ∗∆) · ψ∗l3,6 = 1− a

which implies the relative lc model is an intermediate model for all 0 < a < 1 and it

is a twisted model for a = 1. Moreover, using the notations introduced in Definition

I.4.2.1, it follows that Alc = ϕlc∗ l3,6 and Elc = ϕlc∗ l3.

Lemma I.4.2.20. Let X → P1 be the elliptic K3 surface constructed in Example
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I.4.2.16 (ii). Write M = l5 and let F be the reduced divisor associated to the fiber of

type III∗. Then the relative log canonical model of the pair (X,M + aF )

1. contracts every irreducible fiber component not meeting M for a = 0

2. is an intermediate model for all 0 < a < 1

3. is a twisted model for a = 1

Proof. Using the same notations as in Example I.4.2.16 (ii) we compute:

(KX + ∆) · l3,4 = −a

(KX + ∆) · l3 = 0

(KX + ∆) · l1,3 = 0

(KX + ∆) · l1,2 = 0

(KX + ∆) · l2 = 0

(KX + ∆) · l1 = a

(KX + ∆) · l2,5 = 1− a

(KX + ∆) · l1,5 = 1− a

where ∆
.
= M + aF . In particular, for a = 0 we see that the log canonical model

contracts every irreducible fiber component not meetingM . If a > 0 we conclude that

there exists a morphism µ : X → X1 contracting the curve l3,4. Using the projection
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formula we find that

(KX1 + µ∗∆) · µ∗l3 = −a/2

(KX1 + µ∗∆) · µ∗l1,3 = 0

(KX1 + µ∗∆) · µ∗l1,2 = 0

(KX1 + µ∗∆) · µ∗l2 = 0

(KX1 + µ∗∆) · µ∗l1 = a

(KX1 + µ∗∆) · µ∗l2,5 = 1− a

(KX1 + µ∗∆) · µ∗l1,5 = 1− a

and we see that there exists a morphism X1 → X2 further contracting the curve l3.

By proceeding as above and computing the relevant intersection numbers we conclude

that there exists a third morphism X2 → X3 contracting the curve l1,3. If ψ : X → X3

denotes the composition of such morphisms, then

(KX3 + ψ∗∆) · ψ∗l1,2 = 0

(KX3 + ψ∗∆) · ψ∗l2 = 0

(KX3 + ψ∗∆) · ψ∗l1 = a− a/4 = 3a/4 > 0

(KX3 + ψ∗∆) · ψ∗l2,5 = 1− a

(KX3 + ψ∗∆) · ψ∗l1,5 = 1− a

which implies the log canonical model is an intermediate model for all 0 < a < 1 and

a twisted model for a = 1. Moreover, with the notations introduced in Definition

I.4.2.1, we have that Alc = ϕlc∗ (l1,5 + l2,5) and Elc = ϕlc∗ l1.
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Chapter I.5

Classification of relative log canonical

models of elliptic surfaces of index

two

We now give a complete classification of relative log canonical models of elliptic

surface pairs (f : X → C, aMM + aF ) of index dX = 2, where M is a multisection of

degree equals dX (which exist by Lemma I.2.1.6) and aM = 1/dX = 1/2.

As in Section I.4.2, we assume F is reduced and unramified, further, we assume

M ∩ F is supported in the smooth locus of F . Given any such singular fiber we will

call one of its components an end component of valence n if it corresponds to an

end node of valence n in the dual graph of the total geometric fiber1. The terminology

is needed for Definition I.5.0.5.
1For fibers of type II, III and IV we consider a log resolution.
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Throughout this chapter we will still call a pair (f : X → C, aMM + aF ) an

elliptic surface pair. Our main result is the following:

Theorem I.5.0.1. Let (X, 1/2M + aF ) be an elliptic surface pair. For any type of

fiber other than type In there are numbers a0 and b0 such that the relative log canonical

model

(i) contracts every irreducible fiber component not meeting M for all 0 ≤ a ≤ a0

(ii) is an intermediate model (see Definition I.4.2.1) for all a0 < a < b0

(iii) is a twisted model (see Definition I.4.2.1 ) for all b0 ≤ a ≤ 1

Moreover, a0 = 0 for fibers of type I∗n, II
∗, III∗ and IV ∗ and a0 = lct(X,M,F ) =

lct(X,F ) otherwise. Further, if M is special (see Definition I.5.0.5), then b0 = a0 +

1/2(1 − a0). If M is very special (see Definition I.5.0.5), then b0 = 0. Otherwise,

b0 = 1.

Remark I.5.0.2. Theorem I.5.0.1 (i) above for fibers of type II, III or IV has

already been proved in Proposition I.4.2.2.

Remark I.5.0.3. If F is of type In, then we can simply refer to Proposition I.4.2.2

and observe that we have lct(X,M,F ) = lct(X,F ) = 1.

Remark I.5.0.4. It is also important to mention that Theorem I.5.0.1 can be easily

generalized to the case where the weighted fiber aF is replaced by a weighted sum∑
aiFi of marked fibers.
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Such result illustrates the fact that the relative log canonical model of an elliptic

surface pair (X, aMM + aF ) depends not only on the type of the fiber F , but also

on the geometry of the intersection M ∩F that is, on how the multisection intersects

the marked fiber.

Note that when b0 = 1 our classification agrees with the classification in [2] for the

case where the existence of a section is assumed. In fact we will see that the exactly

same computations and arguments also apply in some cases, namely the cases where

the multisection is assumed to be simple (see Definition I.5.1.1).

We also observe that Theorem I.5.0.1 above is a generalization of Proposition 3.7

in [3].

Definition I.5.0.5. Given an elliptic surface pair (X, aMM + aF ) we say the

multisection M is special if M ∩ F is supported in two distinct end components of

F of valence 1 or M ∩ F is supported in a single end component of F of valence

two. We say M is very special if M intersects a fiber of type I∗n only at

components of multiplicity 2.

Remark I.5.0.6. Note that the definition above depends both on M and on F . For

instance, it excludes elliptic pairs with marked fiber of type In or II.

We illustrate in the diagrams below all the possible components (colored) of all

the different types of fibers F that can meet a special multisection (of degree 2).
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1 4

1

2

Type III
1 3

1

1

Type IV

2

2

3 4 3 2 11 1

2

2 3 2 1

1

Type III∗ Type IV ∗

2 2 2

1

1

1

1

2 2 2

1

1

1

1

Type I∗n Type I∗n and n ≥ 1

2

3

4 6 5 4 3 2 1 2

2

3 4 3 2 11

Type II∗ Type III∗

Remark I.5.0.7. Note that for a fiber of type III the component of multiplicity 2 is

part of the exceptional divisor in the log resolution and therefore it cannot intersect

the multisection. We are assuming M ∩ F is supported in the smooth locus of F .
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In order to prove Theorem I.5.0.1 we prove a series of lemmas. Each of these

lemmas assumes a particular configuration for the intersection M ∩F and by proving

those lemmas we cover all possible configurations.

The strategy in our proofs consists in simply running the log MMP and it is

summarized next. We start by computing the intersection numbers

(KX + aMM + aF ) · γ

for any γ an irreducible curve supported on a fiber. Note that because we are only

interested in describing the boundary divisor in the relative log canonical model, it

suffices to consider simply those curves which are supported on F .

If all these numbers are non-negative, then KX + ∆ is f−nef, where ∆
.
= aMM +

aF . By abundance, it follows that KX + ∆ is f−semiample and the relative log

canonical model contracts precisely those curves γ such that (KX + ∆) · γ = 0.

If for some γ the number (KX + ∆) · γ is negative, then there exists a morphism

µ : X → X ′ contracting γ. We then repeat the first step applied to the pair (X ′,∆′),

where ∆′
.
= µ∗∆ and we proceed this way until there are no curves γ for which the

numbers (KX + ∆) · γ are negative.

Given an elliptic surface pair (X, aMM + aF ) we fix the notation and will denote

by A the divisor supported in the components of F meeting the multisection M .
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I.5.1 The relative lc model when M is simple

Definition I.5.1.1. Given an elliptic surface pair (X, aMM + aF ) we say the

multisection M is simple if A is irreducible and reduced that is, A is an end

component of valence 1.

Lemma I.5.1.2 (M simple). Let (X, aMM + aF ) be an elliptic surface pair, where

aM = 1/2 and we assume M is simple (of degree 2). Then we can find a number a0

so that the relative log canonical model

(i) contracts every irreducible fiber component not meeting M for all 0 ≤ a ≤ a0

(ii) is an intermediate model for all a0 < a < 1

(iii) is a twisted model for a = 1

Moreover, a0 = 0 for fibers of type I∗n, II
∗, III∗ and IV ∗ and a0 = lct(X,M,F ) =

lct(X,F ) otherwise.

Remark I.5.1.3. In the statement above we don’t necessarily need to assume m = 2,

the proof below works for any m ∈ Z>1.

Proof. If F is of type II, III or IV , then the pair (X, aMM+aF ) is not log canonical

for all a and we need to first take a log resolution ϕ : (Z, M̃ + aF̃ + Exc(ϕ)) →

(X,M + aF ). As before, we write F̃ (resp. M̃) to denote the strict transform (under

ϕ) of F (resp. M) and we mark the exceptional divisor Exc(ϕ) with coefficient one.
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We then compute the intersection numbers (KZ + ∆̃) · γ̃ for γ̃ an irreducible

component of ϕ∗F and ∆̃
.
= aMM̃ + aF̃ +Exc(ϕ). We observe that the exactly same

computations and arguments from [2] apply here, hence their results.

In fact the same is true for the other types of fiber. For fibers of type I∗n, II
∗, III∗

or IV ∗ the pair (X, aMM+aF ) is already log canonical and by computing (KX+∆)·γ

for γ one of the irreducible components of F and ∆
.
= aMM + aF we see that again

the arguments in [2] apply. This happens precisely because we are marking the

multisection M with a coefficient aM = 1/m = 1/deg M and we are assuming M is

simple.

I.5.2 The relative lc model when M is special

Lemma I.5.2.1 (M special). Let (X, 1/2M + aF ) be an elliptic surface pair and

assume M is special. Then we can find numbers a0 and b0 such that the relative log

canonical model

(i) contracts every irreducible fiber component not meeting M for all 0 ≤ a ≤ a0

(ii) is an intermediate model for all a0 < a < b0

(iii) is a twisted model for all b0 ≤ a ≤ 1

Moreover, a0 = 0 for fibers of type I∗n, II
∗, III∗ and IV ∗ and a0 = lct(X,M,F ) =

lct(X,F ) otherwise. Further, b0 = a0 + 1/2(1− a0).
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Proof. First we observe that our definition of a special multisection excludes elliptic

pairs with marked fiber of type In or II. Next, we consider F of type III or IV . For

such types of fiber we need to first take a log resolution ϕ : (Z, M̃ + aF̃ +Exc(ϕ))→

(X,M + aF ). As before, we write F̃ (resp. M̃) to denote the strict transform (under

ϕ) of F (resp. M) and we mark the exceptional divisor Exc(ϕ) with coefficient one.

For such types of fibers ϕ∗F has dual graph

A1 E

A2

D

where the blue nodes mark the component A = A1+A2 that meets the multisection

M .

In the table below we summarize the multiplicities and self intersections of the

various components for each type of fiber. We also indicate the components of F̃ and

the components of Exc(ϕ).

Type F̃ Exc(ϕ) Mult(D) Mult(E) A2
i D2 E2

III A1 + A2 D + E 2 4 −4 −2 −1

IV A1 + A2 +D E 1 3 −3 −3 −1

Now, if F is of type III, then KZ = ϕ∗KX +D + 2E so that

(KZ + ∆̃) · Ai =
7− 8a

2

(KZ + ∆̃) ·D = −1

(KZ + ∆̃) · E = 2a− 1
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where ∆̃
.
= 1/2M̃ + aF̃ + Exc(ϕ). The above computation implies that there exists

a morphism µ : Z → Z ′ contracting D and E whenever 0 ≤ a ≤ 1/2 and the relative

log canonical model is just the pair (X, 1/2M + aF ) itself. If 1/2 < a ≤ 3/4, there

exists a morphism µ : Z → Z ′ contracting D and we find, by the projection formula,

that

(K ′Z + ∆′) · A′i =
7− 8a

2

(K ′Z + ∆′) · E ′ = 2a− 3/2

where ∆′
.
= µ∗∆̃ and we write A′i

.
= µ∗Ai and so on. Again we can further contract E ′

and the relative log canonical model is just the pair (X, 1/2M +aF ) itself. Moreover,

note that the latter computation tells us that for 3/4 < a < 7/8 the relative lc model

is an intermediate model with fiber A′+E ′, where A′ .= A′1 +A′2. It also gives us that

for 7/8 ≤ a ≤ 1 we have a twisted model that is, we can further contract A′.

Note that a0
.
= 3/4 and b0

.
= 7/8 are related by b0 = a0 + 1/2(1− a0). Moreover,

a0 = lct(X,M,F ) = lct(X,F ).

The computations for a type IV fiber are similar and we omit the details. In

that case we have KZ = ϕ∗KX +E and the relevant intersection numbers we need to

compute as the first step when running the MMP are given below:

(KZ + ∆̃) · Ai =
5− 6a

2

(KZ + ∆̃) ·D = 2− 3a

(KZ + ∆̃) · E = 3a− 2
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Note that again we have that a0
.
= 2/3 = lct(X,M,F ) = lct(X,F ) and b0

.
= 5/6

are related by b0 = a0 + 1/2(1− a0).

We also omit the computations for a fiber of type II∗. Such computations are

almost the same as those presented in the proof of Lemma ??. We simply need to

replace M by 1/2M .

Next, let us assume F is of type III∗. Then there are two possible configurations

for M ∩F ⊂ A and to fix some notation we label the various components of the dual

graph of F in each configuration as indicated below

B1

D

B2 E B3 B4 A2A1 B1

A

B2 E B3 B4 D2D1

As before the colored nodes mark the component A that meets the multisection M .

Note that in both cases the pair (X, 1/2M + aF ) is already log canonical since X is

smooth and the divisor ∆
.
= 1/2M + aF is normal crossings.

The relevant intersection numbers are computed below. In the first case (left) we

have

(KX + ∆) · Ai = 1/2− a

(KX + ∆) ·Bj = 0

(KX + ∆) ·D = −a

(KX + ∆) · E = a
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whereas in the second case (right) we find:

(KX + ∆) · A = 1/2− a

(KX + ∆) ·Bj = 0

(KX + ∆) ·Di = −a

(KX + ∆) · E = a

Nonetheless we see that the numbers a0
.
= 0 and b0

.
= 1/2 once more satisfy the

equation a0 = b0 − 1/2(1− a0).

Similarly, if F is of type I∗n there are also two cases to be considered. The

corresponding dual graphs for F are illustrated below

E0 E1 En

D1

D2

A1

A2

E0 E1 En

D1

A1

A2

D2

The notation we need is also indicated by the labellings in the diagrams. In both

cases we compute

(KX + ∆) · Ai = 1/2− a

(KX + ∆) ·Di = −a

(KX + ∆) · Ej = a for j = 0, n

(KX + ∆) · Ek = 0 for k = 1, . . . , n− 1

where ∆
.
= 1/2M + aF . The main difference lies in the fact that in the first case

(left) the reduced component Elc of the fiber of both an intermediate model and a
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twisted model is irreducible and is given by the image of En under ϕlc : X → X lc.

On the other hand, in the second case (right), the corresponding component is no

longer irreducible and is given by the image of E0 + En (under ϕlc). This is a new

phenomena, which doesn’t appear in the classification of [2] for surfaces of index one

(with a section).

For a fiber of type I∗n and M special the numbers a0 and b0 are 0 and 1/2,

respectively. Again they satisfy the equation a0 = b0 − 1/2(1− a0).

Finally, consider F a fiber of type IV ∗. The support of such fiber consists of seven

(−2) rational curves and has dual graph an affine E6. We label each component as

indicated below

A1

B1

B2 E B3 A2

D

The blue nodes mark the component A = A1 + A2 meeting the multisection M .

The relevant intersection numbers in this case are:

(KX + ∆) · Ai = 1/2− a

(KX + ∆) ·Bj = 0

(KX + ∆) ·D = −a

(KX + ∆) · E = a

where, as before, we write ∆
.
= 1/2M + aF . Note that, once more, the numbers
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a0 = 0 and b0 = 1/2 verify a0 = b0 − 1/2(1− a0).

I.5.3 The relative lc model when M is very special

Lemma I.5.3.1 (F of type I∗n andM very special). Let (X, 1/2M+aF ) be an elliptic

surface pair with F of type I∗n and assume M is very special. Then the relative log

canonical model is a twisted model for all 0 ≤ a ≤ 1.

Proof. If F is of type I∗n, then it consists of n+5 components which are (−2) rational

curves arranged in a way so that the dual graph is an affine Dn+4. IfM is very special,

then it intersects one of the multiplicity two components E0, . . . , En as illustrated

below.

E0 A En

D1

D2

D3

D4

That is, the component A meeting the multisection M agrees with one of the Ei,

for some 0 ≤ i ≤ n.
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The relevant intersection numbers are as follows:

(KX + ∆) · A = 1/2 + a if i = 0 or i = n

(KX + ∆) · A = 1/2 if i 6= 0, n

(KX + ∆) ·Dj = −a

(KX + ∆) · Ek = 0 if k 6= i and 1 ≤ k ≤ n− 1

(KX + ∆) · El = a if l = 0 or l = n and l 6= i

where ∆
.
= 1/2M + aF .

Now, if a = 0, then the relative lc model contracts all components except A. And

in fact we have that a0 = b0 = 0: If a > 0, then there exists a morphism µ : X → X ′

contracting all the components labeled by Dj. Writing D′ .= µ∗D for any divisor

D ⊂ X we find that

(K ′X + ∆′) · A′ = 1/2

(K ′X + ∆′) · E ′k = 0

(K ′X + ∆′) · E ′l = 0

That is, K ′X+∆′ is f ′−nef, hence semiample (by abundance) and the log canonical

model further contracts all components different than A′ = E ′i. In other words, the

(relative) lc model is a twisted model for all 0 ≤ a ≤ 1.
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I.5.4 The relative lc model when M is exotic

Definition I.5.4.1. Given an elliptic surface pair (X, aMM + aF ) we say the

multisection M is exotic if M is neither special nor very special nor simple.

Lemma I.5.4.2 (M exotic). Let (X, 1/2M + aF ) be an elliptic surface pair with F

not of type In and assume M is exotic. Then we can find a number a0 so that the

relative log canonical model

(i) contracts every irreducible fiber component not meeting M for all 0 ≤ a ≤ a0

(ii) is an intermediate model for all a0 < a < 1

(iii) is a twisted model for a = 1

Moreover, a0 = 0 for fibers of type II∗, III∗ and IV ∗ and a0 = 1 for a fiber of type

In.

Proof. First, note that if an elliptic pair (X, 1/2M + aF ) is such that M is different,

then, by definition, F is not of type II, III, IV or I∗n.

For all the other possible types of fiber F we illustrate in the diagrams below their

dual graphs. The components meeting the multisection are marked by the blue nodes

and some extra notation is also introduced.

D1

D2

B1 E B2 B3 B4 A D3

Type II∗

59



B1

D2

B2 E B3 A D3D1 D1

B2

B1 E A D3

D2

Type III∗ Type IV ∗

In any case the relevant intersection numbers are (where ∆
.
= 1/2M + aF )

(KX + ∆) · A = 1/2

(KX + ∆) ·Bi = 0

(KX + ∆) ·Dj = −a

(KX + ∆) · E = a

If a = 0, then the log canonical model contracts all the components except the

component A that meets the multisection. If a > 0, then there exists a morphism

µ : X → X ′ contracting the components labeled by Dj. Writing D′ .= µ∗D for any

divisor D ⊂ X we find that (K ′X + ∆′) ·A′ = 1− a
2

. Moreover, (K ′X + ∆′) ·E ′ = a/2

if F is of type II∗ or III∗ and (K ′X + ∆′) · E ′ = a if F is of type IV ∗.

In particular, the conclusion is that the relative log canonical model is (i) an

intermediate model for 0 < a < 1 that is, we can further contract all the components

labeled by B′i; or (ii) it is a twisted model for a = 1 that is, we also contract A′.
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Chapter I.6

Classification of relative lc models of

elliptic threefolds

Let f0 : X0 → S0 be an elliptic fibration with section from an irreducible threefold

X0 to a surface S0 and such that the generic fiber is a smooth elliptic curve. Then

one can construct a smooth model f : X → S for the elliptic threefold X0 as in [41]

satisfying:

(i) X and S are smooth;

(ii) f is flat and minimal;

(iii) the discriminant locus D ⊂ S is normal crossings;

(iv) at a smooth point p ∈ D, the singular fiber f−1(p) is of Kodaira type, with the

fiber type being locally constant near p; and
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(v) at a singular point p ∈ D, the singular fiber f−1(p) is birationally determined

(see also Remark I.6.0.1 below) by the two types of singular fibers over the two

branches of D at p.

Remark I.6.0.1. It is conjectured in [21] (Conjecture 9.8) that Kodaira’s

classification from Table I.2.1 actually extends to the class of birationally

equivalent relatively minimal elliptic threefolds. And, moreover, the classification

can be obtained by associating to the discriminant locus the non abelian gauge

algebras and their representations as in [21, Section 8].

We will call such model, f : X → S, a “Miranda smooth model”. Following [41], we

assume that S0 = S so that (locally) at a double point p of the reduced discriminant

locus we can write a minimal Weierstrass equation (for X0):

y2 = x3 + sL1
1 sL2

2 ax+ sK1
1 sK2

2 b (I.6.0.1)

where a and b are local units at p and Li ≤ 3 or Ki ≤ 5 for i = 1, 2.

In particular, over the two branches Ri : (si = 0) the generic fibers have type

(Li, Ki, Ni). Throughout this section we will write Fi
.
= f−1(Ri)red and we will use

Miranda’s terminology and say that we have a collision F1 +F2. Our choice of taking

the divisors Fi reduced will be justified in Proposition I.6.1.1.

Given a section σ : S → X we will write S instead of σ(S) and given weights

0 ≤ a, b ≤ 1, we will refer to the pair (X,S + aF1 + bF2) as an elliptic threefold

pair. Similarly, we will write (W,S ′ + aF ′1 + bF ′2) for the corresponding pair in the
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(minimal) Weierstrass model. That is, F ′i
.
= ϕ∗Fi and S ′

.
= ϕ∗S, where ϕ : X → W

is the birational map defining W .

For all the possible collisions that Miranda considers in [41] ϕ is actually a minimal

crepant resolution of the singularities of W .

The goal of this chapter is to give a classification of relative log canonical models

of elliptic threefold pairs (with respect to the fibration morphism). In particular, it

makes sense to ask when is a pair (X,S + aF1 + bF2) as above a log canonical pair.

Following Miranda analysis in [41] we observe that F1 ∩ F2 is normal crossings,

which tells us a log resolution of the pair (X,S + aF1 + bF2) is given by taking first a

log resolution of (X,S + aF1) followed by a log resolution of (X,S + bF2). It is also

important to note that by assumption S ∩Fi is a smooth point. As a consequence, a

straightforward computation of the relevant log discrepancies gives us:

Proposition I.6.0.2. Let (X,S + aF1 + bF2) be an elliptic threefold pair. Such pair

is log canonical if and only if 0 ≤ a ≤ lct(X,F1) and 0 ≤ b ≤ lct(X,F2)

Proof. Let π : Z → X be a log resolution given by taking first a log resolution of

(X,S + aF1) followed by a log resolution of (X,S + bF2). Denote by F̃i the strict

transform of Fi. We know that we can write

KZ = π∗KX +
∑

akEk

for some ak and some divisors Ek. Similarly, there are some coefficients bi and cj so

that

π∗F1 = F̃1 +
∑

biEi and π∗F2 = F̃2 +
∑

cjEj
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This data allows us to compute the log canonical threshold for the pairs (X,Fi) and

therefore also for the pair (X,S + aF1 + bF2). Note that it is enough to consider the

case a, b > 0. In particular we have

lct(X,F1) = min

{
1 + ai
bi

, 1

}
and lct(X,F2) = min

{
1 + aj
cj

, 1

}

while

lct(X,S + aF1 + bF2) = min

{
1 + ai
abi

,
1 + aj
bcj

, 1

}
since by our choice of a log resolution we have Ei 6= Ej for all i, j.

As a consequence, the pair (X,S + aF1 + bF2) is log canonical if and only if

1 ≤ min

{
1 + ai
abi

,
1 + aj
bcj

}
if and only if a ≤ min

{
1 + ai
bi

}
and b ≤ min

{
1 + aj
cj

}
.

Note that the log canonical threshold is a birational invariant and does not depend

on the choice of a log resolution.

Remark I.6.0.3. Note that using the same notation as in the proof of the previous

Proposition we find that

lct(X,F1 + F2) = min

{
1 + ai
bi

,
1 + aj
cj

, 1

}
= min{lct(X,F1), lct(X,F2)}

since Ei 6= Ej for all i, j.

Remark I.6.0.4. Note also that by the previous Remark if 0 ≤ a, b ≤ lct(X,F1 +F2),

then the pair (X,S + aF1 + bF2) is log canonical.

Remark I.6.0.5. Corollary I.3.0.9 gives an alternative proof for the "forward

direction" by taking Y = X, ∆′ = S and ∆ = aF1 + bF2.
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Corollary I.6.0.6. Let (X,S+aF1+bF2) be an elliptic threefold pair, where F1+F2 is

a divisor of fibers given by a collision In+Im, with n and m not both odd, or II+IV .

If 0 ≤ a ≤ lct(X,F1) and 0 ≤ b ≤ lct(X,F2), then the pair (W,S ′ + aF ′1 + bF ′2) is log

canonical.

Proof. This follows from the fact that for such type of collisions we have lct(X,Fi) =

lct(W,F ′i ) and hence

lct(X,S + aF1 + bF2) = lct(W,S ′ + aF ′1 + bF ′2)

Proposition I.6.0.7. Let (X,S+aF1+bF2) be an elliptic threefold pair, where F1+F2

is a divisor of fibers given by a collision In + Im, with n and m not both odd. Then

the pair (W,S ′ + aF ′1 + bF ′2) is the relative log canonical model for all 0 ≤ a, b ≤ 1

(See also Section I.6.1).

Proof. Note that the pair (W,S ′ + aF ′1 + bF ′2) satisfies Definition I.3.1.1 since we can

apply Lemma I.3.0.10 to ϕ : X → W and, moreover, for any irreducible curve γ

supported on a fiber of f ′ : W → S we have

(KW + S ′ + aF ′1 + bF ′2) · γ = 1

That is, the divisor KW + S ′ + aF ′1 + bF ′2 is f ′−ample.

It is important to observe that the Miranda smooth model is constructed by first

resolving the singularities over the R1 component. In particular, we get different
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configurations for the fiber over the double point depending on which of the numbers

n and m one calls n and which m. Although we have this non-unicity of the central

fiber, the result above tells us the relative log canonical model for collisions In + Im

does not depend on the central fiber. A fact that will be latter verified for any type

of collision in Theorem I.6.0.15.

The example below illustrates this non-unicity phenomenon. We consider the

collision I3 + I2, meaning over R1 (resp. R2) we have fibers of type I3 (resp. I2), and

also the collision I2 +I3, where now I2 and I3 are interchanged. Similarly, the latter is

the same as choosing to first resolve the singularities over R2 (for the collision I3 +I2).

It is interesting to observe that in such example the two possible models are related

by "Atiyah flops". In fact in both models the exceptional locus over the double point

is isomorphic to P1 × P1 (marked in the diagram below by ×). Now, if we fix one of

these models, then each of the two rational curves can be flopped, yielding the other

model.

Example I.6.0.8 (I3 + I2 vs. I2 + I3). Consider an elliptic threefold pair (X,S +

aF1 + bF2), where F1 + F2 is given by a collision I3 + I2 or I2 + I3. We obtain two

different configurations for the central fiber of Miranda’s smooth model, each having

five components:

αp

δp,1 δp,2 δp,3 δp,4

One configuration is given by choosing I3 (resp. I2) as the type of the generic fiber
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over R1 (resp. R2). The other one is then given by interchanging I2 and I3. The

diagrams below represent the dual graphs for such types of fiber and establish some

notation we will use:

α δ

β

δ1 δ2

For the first possible configuration we find that

αp ∼ α

1/2δp,1 + 1/2δp,4 ∼ δ

δp,2 + δp,3 + αp ∼ β

1/2δp,1 ∼ δ1

1/2δp,4 ∼ δ2

whereas for the second configuration we have

αp ∼ β

δp,1 + δp,2 ∼ δ1

δp,3 + δp,4 ∼ δ2

1/2δp,1 + 1/2δp,4 + αp ∼ α

δp,2 + δp,3 ∼ δ

In both cases the exceptional locus for X 99K X0 consists of the pair of rational
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curves δp,2 + δp,3 (in blue). In the first configuration such curves have O ⊕ O(−2)

normal bundles whilst in the second one, they have O(−1)⊕2.

We now observe that the exactly same argument as in the proof of Proposition

I.6.0.9 also applies to the following:

Proposition I.6.0.9. Let (X,S+aF1+bF2) be an elliptic threefold pair, where F1+F2

is a divisor of fibers given by a collision II + IV . Then the pair (W,S ′ + aF ′1 + bF ′2)

is the relative log canonical model for all 0 ≤ a ≤ 5/6 and 0 ≤ b ≤ 2/3 (See also

Section I.6.1).

A natural question to ask then is: What happens for 5/6 < a ≤ 1 or 5/6 < b ≤ 1?

Theorem I.6.0.15 gives us a complete description of the relative log canonical model

as the weights a and b vary.

As we have already mentioned, in the computation of the relative log canonical

model, i.e., in running the log MMP, we do not need to know what the central fiber

over p is. Moreover, given an elliptic threefold pair (X,S + aF1 + bF2) we can find

numbers a0, b0 so that the relative log canonical model is

(i) the Weierstrass model for 0 ≤ a ≤ a0 and 0 ≤ b ≤ b0,

(ii) the intermediate model (see Definition I.6.0.18) for a0 < a < 1 and b0 < b < 1,

(iii) the twisted model (see Definition I.6.0.18) for a = 1 and b = 1.

The numbers a0 and b0, as one could expect from Proposition I.6.0.2, are birational

invariants and are given by a0
.
= lct(X,F1) and b0

.
= lct(X,F2).
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Of course these are not all the possibilities for the weights a and b, but we see

that we have found a somewhat analogous description to the surface case as in [2].

Note that the above description implies that if we take a = b, then the relative

log canonical model of the pair
(
X,S + a(F1 + F2)

)
is

(i) the Weierstrass model for 0 ≤ a ≤ c0
.
= min{a0, b0} = lct(X,F1 + F2),

(ii) the intermediate model for max{a0, b0} < a < 1,

(iii) the twisted model for a = 1.

The next Proposition considers the particular case of a collision In + I∗m and a

more careful analysis of its proof is the key ingredient for proving the corresponding

general statement for any type of collision (Theorem I.6.0.15).

Proposition I.6.0.10. Given (X,S + aF1 + bF2) an elliptic threefold pair, where

F1 +F2 is a divisor of fibers given by a collision In+I∗m, let ϕ
lc : (X,S+aF1 +bF2)→

(Y, Slc + F lc
a,b) be the relative log canonical model, where we write ∆lc .= ϕlc∗∆ for ∆ a

divisor on X. Then (Y, Slc + F lc
a,b) is

(i) the (minimal) Weierstrass model for any 0 ≤ a ≤ 1 and b = 0,

(ii) given by F lc
a,b = aAlc1 + b(Alc2 +Elc

2 ) for any 0 ≤ a ≤ 1 and 0 < b < 1. That is, if

0 ≤ a ≤ 1 and 0 < b < 1, then ϕlc contracts all divisors over R1 except A1 and

it contracts all divisors over R2 except A2 and E2,0. Every fiber component not

supported on the Fi and not meeting the section is also contracted.
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(iii) given by F lc
a,b = aAlc1 + Elc

2 for 0 ≤ a ≤ 1 and b = 1. That is, if 0 ≤ a ≤ 1

and b = 1, then ϕlc contracts all divisors over R1 except A1 and it contracts all

divisors over R2 except E2,0. Every fiber component not supported on the Fi and

not meeting the section is also contracted.

Proof. First, we establish the notation for the irreducible components of the generic

and special fibers over the Ri as indicated in the diagrams below representing its

duals graphs

Generic fiber over R1
δ1,1 δ1,n−1

α1

Generic fiber over R2
ε2,0 ε2,m

α2

δ2,1

δ2,2

δ2,3

1

1

2 2 2

1

1

Fiber over p if n is even, where k = m+
n

2
.

εp,0 εp,k

αp

δp,3

δp,1

δp,2

1

1

2 2 2 2

1

1
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Fiber over p if n is odd, where k = m+
n− 1

2
.

εp,0 εp,k δp,2

δp,1

αp

22222

1

1

Note that over the In component there are n′ divisors A1, D1,1, . . . , D1,n′−1, where

n′ =
n

2
+ 1 if n is even and n′ =

n+ 3

2
if n is odd. Over the I∗m component there

are m + 5 divisors A1, D2,1, D2,2, D2,3, E2,0, . . . , E2,m if m is even and m + 4 divisors

A1, D2,1, D2,2, E2,0, . . . , E2,m if m is odd. The central fibers of each of these divisors

and a more detailed description can be found in the Appendix of [22].

The next step is then to compute the intersection numbers

(KX + S + aF1 + bF2) · γ

for any irreducible curve γ supported in a fiber of f : X → S. We find that there

exists a birational map µ : X → X̄ contracting all the curves δ2,i (and δp,i), hence the

divisors D2,i over R2.

Writing ∆̄
.
= µ∗∆ for any divisor ∆ on X and γ̄

.
= µ∗γ for any curve γ on X

we conclude that if 0 < b < 1, the morphism ϕlc : X̄ → X lc leaves only the divisors

Alci
.
= ϕlc∗ Āi and E

lc
2
.
= ϕlc∗ Ē2,0. When b = 1 the morphism ϕlc also contracts Ā2.

Finally, if b = 0, the morphism ϕlc contracts all components except the Ai and

the relative canonical model is the Weierstrass model.
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Remark I.6.0.11. Note that if γ is not supported in the Fi, then γ · Fi = 0, so that

(KX + S + aF1 + bF2) · γ = 1 if γ meets the section

and (KX +S + aF1 + bF2) · γ = 0 otherwise. In particular, in the log canonical model

all such curves not meeting the section are contracted as well.

The example below illustrates the kind of computations that were omitted in the

proof of Proposition I.6.0.10.

Example I.6.0.12. [Explicit computation] Let us consider the case of an I2 + I∗0

collision. The central fiber of Miranda’s smooth model has six components:

εp,0 εp,1

αp

δp,1

δp,2

δp,3

1

1

2 2

1

1

Over R1, that is the I2 component, there are two divisors A1 and D1,1 whose

central fibers are αp + δp,1 + 2εp,0 and δp,2 + δp,3 + 2εp,1, respectively. In particular, if

the generic fiber over R1 is given by

δ1,1
α1

1 1

it follows that

α1 ∼ αp + δp,1 + 2εp,0

δ1,1 ∼ δp,2 + δp,3 + 2εp,1
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On the other hand, over R2, that is, in the I∗0 component, there are five divisors

A2, D2,1, D2,2, D2,3 and E2,0 whose central fibers are αp, δp,1, δp,2, δp3 and εp,0 + εp,1,

respectively. As a consequence, if the generic fiber over R2 is given by

ε2,0

δ2,2α2

δ2,1 δ2,3

1

1

2

1

1

we have that

α2 ∼ αp

δ2,i ∼ δp,i for i = 1, 2, 3

ε2,0 ∼ εp,0 + εp,1

The above data allows us to compute the intersection numbers

(KX + S + aF1 + bF2) · γ
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for any irreducible curve γ supported in a fiber over R1 and/or R2:

(KX + S + aF1 + bF2) · α1 = 1

(KX + S + aF1 + bF2) · δ1,1 = 0

(KX + S + aF1 + bF2) · α2 = 1− b

(KX + S + aF1 + bF2) · δ2,i = −b

(KX + S + aF1 + bF2) · ε2,0 = 2b

(KX + S + aF1 + bF2) · αp = 1− b

(KX + S + aF1 + bF2) · δp,i = −b

(KX + S + aF1 + bF2) · εp,1 = b

(KX + S + aF1 + bF2) · εp,0 = b

Now, from the computations above we see that there exists a birational map µ :

X → X̄ contracting all the curves δp,i and δ2,i, hence the divisors D2,i over R2.

Writing ∆̄
.
= µ∗∆ for any divisor ∆ on X and γ̄ .

= µ∗γ for any curve γ on X we

compute:

(KX̄ + S̄ + aF̄1 + bF̄2) · ε̄p,0 =
1

2
b

(KX̄ + S̄ + aF̄1 + bF̄2) · ε̄p,1 = 0

(KX̄ + S̄ + aF̄1 + bF̄2) · ε̄2,0 =
1

2
b

The conclusion is that of Proposition I.6.0.10.
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Remark I.6.0.13. It is interesting to observe that the computations in the previous

example (and more generally for In + I∗0 ) do not depend on whether the curves δ2,i

are independent or not as homology classes.

Remark I.6.0.14. Note also that whether or not ϕlc contracts a curve in the fiber

over p is completely determined by some combination of irreducible curves supported

in the generic fibers of the components of the Fi.

The previous remark is the key on understanding why the relative log canonical

of an elliptic threefold pair (X,S + aF1 + bF2) does not depend on the central fiber.

After possibly taking a log resolution π : (Z, S̃ + aF̃1 + bF̃2 + Exc(π))→ (X,S +

aF1 + bF2) we get a log canonical pair. Now, each irreducible component over each

of the branches Ri has the structure of a P1-bundle and, therefore, any two fibers

are numerically equivalent. In particular, writing π−1(Fi)red as a union of irreducible

divisors:

π−1(F1)red = Y1,1 ∪ . . . ∪ Y1,k1 π−1(F2)red = Y2,1 ∪ . . . ∪ Y2,k2

we conclude that when running the log MMP we only need to consider the generic

fibers of the divisors Yi,j (i = 1, 2). That is, we only need to consider the positivity of

(KZ + S̃ + aF̃1 + bF̃2 + Exc(π)) · γi,j

for all γi,j generic fibers of the divisors Yi,j. The log canonical model contracts a

divisor Yi,j if and only if it contracts its generic fiber.
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A nice consequence is that the computations become completely analogous as the

ones found in [2] for the surface case.

Since we already have a complete description of the relative log canonical model

for the collisions In + Im and In + I∗m, by means of such analogy, we write Ai for the

unique component of F̃i meeting the section S̃ and we denote by Ei the component of

π−1(Fi) with the highest multiplicity. For all other possible collisions these are well

defined.

With such notations, given (X,S + aF1 + bF2) an elliptic threefold pair, let

ϕlc : (X,S + aF1 + bF2)→ (Z, S̃ + aF̃1 + bF̃2 + Exc(π))→
ψ

(Y, Slc + F lc
a,b)

denote the relative log canonical model. Writing ∆lc .= ψ∗∆ for any divisor ∆ on Z

we can describe the divisor F lc
a,b completely:

Theorem I.6.0.15. Given (X,S + aF1 + bF2) an elliptic threefold pair, there are

numbers a0, b0 and c0 so that the relative log canonical model (Y, Slc + F lc
a,b) is given

by:

(i) the (minimal) Weierstrass model for any 0 ≤ a ≤ a0 and 0 ≤ b ≤ b0

In particular, for any 0 ≤ a, b ≤ c0
.
= min{a0, b0}. (See also Section I.6.1)

(ii) F lc
a,b = aAlc1 + Elc

1 + b(Alc2 + Elc
2 ) for a0 < a < 1 and b0 < b < 1

(iii) F lc
a,b = aAlc1 + b(Alc2 + Elc

2 ) for 0 ≤ a ≤ a0 and b0 < b < 1

(iv) F lc
a,b = aAlc1 + bElc

2 for 0 ≤ a ≤ a0 and b = 1
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(v) F lc
a,b = aAlc1 + Elc

1 + bAlc2 for a0 < a < 1 and 0 ≤ b ≤ b0

(vi) F lc
a,b = aAlc1 + Elc

1 + bElc
2 for a0 < a < 1 and b = 1

(vii) F lc
a,b = Elc

1 + bAlc2 for a = 1 and 0 ≤ b ≤ b0

(viii) F lc
a,b = Elc

1 + b(Alc2 + Elc
2 ) for a = 1 and b0 < b < 1

(ix) F lc
a,b = Elc

1 + Elc
2 for a = 1 and b = 1

for any type of collision, except the collision II + IV . For the collision II + IV

the divisor Elc
2 appears with coefficient one in the above description. Moreover, the

numbers a0, b0 and c0 are given by the following table

Collision a0 b0 c0

In + Im 1 1 1

In + I∗m 1 0 0

II + IV 5/6 2/3 2/3

II + I∗0 5/6 0 0

II + IV ∗ 5/6 0 0

IV + I∗0 2/3 0 0

III + I∗0 3/4 0 0

Remark I.6.0.16. For the collision In + Im there are no divisors Ei and for In + I∗m

there is no E1, but we take E2 = E2,0 as in the proof of Proposition I.6.0.10.
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Remark I.6.0.17. The divisor Elc
2 appears with coefficient one for the collision II+

IV because F2 is not normal crossings and we actually have E2 ⊂ Exc(π).

For the models described by (ii) and (ix) in Theorem I.6.0.15 we use the same

terminology as introduced in [2]:

Definition I.6.0.18. Given a log canonical model (Y, Slc+F lc
a,b) of an elliptic threefold

pair, we call it a twisted model if F lc
a,b is irreducible but non-reduced (case (ix)). We

call it an intermediate model if F lc
a,b is a normal crossings union of a reduced divisor

A
.
= Alc1 +Alc2 and a non-reduced component E = Elc

1 +Elc
2 such that the section meets

the fibers along the smooth locus of A (case (ii)). We note that in the twisted model

the section meets the fibers along singular points of the total space.

Remark I.6.0.19. Note that, at least locally, we can view (X,S + aF1 + bF2) as a

family of elliptic surface pairs over Spec(C[t]) ' A1. For instance, we can identify

S with Spec(C[s1, s2]) and consider it as a family of marked curves s2 = s1 + t, with

markings at s1 = 0 and s2 = 0. Then, what Theorem I.6.0.15 says is that the relative

lc model of the pair (X,S+aF1 +bF2), viewed as a family, has as its fibers the relative

lc models of the fibers of the family (X → S → A1, S + aF1 + bF2).

As a consequence of Theorem I.6.0.15 we obtain an analogue of [3, Theorem 3.10].

We can classify relative log canonical models of (minimal) Weierstrass threefold pairs

(W,S ′ + aF ′1 + bF ′2), where W = X0 is a (minimal) Weierstrass threefold given by an

equation as in (I.6.0.1), S ′ = S is a section and F ′i = f−1
0 (Ri) (see notations in the

beginning of Section I.6).
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That is, given a pair (W,S ′ + aF ′1 + bF ′2) and a log resolution p : Z → W we

can classify the log canonical model of (Z, p−1
∗ (S ′ + aF ′1 + bF ′2) + Exc(p)) relative to

f ′ ◦ p : Z → S, where we take W = X0 and f ′ = f0.

For the collisions II + IV and In + Im this agrees with the log canonical model

of the pair (X, aF1 + bF2) relative to f : X → S, which is given by Theorem I.6.0.15

because for those types of collision we are already marking the divisor E .
= Elc

1 +Elc
2

with coefficient one. In fact for the collision II + IV we can take (Z, p) so that it fits

into a commutative diagram:

(Z, p−1
∗ (S ′ + aF ′1 + bF ′2) + Exc(p))

π

ss

p

++
(X,S + aF1 + bF2)

ϕ // (W,S ′ + aF ′1 + bF ′2)

In general we find:

Theorem I.6.0.20. Given (W,S ′+aF ′1+bF ′2) as above let (Y, Slc+F lc
a,b) be its relative

log canonical model. For any type of collisions there are numbers a0, b0 and c0 so that

the relative log canonical model is

(i) the (minimal) Weierstrass model for any 0 ≤ a ≤ a0 and 0 ≤ b ≤ b0

In particular, for any 0 ≤ a, b ≤ c0
.
= min{a0, b0}. (See also Section I.6.1)

(ii) F lc
a,b = aAlc1 + Elc

1 + bAlc2 + Elc
2 for a0 < a < 1 and b0 < b < 1

(iii) F lc
a,b = aAlc1 + bAlc2 + Elc

2 for 0 ≤ a ≤ a0 and b0 < b < 1

(iv) F lc
a,b = aAlc1 + Elc

2 for 0 ≤ a ≤ a0 and b = 1
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(v) F lc
a,b = aAlc1 + Elc

1 + bAlc2 for a0 < a < 1 and 0 ≤ b ≤ b0

(vi) F lc
a,b = aAlc1 + Elc

1 + Elc
2 for a0 < a < 1 and b = 1

(vii) F lc
a,b = Elc

1 + bAlc2 for a = 1 and 0 ≤ b ≤ b0

(viii) F lc
a,b = Elc

1 + bAlc2 + Elc
2 for a = 1 and b0 < b < 1

(ix) F lc
a,b = Elc

1 + Elc
2 for a = 1 and b = 1

Moreover, the numbers a0, b0 and c0 are birational invariants and are given by a0 =

lct(W,F ′1), b0 = lct(W,F ′2) and c0 = min{a0, b0} = lct(W,F ′1 + F ′2) as indicated in the

table below:

Collision a0 b0 c0

In + Im 1 1 1

In + I∗m 1 1/2 1/2

II + IV 5/6 2/3 2/3

II + I∗0 5/6 1/2 1/2

II + IV ∗ 5/6 1/3 1/3

IV + I∗0 2/3 1/2 1/2

III + I∗0 3/4 1/2 1/2

The notation in Theorem I.6.0.20 is as follows.

We write Ai for the unique component of p−1
∗ (F ′i ) meeting the section and we

denote by Ei the unique exceptional divisor of p that intersects Ai except for the
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collision II+ IV ∗, where E2 is the component of Exc(p) with the highest multiplicity

and E1 is still defined as before.

Remark I.6.0.21. Note that, as in Theorem I.6.0.15, for the collision In + Im there

are no divisors Ei and for In + I∗m there is no E1.

With such notations, given (W,S ′ + aF ′1 + bF ′2), if

ϕlc : (W,S ′ + aF ′1 + bF ′2)→ (Z, p−1
∗ (S ′ + aF ′1 + bF ′2) + Exc(p))→

ψ′
(Y, Slc + F lc

a,b)

denotes the relative log canonical model, Theorem I.6.0.20 describes the divisor F lc
a,b

completely: We write ∆lc .= ψ′∗∆ for any divisor ∆ on Z.

I.6.1 The non-reduced case

We now consider the case where the marked divisor F1+F2 is possibly non-reduced.

That is, with the same notations from the previous paragraphs, we take Fi
.
= f−1(Ri)

instead of considering its associated reduced divisor. We find that:

Proposition I.6.1.1. Given an elliptic threefold pair (f : X → S, S + aF1 + bF2)

(as in the previous section), with weights 0 ≤ a ≤ a0
.
= lct(X,F1) and 0 ≤ b ≤

b0
.
= lct(X,F2), the relative log canonical model is the minimal Weierstrass model

independent of the type of collision.

Proof. Note that the choice of the weights is such that (X,S + aF1 + bF2) is a log

pair (in fact log canonical). Note also that lct(X,Fi) = lct(W,F ′i ). Now, we know
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that ϕ : X → W is a minimal crepant resolution, hence

KX + S + aF1 + bF2 = ϕ∗(KW + S ′ + aF ′1 + bF ′2)

where S ′+aF ′1 + bF ′2 = ϕ∗(S+aF1 + bF2). In particular, by Lemma I.3.0.10, we have

a(E,X, S + aF1 + bF2) = a(E,W, S ′ + aF ′1 + bF ′2)

for any ϕ−exceptional divisor. But then, the pair (W,S ′ + aF ′1 + bF ′2) satisfies

Definition I.3.1.1, since

(KW + S ′ + aF ′1 + bF ′2) · γ = 1 > 0

for any irreducible curve γ supported on a fiber of f ′ : W → S. That is, KW + S ′ +

aF ′1 + bF ′2 is f ′−ample.

Remark I.6.1.2. Note that by taking 0 ≤ a, b ≤ c0
.
= min{a0, b0} = lct(X,F1 + F2)

we have that 0 ≤ a ≤ a0 and 0 ≤ b ≤ b0.

Remark I.6.1.3. Note that at least for 0 ≤ a ≤ a0 and 0 ≤ b ≤ b0 we can recover

our previous results for the collisions In + Im and II + IV since in those cases the

marked divisors are already reduced.

I.6.2 Non-Miranda type collisions

The possible collisions considered by Miranda in [41] are such that the

corresponding smooth models f : X → S are actually flat. Moreover, the birational
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morphism ϕ : X 99K W from the smooth model X to the (minimal) Weierstrass

model W is a crepant resolution of the singularities of W .

In this section we consider collisions II + II and IV + IV . These can still be

described by the corresponding equations as in (I.6.0.1), but when resolving the

singularities of X0 = W the resulting smooth model f : X → S no longer satisfies

the above mentioned properties. More precisely, f is no longer flat (although its

generic fiber is still an elliptic curve) and ϕ : X 99K W is no longer crepant. In fact,

for these two types of collisions we have that KX = ϕ∗KW + E and, further,

E ⊂ f−1(p), where p (as before) denotes the double point in the discriminant locus.

In particular, we find:

Proposition I.6.2.1. Let (X,S+aF1+bF2) be an elliptic threefold pair, where F1+F2

is a divisor of fibers given by a collision II + II, or IV + IV . Then the relative log

canonical model is the (minimal) Weierstrass model for any 0 ≤ a, b ≤ lct(X,F1+F2).

Moreover, lct(X,F1 + F2) = lct(X,Fi)

Proof. Let ∆
.
= S + aF1 + bF2 and consider ϕ : X → W the birational map from

X to the (minimal) Weierstrass model. Define ∆′
.
= ϕ∗∆. Then X and W fit into

a commutative diagram as in Lemma I.3.0.11 with X ′ = Y = W and ϕ′ = idW . In

particular, the pair (W,∆′) satisfies Definition I.3.1.1 whenever 0 ≤ a, b ≤ lct(X,F1 +

F2).

Now, an analogue of Proposition I.6.0.2 still holds for a pair (X,S + aF1 + bF2)

as in Proposition I.6.2.1. In particular, if lct(X,F1 + F2) < a ≤ 1, then the pair

83



(X,S + aF1 + bF2) is not log canonical and we need to take a log resolution π :

(Z, S̃ + aF̃1 + bF̃2 + Exc(π))→ (X,S + aF1 + bF2). Since f−1(p) is normal crossings,

we can obtain Z by first taking a log resolution of (X,F1), followed by a log resolution

of (X,F2). Note that the section S still meets Fi transversally and at smooth points.

Since (KZ + S̃+aF̃1 + bF̃2 +Exc(π)) ·γ < 0 for any curve γ supported on π−1(E),

it follows that a divisor in Z is contracted by the log canonical model if and only if its

generic fiber gets contracted. Again, we conclude that the relative canonical model

of a pair (X,S + aF1 + bF2) as above does not depend on the central fiber.

We have obtained the following:

Theorem I.6.2.2. Let (X,S+ aF1 + bF2) be an elliptic threefold pair, where F1 +F2

is a divisor of fibers given by a collision II + II or IV + IV . Then the relative log

canonical model is

(i) the (minimal) Weierstrass model for any 0 ≤ a, b ≤ lct(X,F1 + F2)

(ii) the "intermediate model" for any lct(X,F1 + F2) < a, b < 1

(iii) the "twisted model" for a = b = 1

For all other possibilities of values of a and b the conclusion is the same as for Theorem

I.6.0.15.
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Part II

Stability of pencils of plane curves
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Chapter II.1

Introduction

In this second part of the thesis we study the problem of classifying pencils of

curves of degree d in P2 using geometric invariant theory. The results presented here

consist of the content of three papers [54–56], which we reorganize in two chapters.

In Chapter II.2 we consider the action of SL(3) and we relate the stability of a

pencil of plane curves to the stability of its generators, to the log canonical threshold

of its members, and to the multiplicities of its base points, thus obtaining explicit

stability criteria.

Letting Pd denote the space of all pencils of plane curves of degree d, our main

results are given by Theorems II.1.0.1, II.1.0.2 and II.1.0.3 below.

Theorem II.1.0.1 ([55]). Let P be a pencil in Pd containing a curve Cf such that

lct(P2, Cf ) = α. If P is unstable (resp. not stable), then P contains a curve Cg such

that lct(P2, Cg) <
3α

2dα− 3
(resp. ≤).
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Theorem II.1.0.2 ([55]). If P ∈Pd is semistable (resp. stable), then lctp(P2, Cf ) ≥

3

2d
(resp. >) for any curve Cf in P and any base point p.

Theorem II.1.0.3 ([55]). Let P be a pencil in Pd. If we can find two generators Cf

and Cg of P such that multp(Cf ) +multp(Cg) >
4d

3
(resp. ≥) for some base point p,

then P is unstable (resp. not stable).

One of the ingredients in our approach consists in observing that we can sometimes

determine whether a pencil P ∈Pd is (semi)stable or not by looking at the stability

of its generators. We also prove Theorems II.1.0.4, II.1.0.5 and II.3.2.15 below:

Theorem II.1.0.4 ([55]). If a pencil P ∈ Pd has only semistable (resp. stable)

members, then P is semistable (resp. stable).

Theorem II.1.0.5 ([55]). If P ∈Pd contains at worst one strictly semistable curve

(and all other curves in P are stable), then P is stable.

Theorem II.1.0.6 ([55]). If P ∈Pd contains at worst two semistable curves Cf and

Cg (and all other curves in P are stable), then P is strictly semistable if and only if

there exists a one-parameter subgroup λ (and coordinates in P2) such that Cf and Cg

are both non-stable with respect to this λ.

In Chapter II.3, we then use these criteria and the results obtained in [54] to

provide a complete and geometric characterization of the stability of certain pencils

of plane sextics called Halphen pencils of index two (Definition II.3.1.4). Inspired by

[40], we provide a description of their stability in terms of the type of singular fibers

appearing in the associated rational elliptic surfaces (see Proposition II.3.1.9).
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The results obtained by Miranda in [40] say that the stability of a pencil P of

plane cubics is completely determined by the type of singular fibers F occurring in

the corresponding rational elliptic surface (with section). Here we prove the following

two theorems, which have the same flavor:

Theorem II.1.0.7 ([56]). Let P be a Halphen pencil of index two, which we write

as λB + µ(2C) = 0, where C is the unique cubic through the nine base points and

B corresponds to a (non-multiple) fiber F of the associated rational elliptic surface

f : Y → P1.

When C is smooth P is stable if and only if one of the following statements hold:

(i) all fibers of Y are reduced

(ii) Y contains at most one non-reduced fiber F of type I∗n or IV ∗

(iii) there exists exactly one (non-multiple) fiber F in Y of type II∗ or III∗ and B

is semistable

(iv) Y contains two fibers of type I∗0 and there is no one-parameter subgroup λ that

destabilizes the two corresponding curves simultaneously.

Similarly, when C is singular P is stable if and only if one of the following

statements hold:

(i’) all fibers of Y are reduced

(ii’) P contains at worst two strictly semistable curves and there is no one-parameter

subgroup λ that destabilizes these two curves simultaneously
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(iii’) Y contains a fiber of type IV ∗ and B is unstable

Theorem II.1.0.8 ([56]). P is semistable if and only if either every curve in P is

semistable or Y does not contain a fiber F of type II∗.

Our approach to prove Theorems II.1.0.7 and II.1.0.8 has three main ingredients:

1) the explicit constructions of Halphen pencils in Appendix A (or [54]) and the

classification from Theorems A.1.4, A.1.5 and A.1.6 (= [54, Theorem 1.2])

2) the inequalities provided by Theorem II.1.0.9 below and

3) Theorems II.1.0.1 and II.1.0.2, which relate the stability of a pencil of plane curves

of degree d to the log canonical threshold.

Theorem II.1.0.9 ([54]). If MB (resp. MF ) denotes the largest multiplicity of a

component of B (resp. F ), then

(i) lct(P2, B) ≤ 1

MB

≤ 2lct(Y, F )

(ii) if F is reduced, then
1

2
< lct(P2, B) ≤ lct(Y, F )

(iii) if MF ≥ 2 and F is not reduced, then lct(Y, F ) ≤ lct(P2, B)

In particular, we observe that an important ingredient is the study of the

singularities of a plane curve occurring in a Halphen pencil – with the log canonical

threshold (lct) playing an important role. In fact we establish a dictionary (Section

II.3.1.1) between the curves in a Halphen pencil of index two and the fibers in the

associated rational elliptic surfaces.
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Chapter II.2

Stability of pencils of plane curves,

log canonical thresholds and

multiplicities

Hacking [23] and Kim-Lee [27] observed the following simple connection between

two notions of stability, one coming from geometric invariant theory (GIT) and the

other coming from the MMP: They observed that if H ⊂ Pn is a hypersurface of

degree d and the pair
(
Pn,

n+ 1

d
H

)
is log canonical, then H is GIT semistable for

the natural action of PGL(n + 1). And if
(
Pn, (

n+ 1

d
+ ε)H

)
is log canonical for

some 0 < ε� 1, then H is stable.

In this chapter (and in [55]) we relate the GIT stability of a pencil P of plane

curves of degree d under the action of SL(3) to the log canonical threshold of pairs
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(P2, Cd), where Cd is a curve in P . Part of our approach consists in observing that

we can partially determine whether a pencil P ∈ Pd is unstable (resp. not stable)

or not by looking at the stability of its generators. Moreover, adapting the ideas

in [11, Lemma 3.3], we are also able to relate the GIT stability of a pencil P to the

multiplicities of its base points. When d = 6 we also consider a different approach (the

same as in [40]) and obtain a complete description of the stability criteria (Section

II.2.5).

II.2.1 An overview of geometric invariant theory

We first recall the relevant definitions and results from Geometric Invariant

Theory, and we point the reader to [15] for more details.

The setup consists of a reductive group G acting on an algebraic variety X and

we start by first assuming X ' Cn+1

Definition II.2.1.1. A point x ∈ X is said to be semistable for the G−action if an

only if 0 /∈ G · x.

Definition II.2.1.2. A point x ∈ X is said to be stable for the G−action if and only

if the following two conditions hold:

(i) The orbit G · x ⊂ X is closed and

(ii) The stabilizer Gx ≤ G is finite
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Definition II.2.1.3. If X ↪→ Pn is a projective variety, a point x ∈ X will be called

semistable (resp. stable) if any point x̃ ∈ Cn+1 lying over x is semistable (resp.

stable).

From now on we assume that this is the case.

Definition II.2.1.4. A one-parameter subgroup of G consists of a non-trivial group

homomorphism λ : C× → G.

Given a one-parameter subgroup λ : C× → G we may regard Cn+1 as a

representation of C×. Since any representation of C× is completely reducible and

every irreducible representation is one dimensional, we can choose a basis e0, . . . , en

of Cn+1 so that λ(t) · ei = triei, for some ri ∈ Z. Then, given x ∈ X ↪→ Pn we can

pick x̃ ∈ Cone(X) ⊂ Cn+1 lying above x and write x̃ =
∑

xiei with respect to this

basis so that λ(t) · x .
= λ(t) · x̃ =

∑
trixiei. The weights of x are the set of integers

ri for which xi is not zero.

Definition II.2.1.5. Given x ∈ X we define the Hilbert-Mumford weight of x at λ

to be µ(x, λ)
.
= min{ri : xi 6= 0}.

Remark II.2.1.6. The Hilbert-Mumford weight satisfies the following properties:

(i) µ(x, λn) = nµ(x, λ) for all n ∈ N

(ii) µ(g · x, gλg−1) = µ(x, λ) for all g ∈ G

The known numerical criterion for stability can thus be stated:
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Theorem II.2.1.7 (Hilbert-Mumford criterion). Let G be a reductive group acting

linearly on a projective variety X ↪→ Pn. Then for a point x ∈ X we have that x is

semistable (resp. stable) if and only if µ(x, λ) ≤ 0 (resp. <) for all one-parameter

subgroups λ of G.

That is, a point x ∈ X is unstable (resp. not stable) for the G−action if and only

if there exists a one-parameter subgroup λ : C× → G for which all the weights of x

are all positive (resp. non-negative).

II.2.2 Stability criterion for pencils of plane curves

As in [40], we view a pencil of plane curves of degree d as a choice of line in the

space of all plane curves of degree d. In other words, we identify the space Pd of all

such pencils with the Grassmannian Gr(2, SdV ∗), where V .
= H0(P2,OP2(1)). The

latter, in turn, can be embedded in P(Λ2SdV ∗) via Plücker coordinates. The group

SL(V ) acts naturally on V , hence on the invariant subvariety Pd, and our goal is

to describe the corresponding GIT stability conditions. Since our main tool for that

is criterion of Hilbert-Mumford, we need to know how the diagonal elements act on

such coordinates.

Concretely, choosing a pencil P ∈ Pd and two curves Cf and Cg as generators,

these represented (in some choice of coordinates) by f =
∑

fijx
iyjzd−i−j = 0 and

g =
∑

gijx
iyjzd−i−j = 0 respectively, the Plücker coordinates of P are given by all
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the 2× 2 minors

mijkl
.
=

∣∣∣∣∣∣∣∣
fij fkl

gij gkl

∣∣∣∣∣∣∣∣

Thus, the action of


α 0 0

0 β 0

0 0 γ

 ∈ SL(V ) on the Plücker coordinates is given by

(mijkl) 7→ (αi+kβj+lγ2d−i−j−k−lmijkl)

So we can now express the Hilbert-Mumford criterion for a pencil P ∈ Pd as

the vanishing of some of its Plücker coordinates (mijkl) with respect to a convenient

choice of basis. In view of Remark II.2.1.6 (ii) we assume any one-parameter subgroup

λ is normalized, meaning we choose coordinates [x, y, z] in P2 so that we have

λ : C× → SL(V )

t 7→

[x, y, z] 7→


tax 0 0

0 tay 0

0 0 taz

 ·

x

y

z



 (II.2.2.1)

for some weights ax, ay, az ∈ Z satisfying ax ≥ ay ≥ az, ax > 0 and ax + ay + az = 0.

In particular, the action of λ(t) in the Plücker coordinates is given by

(mijkl) 7→ (teijklmijkl)

where eijkl = eijkl(λ)
.
= ax(2i+ 2k + j + l − 2d) + ay(2j + 2l + i+ k − 2d).

The sign of the function µ(P , λ) does not change under these reductions and the

Hilbert-Mumford criterion becomes:
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Proposition II.2.2.1. A pencil P ∈Pd is unstable (resp. not stable) if and only if

there exists a one-parameter subgroup λ and coordinates in P2 such that if the pencil

is represented in those coordinates by (mijkl), then mijkl = 0 whenever eijkl(λ) ≤ 0

(resp. < 0).

II.2.2.1 The stability of the generators

It turns out that we are able to partially determine whether a pencil P ∈ Pd is

unstable (resp. not stable) or not by looking at the stability of its generators and, in

particular, by looking at the log canonical threshold of its members. Therefore, from

now on we will consider the actions of SL(V ) on both Pd and the space of plane

curves of degree d.

Our strategy consists in introducing an “affine" analogue of the Hilbert-Mumford

weight (see Definition II.2.5.1) and translate the numerical criterion of

Hilbert-Mumford in terms of this quantity. More precisely, given a pencil P ∈ Pd

and a curve Cf ∈ P , the idea is to use this affine weight to bound the log canonical

threshold of the pair (P2, Cf ). The definition is as follows:

Definition II.2.2.2. Given P ∈Pd and a one-parameter subgroup λ : C× → SL(V )

we define the affine weight of P at λ to be

ω(P , λ)
.
= min{(ax − az)(i+ k) + (ay − az)(j + l) : mijkl 6= 0}

The inspiration for this definition comes from Definition 2.2 in [34] and it is

justified by Lemma II.2.3.2. The notations are the same as above and, even when
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omitted, we will always choose coordinates [x, y, z] in P2 so that a one-parameter

subgroup λ is normalized. Then, stated in terms of ω(P , λ), the Hilbert-Mumford

criterion becomes:

Proposition II.2.2.3. A pencil P ∈Pd is unstable (resp. not stable) if and only if

there exists a one-parameter subgroup λ : C× → SL(V ) and a choice of coordinates

in P2 such that

ω(P , λ) >
2d

3
(ax + ay − 2az) (resp. ≥)

Proof. A pencil P ∈ Pd is unstable (resp. not stable) if and only if there exists a

one-parameter subgroup λ : C× → SL(V ) and a choice of coordinates in P2 satisfying

that for any i, j, k and l such that mijkl 6= 0 (in those coordinates) we have

ax(i+ k) + ay(j + l) + az(2d− i− j − k − l) > 0 (resp. ≥ 0)

if and only if

(ax − az)(i+ k) + (ay − az)(j + l)− 2d

3
(ax + ay − 2az) > 0 (resp. ≥ 0)

Similarly, we define an affine weight for plane curves of degree d:

Definition II.2.2.4. Given a plane curve of degree d Cf and a one-parameter

subgroup λ : C× → SL(V ) we define the affine weight of f at λ to be

ω(f, λ)
.
= min{(ax − az)i+ (ay − az)j : fij 6= 0}
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And for curves the Hilbert-Mumford criterion becomes:

Proposition II.2.2.5. A curve Cf is unstable (resp. not stable) if and only if there

exists a one-parameter subgroup λ : C× → SL(V ) and a choice of coordinates in P2

such that

ω(f, λ) >
d

3
(ax + ay − 2az) (resp. ≥)

Proof. A curve Cf is unstable (resp. not stable) if and only if there exists a one-

parameter subgroup λ : C× → SL(V ) and a choice of coordinates in P2 satisfying

that for any i and j such that fij 6= 0 (in those coordinates) we have

axi+ ayj + az(d− i− j) > 0 (resp. ≥ 0)

if and only if

(ax − az)i+ (ay − az)j −
d

3
(ax + ay − 2az) > 0 (resp. ≥ 0)

Given a pencil P ∈ Pd and a curve Cf ∈ P , it is interesting to compare the

affine weights ω(f, λ) and ω(P , λ) for a fixed one-parameter subgroup λ. We state

and prove a series of Propositions in this direction that allow us to relate the stability

of a pencil to the stability of its generators.

Proposition II.2.2.6. Given a pencil P ∈Pd and any two (distinct) curves Cf , Cg ∈

P we have that

ω(f, λ) ≤ ω(f, λ) + ω(g, λ) ≤ ω(P , λ)
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for all one-parameter subgroups λ : C× → SL(V ).

Proof. Given P and λ : C× → SL(V ), choose coordinates in P2 that normalize λ

and choose any two curves Cf and Cg of P so that P is represented by the Plücker

coordinates mijkl = fijgkl − gijfkl.

Let i, j, k and l be such that mijkl = fijgkl − gijfkl 6= 0 and

ω(P , λ) = (ax − az)(i+ k) + (ay − az)(j + l)

Then either i and j are such that fij 6= 0 or k and l are such that fkl 6= 0. In the

first case there are two possibilities: either gkl = 0, which implies gij 6= 0 and fkl 6= 0;

or gkl 6= 0. Similarly, in the second case either gij = 0, which implies gkl 6= 0 and

fij 6= 0; or gij 6= 0.

In any case we have

(ax − az)(i+ k) + (ay − az)(j + l) =
(
(ax − az)i+ (ay − az)j

)
+

+
(
(ax − az)k + (ay − az)l

)
≥ ω(f, λ) + ω(g, λ)

Proposition II.2.2.7. Given a pencil P ∈Pd, a one-parameter subgroup λ of SL(V )

and any curve Cf ∈ P, there exists a curve Cg in P such that

ω(P , λ) ≤ ω(f, λ) + ω(g, λ)
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Proof. Fix λ : C× → SL(V ) and coordinates in P2 that normalize λ. Choose any two

curves Cf and Cg of P . Let i and j be such that fij 6= 0 and

ω(f, λ) = (ax − az)i+ (ay − az)j

Replacing g by g′ = g − gij
fij
f we have gij = 0, hence mijkl 6= 0 for all k and l such

that gkl 6= 0 and it follows that

ω(P , λ) ≤ ω(f, λ) + ω(g, λ)

Corollary II.2.2.8. Given a pencil P ∈Pd, a one-parameter subgroup λ of SL(V )

and any curve Cf ∈ P there exists a curve Cg in P such that

ω(P , λ) ≤ 2 max{ω(f, λ), ω(g, λ)}

Corollary II.2.2.9. Given a pencil P ∈Pd, a one-parameter subgroup λ of SL(V )

and any curve Cf ∈ P, there exists a curve Cg in P such that

ω(P , λ) = ω(f, λ) + ω(g, λ)

Corollary II.2.2.10. If a pencil P ∈Pd has only semistable (resp. stable) members,

then P is semistable (resp. stable).

Corollary II.2.2.11. If a pencil P ∈ Pd contains only plane curves Cd such that

the pairs
(
P2, 3/dCd

)
(resp.

(
P2, (3/d+ ε)Cd

)
, 0 < ε << 1) are log canonical, then P

is semistable (resp. stable).
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Proof. As observed in [23] and [27], in this case all members of P are semistable (resp.

stable).

As a result of our comparison between ω(f, λ) and ω(P , λ) we prove Theorems

II.2.2.12 and II.2.2.13 below:

Theorem II.2.2.12. If P ∈Pd contains at worst one strictly semistable curve (and

all other curves in P are stable), then P is stable.

Proof. Given P as above, if all curves in P are stable, then P is stable by Corollary

II.2.2.10. Otherwise, let Cf be the unique strictly semistable curve in P . Given any

one-parameter subgroup λ, by Proposition II.2.2.7 there exists a curve Cg such that

ω(P , λ)

(ax − az) + (ay − az)
≤ ω(f, λ)

(ax − az) + (ay − az)
+

ω(g, λ)

(ax − az) + (ay − az)

And because Cf (resp. Cg) is strictly semistable (resp. stable) it follows that

ω(f, λ)

(ax − az) + (ay − az)
≤ d

3
and

ω(h, λ)

(ax − az) + (ay − az)
<
d

3

and hence

ω(P , λ)

(ax − az) + (ay − az)
<

2d

3

That is, P is stable.

Theorem II.2.2.13. If P ∈Pd contains at worst two semistable curves Cf and Cg

(and all other curves in P are stable), then P is strictly semistable if and only if there

exists a one-parameter subgroup λ (and coordinates in P2) such that Cf and Cg are

100



both non-stable with respect to this λ that is,

ω(f, λ)

(ax − az) + (ay − az)
=
d

3
and

ω(g, λ)

(ax − az) + (ay − az)
=
d

3

Proof. Fix P as above and note that P is semistable (Corollary II.2.2.10). First,

note that if the two inequalities above hold for some λ, then P is strictly semistable

by Proposition II.2.2.6. Thus, assume P is strictly semistable. Then there exists a

one-parameter subgroup λ (and coordinates in P2) such that

ω(P , λ)

(ax − az) + (ay − az)
=

2d

3

and, by Corollary II.2.2.8, it must exist a curve Ch in P such that

d

3
≤ max

{
ω(f, λ)

(ax − az) + (ay − az)
,

ω(h, λ)

(ax − az) + (ay − az)

}

In particular, either Cf or Ch is non-stable with respect to this λ. But Cf and Cg are

the only potentially non-stable curves in P . Therefore, either

ω(f, λ)

(ax − az) + (ay − az)
≥ d

3
(II.2.2.2)

or Ch = Cg and

ω(g, λ)

(ax − az) + (ay − az)
≥ d

3
(II.2.2.3)

In any case, we claim that the following two equalities hold

ω(f, λ)

(ax − az) + (ay − az)
=
d

3
and

ω(g, λ)

(ax − az) + (ay − az)
=
d

3
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In fact, if Ch = Cg and (II.2.2.3) holds, then

ω(g, λ)

(ax − az) + (ay − az)
=
d

3

because Cg is semistable. Thus, by Proposition II.2.2.7, inequality (II.2.2.2) must be

true also.

Now, if (II.2.2.2) holds, then

ω(f, λ)

(ax − az) + (ay − az)
=
d

3

because Cf is semistable. Thus, by Proposition II.2.2.7, we have that

ω(h, λ)

(ax − az) + (ay − az)
≥ d

3

and, by assumption, it must be the case that Ch = Cg (and (II.2.2.3) holds).

II.2.3 Stability and the log canonical threshold

We are now ready to describe how ω(P , λ) and ω(f, λ) are related to the log

canonical threshold of the pair (P2, Cf ). We begin by proving the following:

Proposition II.2.3.1. Given P ∈ Pd and any base point p of P, there exists a

one-parameter subgroup λ : C× → SL(V ) (and coordinates in P2) such that for any

curve Cf in P we have that

(ax − az) + (ay − az)
ω(P , λ)

≤ lctp(P2, Cf )
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Proof. Given P and a base point p, we can choose coordinates in P2 so that p = (0 :

0 : 1).

Given any a ∈ Q ∩ (−1/2, 1], we can let ax = 1, ay = a and az = −1 − a and

consider the one-parameter subgroup λ, which in these coordinates is normalized.

Then

(ax − az) + (ay − az)
ω(P , λ)

=
3(1 + a)

(2 + a)(i+ k) + (2a+ 1)(j + l)

for some 0 ≤ i, j, k, l ≤ d such that mijkl 6= 0.

Because f00 = 0 for any curve Cf in P , we have that m00kl = 0 for all 0 ≤ k, l ≤ d.

This implies

3(1 + a)

(2 + a)(i+ k) + (2a+ 1)(j + l)
≤ 1

for all i, j, k, l such that mijkl 6= 0.

We claim that given a ∈ Q∩(−1/2, 1], the corresponding one-parameter subgroup

λ is such that for any curve Cf in P we have

(ax − az) + (ay − az)
ω(P, λ)

≤ lctp(P2, Cf )

By contradiction, assume there exists Cf in P such that

lctp(P2, Cf ) <
(ax − az) + (ay − az)

ω(P , λ)

Write f̃(u, v) = f(x, y, 1) and assign weights ω(u)
.
= ax−az = 2+a to the variable

u and ω(v)
.
= ay − az = 2a + 1 to the variable v so that the weighted multiplicity of

f̃ is precisely ω(f, λ).
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Now, consider the finite morphism ϕ : C2 → C2 given by (u, v) 7→ (uω(u), vω(v))

and let

∆
.
= (1− ω(u))Hu + (1− ω(v))Hv + c · f̃(uω(u), vω(v))

where Hu (resp. Hv) is the divisor of u = 0 (resp. v = 0) and c ∈ Q ∩ [0, 1]. Then

ϕ∗(KC2 + c · f̃(u, v)) = KC2 + ∆

and by Proposition 5.20 (4) in [36] we know that the pair (C2, c · f̃) is log canonical

at (0, 0) if and only if the pair (C2,∆) is log canonical at (0, 0).

In particular, taking c =
ω(u) + ω(v)

ω(P , λ)
> lctp(P2, Cf ) = lct0(C2, f̃) it follows that

a(E;C2,∆) = −1 + ω(u) + ω(v)− c · ω(f, λ) < −1

where E is the exceptional divisor of the blow-up of C2 at the origin and a(E;C2,∆)

is the corresponding discrepancy.

But the above inequality is equivalent to the inequality ω(P , λ) < ω(f, λ), which

contradicts Proposition II.2.2.6.

Next, we recall the following known result:

Lemma II.2.3.2 ([35, Proposition 8.13]). Let Cf be any plane curve. Then

ω(f, λ)

(ax − az) + (ay − az)
≤ 1

lct(P2, Cf )
(II.2.3.1)

for any one-parameter subgroup λ : C× → SL(V ).

Proof. Fix any one-parameter subgroup λ : C× → SL(V ) and choose coordinates in

P2 so that λ is normalized. There are two possibilities: either ay > az (hence ax > az)

or ay = az. Let us first consider the former.
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If p .
= (0, 0, 1) /∈ Cf , then f00 6= 0, which implies ω(f, λ) = 0 and inequality

(II.2.3.1) is true.

Otherwise, we can write f̃(u, v) = f(x, y, 1) and assign weights ω(x) = ax to the

variable x, ω(y) = ay to the variable y and ω(z) = az to the variable z. Then u has

weight ax − az, v has weight ay − az and we have that the weighted multiplicity of f̃

is precisely ω(f, λ).

Proposition 8.13 in [35] tells us

ω(f, λ)

(ax − az) + (ay − az)
≤ 1

lct0(C2, f̃)

and the result follows from the fact that lct(P2, Cf ) ≤ lctp(P2, Cf ) = lct0(C2, f̃).

Finally, if we are in the situation when ay = az, then

ω(f, λ) = min{(ax − az)i ; fij 6= 0}

and the desired inequality becomes

c
.
= min{i ; fij 6= 0} ≤ 1

lct(P2, Cf )

If c = 0 or c = 1 the inequality is obvious. And if c ≥ 2, then Cf contains a line

(x = 0) with multiplicity c ≥ 2 and, again, the inequality is true.

In particular, we conclude from Corollary II.2.2.8 that:

Proposition II.2.3.3. Given P ∈Pd, and any one-parameter subgroup λ of SL(V ),

there exists Cf ∈ P such that

ω(P , λ)

(ax − az) + (ay − az)
≤ 2

lct(P2, Cf )
(II.2.3.2)
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And, as a consequence, we recover the statement from Corollary II.2.2.11:

Corollary II.2.3.4. If P ∈Pd is a pencil such that lct(P2, Cf ) ≥ 3/d (resp. > 3/d)

for any curve Cf in P, then P is semistable (resp. stable).

Proposition II.2.3.1 and Lemma II.2.3.2 together with the other results obtained

in this section, allow us to prove Theorems II.2.3.5 and II.2.3.6 below. Both results

relate the stability of P and the log canonical threshold of the pair (P2, Cf ) for Cf ∈ P .

Theorem II.2.3.5. Let P be a pencil in Pd which contains a curve Cf such that

lct(P2, Cf ) = α. If P is unstable (resp. not stable), then P contains a curve Cg such

that lct(P2, Cg) <
3α

2dα− 3
(resp. ≤).

Proof. If P is unstable (resp. not stable), then by Proposition II.2.2.3 we can choose

a one-parameter subgroup λ (and coordinates in P2) so that

2d

3
<

ω(P , λ)

(ax − az) + (ay − az)
(resp. ≤)

By Proposition II.2.2.7, we can find a a curve Cg in P such that

ω(P , λ)

(ax − az) + (ay − az)
≤ ω(f, λ)

(ax − az) + (ay − az)
+

ω(g, λ)

(ax − az) + (ay − az)

Moreover, by Lemma II.2.3.2 we have that

ω(f, λ)

(ax − az) + (ay − az)
≤ 1

lct(P2, Cf )
and

ω(g, λ)

(ax − az) + (ay − az)
≤ 1

lct(P2, Cg)

And, because lct(P2, Cf ) = α, combining the above inequalities we conclude that

2d

3
− 1

α
<

1

lct(P2, Cg)
(resp. ≤) ⇐⇒ lct(P2, Cg) <

3α

2dα− 3
(resp. ≤)
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Theorem II.2.3.6. If P ∈Pd is semistable (resp. stable), then for any curve Cf in

P and any base point p of P we have
3

2d
≤ lctp(P2, Cf ) (resp. <).

Proof. Fix P ∈ Pd and a base point p as above. Given Cf we can always find

coordinates in P2 so that p = (0 : 0 : 1) and we can choose λ as in Proposition

II.2.3.1. Because P is semistable (resp. stable) for this λ we have that

3

2d
≤ (ax − az) + (ay − az)

ω(P , λ)
(resp. <)

and the result follows from Proposition II.2.3.1.

II.2.4 Stability and the multiplicity at a base point

We now relate ω(P , λ) to the multiplicity of the generators of P at a base point.

Our result is the following:

Theorem II.2.4.1. Let P be a pencil in Pd with generators Cf and Cg. If there

exists a base point P of P such that multP (Cf ) + multP (Cg) >
4d

3
(resp. ≥), then P

is unstable (resp. not stable).

Proof. If P is any base point of P , we can always choose coordinates so that P =

(0 : 0 : 1). Let ax = 1, ay = 1, az = −2 and λ be the one-parameter subgroup

which in these coordinates is normalized. Then ω(f, λ) = 3 ·multP (Cf ) and ω(g, λ) =

3 ·multP (Cg) for any choice of generators of P , say Cf and Cg. These two equalities,
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together with Proposition II.2.2.6, imply

ω(P , λ)

(ax − az) + (ay − az)
≥ 3 · multP (Cf ) + multP (Cg)

(ax − az) + (ay − az)

And since (ax−az)+(ay−az) = 6, the result then follows from the Hilbert-Mumford

criterion (Proposition II.2.2.3).

II.2.5 Stability criterion for pencils of plane sextics

We now restrict our attention to the case d = 6, i.e. we consider pencils of plane

sextics. We begin by observing that in (II.2.2.1) we can normalize the weights so

that ax = 1, ay = a and az = −1− a for some a ∈ [−1/2, 1] ∩Q. Then the action of

λ(t) ∈ SL(V ) on the Plücker coordinates mijkl is given by mijkl 7→ teijklmijkl, where

eijkl = eijkl(a) = (2i+ 2k + j + l − 12) + a(2j + 2l + i+ k − 12)

and the Hilbert-Mumford criterion for pencils of plane sextics becomes:

Proposition II.2.5.1. A pencil P ∈ P6 is unstable (resp. not stable) if and only

if there exists a rational number a ∈ [−1/2, 1] and coordinates in P2 such that if

the pencil is represented in those coordinates by (mijkl), then mijkl = 0 whenever

eijkl(a) ≤ 0 (resp. eijkl(a) < 0).

A priori, for each choice of coordinates in P2 one would need to test all possible

values of a ∈ [−1/2, 1] ∩Q to verify the stability criterion. Because the function (for

a fixed P and a choice of coordinates)

µ(P , λ)
.
= min{eijkl(a) : mijkl 6= 0} (II.2.5.1)
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is piecewise linear, a key observation is that we only need to test its positivity for a

finite number of critical values a ∈ [−1/2, 1] ∩Q.

In other words, the conditions eijkl(a) ≤ 0 (resp. eijkl(a) < 0) divide the interval

[−1/2, 1] into finitely many subintervals [an, an+1] within which the truthfulness of the

inequality remains constant. That is, for each interval [an, an+1] we can find values of

i, j, k and l for which the inequality eijkl(a) ≤ 0 (resp. eijkl(a) < 0) remains true for

all a ∈ [an, an+1].

To find these intervals we proceed as follows. For computational reasons we first

let r = i+ k and s = j + l. Then, for each possible pair (r, s) in the set

{(r, s) ∈ {0, 1, . . . , 12} × {0, 1, . . . , 12} : r + s ≤ 12},

we test whether we can solve the inequality 2r + s − 12 + a(2s + r − 12) ≤ 0 (resp.

< 0) for the variable a imposing the restriction a ∈ [−1/2, 1].

There are
(14

2

)
such pairs so the use of a computer program comes in handy. In

Table II.2.1 below we present our results.
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Values of r and s Interval

Unstability

r = 4 and s = 5, . . . , 8 [−1/2]

r = 0, 1, 2, 3 or 4 and s = 0, . . . , 8− r [−1/2, 1]

r = 0 and s = 9 [−1/2, 1/2]

r = 1 and s = 8 [−1/2, 2/5]

r = 0 and s = 10; r = 2 and s = 7 [−1/2, 1/4]

r = 1 and s = 9 [−1/2, 1/7]

r = 0 and s = 11 [−1/2, 1/10]

r = 0, 1, 2 or 3 and s = 12− 2r [−1/2, 0]

r = 1 and s = 11 [−1/2,−1/11]

r = 2 and s = 9 [−1/2,−1/8]

r = 2 and s = 10; r = 3 and s = 7 [−1/2,−1/5]

r = 3 and s = 8 [−1/2,−2/7]

r = 3 and s = 9 [−1/2,−1/3]

r = 5 and s = 0 [−2/7, 1]

r = 5 and s = 1 [−1/5, 1]

r = 5 and s = 2; r = 6 and s = 0 [0, 1]

r = 6 and s = 1 [1/4, 1]

r = 7 and s = 0 [2/5, 1]

r = 5, 6, 7 or 8 and s = 8− r [1]
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Values of r and s Interval

Non stability

r = 0, 1, 2 or 3 and s = 0, . . . , 7− r [−1/2, 1]

r = 0, 1, 2 or 3 and s = 8− r [−1/2, 1)

r = 4 and s = 0, . . . , 3 (−1/2, 1]

r = 0 and s = 9 [−1/2, 1/2)

r = 1 and s = 8 [−1/2, 2/5)

r = 0 and s = 10; r = 2 and s = 7 [−1/2, 1/4)

r = 1 and s = 9 [−1/2, 1/7)

r = 0 and s = 11 [−1/2, 1/10)

r = 0, 1, 2 or 3 and s = 12− 2r [−1/2, 0)

r = 1 and s = 11 [−1/2,−1/11)

r = 2 and s = 9 [−1/2,−1/8)

r = 2 and s = 10; r = 3 and s = 7 [−1/2,−1/5)

r = 3 and s = 8 [−1/2,−2/7)

r = 3 and s = 9 [−1/2,−1/3)

r = 5 and s = 0 (−2/7, 1]

r = 5 and s = 1 (−1/5, 1]

r = 5 and s = 2; r = 6 and s = 0 (0, 1]

r = 6 and s = 1 (1/4, 1]

r = 7 and s = 0 (2/5, 1]

Table II.2.1: Intervals for unstability and non stability
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In summary, the intervals we find are given by Lemmas II.2.5.2 and II.2.5.3 below:

Lemma II.2.5.2. The condition eijkl(a) ≤ 0 divides the interval [−1/2, 1] into finitely

many subintervals and in order to obtain minimal conditions for unstability, it suffices

considering only the following six distinct subintervals:

(−1/3,−2/7), (−2/7,−1/5), (−1/11, 0), (1/7, 1/4), (1/4, 2/5), (1/2, 1)

Lemma II.2.5.3. The condition eijkl(a) < 0 divides the interval [−1/2, 1] into finitely

many subintervals and the subintervals that give (distinct) minimal conditions for

non-stability are such that it suffices taking a ∈ {−1/2,−2/7,−1/5, 0, 1/4, 2/5, 1}.

In particular, we can restate the criteria for unstability ( resp. non-stability) as

in Theorem II.2.5.4 (resp. Theorem II.2.5.5):

Theorem II.2.5.4. A pencil P ∈P6 is unstable if and only if there exist coordinates

in P2 so that if the pencil is represented in those coordinates by (mijkl), then mijkl = 0

whenever the (appropriate) values of i, j, k and l satisfy either one of the following

conditions:

1. (2i+ 2k + j + l − 12)− 13/42(2j + 2l + i+ k − 12) ≤ 0

2. (2i+ 2k + j + l − 12)− 8/35(2j + 2l + i+ k − 12) ≤ 0

3. (2i+ 2k + j + l − 12)− 1/12(2j + 2l + i+ k − 12) ≤ 0

4. (2i+ 2k + j + l − 12) + 3/14(2j + 2l + i+ k − 12) ≤ 0
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5. (2i+ 2k + j + l − 12) + 3/10(2j + 2l + i+ k − 12) ≤ 0

6. (2i+ 2k + j + l − 12) + 3/4(2j + 2l + i+ k − 12) ≤ 0

Theorem II.2.5.5. A pencil P ∈P6 is not stable if and only if there exist coordinates

in P2 so that if the pencil is represented in those coordinates by (mijkl), then mijkl = 0

whenever the (appropriate) values of i, j, k and l satisfy either one of the following

conditions:

1. (2i+ 2k + j + l − 12)− 1/2(2j + 2l + i+ k − 12) < 0

2. (2i+ 2k + j + l − 12)− 2/7(2j + 2l + i+ k − 12) < 0

3. (2i+ 2k + j + l − 12)− 1/5(2j + 2l + i+ k − 12) < 0

4. (2i+ 2k + j + l − 12) < 0

5. (2i+ 2k + j + l − 12) + 1/4(2j + 2l + i+ k − 12) < 0

6. (2i+ 2k + j + l − 12) + 2/5(2j + 2l + i+ k − 12) < 0

7. (2i+ 2k + j + l − 12) + (2j + 2l + i+ k − 12) < 0

Now, in order to know what is the set of values i, j, k and l for which the Plücker

coordinates mijkl vanish in Theorems II.2.5.4 and II.2.5.5 above, it is convenient to

express these values in terms of the pairs (r, s). For each pair (r, s) we let

Mrs
.
= {mijkl : i+ k = r and j + l = s}

and we obtain the following:
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Theorem II.2.5.6. A pencil P ∈P6 is unstable if and only if there exist coordinates

in P2 so that if the pencil is represented in those coordinates by (mijkl), then either

1. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

(0, 10) (0, 11) (0, 12) (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(1, 7) (1, 8) (1, 9) (1, 10) (1, 11) (2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

(2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2, 10) (3, 0) (3, 1) (3, 2) (3, 3)

(3, 4) (3, 5) (3, 6) (3, 7) (3, 8) (4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

and a number a ∈ (−1/3,−2/7) will exhibit P as unstable; or

2. Mrs = {0} for all the pairs (r, s) in the list below:

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

(0, 10) (0, 11) (0, 12) (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(1, 7) (1, 8) (1, 9) (1, 10) (1, 11) (2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

(2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2, 10) (3, 0) (3, 1) (3, 2) (3, 3)

(3, 4) (3, 5) (3, 6) (3, 7) (4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (5, 0)

and a number a ∈ (−2/7,−1/5) will exhibit P as unstable; or
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3. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

(0, 10) (0, 11) (0, 12) (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(1, 7) (1, 8) (1, 9) (1, 10) (2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

(2, 6) (2, 7) (2, 8) (3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (5, 0) (5, 1)

and a number a ∈ (−1/11, 0) will exhibit P as unstable; or

4. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

(0, 10) (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (3, 0) (3, 1)

(3, 2) (3, 3) (3, 4) (3, 5) (4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (5, 0)

(5, 1) (5, 2) (6, 0)

and a number a ∈ (1/7, 1/4) will exhibit P as unstable; or

5. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (2, 0)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (3, 0) (3, 1) (3, 2) (3, 3)

(3, 4) (3, 5) (4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (5, 0) (5, 1) (5, 2)

(6, 0) (6, 1)

and a number a ∈ (1/4, 2/5) will exhibit P as unstable; or
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6. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (1, 0)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (2, 0) (2, 1) (2, 2)

(2, 3) (2, 4) (2, 5) (2, 6) (3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (5, 0) (5, 1) (5, 2) (6, 0) (6, 1)

(7, 0)

and a number a ∈ (1/2, 1) will exhibit P as unstable.

Theorem II.2.5.7. A pencil P ∈P6 is not stable if and only if there exist coordinates

in P2 so that if the pencil is represented in those coordinates by (mijkl), then either

1. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

(0, 10) (0, 11) (0, 12) (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(1, 7) (1, 8) (1, 9) (1, 10) (1, 11) (2, 0) (2, 1) (2, 3) (2, 4) (2, 5)

(2, 6) (2, 7) (2, 8) (2, 9) (2, 10) (3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

(3, 5) (3, 6) (3, 7) (3, 8) (3, 9)

and a = −1/2 will exhibit P as not stable; or
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2. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

(0, 10) (0, 11) (0, 12) (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(1, 7) (1, 8) (1, 9) (1, 10) (1, 11) (2, 0) (2, 1) (2, 3) (2, 4) (2, 5)

(2, 6) (2, 7) (2, 8) (2, 9) (2, 10) (3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

(3, 5) (3, 6) (3, 7) (4, 0) (4, 1) (4, 2) (4, 3)

and a = −2/7 will exhibit P as not stable; or

3. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

(0, 10) (0, 11) (0, 12) (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(1, 7) (1, 8) (1, 9) (1, 10) (1, 11) (2, 0) (2, 1) (2, 3) (2, 4) (2, 5)

(2, 6) (2, 7) (2, 8) (2, 9) (3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(3, 6) (4, 0) (4, 1) (4, 2) (4, 3) (5, 0)

and a = −1/5 will exhibit P as not stable; or

4. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

(0, 10) (0, 11) (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)

(1, 8) (1, 9) (2, 0) (2, 1) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (3, 0)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (4, 0) (4, 1) (4, 2) (4, 3) (5, 0)

(5, 1)

and a = 0 will exhibit P as not stable; or
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5. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (2, 0)

(2, 1) (2, 3) (2, 4) (2, 5) (2, 6) (3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

(3, 5) (4, 0) (4, 1) (4, 2) (4, 3) (5, 0) (5, 1) (5, 2) (6, 0)

and a = 1/4 will exhibit P as not stable; or

6. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (2, 0) (2, 1)

(2, 3) (2, 4) (2, 5) (2, 6) (3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(4, 0) (4, 1) (4, 2) (4, 3) (5, 0) (5, 1) (5, 2) (6, 0) (6, 1)

and a = 2/5 will exhibit P as not stable; or

7. Mrs = {0} for all the pairs (r, s) in the list below

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (1, 0) (1, 1)

(1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (2, 0) (2, 1) (2, 3) (2, 4) (2, 5)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (4, 0) (4, 1) (4, 2) (4, 3) (5, 0)

(5, 1) (5, 2) (6, 0) (6, 1) (7, 0)

and a = 1 will exhibit P as not stable.
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II.2.5.1 A geometric description

We have completely characterized the stability of a pencil P ∈P6 in terms of its

Plücker coordinates (mijkl). But now we want to understand which are the geometric

properties unstable and non-stable pencils have. More precisely, we want to translate

the stability criteria into equations for the generators of the pencil.

Throughout this section, given an unstable (resp. not stable) pencil P ∈ P6 we

choose coordinates [x, y, z] in P2 as in Theorem II.2.5.4 (resp. II.2.5.5) and generators

Cf and Cg having defining polynomials (in these coordinates) f =
∑

fijx
iyjz6−i−j

and g =
∑

gijx
iyjz6−i−j. Then, the idea is that each vanishing condition mijkl = 0

translates into the vanishing of the coefficients of some pair Cf ′ and Cg′ of generators

(not necessarily the original pair).

To illustrate what kind of computations are involved in this process we prove

Theorem II.2.5.8 below. We use the notation 〈m1, . . . ,mn〉 to denote the subspace

of homogeneous polynomials of degree six in the variables x, y and z which is

generated by the monomials mi. Whereas 〉m1, . . . ,mn〈 denotes the subspace of

those polynomials which are generated by all the monomials which are different

from the mi.

Theorem II.2.5.8. A pencil P ∈ P6 satisfies the vanishing conditions in case 1 of

Theorem II.2.5.7 if and only if there exist coordinates in P2 and generators Cf and

Cg of P such that either

Case 1 f ∈ 〈x4z2, x4yz, x4y2, x5z, x5y, x6〉 and g is arbitrary
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Case 2 f ∈ 〈x3z3, x3yz3, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6〈

Case 3 f and g ∈ 〈xiyjz6−i−j〉, where 2 ≤ i ≤ 6, 0 ≤ j ≤ 6 and i+ j ≤ 6

Proof. Let us assume P is not stable and that its Plücker coordinates (mijkl) must

vanish for all i, j, k and l satisfying i + k = r and j + l = s for all the pairs (r, s) in

case 1 of Theorem II.2.5.7. Using the relations mijkl = −mklij and mijij = 0 we can

compute the minimal set of values {i, j, k, l} (in order) so that the mijkl vanish.

In other words, we find all integers i, j, k and l subject to the restrictions

(i) 0 ≤ i, j, k, l ≤ 6,

(ii) i+ j ≤ 6,

(iii) k + l ≤ 6, and

(iv) (i < k) ∨ (i = k ∧ j < l)

satisfying the inequality

(2i+ 2k + j + l − 12)− 1/2(2j + 2l + i+ k − 12) < 0

All possible solutions {i, j, k, l} (in order) are:
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{0, 0, 0, 1}, {0, 0, 0, 2}, {0, 0, 0, 3}, {0, 0, 0, 4}, {0, 0, 0, 5}, {0, 0, 0, 6}, {0, 0, 1, 0},

{0, 0, 1, 1}, {0, 0, 1, 2}, {0, 0, 1, 3}, {0, 0, 1, 4}, {0, 0, 1, 5}, {0, 0, 2, 0}, {0, 0, 2, 1},

{0, 0, 2, 2}, {0, 0, 2, 3}, {0, 0, 2, 4}, {0, 0, 3, 0}, {0, 0, 3, 1}, {0, 0, 3, 2}, {0, 0, 3, 3},

{0, 1, 0, 2}, {0, 1, 0, 3}, {0, 1, 0, 4}, {0, 1, 0, 5}, {0, 1, 0, 6}, {0, 1, 1, 0}, {0, 1, 1, 1},

{0, 1, 1, 2}, {0, 1, 1, 3}, {0, 1, 1, 4}, {0, 1, 1, 5}, {0, 1, 2, 0}, {0, 1, 2, 1}, {0, 1, 2, 2},

{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 0}, {0, 1, 3, 1}, {0, 1, 3, 2}, {0, 1, 3, 3}, {0, 2, 0, 3},

{0, 2, 0, 4}, {0, 2, 0, 5}, {0, 2, 0, 6}, {0, 2, 1, 0}, {0, 2, 1, 1}, {0, 2, 1, 2}, {0, 2, 1, 3},

{0, 2, 1, 4}, {0, 2, 1, 5}, {0, 2, 2, 0}, {0, 2, 2, 1}, {0, 2, 2, 2}, {0, 2, 2, 3}, {0, 2, 2, 4},

{0, 2, 3, 0}, {0, 2, 3, 1}, {0, 2, 3, 2}, {0, 2, 3, 3}, {0, 3, 0, 4}, {0, 3, 0, 5}, {0, 3, 0, 6},

{0, 3, 1, 0}, {0, 3, 1, 1}, {0, 3, 1, 2}, {0, 3, 1, 3}, {0, 3, 1, 4}, {0, 3, 1, 5}, {0, 3, 2, 0},

{0, 3, 2, 1}, {0, 3, 2, 2}, {0, 3, 2, 3}, {0, 3, 2, 4}, {0, 3, 3, 0}, {0, 3, 3, 1}, {0, 3, 3, 2},

{0, 3, 3, 3}, {0, 4, 0, 5}, {0, 4, 0, 6}, {0, 4, 1, 0}, {0, 4, 1, 1}, {0, 4, 1, 2}, {0, 4, 1, 3},

{0, 4, 1, 4}, {0, 4, 1, 5}, {0, 4, 2, 0}, {0, 4, 2, 1}, {0, 4, 2, 2}, {0, 4, 2, 3}, {0, 4, 2, 4},

{0, 4, 3, 0}, {0, 4, 3, 1}, {0, 4, 3, 2}, {0, 4, 3, 3}, {0, 5, 0, 6}, {0, 5, 1, 0}, {0, 5, 1, 1},

{0, 5, 1, 2}, {0, 5, 1, 3}, {0, 5, 1, 4}, {0, 5, 1, 5}, {0, 5, 2, 0}, {0, 5, 2, 1}, {0, 5, 2, 2},

{0, 5, 2, 3}, {0, 5, 2, 4}, {0, 5, 3, 0}, {0, 5, 3, 1}, {0, 5, 3, 2}, {0, 5, 3, 3}, {0, 6, 1, 0},

{0, 6, 1, 1}, {0, 6, 1, 2}, {0, 6, 1, 3}, {0, 6, 1, 4}, {0, 6, 1, 5}, {0, 6, 2, 0}, {0, 6, 2, 1},

{0, 6, 2, 2}, {0, 6, 2, 3}, {0, 6, 2, 4}, {0, 6, 3, 0}, {0, 6, 3, 1}, {0, 6, 3, 2}, {0, 6, 3, 3},
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{1, 0, 1, 1}, {1, 0, 1, 2}, {1, 0, 1, 3}, {1, 0, 1, 4}, {1, 0, 1, 5}, {1, 0, 2, 0}, {1, 0, 2, 1},

{1, 0, 2, 2}, {1, 0, 2, 3}, {1, 0, 2, 4}, {1, 1, 1, 2}, {1, 1, 1, 3}, {1, 1, 1, 4}, {1, 1, 1, 5},

{1, 1, 2, 0}, {1, 1, 2, 1}, {1, 1, 2, 2}, {1, 1, 2, 3}, {1, 1, 2, 4}, {1, 2, 1, 3}, {1, 2, 1, 4},

{1, 2, 1, 5}, {1, 2, 2, 0}, {1, 2, 2, 1}, {1, 2, 2, 2}, {1, 2, 2, 3}, {1, 2, 2, 4}, {1, 3, 1, 4},

{1, 3, 1, 5}, {1, 3, 2, 0}, {1, 3, 2, 1}, {1, 3, 2, 2}, {1, 3, 2, 3}, {1, 3, 2, 4}, {1, 4, 1, 5},

{1, 4, 2, 0}, {1, 4, 2, 1}, {1, 4, 2, 2}, {1, 4, 2, 3}, {1, 4, 2, 4}, {1, 5, 2, 0}, {1, 5, 2, 1},

{1, 5, 2, 2}, {1, 5, 2, 3}, {1, 5, 2, 4}

The question then is how to determine which coefficients in the defining

polynomials of the generators need to vanish.

Note that we have introduced an ordering on the Plücker coordinates coming from

the restrictions on i, j, k and l. So, the first step is to look at the equationmijkl = 0 for

the first term {i, j, k, l} in the list above, namely we look at the equation m0001 = 0.

It follows that either

(1) f00 = g00 = 0 or

(2) g00 6= 0 or

(3) f00 6= 0

Moreover, if (2) (or (3) by symmetry) holds, then taking f ′ = f − f00

g00

g we can

assume f00 = 0 and we must have f01 = 0.

The next step then is, at each of the cases above, to look at the next vanishing

condition m0002 = 0 coming from the second term {i, j, k, l} in the list. Again there
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are three possibilities: Either f00 = g00 = 0 or g02 6= 0 or f02 6= 0.

We proceed in this manner until there are no more equations mijkl = 0 to solve.

In fact our list tells us that m00kl vanish for all (appropriate) 0 ≤ k ≤ 3 and

0 ≤ l ≤ 6. Thus, our algorithm tells us that if we are in the situation of case (2), then

one of the generators belongs to 〉xkjlz6−k−l〈 for all kl such that m00kl = 0. And, by

symmetry, we reach the same conclusion if (3) holds. A similar reasoning applies to

the next set of vanishing conditions m01kl = 0 and so on.

It is important to note, however, that at each step, when solving the equations

mijkl = 0 we have to take into account whether there are or there are not previous

conditions on the coefficients fij, gij, fkl and gkl.

Following the sketched algorithm we obtain the desired geometric description of

the pencil P .

Note that the same algorithm outlined above in the proof of Theorem II.2.5.8 can

be applied more generally whenever P is unstable (resp. not stable) and satisfies

one of the vanishing conditions in anyone of the cases in Theorem II.2.5.6 (resp.

II.2.5.7). However, the computations involved are very lengthy and the assistance of

a computer is needed. And even the corresponding statements as in Theorem II.2.5.8

require several pages to be presented.

The complete geometric description of the stability conditions in terms of

equations for the generators is presented in Appendix B. And instead of exhibiting

these tiresome results we will present next (without proofs) those which are essential
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in the study of Halphen pencils of index two (Chapter II.3) and we will mostly focus

on proper pencils:

Definition II.2.5.9. A pencil P ∈ P6 is called proper if any two curves on it

intersect properly, meaning its base locus is zero dimensional, i.e. it consists of a

finite number of points.

II.2.5.1.1 Equations associated to nonstability

Theorem II.2.5.10. Let P ∈ P6 be a proper pencil which contains a curve of the

form 3L+ C, where L is a line and C is a cubic (possibly reducible). Then P is not

stable if and only if there exist coordinates in P2 and generators Cf and Cg of P such

that:

(a) f ∈ 〈x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉 with f30 6= 0 and g

satisfies

(a1) g00 = . . . = g05 = 0, g10 = . . . = g13 = 0, g20 = g21 = 0 or

(a2) g00 = . . . = g04 = 0, g10 = . . . = g13 = 0, g20 = g21 = g22 = g31 = g40 = 0

(b) f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉 with f31 6= 0 and g satisfies

(b1) g00 = . . . = g05 = 0, g10 = g11 = g12 = 0 or

(b2) g00 = . . . = g04 = 0, g10 = g11 = g12 = g20 = 0 or
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(b3) g00 = . . . = g03 = 0, g10 = g11 = g12 = g20 = g21 = g30 = 0

(c) f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉 with f32 6= 0 and either

(c1) g satisfies g00 = . . . = g03 = 0, g10 = g11 = 0 or

(c2) mijkl = 0 for i, j, k, l (in order) in the list below

{0, 3, 4, 0}, {1, 2, 4, 0}, {2, 1, 4, 0}, {3, 0, 4, 0}

and g satisfies g00 = g01 = g02 = g10 = g11 = g20 = 0

(d) f ∈ 〈x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉 with f33 6= 0 and either

(d1) g satisfies g00 = . . . = g03 = 0, g10 = 0 or

(d2) mijkl = 0 for i, j, k, l (in order) in the list below

{0, 3, 4, 0}, {1, 1, 4, 0}

and g satisfies g00 = g01 = g02 = g10 = 0 or

(d3) mijkl = 0 for i, j, k, l (in order) in the list below

{0, 2, 4, 0}, {0, 2, 4, 1}, {0, 2, 5, 0}, {0, 3, 4, 0}, {1, 1, 4, 0}, {1, 1, 4, 1}, {1, 1, 5, 0},

{2, 0, 4, 0}, {2, 1, 4, 0}, {3, 0, 4, 0}

and g satisfies g00 = g01 = g10 = 0
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Theorem II.2.5.11. Let P ∈ P6 be a proper pencil which contains a curve of the

form 2L + Q, where L is a line and Q is a quartic (possibly reducible). Then P is

not stable if and only if there exist coordinates in P2 and generators Cf and Cg of P

such that:

(a) f ∈ 〈x2z4, x2yz3, x2y2z2, x2y3z, x2y4, xiyjz6−i−j〉, with 3 ≤ i ≤ 6, 0 ≤ j ≤ 6, i +

j ≤ 6 plus f20 6= 0 and g ∈ 〈y6, xy5, x2y4, x3y3, x4y2, x5y, x6〉 (in particular, Cg is

unstable)

(b) f ∈ 〈x2yz3, x2y2z2, x2y3z, x2y4, xiyjz6−i−j〉, with 3 ≤ i ≤ 6, 0 ≤ j ≤ 6, i + j ≤ 6

plus f21 6= 0 and g satisfies

(b1) g00 = . . . = g05 = 0, g10 = . . . = g14 = 0, g20 = g21 = g22 = g30 = g31 = 0 or

(b2) g00 = . . . = g04 = 0, g10 = . . . = g13 = 0, g20 = g21 = g22 = g30 = g31 = g40 =

0

in particular, Cg is unstable.

(c) f ∈ 〈x2y2z2, x2y3z, x2y4, xiyjz6−i−j〉, with 3 ≤ i ≤ 6, 0 ≤ j ≤ 6, i + j ≤ 6 plus

f22 6= 0 and either

(c1) g satisfies g00 = . . . = g05 = 0, g10 = . . . = g13 = 0, g20 = g21 = 0 or

(c2) f30 = 0 and g satisfies g00 = . . . = g04 = 0, g10 = . . . = g13 = 0, g20 = g21 =

g22 = g30 = 0 or
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(c3) mijkl = 0 for i, j, k, l (in order) in the list below

{0, 4, 3, 0}, {1, 3, 3, 0}, {3, 0, 3, 1}, {3, 0, 4, 0}

and g satisfies g00 = . . . = g03 = 0, g10 = g11 = g12 = g20 = g21 = g22 =

g30 = 0

In particular, (0 : 0 : 1) has multiplicity ≥ 3 in Cg.

(d) f ∈ 〈x2y3z, x2y4, xiyjz6−i−j〉, with 3 ≤ i ≤ 6, 0 ≤ j ≤ 6, i + j ≤ 6 plus f23 6= 0

and either

(d1) mijkl = 0 for i, j, k, l (in order) in the list below

{0, 5, 3, 0}, {1, 3, 3, 0}, {2, 1, 3, 0}

and g satisfies g00 = . . . = g04 = 0, g10 = g11 = g12 = g20 = 0 or

(d2) mijkl = 0 for i, j, k, l (in order) in the list below

{0, 4, 3, 0}, {0, 4, 3, 1}, {0, 5, 3, 0}, {1, 3, 3, 0}, {2, 1, 3, 0}, {2, 1, 3, 1}, {2, 2, 3, 0}

and g satisfies g00 = . . . = g03 = 0, g10 = g11 = g12 = g20 = 0 or

(d3) mijkl = 0 for i, j, k, l (in order) in the list below

{0, 3, 3, 0}, {0, 3, 3, 1}, {0, 3, 4, 0}, {0, 4, 3, 0}, {1, 2, 3, 0}, {1, 2, 3, 1}, {1, 2, 4, 0},

{1, 3, 3, 0}, {2, 1, 3, 0}, {2, 1, 3, 1}, {2, 1, 4, 0}, {2, 2, 3, 0}, {3, 0, 3, 1}, {3, 0, 4, 0}

and g satisfies g00 = g01 = g02 = g10 = g11 = g20 = 0
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In particular, (0 : 0 : 1) has multiplicity ≥ 3 in Cg.

(e) f ∈ 〈x2y4, xiyjz6−i−j〉, with 3 ≤ i ≤ 6, 0 ≤ j ≤ 6, i+ j ≤ 6 plus f24 6= 0 and either

(e1) mijkl = 0 for i, j, k, l (in order) in the list below

{0, 6, 3, 0}, {1, 3, 3, 0}, {2, 0, 3, 0}

and g satisfies g00 = . . . = g05 = 0, g10 = g11 = g12 = 0 or

(e2) mijkl = 0 for i, j, k, l (in order) in the list below

{0, 4, 3, 0}, {0, 4, 3, 1}, {0, 5, 3, 0}, {1, 2, 3, 0}, {1, 2, 3, 1}, {1, 3, 3, 0}, {2, 0, 3, 0},

{2, 0, 3, 1}, {2, 1, 3, 0}

and g satisfies g00 = . . . = g03 = 0, g10 = g11 = 0 or

(e3) mijkl = 0 for i, j, k, l (in order) in the list below

{0, 3, 3, 0}, {0, 3, 3, 1}, {0, 3, 3, 2}, {0, 3, 4, 0}, {0, 4, 3, 0}, {0, 4, 3, 1}, {0, 5, 3, 0},

{1, 2, 3, 0}, {1, 2, 3, 1}, {1, 2, 4, 0}, {1, 3, 3, 0}, {2, 0, 3, 0}, {2, 0, 3, 1}, {2, 0, 3, 2},

{2, 1, 3, 0}, {2, 1, 3, 1}, {2, 2, 3, 0}

and g satisfies g00 = g01 = g02 = g10 = g11 = 0 or
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(e4) mijkl = 0 for i, j, k, l (in order) in the list below

{0, 2, 3, 0}, {0, 2, 3, 1}, {0, 2, 3, 2}, {0, 2, 4, 0}, {0, 2, 4, 1}, {0, 2, 5, 0}, {0, 3, 3, 0},

{0, 3, 3, 1}, {0, 3, 4, 0}, {0, 4, 3, 0}, {1, 1, 3, 0}, {1, 1, 3, 1}, {1, 1, 3, 2}, {1, 1, 4, 0},

{1, 1, 4, 1}, {1, 1, 5, 0}, {1, 2, 3, 0}, {1, 2, 3, 1}, {1, 2, 4, 0}, {1, 3, 3, 0}, {2, 0, 3, 0},

{2, 0, 3, 1}, {2, 0, 3, 2}, {2, 0, 4, 0}, {2, 0, 4, 1}, {2, 0, 5, 0}, {2, 1, 3, 0}, {2, 1, 3, 1},

{2, 1, 4, 0}, {2, 2, 3, 0}, {3, 0, 3, 1}, {3, 0, 4, 0}

and g satisfies g00 = g01 = g10 = 0

II.2.5.1.2 Equations associated to unstability

Theorem II.2.5.12. A pencil P ∈ P6 will satisfy the vanishing conditions in case

1 of Theorem II.2.5.6 if and only if we can find coordinates in P2 and generators Cf

and Cg of P such that

Case 1 f ∈ 〈x5z, x5y, x6〉 and g is arbitrary

Case 2 f ∈ 〈x4y2, x5z, x5y, x6〉 and g ∈〉z6, yz5, y2z4〈

Case 3 f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉 and g ∈〉z6, yz5, y2z4, y3z3〈

Case 4 f ∈ 〈x4z2, x4yz, x4y2, x5z, x5y, x6〉 and g ∈〉z6, yz5, y2z4, y3z3, y4z2〈

Case 5 f ∈ 〈x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z〈
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Case 6 f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3〈

Case 7 f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2〈

Case 8 f ∈ 〈x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2, xy4z, xy5〈

Case 9 f ∈ 〈x2y4, x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and

g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2, xy4z, x2z4〈

Theorem II.2.5.13. Let P ∈ P6 be a proper pencil which contains a curve of the

form 4L + Q, where L is a line and Q is a conic (possibly reducible). Then P is

unstable if and only if there exist coordinates in P2 and generators Cf and Cg of P

such that:

(a) f ∈ 〈x4z2, x4yz, x4y2, x5z, x5y, x6〉 plus f40 6= 0 and either g satisfies

(a1) g00 = . . . = g04 = 0 or

(a2) g00 = . . . = g03 = 0, g10 = g11 = g12 = g20 = 0 (in particular, (0 : 0 : 1) has

multiplicity ≥ 3 in Cg.).
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(b) f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉 plus f41 6= 0 and g satisfies g00 = . . . = g03 = 0.

(c) f ∈ 〈x4y2, x5z, x5y, x6〉 plus f42 6= 0 and g satisfies g00 = g01 = g02 = 0.

Theorem II.2.5.14. Let P ∈ P6 be a proper pencil which contains a curve of the

form 3L + C, where L is a line and C is a cubic (possibly reducible). Then P is

unstable if and only if there exist coordinates in P2 and generators Cf and Cg of P

such that:

(a) f ∈ 〈x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉 plus f30 6= 0 and g

satisfies

g00 = . . . = g05 = 0, g10 = . . . = g14 = 0, g20 = g21 = g22 = 0

In particular, (0 : 0 : 1) has multiplicity ≥ 3 in Cg.

(b) f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉 plus f31 6= 0 and g satisfies

g00 = . . . = g04 = 0, g10 = . . . = g13 = 0, g20 = g21 = 0

In particular, (0 : 0 : 1) has multiplicity ≥ 3 in Cg.

(c) f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉 plus f32 6= 0 and g satisfies

g00 = . . . = g04 = 0, g10 = g11 = g12 = 0

(d) f ∈ 〈x3y2z, x3y3, x4yz, x4y2, x5z, x5y, x6〉 plus f32 6= 0 and g satisfies

g00 = . . . = g03 = 0, g10 = g11 = g12 = g20 = 0

In particular, (0 : 0 : 1) has multiplicity ≥ 3 in Cg.
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(e) f ∈ 〈x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉 plus f33 6= 0 and g satisfies

g00 = . . . = g04 = 0, g10 = g11 = 0

(f) f ∈ 〈x3y3, x4yz, x4y2, x5z, x5y, x6〉 plus f33 6= 0 and g satisfies

g00 = g01 = g02 = g10 = g11 = 0

Theorem II.2.5.15. Let P ∈ P6 be a proper pencil which contains a curve of the

form 2L+Q, where L is a line and Q is a quartic (possibly reducible). If P is unstable

then there exist coordinates in P2 and generators Cf and Cg of P such that:

f ∈ 〈x2z4, x2yz3, x2y2z2, x2y3z, x2y4, xiyjz6−i−j〉

with 3 ≤ i ≤ 6, 0 ≤ j ≤ 6, i + j ≤ 6 plus f2j 6= 0 for some j = 0, . . . , 4 and (0 : 0 : 1)

has multiplicity ≥ 3 in Cg.
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Chapter II.3

Stability of Halphen pencils of index

two

Building in the results we obtained in [54] and [55], in this chapter (see also

[56]) we completely describe the stability of Halphen pencils of index two as points

in the Grassmannian Gr(2, 28) (see Sections II.2.2 and II.2.5). These are classical

geometric objects that were first introduced by the French mathematician Georges

Henri Halphen in 1882 [24]. They consist of pencils of plane curves of degree six

with exactly nine base points (possibly infinitely near) of multiplicity two (Definition

II.3.1.4). Inspired by [40], we provide a complete and geometric characterization of

their stability in terms of the types of singular fibers appearing in the associated

rational elliptic surfaces.

In general, a Halphen pencil (of index m) corresponds to a rational surface Y that
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admits a genus one fibration f : Y → P1 with exactly one multiple fiber of multiplicity

m (see Section II.3.1 below). Here we are interested in the case m = 2.

Surprisingly, Halphen pencils have appeared in [7] in the solution of a problem in

Diophantine geometry and a generalization to higher dimensions has been considered

in [12] and [13]. Other possible applications include the study of certain K3 surfaces

[1], [57] and the construction of: F-theory compactifications [29],[30], and discrete

Painlevé equations [49].

II.3.1 Halphen pencils and rational elliptic surfaces

In this section we present a brief discussion on rational surfaces Y that admit a

genus one fibration f : Y → C. These will be called rational elliptic surfaces and

we will always make the assumption that Y is relatively minimal. Recall that, by

definition, a rational surface is a surface (smooth and complete) Y which is

birationally equivalent to P2.

We begin by proving two general results about rational elliptic surfaces. We first

show any rational elliptic surface must be fibered over P1 and we compute its Hodge

numbers:

Proposition II.3.1.1. If a rational surface Y admits a genus one fibration f : Y → C

(over k = C), then C ' P1 and some classical invariants are encoded by the Hodge

diamond:
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1

0 0

0 1 + 9 0

0 0

1

Proof. Note that because Y is rational we have that k(Y ) ' k(x0, x1, x2) = k(P2),

which is a pure transcendental extension of k = C that contains k. Now, the surjective

map f induces an inclusion of function fields k(C) ⊂ k(Y ), so by Luroth’s theorem

we conclude that C ' P1 (see e.g. Hartshorne page 303, Example 2.5.5).

Next we compute the Hodge numbers of Y . We first note that Y is smooth and

complete, hence h0,0 = h2,2 = 1. Now, the Hodge numbers h1,0 = h0,1 = h2,1 =

h1,2 and h2,0 = h0,2 are birational invariants and since Y is rational, it follows that

h1,0(Y ) = h1,0(P2) = 0 and h2,0(Y ) = h2,0(P2) = 0. Finally, we have that K2
Y = 0, so

it follows from Noether’s formula that e(Y ) = 12, hence h1,1 = 10. Here e(Y ) denotes

the topological Euler characteristic of Y .

In fact we will see in Proposition II.3.1.9 that f is given by | − mKY |, where

m = dX is the index of f (Definition I.2.0.4). In particular, if a rational surface

admits a genus one fibration, then such structure is unique. We will also see that

m agrees with the multiplicity of the unique multiple fiber (if there is no section) or

equals 1 (if there is a section). And, moreover, Y can be obtained as a nine-point

blow-up of P2. The latter is actually a consequence of the more general result stated
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next:

Lemma II.3.1.2 ([25, Lemma 4.2]). Let Y be a smooth rational surface having an

irreducible curve F that is linearly equivalent to a positive multiple of −KY . If 9 −

K2
Y ≥ 2, then Y is obtained by consecutively blowing-up precisely 9 − K2

Y (possibly

infinitely near) points of P2.

Whereas the fact that any rational elliptic surface of index m > 1 has a unique

multiple fiber of multiplicity m follows from:

Lemma II.3.1.3 ([16, Proposition 5.61,(iii)]). Let f : Y → P1 be a rational elliptic

surface, then f has at most one multiple fiber.

Proof. By the canonical bundle formula we have

ωY = f ∗
(
OP1(−1)

)
⊗OX

(∑
p

(m(p)− 1)Yp

)

where m(p) denotes the multiplicity of the fiber Yp at a point p ∈ P1. Thus, for any

n ∈ N it follows that

nKY ∼ n ·

(
−1 +

∑
p

m(p)− 1

m(p)

)
F

where F is any fiber of f . Now, because no multiple of KY can be effective, we must

have
∑
p

m(p)− 1

m(p)
< 1 and the latter implies m(p) = 1 except for at most one point

p ∈ P1.

Now, before we can state and prove Proposition II.3.1.9 we need to first introduce

some definitions and notations.
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Definition II.3.1.4. A Halphen pencil of index m is a pencil of plane curves of

degree 3m through nine (possibly infinitely near) singular points P1, . . . , P9 of

multiplicity m.

Remark II.3.1.5. Note that the generic fiber of a Halphen pencil (of index m) is a

genus one curve.

Definition II.3.1.6. An irreducible plane curve of degree 3m, with nine points

(possibly infinitely near) of multiplicity m and of genus one is called a Halphen

curve of index m.

The next two Lemmas tell us rational elliptic surfaces and Halphen pencils are

closely related:

Lemma II.3.1.7 ([5]). If f : Y → P1 is a rational elliptic surface of index m, then

the image of the generic fiber of | −mKY | under ANY birational morphism Y → P2

is a Halphen curve of index m.

Lemma II.3.1.8 ([5]). If C is a Halphen curve of index m ≥ 2, then the blow-up of

its nine singular points (of multiplicity m) is a rational elliptic surface of index m.

In fact there is a one-to-one correspondence between Halphen pencils (of index

m) and rational elliptic fibrations (of index m):

Proposition II.3.1.9 ([16, Theorem 5.6.1], [17, Main Theorem 2.1]). Let f : Y → P1

be a rational elliptic surface of index m and let F be a choice of a fiber of f , then
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there exists a birational map π : Y → P2 so that f ◦π−1 is a Halphen pencil (of index

m) and, moreover, B .
= π(F ) is a plane curve of degree 3m:

F ⊂ Y π //

f
��

P2 ⊃ B

yy
P1

Conversely, given a Halphen pencil of index m, taking the minimal resolution of its

base points we get a rational elliptic surface of index m.

Proof. Note that if we are given a Halphen pencil of index m, then unwinding the

definitions, it is easy to see that if we consider the minimal resolution of the base

points in the pencil, then we will get a rational elliptic surface of index m. So, we

will only prove the forward statement is true.

Let f : Y → P1 be rational elliptic surface of index m. We will first show

f : Y → P1 is given by | −mKY | and then we will show Y is a nine-point blow-up of

P2.

Since Y does not have a section, by Lemma II.3.1.3 we know that Y has a unique

multiple fiber mE. Note that we are assuming the index of f : Y → P1 is m. Now,

by the canonical bundle formula for elliptic surfaces,

KY ∼ f ∗OP1(−1) + (m− 1)E

Note that −1 = χ(OY ) − 2 · χ(OP1). Moreover, f ∗OP1(1) ∼ mE. Thus, KY ∼ −E

and therefore, the anti-pluricanonical map given by | − mKY | is isomorphic to the

original fibration f up to projective equivalence of the base.
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Now, because −mKY is nef, for any non-singular rational curve C on Y we have

that

C · F = −mC ·KY = m · (C2 + 2) ≥ 0

where F is a fiber of f . This implies C2 ≥ −2, which further implies Y can be blown

down to P2 or F0 = P1 × P1 or F2.

The latter statement follows from Castelnuovo’s contraction theorem (see e.g. [4]):

If Y has no (−1)-curves, then Y is minimal, hence it is isomorphic to either P2 or Fn

for some n 6= 1 and, since C2 ≥ −2 for any smooth rational curve C on Y , it must be

the case that n = 0 or n = 2. On the other hand, contracting all (−1)−curves on Y

we obtain a birational morphism φ : Y → Ỹ , where Ỹ is a minimal rational surface.

That is, Ỹ is isomorphic to either P2 or Fn for some n 6= 1. Now, n cannot be grater

than 2, because if we look at the proper transform of the negative section under φ,

then such curve satisfies C2 ≤ −n < −2, a contradiction. Thus, n ≤ 2.

Note that F1 is not minimal and if either Y ' P2 or Ỹ ' P2 we are done, there is

nothing more to prove. Therefore, it suffices to assume there is a birational morphism

φ : Y → Fn for n = 0 or n = 2. Now, because φ factors through ψ : BlxFn
.
= Fn →

Fn, where x is any indeterminacy point for φ−1, we get the desired birational map

π : Y → P2 by constructing a map Fn → P2:

Y //

π ��

φ

  
Fn

ψ //

��

Fn

P2

Explicitly, if n = 2 we can go from F2 to P2 by blowing down ψ−1(L) and ψ−1(C),
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where L is the ruling through x and C is the (−2) section. Note that in this case

we are taking x disjoint from the negative section. Otherwise, we would obtain a

smooth rational curve having self-intersection smaller than −2, which we know it

can’t happen. Finally, if n = 0 we can go from F0 to P2 by blowing down the

proper transform of the two rulings at x. That is, in any case we see we can actually

construct the desired birational map π : Y → P2, which is a nine-point blow-up

(9 = ρ(Y )− ρ(P2) = h1,1(Y )− h1,1(P2)).

Moreover, by construction π(F ) ∼ π(−mKY ) ∼ 3mH ∈ OP2(3m). That is, the

image of any fiber under π is a plane curve of degree 3m. Further, we have that

−E ∼ KY ∼ π∗KP2 + E1 + . . .+ E9 ∼ −3L+
∑

Ei

where the Ei are the exceptional divisors over the 9 base points Pi ∈ P2 and L is the

proper transform of a line in P2 (say H ∈ OP2(1)).

Note also that by construction any exceptional curve R on Y satisfies R · F = m

and π(F ) has nine m-multiple base points.

Corollary II.3.1.10. Any Halphen pencil of index m contains exactly one cubic

of multiplicity m, which corresponds to the unique multiple fiber in the associated

rational elliptic surface (Lemma II.3.1.3). Since we are working in characteristic

zero, the cubic corresponds to a fiber of type In for some n ≤ 9 [16, Proposition

5.1.8]. If none of the base points are singular points of the cubic, then we can further

restrict to n ≤ 3.

Remark II.3.1.11. By Lemma I.2.1.6 we know that any rational elliptic surface
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Y → P1 of index m admits a multisection of degree m. Any such multisection is

mapped by the blowing-down π : Y → P2 to either a base point of the corresponding

Halphen pencil or to a curve which, outside the base points, intersects the generic

member of the pencil at exactly m points.

Finally, as a consequence of Lemma I.2.1.4, one proves the following result, which

allows us to describe which are the possible types of singular fibers appearing in a

rational elliptic surface (Proposition II.3.1.13 below).

Theorem II.3.1.12 ([16, Corollary 5.4.7]). Let J → P1 be a rational elliptic surface

with section. Given m ≥ 1 and a closed point p ∈ P1 such that Jp is of type In, 0 ≤

n ≤ 9, there exists a rational elliptic surface Y → P1 of index m with unique multiple

fiber Yp = mY p satisfying Y p ' Jp. Moreover, [Y ] is an element of order m in

H1(P1,J ), the group of isomorphism classes of torsors over the generic fiber Jη.

Proof. Let J → P1 be a rational elliptic surface with section and let us denote the

function field of P1 by k. Fix m ≥ 1 and choose p ∈ P1 so that Jp is either smooth

or of multiplicative type. Then there exists a non-trivial element εm of order m in

the group J0
p , the connected component of J#

p intersecting the section1. Translation

by this element defines an automorphism σεm of J#
p of order m, so that the action of

J#
p on the quotient J#

p /(σεm) has a stabilizer ' Z/mZ. Now, such quotient defines a

unique isomorphism class in WC(J#
p /k) and, therefore, a unique isomorphism class

in WC(Jp(p̄)/kp) via base change. Denote such class by [Y (p)]. Then, by Lemma

1In fact J#
p [m] ' (Z/mZ)b1(Jp).
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I.2.1.4 , there is a unique class [Y ] in H1(P1,J ) that is uniquely determined by the

(only) non-zero local invariant τp([Y ]) = [Y (p)]. By construction, f : Y → P1 has a

unique multiple fiber Yp = mYp (with Y p ' Jp) and the order of [Y ] in H1(P1,J ) is

m. Finally, to see Y is rational note that any surface X in H1(P1,J ) has the same

Hodge diamond as J ; thus, pg(Y ) = q(Y ) = 0. Moreover, by the canonical bundle

formula (applied to Y → P1) we have that −mKY ∼ F , where F is any fiber of f ;

hence, the plurigenera h0(Y, nKY ) vanish for all n ≥ 1.

As already mentioned in the text, it is well known that the associated Jacobian

fibration J → P1 (see Section I.2.1) of a rational elliptic surface Y → P1 is also a

rational elliptic fibration, but with a section [16, Proposition 5.6.1 (ii)]. Moreover, the

so called Shioda-Tate formula applied to the Jacobian fibration J → P1 implies that

the possible singular fibers occurring on J (hence on Y ) can have at most 9 irreducible

components. In particular, following Kodaira’s classification, if F is a singular fiber

of a rational elliptic surface Y → P1, then F is of type In for n ≤ 9, II, III, IV, I∗n for

n ≤ 4, II∗, III∗ or IV ∗. In fact, given any integer m > 1 any type in this list can be

realized by some rational elliptic surface Y → P1 of index m. More precisely,

Proposition II.3.1.13. If Yp is a non-multiple fiber of a rational elliptic fibration

Y → P1 of index m, then b2(Yp) ≤ 9 and any Kodaira type satisfying this condition

can be realized.

Proof. It is known [16, Corollary 5.6.6],[25, Proposition 6.1] that all such types can

be realized as a (non-multiple) fiber of a rational elliptic fibration f ′ : Y ′ → P1 with

142



a section.2 Therefore, it is sufficient to prove that given a rational elliptic surface

f ′ : Y ′ → P1 with a section one can construct a rational elliptic surface f : Y → P1

of index m whose Jacobian fibration is precisely f ′ : Y ′ → P1. This is the content of

Theorem II.3.1.12 above. Note that f and f ′ have the same type of (non-multiple)

singular fibers (see e.g. [16, Theorem 5.3.1]).

II.3.1.1 The curves in a Halphen pencil

We will now establish a dictionary between the curves in a Halphen pencil and

the fibers in the corresponding rational elliptic surface. In particular, we will provide

a description of the singularities of a plane curve in a Halphen pencil. But first we

need to introduce some notations and deduce some equations.

We will fix a Halphen pencil of index m and we will denote it by P . The

corresponding rational elliptic surface will be denoted by f : Y → P1 and

π : Y → P2 will denote the blow-up at the nine base points of P .

If F is any (non-multiple) fiber of Y we will denote by B the corresponding plane

curve of degree 3m, i.e. π(F ). Further, mC will denote the unique multiple cubic of

P and mE will denote the unique multiple fiber of f .

Because −KY is nef, every smooth rational curve R on Y has self-intersection

R2 ≥ −2 (adjunction formula). This implies we can write the set of base points of P
2In fact all such types, except types I7 and I∗3 , can be realized as a (non-multiple) fiber of an

extremal rational elliptic fibration with a section [16, Theorem 5.6.2].
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as in [8, Section 2]:

{P (1)
1 , . . . , P

(a1)
1 , . . . , P

(1)
k , . . . , P

(ak)
k } (II.3.1.1)

where a1 + . . . + ak = 9, P (1)
j are points in P2 and P

(i+1)
j is infinitely near to the

previous point P (i)
j (of order 1) (see Definition II.3.1.14 below).

Definition II.3.1.14. Given X a smooth algebraic variety of dimension n > 1 and

x = x(1) ∈ X a closed point, consider π : X̃
.
= BlxX → X the blow-up of X at x.

A closed point x(2) ∈ X̃ lying in E = π−1(x) is called an infinitely near point to x

of order 1. Inductively, an infinitely near point to x of order k is an infinitely near

point (of order 1) to an infinitely near point (to x) of order k − 1.

Moreover, if C is smooth and we choose a flex point as the origin for the group

law ⊕ on C, then [8]:

a1P
(1)
1 ⊕ . . .⊕ akP (1)

k = εm

where εm is a torsion point of order m in C (w.r.t ⊕).

Expressing the base points of P as in (II.3.1.1) is the same as saying that each

exceptional curve Ej
.
= π−1(P

(1)
j ) consists of a chain of (−2) curves of length (aj − 1)

with one more (−1) curve at the end of the chain. The latter a multisection of degree

m.

Thus, whenever we write

F = F + d
(1)
1 E

(1)
1 + . . .+ d

(a1−1)
1 E

(a−1)
1 + . . .+ d

(1)
k E

(1)
k + . . .+ d

(ak−1)
k E

(ak−1)
k (II.3.1.2)

where F denotes the strict transform of B under π and each E
(i)
j is the
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π-exceptional divisor over the base point P (i)
j ; we have the following (dual) picture

for the components of Ej appearing in the fiber F :

d
(1)
j E

(1)
j d

(2)
j E

(2)
j

. . .

d
(aj−1)

j E
(aj−1)

j

Figure II.3.1: Chains of exceptional rational curves appearing in F

Because the chains Ej are disjoint from each other, it follows that:

Lemma II.3.1.15. If we color the nodes of the dual graph of F corresponding to the

components coming from B in blue and the nodes corresponding to the exceptional

components d(i)
j E

(i)
j in black, then every black node is connected to at most two other

black nodes.

This simple observation has some interesting consequences like Propositions

II.3.1.16 and II.3.1.17 below. In Appendix A we also use Lemma II.3.1.15

repeatedly in order to characterize which curves B can yield a fiber of type II∗, III∗

or IV ∗ when m = 2.

Proposition II.3.1.16. If F is of type II∗, III∗ or IV ∗, then B .
= π(F ) cannot be

reduced.

Proof. If B were reduced, then coloring the dual graph of F as in Lemma II.3.1.15

we would obtain a black node which is connected to more than two black nodes.

Proposition II.3.1.17. If F is of type II∗, then MB ≥ 3, where MB denotes the

largest multiplicity of a component of B.
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Proof. Again, we look at the dual graph of F . Assuming MB < 3 contradicts Lemma

II.3.1.15.

Writing F as in (II.3.1.2) we can further deduce Equation (II.3.1.3) below, which

computes the number of components of F .

Proposition II.3.1.18. If nF and nB denote the number of components of F and

B, respectively, then

nF = nB+
k∑
j=1

(aj−1)−nE\C = nB+
k∑
j=1

aj−k−nE\C = nB+9−k−nE\C (II.3.1.3)

where nE\C denotes the difference between the number of components of E and the

number of components of C.

The type of the multiple fiber mE imposes restrictions on the numbers nE\C

appearing in Equation II.3.1.3 above. For instance, whenever m > 1 we have that

Lemma II.3.1.19. If F is of type IV ∗, then nE\C ∈ {0, 1, 2} and if F is of type III∗

(resp. II∗), then nE\C ∈ {0, 1} (resp. nE\C = 0).

Proof. If m > 1 and F is of type IV ∗, III∗ or II∗, then the classification in [43] tells

us the unique multiple fiber mE of Y can be realized as the strict transform of mC.

If F is of type IV ∗, then E is of type I0, I1, I2 or I3. Whereas if F is of type III∗

(resp. II∗), then E is of type I0, I1 or I2 (resp. I0 or I1).

Remark II.3.1.20. If m = 1 and B is any given curve in P, then we can always take

the other generator of P to be a smooth cubic. In particular, we can always assume

that nE\C = 0 in Equation (II.3.1.3).
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We can also write

KY = π∗KP2 + b
(1)
1 E

(1)
1 + . . .+ b

(a1)
1 E

(a1)
1 + . . .+ b

(1)
k E

(1)
k + . . .+ b

(ak)
k E

(ak)
k

and

π∗B = F + c
(1)
1 E

(1)
1 + . . .+ c

(a1)
1 E

(a1)
1 + . . .+ c

(1)
k E

(1)
k + . . .+ c

(ak)
k E

(ak)
k

and we know how to compute each of the multiplicities b(i)
j

.
= b

(i)
j (B), c

(i)
j

.
= c

(i)
j (B)

and d(i)
j

.
= d

(i)
j (B) rather explicitly.

For any base point P (1)
j , the induced pencil on the surface obtained by blowing-up

P
(1)
j is

(π
(1)
j )∗P −mE(1)

j

where π(1)
j is the blow-up map. In particular, given any curve B of P , the induced

member is

B
(1)
j + (m

P
(1)
j

(B)−m)E
(1)
j

where B
(1)
j is the strict transform of B under π

(1)
j and m

P
(1)
j

(B) denotes the

multiplicity of the point P (1)
j on the curve B.

In other words, d(1)
j = m

P
(1)
j

(B)−m and, more generally,

d
(i)
j = d

(i−1)
j +m

P
(i)
j

(B)−m

where m
P

(i)
j

(B) denotes the multiplicity of the point P (i)
j on the strict transform of

the curve B under the blow-up of P (1)
j , . . . , P

(i−1)
j .

On the other hand, we also know that c(1)
j = m

p
(1)
j

(B) and

c
(i)
j = c

(i−1)
j +m

P
(i)
j

(B) = m
P

(1)
j

(B) + . . .+m
P

(i)
j

(B) (II.3.1.4)
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Thus,

d
(i)
j = c

(i−1)
j +m

P
(i)
j

(B)−i·m = c
(i)
j −i·m = m

P
(1)
j

(B)+. . .+m
P

(i)
j

(B)−i·m (II.3.1.5)

In particular,

d
(i)
j ≤ i · (m

P
(1)
j

(B)−m) ≤ i · 2m (II.3.1.6)

And the condition d(aj)
j = 0 implies

m
P

(1)
j

(B) + . . .+m
P

(aj)

j

(B) = aj ·m (II.3.1.7)

Therefore, whenever C is smooth at the base point P (1)
j , using Noether’s formula

[19] we obtain

I
P

(1)
j

(B,C) = aj ·m (II.3.1.8)

where I
P

(1)
j

(B,C) denotes the intersection multiplicity of B and C at the point P (1)
j .

Lastly, we have b(i)
j = i for all j = 1, . . . k and i = 1, . . . , aj.

II.3.1.1.1 The (unique) multiple cubic

The cubic C is smooth at every base point of P if and only if π restricts to

an isomorphism E ' C. This implies any π−exceptional curve must be either a

multisection or a component of F .

We also prove a partial converse of this statement:

Lemma II.3.1.21. For any index m and any type of fiber we have

d
(1)
j > 0⇒ m

P
(1)
j

(mC) = m
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That is, if the exceptional curve E(1)
j appears as a component in F (with multiplicity

d
(1)
j > 0) then C is smooth at the point P (1)

j .

Proof. If the exceptional curve E(1)
j appears as a component in F , then mE(1)

j cannot

appear as a component of the multiple fiber mE. Hence m
P

(1)
j

(mC)−m = 0.

Corollary II.3.1.22. If C is singular at a base point P (1)
j , then m

P
(1)
j

(B) = m.

Moreover, at the point P (1)
j the curve B consists of a single component (branch) with

multiplicity m.

Proof. It follows from Lemma II.3.1.21 that if C is singular at a base point P (1)
j , then

E
(1)
j is not a component of F , hence d(1)

j = 0, which further implies m
P

(1)
j

(B) = m.

The last statement is obvious, otherwise one would need to blow-up more than one

point lying in E(1)
j in order to separate P .

Since we are working over a field of characteristic zero, the unique multiple fiber

mE can only be of multiplicative type, i.e. of type In. If n ≤ 3, then mE can be

realized as the strict transform (under π) of the unique multiple cubic mC. But if

n > 3, then, necessarily, C must be singular at a base point of P . In other words,

Lemma II.3.1.23. If Y contains a multiple fiber of type In with 4 ≤ n ≤ 9, then C

is singular at a base point of P.

Proof. If C is smooth at every base point of P , then the corresponding multiple fiber

on Y is given bymC+m·
∑
i,j

(m
P

(i)
j

(C)−1)E
(i)
j = mC, where C is the strict transform

of C under π and m
P

(i)
j

(C) = 1 is the multiplicity of P (i)
j on the strict transform of
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C under the blow-up of P (1)
j , . . . , P

(i−1)
j . That is, the multiple fiber of Y is simply

given by the strict transform of mC. But each of the fibers In(4 ≤ n ≤ 9) have at

least four components and hence the corresponding multiple fiber cannot be realized

as strict transforms of a multiple cubic in the plane, a contradiction.

When C is singular at a base point of P , it is also useful and interesting to

understand how singular it can be.

Proposition II.3.1.24. For any index m we have that lct(P2,mC) =
1

m
.

Proof. If C is irreducible, then there is nothing to prove. Otherwise, we claim that C

consists of either a conic and a line intersecting it transversally or three distinct lines

in general position (i.e. not concurrent at a point).

Clearly C cannot be non-reduced so we must exclude the following three cases:

(a) a cusp

(b) a conic and a tangent line

(c) three concurrent lines

Because the unique multiple fiber of Y can only be of type In, n ≤ 9, in any of the

above cases the singular point of C must be a base point of the pencil P . Moreover,

since (c) can be obtained as soon as one blow-up (of the tangency point) is performed

in a cubic as in (b) and, in turn, (b) can be obtained as soon as one blow-up (of

the cusp) is performed in a cubic as in (a), it suffices to consider only case (c). But

blowing-up the concurrency point yields a component with multiplicity 2m, which is
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an absurd. Such component is not a multisection of degree m and it cannot be a

component in the multiple fiber either.

Proposition II.3.1.25. If F is of type IV ∗ or III∗, then C is singular at most one

base point of P.

Proof. From the proof of Proposition II.3.1.24 we know that C is reduced and either

C is irreducible or it consists of a conic and a line intersecting transversally or three

lines in general position. Moreover, from the classification in [43] we also know that if

F is of type IV ∗ (resp. III∗), then the multiple fiber mE can only be of type I0, I1, I2

or I3 (resp. I0, I1 or I2). Now, if C were singular at more than one base point of P ,

then C would necessarily consist of a conic and a line intersecting transversally and

the two intersecting points would be base points of P . But then we would need to

blow-up each of those two points at least twice, which would yield at least two more

components in the multiple fiber. That is, mE would be of type In with n ≥ 4, a

contradiction.

Remark II.3.1.26. If F is of type II∗, then C must be smooth at every base point

of P, because E is of type I0 or I1 [43]. In particular, E (hence C) is irreducible, π

restricts to an isomorphism E ' C and C cannot be singular at any base point of P.
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II.3.1.1.2 The singularities of B and the log canonical threshold

We are now ready to study the singularities of the curve B in terms of the type of

the (non-multiple) fiber F . We investigate the multiplicities of B at the base points

of P and we compute bounds for the log canonical threshold of the pair (P2, B) by

establishing some relations between the log canonical thresholds of the pairs (Y, F )

and (P2, B).

We begin by proving the following Lemma:

Lemma II.3.1.27. If P does not contain an infinitely near point as a base point (i.e

aj = 1 for all j = 1, . . . , k), then k = 9 and F = F +
9∑
j=1

(m
P

(1)
j

(B)−m)E
(1)
j = F .

Proof. If aj = 1 for all j = 1, . . . , k, then it is clear that k = 9, since a1 + . . .+ak = 9.

Moreover, 0 = d
(aj)
j = d

(1)
j = m

P
(1)
j

(B)−m for all j = 1, . . . , 9.

Corollary II.3.1.28. Let SF denote the sum of all the multiplicities of the

components of a fiber F and let nF denote the number of its components. If either

SF > 3m or nF > 3m, then P must contain an infinitely near point as a base point.

In particular, there exists some 1 ≤ j ≤ k so that aj > 1 and d(1)
j ≥ 1.

Proof. If P does not contain an infinitely near point as a base point, then Lemma

II.3.1.27 tells us F is the strict transform of a member of P , which implies both

SF ≤ 3m and nF ≤ 3m.

Corollary II.3.1.29. Using the same notations as in Corollary II.3.1.28, if a fiber

F is such that SF > 3m or nF > 3m, then there exists a base point P (1)
j in P such
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that m
P

(1)
j
≥ m+ 1.

Proof. By Corollary II.3.1.28 there exists some j so that d(1)
j ≥ 1 and the result

follows from the equality d(1)
j = m

P
(1)
j

(B)−m.

We also prove the following:

Lemma II.3.1.30. If MF denotes the largest multiplicity of a component of F , then

every base point P (1)
j of P is such that m

P
(1)
j

(B) ≤ min{MF +m, 3m}.

Proof. If follows from the fact that B has degree 3m and MF ≥ d
(1)
j = m

P
(1)
j

(B) −

m.

Corollary II.3.1.31. If F is non-reduced and m ≤ MF , then every base point P (1)
j

of P is such that m
P

(1)
j
≤ 2MF .

Lemma II.3.1.32. If F is of type II, III or IV , then F = F

Proof. If F is of type II, III or IV we are claiming F cannot contain any

exceptional curves E(i)
j . This is clear when F is of type II. If F is of type III, then

F contains exactly two rational components which are tangent at a single point Q

with multiplicity two. If one of these components is equal to E(1)
j for some j, then

the cubic C must intersect B at a base point P (
j 1) with multiplicity m+ 1 in B and,

which after one blow-up, becomes the tangency point between (the strict transform

of) B and E(1)
j . But after the first blow-up (the strict transform of) C would also go

through the tangency point, hence we would have Q = P
(2)
j and blowing-up P (2)

j to

separate the pencil would not yield the desired type of fiber.
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The argument is analogous for F of type IV .

Proposition II.3.1.33. If F is reduced, then B is reduced and,

1

m+ 1
< lct(P2, B) = min

{
lct

P
(1)
j

(P2, B), lct(Y, F )
}
≤ lct(Y, F ) ≤ lct(Y, F )

Proof. We first show the equality. We have that lct(P2, B) = min
P
{lctP (P2, B)}, where

P runs over the singular points of B. But any singular point of B is either a base

point of P of it is not a base point and hence it must satisfy lctP (P2, B) = lctP (Y, F ).

Moreover, lctP (Y, F ) = lct(Y, F ), because either F is of type II, III or IV and F

contains a unique singular point, namely (the strict transform of) P ; or F is of type

In, 1 ≤ n ≤ 9 and every singular point of F is an ordinary node and we have that

lctP (Y, F ) = lct(Y, F ) = 1.

Now, because F is reduced we have

1

m+ 1
≤ 1

2
< lct(Y, F )

On the other hand, it follows from Lemma II.3.1.32 that for any singular point of

B which is a base point of P , say Pj, we have

lct
P

(1)
j

(P2, B) =
1 + b(1)

c
(1)
j

=
2

c
(1)
j

=
2

m
>

1

m

Finally, it is clear that (see e.g. [35, Theorem 8.20]) lct(Y, F ) ≤ lct(Y, F ) because

F = F +
∑
i,j

d
(i)
j E

(i)
j
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Proposition II.3.1.34. If m > 1 and F is reduced, then lct(P2, B) >
1

m
.

Proof. It follows from the proof of Proposition II.3.1.33 by observing that for m > 1

we have lct(Y, F ) >
1

2
≥ 1

m
.

Proposition II.3.1.35. If F is non-reduced and m ≤ MF , where MF denotes the

largest multiplicity of a component of F , then

lct(Y, F ) ≤ lct(P2, B) ≤ lct(Y, F )

Proof. If F is non-reduced, then π : Y → P2 is a log resolution of the pair (P2, B)

(see Definition I.3.0.2) and it follows that

lct(P2, B) = min
i,j

{
1 + b

(i)
j

c
(i)
j

,
1

MB

}
≤ 1

MB

= lct(Y, F ) (II.3.1.9)

where MB denotes the largest multiplicity of a component of B.

If lct(P2, B) = 1/MB there is nothing to prove, since MB ≤ MF and we have

lct(Y, F ) = 1/MF .

Thus, assume there exists some i and some j such that

lct(P2, B) =
1 + b

(i)
j

c
(i)
j

<
1

MF

≤ 1

MB

If i = 1, then

1 + b
(i)
j

c
(i)
j

=
2

m
P

(1)
j

<
1

MF

⇐⇒ m
P

(1)
j
> 2MF

which contradicts Corollary II.3.1.31.
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Similarly, if i = 2, then

1 + b
(i)
j

c
(i)
j

=
3

m
P

(1)
j

+m
P

(2)
j

<
1

MF

⇐⇒ m
P

(1)
j

+m
P

(2)
j
> 3MF

but m
P

(1)
j

+m
P

(2)
j

= d
(2)
j + 2m ≤MF + 2m ≤ 3MF

Otherwise, using Equation II.3.1.5, we can write c(i)
j = d

(i)
j + i ·m. Then,

1 + b
(i)
j

c
(i)
j

=
1 + b

(i)
j

d
(i)
j + i ·m

<
1

MF

⇐⇒ MF (1 + b
(i)
j ) < d

(i)
j + i ·m

⇐⇒ MF (1 + i) < d
(i)
j + i ·m

which is a contradiction because MF ≥ d
(i)
j and MF ≥ m.

Remark II.3.1.36. Note that Equation (II.3.1.9) in the proof of Proposition II.3.1.35

holds for any index m. In particular, if F is of type I∗n, II
∗, III∗ or IV ∗, then we

also have that (see e.g. [11])
1

m
P

(1)
jmax

≤ lct(P2, B), where m
P

(1)
jmax

.
= max

j
m
P

(1)
j

(B).

Then Propositions II.3.1.16 and II.3.1.17 allow us to further prove:

Proposition II.3.1.37. For any index m we have lct(Y, F ) ≤ 2lct(Y, F ).

Proof. By contradiction, assume 1/MB > 2lct(Y, F ). If F does not contain a

component with multiplicity ≥ 3, then 2lct(Y, F ) ≥ 1 and we conclude MB < 1, a

contradiction. If F is of type III∗ or IV ∗, then B must be reduced (i.e., MB = 1)

and if F is of type II∗, then we conclude MB < 3, contradicting Propositions

II.3.1.16 and II.3.1.17.

Remark II.3.1.38. Note that when F is of type II∗, III∗ or IV ∗, then the inequality

1/MB ≤ 2lct(Y, F ) implies Propositions II.3.1.16 and II.3.1.17.
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In particular, combining Propositions II.3.1.33, II.3.1.35 and II.3.1.37 we obtain:

Corollary II.3.1.39. For any index m we have lct(P2, B) ≤ 2lct(Y, F ).

II.3.2 The stability criteria

We are finally ready to complete characterize the (semi)stability of Halphen pencils

of index two under the action of SL(3) (as points in Gr(2, 28)) .

Recall that any Halphen pencil of index two (Definition II.3.1.4) contains exactly

one multiple cubic 2C (of multiplicity two), which corresponds to the unique multiple

fiber in the associated rational elliptic surface. Thus any Halphen pencil P of index

two can be written in the following form: λ(B) + µ(2C) = 0, where the curve B

corresponds to some (non-multiple) fiber of Y that we denote by F .

With these notations in mind we will first establish necessary conditions for

nonstability and unstability of a Halphen pencil of index two:

Theorem II.3.2.1. If P is not stable, then Y contains a non-reduced fiber3.

Proof. Since lct(P2, 2C) =
1

2
Proposition II.3.1.24 (= [54, Proposition 4.9]), we

conclude from Theorem II.2.3.5 (= [55, Theorem 1.1]), with α =
1

2
, that if the

pencil P is not stable, then P contains a curve B such that lct(P2, B) ≤ 1

2
. By

Proposition II.3.1.34 (= [54, Proposition 4.15]) this implies the corresponding

rational elliptic surface Y → P1 contains a non-reduced fiber F .
3i.e. a fiber of type I∗n, II

∗, III∗ or IV ∗
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Remark II.3.2.2. A completely analogous argument in fact shows the statement of

Theorem II.3.2.1 is true for Halphen pencils of any index.

Theorem II.3.2.3. If P is unstable, then Y contains a fiber of type II∗, III∗ or IV ∗.

Proof. The proof is very similar to the proof of Theorem II.3.2.1. Since we know

lct(P2, 2C) =
1

2
Proposition II.3.1.24 (= [54, Proposition 4.9]), we conclude from

Theorem II.2.3.5 (= [55, Theorem 1.1]), by taking α =
1

2
, that if the pencil P is

unstable, then P contains a curve B such that lct(P2, B) <
1

2
. Thus, Propositions

II.3.1.34 and II.3.1.35 (= [54, Propositions 4.15 and 4.16]) imply Y contains a a fiber

of type II∗, III∗ or IV ∗.

The next step is to obtain sufficient conditions. When C is smooth and B is

semistable we prove:

Proposition II.3.2.4. If C is smooth and all curves in P are stable except (possibly)

for one curve that is semistable, then P is stable.

Proof. It follows from Theorem II.2.2.12 (= [55, Theorem 1.5]) and the fact that 2C

is stable [52].

Corollary II.3.2.5. If C is smooth, F is of type II∗, III∗ or IV ∗ and B .
= π(F ) is

semistable, then P is stable.

Proof. From the classification in [47] we know that any other fiber of Y is reduced.

By Propositions II.3.1.33 and II.3.1.34 (= [54, Propositions 4.14 and 4.15]) we also
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know that all other curves in P are reduced and have log canonical threshold greater

than 1/2. As observed in [23] and [27], this implies all the curves in P are stable

except for one curve that is semistable.

Corollary II.3.2.6. If C is smooth and Y contains exactly one non-reduced fiber F

of type I∗n, n ≤ 4, then P is stable.

Proof. Again, from the classification in [47] we know that any other fiber of Y is

reduced. Since the curve B is such that lct(P2, B) ≥ 1/2, hence it is semistable

[23, 27], we can argue as in the proof of Corollary II.3.2.5 to conclude all the curves

in P are stable except (possibly) for one curve that is semistable.

Theorem II.3.2.7. If Y contains two fibers of type I∗0 , then P is strictly semistable if

and only if there exists a one-parameter subgroup λ (and coordinates in P2) such that

the two curves corresponding to the fibers of type I∗0 are both non-stable with respect

to this λ.

Proof. By Proposition II.3.1.35 (= [54, Proposition 4.16]), if F is a fiber of type

I∗0 , then the corresponding plane curve B is such that lct(P2, B) ≥ 1

2
, hence it is

semistable [23, 27]. The result then follows from Theorem II.2.2.13 (= [55, Theorem

1.6]). Note that from the topological Euler characteristic of Y we know C has to be

smooth, hence stable [52].

And when C is singular we prove:

Theorem II.3.2.8. If C is singular and Y contains exactly one fiber F of type

I∗n, n ≤ 4, then P is strictly semistable if and only if there exists a one-parameter
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subgroup λ (and coordinates in P2) such that 2C and B = π(F ) are both non-stable

with respect to this λ.

Proof. Since both 2C and B are semistable and all other curves in P are stable, the

result follows from Theorem II.2.2.13 (= [55, Theorem 1.6]).

Theorem II.3.2.9. If C is singular, Y contains a fiber F of type II∗, III∗ and IV ∗

and the curve B = π(F ) is semistable, then P is strictly semistable if and only if

there exists a one-parameter subgroup λ (and coordinates in P2) such that 2C and B

are both non-stable with respect to this λ.

Proof. Again, the result follows from Theorem II.2.2.13 (= [55, Theorem 1.6]) because

both 2C and B are semistable and all other curves in P are stable.

Finally, in order to complete our description, we need to study the stability of P

when F is a fiber of type II∗, III∗ or IV ∗.

II.3.2.1 The stability of P when F is of type II∗

When F of type II∗, then Theorem A.1.4 (= [54, Theorem 5.15]) tells us B can

only be realized by one of the following plane curves:

(i) a triple conic

(ii) a nodal cubic and an inflection line, with the line taken with multiplicity three

(iii) two triples lines
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(iv) a conic and a tangent line, with the line taken with multiplicity four

(v) a line with multiplicity five and another line

If B is a triple conic, then B is strictly semistable [52]. In this case, if C is smooth,

then P is stable (Corollary II.3.2.5) and if C is singular, then P is strictly semistable

if and only if there exists a one-parameter subgroup λ (and coordinates in P2) such

that 2C and B are both non-stable with respect to this λ (Theorem II.3.2.9).

When B is one of the curves in (ii), (iii), (iv) or (v) then we can use the explicit

constructions obtained in [54] and described in Appendix A to conclude P is unstable.

More precisely, we prove Propositions II.3.2.11 through II.3.2.13 below.

Proposition II.3.2.10. If Y contains a fiber of type II∗ and P contains a curve

consisting of two triple lines, then P is unstable.

Proof. Let P and Y be as above. One can show that one of the lines is an inflection

line of C and the other line must be tangent to the cubic with multiplicity two

(Example A.2.26).

In particular, we can find coordinates in P2 so that B is given by x3y3 = 0 and

C is given by z2x − y(y − x)(y − α · x) = 0, where α ∈ C\{0, 1}. Then the Plücker

coordinates of P with respect to these coordinates satisfy the conditions in Case (1)

of Theorem II.2.5.6 and we conclude P is unstable. Alternatively, we can easily check

the equations for B and 2C belong to Case 5 of Theorem II.2.5.12.

Proposition II.3.2.11. If Y contains a fiber of type II∗ and P contains a curve

consisting of a triple line and a nodal cubic, then P is unstable.
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Proof. Let P and Y be as above. One can show that the line is an inflection line of

both the nodal cubic and C, which is smooth (Example A.2.27).

In particular, we can find coordinates in P2 so that the curve B has equation

x3(xz2−y2(y+x)) = 0 and C is given by x2y+xz2−y3−xy2 = 0. Then the Plücker

coordinates of P with respect to these coordinates satisfy the conditions in Case (1)

of Theorem II.2.5.6 and we conclude P is unstable. Alternatively, we can easily check

the equations for B and 2C belong to Case 4 of Theorem II.2.5.12.

Proposition II.3.2.12. If Y contains a fiber of type II∗ and P contains a curve

consisting of a conic and a tangent line, with the line taken with multiplicity four,

then P is unstable.

Proof. Let P and Y be as above. One can show that C must be tangent to the conic

(resp. the line) at the point Q ∩ L with multiplicity six (resp. two) as in Example

A.2.28.

In particular, we can find coordinates in P2 so that B is given by the zeros of

the polynomial x4(y2 + xz) and C is given by f =
∑

fijx
iyjz6−i−j = 0, with f00 =

f01 = f02 = 0. Thus, the Plücker coordinates of P with respect to these coordinates

satisfy the conditions in Case (1) of Theorem II.2.5.6 and we conclude P is unstable.

Alternatively, we can easily check the equations for B and 2C belong to Case 2 of

Theorem II.2.5.12.

Proposition II.3.2.13. If Y contains a fiber of type II∗ and P contains a curve
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consisting of a line with multiplicity five and another line, then P is unstable.

Proof. Let B ∈ P be the curve consisting of a line with multiplicity five and another

line. We can choose coordinates so that B is the curve x5(x − z) = 0 and C is the

cubic y2z = x(x − z)(x − α · z) for some α ∈ C\{0, 1} (Example A.2.29). Then

the Plücker coordinates of P satisfy the vanishing conditions of Case (1) in Theorem

II.2.5.6. Or, yet, we can easily check the equations for B and 2C belong to Case 1 of

Theorem II.2.5.12.

II.3.2.2 The stability of P when F is of type III∗

We now consider the case when F is of type III∗.

From Theorem A.1.5 (= [54, Theorem 5.16]) the curve B can only be realized by

one of the following plane curves:

(i) a double line, a cubic and another line

(ii) a double conic and another conic (semistable)

(iii) a triple conic (semistable)

(iv) two triple lines

(v) a triple line, a double line and another line

(vi) a triple line, a conic and a line

(vii) a triple line and a cubic
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(viii) a conic and a line, with the line taken with multiplicity four

(ix) a line with multiplicity four and two other lines

If B is semistable there are two possibilities: either C is smooth, in which case P

is stable (Corollary II.3.2.5); or C is singular and then P is strictly semistable if and

only if there exists a one-parameter subgroup λ (and coordinates in P2) such that 2C

and B are both non-stable with respect to this λ (Theorem II.3.2.9).

When B is unstable we can use the explicit constructions obtained in [54] to

conclude P is strictly semistable.

Proposition II.3.2.14. If Y contains a fiber F of type III∗ and B .
= π(F ) consists

of a triple line, a double line and another line in general position, then P is not stable.

Proof. Let P and Y be as above. One can find coordinates in P2 as in Example

A.2.19 so that the Plücker coordinates of P with respect to these coordinates satisfy

the conditions in Case (3) of Theorem II.2.5.7 and we conclude P is not stable.

Alternatively, we can also apply Theorem II.2.5.10.

Lemma II.3.2.15. If a Halphen pencil P of index two contains a curve B and a base

point P such that multP (B) = 6, then P is not stable.

Proof. Since multP (2C) ≥ 2, the result follows from Theorem II.2.4.1 (=[55, Theorem

1.3]).
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Proposition II.3.2.16. If Y contains a fiber F of type III∗ and B .
= π(F ) consists

of a triple line, a double line and another line concurrent at a base point, then P is

not stable.

Proof. Let P , Y and B be as above. Then P contains a base point P (the point

where the 3 lines meet) such that multP (B) = 6, and the result follows from Lemma

II.3.2.15.

Proposition II.3.2.17. If Y contains a fiber F of type III∗ and B .
= π(F ) consists

of a double line, a nodal cubic and another line, then P is not stable.

Proof. Let P and Y be as above. One can find coordinates in P2 as in Example

A.2.15 so that the Plücker coordinates of P with respect to these coordinates satisfy

the conditions in Case (3) of Theorem II.2.5.7 and we conclude P is not stable.

Proposition II.3.2.18. If Y contains a fiber F of type III∗ and B .
= π(F ) contains

a line with multiplicity four, then P is not stable.

Proof. If B contains a line with multiplicity four, then we can find coordinates in P2

and generators of P which are given by equations as in Case 1 of Theorem II.2.5.8.

Proposition II.3.2.19. If Y contains a fiber F of type III∗ and B .
= π(F ) consists

of a triple line and a nodal cubic, then P is not stable.

Proof. We can find coordinates in P2 as in Example A.2.22 so that the Plücker

coordinates of P with respect to these coordinates satisfy the conditions in Case (4)
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of Theorem II.2.5.7 and we conclude P is not stable. Alternatively, we can also

apply Theorem II.2.5.10.

Proposition II.3.2.20. If Y contains a fiber F of type III∗ and B .
= π(F ) consists

of a triple line, a conic and another line, then P is not stable.

Proof. Let P and Y be as above. We can find coordinates in P2 as in Example

A.2.21 so that the Plücker coordinates of P with respect to these coordinates satisfy

the conditions in Case (3) of Theorem II.2.5.7 and we conclude P is not stable.

Alternatively, we can also apply Theorem II.2.5.10.

Proposition II.3.2.21. If Y contains a fiber F of type III∗ and B .
= π(F ) consists

of two triple lines, then P is not stable.

Proof. It follows from Lemma II.3.2.15.

Combining Propositions II.3.2.14 through II.3.2.21 and Theorem A.1.5 we obtain:

Theorem II.3.2.22. If Y contains a fiber F of type III∗ and B .
= π(F ) is unstable,

then P is not stable.

Remark II.3.2.23. Note that when F is of type III∗ and B .
= π(F ) is semistable

we can refer to Corollary II.3.2.5 and Theorem II.3.2.9.

So the remaining question is: Can P be unstable? We will show that the answer

to this questions is no.
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Lemma II.3.2.24. Let P be a Halphen pencil of index two containing a curve B

such that B = 4L+Q, where L is a line and Q is a conic (possibly reducible). Letting

2C denote the unique multiple cubic in P we have that if P is unstable, then either

(i) L is an inflection line of C or

(ii) L is tangent to C at a point where L and Q also intersect

Proof. It follows from Theorem II.2.5.13.

Proposition II.3.2.25. If Y contains a fiber F of type III∗ and B .
= π(F ) contains

a line with multiplicity four, then P is semistable.

Proof. If P were unstable, then P (and B) would be as in (i) or (ii) in Lemma

II.3.2.24. In Appendix A we show that this is not case for a fiber of type III∗.

Lemma II.3.2.26. Let P be a Halphen pencil of index two containing a curve B such

that B = 3L + C ′, where L is a line and C ′ is a cubic (possibly reducible). Letting

2C denote the unique multiple cubic in P we have that if P is unstable, then either

1. L is an inflection line of C at a point where the intersection multiplicity of L

and C ′ is ≥ 2 or

2. L is tangent to C at a point where the intersection multiplicity of L and C ′ is

three.

Proof. It follows from Theorem II.2.5.14.
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Proposition II.3.2.27. If Y contains a fiber F of type III∗ and B .
= π(F ) contains

a triple line, then P is semistable.

Proof. If P were unstable, then P (and B) would be as in (i) or (ii) in Lemma

II.3.2.26. In Appendix A we show that this is not case for a fiber of type III∗.

Proposition II.3.2.28. If Y contains a fiber F of type III∗ and B .
= π(F ) consists

of a double line, a cubic and another line, then P is semistable.

Proof. It follows from Theorem II.2.5.15.

II.3.2.3 The stability of P when F is of type IV ∗

Finally, we describe the stability of P when F is of type IV ∗. We will show that

either P is stable or C is singular and B is semistable, in which case we can refer to

Theorem II.3.2.9.

We start with the following Lemma:

Lemma II.3.2.29. Let P be a Halphen pencil of index two containing a curve B such

that B = 3L + C ′, where L is a line and C ′ is a cubic (possibly reducible). Letting

2C denote the unique multiple cubic in P we have that if P is not stable, then either

(i) L is an inflection line of C or

(ii) L is tangent to C at a point where L and C ′ also intersect or

(iii) there is a base point where L and C intersect and where the intersection

multiplicity of L and C ′ is 3
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Proof. It follows from Theorem II.2.5.10.

In particular, we conclude:

Proposition II.3.2.30. If Y contains a fiber F of type IV ∗ and B .
= π(F ) contains

a triple line, then P is stable.

Proof. If P were not stable, then P (and B) would be as in (i),(ii) or (iii) in Lemma

II.3.2.29. In Appendix A we show that this is not case for a fiber of type IV ∗.

We also prove:

Lemma II.3.2.31. Let P be a Halphen pencil of index two containing a curve B such

that B = 2L + Q, where L is a line and Q is a quartic (possibly reducible). Letting

2C denote the unique multiple cubic in P we have that if P is not stable, then the

intersection multiplicity of L and Q at some base point is 4.

Proof. It follows from Theorem II.2.5.11.

Lastly,

Theorem II.3.2.32. If Y contains a fiber of type IV ∗ and P is not stable, then C

is singular and B is semistable.

Proof. If P is not stable, then it follows from Corollary II.3.2.5 that either C is

singular or B is unstable. Now, the results from Appendix A and [52, Section 2]

together with Proposition II.3.2.30 and Lemma II.3.2.31 imply B cannot be unstable.

Thus, C is singular and B is semistable.
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Note that the results above indeed give a complete description of the stability

when F is of type IV ∗ because of Theorem A.1.6 (=[54, Theorem 5.17]). We know

that when F is of type IV ∗, then B consists of one of the following curves:

(i) a double conic and a conic (semistable)

(ii) a double line, a conic and two lines

(iii) a double line, a cubic and a line

(iv) a double line and two conics

(v) two double lines and two lines

(vi) two double lines and a conic

(vii) a double conic and two lines (semistable)

(viii) a triple conic (semistable)

(ix) a triple line, a conic and a line

(x) a triple line, a double line and another line

(xi) a triple line and three lines

(xii) a triple line and a cubic
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Appendix A

Constructions of Halphen pencils of

index two

It is well known that rational elliptic surfaces admitting a global section can be

realized from a pencil of cubic curves in the plane (by blowing-up their nine base

points) and explicit examples having a Mordell-Weil group with some particular rank

have been considered in [16, Theorem 5.6.2], [20],[46] and [50]. However, there are

not many explicit constructions in the literature for those rational elliptic surfaces

that do not admit a global section. In [54], for each of the types of singular fibers

that occur (see Proposition II.3.1.13) we constructed at least one explicit example of

a rational elliptic surface f : Y → P1 of index two having that type of singular fiber.

In fact, for some types of singular fibers we constructed all possible examples.

The goal of this appendix is to present the examples we constructed in [54] for
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fibers of type II∗, III∗ and IV ∗ since these constructions are particularly useful for

obtaining the stability criteria from Chapter II.3, Section II.3.2.

Note that in view of Proposition II.3.1.9, these are obtained by explicitly

constructing the corresponding Halphen pencils P .

A.1 An algorithm

Adopting the same notations as in Section II.3.1.1, we first summarize what our

strategy was for constructing the examples. Given F we know the number of its

components nF . Assuming we also know the number nB of components of B we can

compute k (the number of base points 1 in B) from Equation II.3.1.3 and Lemma

II.3.1.19.

There are exactly k − nE\C disjoint chains of rational curves in F as in Figure

II.3.1, where nE\C denotes the difference between the number of components of E

and the number of components of C. Moreover, together with the strict transform of

B under π these are all the components of F . Thus, analyzing how the dual graph

of F must look like we can decide whether the components coming from B and these

disjoint chains could possibly yield the given fiber.

The desired configuration of rational curves imposes restrictions on how the curves

B and C can intersect and how the components of B must intersect. Since B and C

can only intersect at base points of P we can use Equation (II.3.1.8). It also imposes
1not counting infinitely near points
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restrictions on the multiplicities d(1)
j of the components E(1)

j appearing in F . Recall we

have the following equality: d(1)
j = m

P
(1)
j

(B)− 2 (Equation (II.3.1.5)). In particular,

we know what m
P

(1)
j

(B), the multiplicity of B at the base point P (1)
j , must be.

In addition, every time we consider the dual graph of F we can color the

components coming from B in blue and in black we indicate the missing

components as in Lemma II.3.1.15. Then the possible configurations are those

where the components in black are arranged in exactly k − nE\C disjoint chains as

in Figure II.3.1. In particular, every black node can only be connected to at most

two other black nodes (Lemma II.3.1.15).

These considerations give us an algorithm to decide whether a sextic B can or

cannot yield the desired type of fiber allowing us to prove Propositions A.1.1, A.1.2

and A.1.3 below, and to also construct all possible examples yielding a fiber of type

II∗, III∗ or IV ∗.

We prove:

Proposition A.1.1 ([54, Proposition 5.1]). If F is of type II∗, then B does not

consist of any of the following curves:

(i) a line with multiplicity 6

(ii) a line with multiplicity four and a double line

(iii) a triple line, a double line and another line
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Proposition A.1.2 ([54, Propositions 5.2–5.9]). If F is of type III∗, then B does

not consist of any of the following curves:

(i) double line and a (rational) quartic

(ii) a double line and two conics

(iii) a double conic and a double line

(iv) a double conic and two lines

(v) two double lines and a conic

(vi) three double lines

(vii) two double lines and two other lines

(viii) a line with multiplicity four and a double line

Proposition A.1.3 ([54, Propositions 5.12–5.14]). If F is of type IV ∗, then B does

not consist of any of the following curves:

(i) double line and a rational quartic

(ii) three double lines

(iii) a double conic and a double line

In particular, we obtain the following characterization for the curve B whenever

F is of type II∗, III∗ or IV ∗:
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Theorem A.1.4 ([54, Theorem 5.15]). If F is of type II∗, then the sextic B consists

of one of the following (non-reduced) curves:

(i) a triple conic (Example A.2.25)

(ii) a nodal cubic and an inflection line, with the line taken with multiplicity three

(Example A.2.27)

(iii) two triples lines (Example A.2.26)

(iv) a conic and a tangent line, with the line taken with multiplicity four (Example

A.2.28)

(v) a line with multiplicity five and another line (Example A.2.29)

Theorem A.1.5 ([54, Theorem 5.16]). If F is of type III∗, then B consists of one

of the following curves:

(i) a double line, a cubic and another line (Example A.2.15)

(ii) a double conic and another conic (Example A.2.16)

(iii) a triple conic (Example A.2.17)

(iv) two triple lines (Example A.2.18)

(v) a triple line, a double line and another line (Examples A.2.19 and A.2.20 )

(vi) a triple line, a conic and a line (Example A.2.21)
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(vii) a triple line and a cubic (Example A.2.22)

(viii) a conic and a line, with the line taken with multiplicity four (Example A.2.23)

(ix) a line with multiplicity four and two other lines (Example A.2.24)

Theorem A.1.6 ([54, Theorem 5.17]). If F is of type IV ∗, then B consists of one

of the following curves:

(i) a double conic and a conic (Example A.2.3)

(ii) a double line, a conic and two lines (Example A.2.4)

(iii) a double line, a cubic and a line (Example A.2.5)

(iv) a double line and two conics (Example A.2.6)

(v) two double lines and two lines (Example A.2.7)

(vi) two double lines and a conic (Example A.2.8)

(vii) a double conic and two lines (Example A.2.9)

(viii) a triple conic (Example A.2.10)

(ix) a triple line, a conic and a line (Example A.2.11)

(x) a triple line, a double line and another line (Example A.2.12)

(xi) a triple line and three lines (Example A.2.13)

(xii) a triple line and a cubic (Example A.2.14)
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A.2 The explicit constructions

A.2.1 Type IV ∗

We now construct all possible examples of Halphen pencils of index two that yield

a fiber of type IV ∗ in the corresponding rational elliptic surface (Theorem A.1.6).

Definition A.2.1. Given a cubic C, a conic Q and a point P ∈ C, we say Q is an

osculating conic of C at P if IP (Q,C) ≥ 5, where IP (Q,C) denotes the intersection

multiplicity of Q and C at P .

Definition A.2.2. Given a cubic C, any point on it where a tangent conic intersects

C with multiplicity six is called a sextactic point. If C is smooth, there are exactly 27

such points and if C is nodal, then there only 3 sextactic points (see e.g. [9],[10]).

Example A.2.3 (A double conic and a conic [54, Example 7.34]). Consider a smooth

cubic C and let P1 be a sextactic point. Let Q1 be the corresponding osculating conic.

Assume we can construct another conic Q2 so that Q2 is tangent to both Q1 and C

at P1 with multiplicity three, Q2 intersects C at other three points P2, P3, P4. Then

the fourth intersection point between the two conics is different than the Pi’s. Letting

B = Q1 + 2Q2 we have that the pencil generated by B and 2C is a Halphen pencil of

index two and the corresponding rational elliptic surface has a fiber of type IV ∗.

For instance, let C be the cubic given by xz2 + y2z + x3 = 0, then we can let

P1 = (0 : 0 : 1) and we have that Q1 is the conic y2 + xz = 0. Choosing Q2 to be the

conic xy + y2 + xz = 0 we get the desired pencil.
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Example A.2.4 (A double line, a conic and two lines [54, Example 7.35]). Let Q be

a (smooth) conic and choose P1 ∈ Q. Let T be the tangent line to Q at P1. Let L1

be a line through P1, intersecting Q at a second point P2. Choose two other points

P3 and P4 in Q, let L2 be the line joining them and let {P5} = L1 ∩ L2. Assume

we can construct a cubic C through P1, . . . , P5 which is tangent to Q (resp. T ) with

multiplicity 3 (resp. 2.). Then C intersects T at another point P6.

Letting B = 2T +Q+L1 +L2 we have that the pencil generated by B and 2C is a

Halphen pencil of index two and the corresponding rational elliptic surface has a fiber

of type IV ∗.

For instance, we can choose coordinates so that Q is the conic y2 + xz = 0 and

we can choose P1 = (0 : 0 : 1). Then T is the line x = 0. Choosing L1 to be the line

x+ y = 0 we have that P2 = (−1 : −1 : 1). Now, if we choose P4 and P5 so that L2 is

the line x+y+z, then P5 = (−1 : 1 : 0) and C is the cubic x3+y3+2xyz+y2z+xz2 = 0.

Thus, P6 is the point (0 : 1 : −1).

Example A.2.5 (A double line, a cubic and another line [54, Example 7.36]). Let D

be a nodal cubic and denote its node by P5. Let P1 be a flex point of D and denote the

corresponding inflection line by L. Let L′ be a line that intersects D at three other

points P2, P3 and P4. Assume we can construct a cubic C through P1, . . . , P5 so that

C is tangent to D (resp. L) at P1 with multiplicity 4 (resp. 3).

For instance, let D be the nodal cubic y2z − x2(x + z) = 0. Then P5 = (0 : 0 : 1)

and we can let P1 = (0 : 1 : 0) so that L is the line z = 0. Choosing L′ to be the line

178



x+ y + z = 0 we have that C is the cubic xyz + xz2 + y2z − x3 = 0.

Letting B = 2L + L′ + D we have that the pencil generated by B and 2C is a

Halphen pencil of index two and the corresponding rational elliptic surface has a fiber

of type IV ∗.

Example A.2.6 (A double line and two conics [54, Example 7.37]). Let C be a smooth

cubic. Let P2 be a flex point. There exists a line L through P2 which is tangent to C

at another point P1. Then P1 is a sextactic (see Definition A.2.2) point of C.

In fact, by [54, Lemma 7.25] we have 2P1 ⊕ P2 = 0 and 3P2 = 0, hence 3(2P1 ⊕

P2) = 6P1 = 0, where ⊕ denotes the group law with another flex point taken as the

origin. Again, using [54, Lemma 7.25] we conclude there exists an osculating conic

which is tangent to C with multiplicity at P1.

Concretely, we can choose coordinates in P2 so that C is the cubic given by

y2z = x(x− z)(x− α · z) α ∈ C\{0, 1}

and C has a flex point at P2 = (0 : 1 : 0). The line x = 0 is tangent to C at

P1 = (0 : 0 : 1) and the flex P2 is a point in that line.

Now, let ε2 be a two torsion point of C. Using the same argument as in [54,

Example 7.26], we can always find three points P3, P4 and P5 in C so that P3 ⊕ P4 ⊕

P5 = ε2. In particular, 2P3 ⊕ 2P4 ⊕ 2P5 = 0 and we claim we must have

3P1 ⊕ P3 ⊕ P4 ⊕ P5 = 0 (A.2.1)

and

P1 ⊕ 2P2 ⊕ P3 ⊕ P4 ⊕ P5 = 0 (A.2.2)
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In fact, if one of these sums is non zero, then adding the two equations we obtain

0 6= 4P1 ⊕ 2P2 ⊕ 2P3 ⊕ 2P4 ⊕ 2P5 = 4P1 ⊕ 2P2 = 0

a contradiction.

Applying [54, Lemma 7.25] two Equations (A.2.1) and (A.2.2) we conclude there

exist two conics Q and Q′ so that: P1, P3, P4, P5 ∈ Q, the cubic C is tangent Q at P1

with multiplicity three, P1, P2, P3, P4, P5 ∈ Q′ and the cubic C is tangent Q at P2 with

multiplicity two. Note that, by construction, L is also tangent to Q at P1.

Letting B = 2L + Q + Q′ we have that the pencil generated by B and 2C is a

Halphen pencil of index two and the corresponding rational elliptic has a fiber of type

IV ∗.

Example A.2.7 (Two double lines and two other lines [54, Example 7.38]). Let Q

be a smooth conic. And choose three distinct points on Q say P1, P2 and P3. For each

i = 1, 2 let Ti be the tangent line to Q at Pi. Let Li be the line joining P1 and Pi,

for i = 2, 3. And let L be a line through {P4} = T1 ∩ T2 different than the Ti and

such that P3 /∈ L. Then L intersects both L2 and L3 at two other points P5 ∈ L2 and

P6 ∈ L3.

Letting C be the cubic Q+L and B be the sextic T1 +T2 + 2L2 + 2L3 we have that

the pencil P generated by B and 2C is a Halphen pencil of index two which yields a

fiber of type IV ∗ in the associated elliptic surface.

Example A.2.8 (Two double lines and a conic [54, Example 7.39]). Let Q be a

smooth conic. And choose three distinct points on Q say P1, P2 and P3. For each
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i = 1, 2, 3 let Li be the tangent line to Q at Pi. Let L (resp. R) be the lines joining

P1 and P3 (resp. P2 and P3). And let {P4} = L ∩ L2 and {P5} = R ∩ L1.

Then the cubic C = L1 + L2 + L3 is such that the intersection multiplicity of Q

and C at Pi, for i = 1, 2, 3 is two and the pencil P generated by B = Q+2L+2R and

2C is a Halphen pencil of index two which yields a fiber of type IV ∗ in the associated

elliptic surface. In fact the Jacobian fibration of such surface is the surface X431 in

Miranda and Persson’s list [44].

Concretely, we can choose coordinates in P2 so that Q is given by x2 − yz = 0,

P1 = (0 : 0 : 1), P2 = (0 : 1 : 0) and P3 = (1 : −1 : −1). Then L1 is the line y = 0,

L2 is the line z = 0 and L3 is the line 2x + y + z = 0. And, therefore, L and R are

the lines x + y = 0 and x + z = 0, respectively. Moreover, P4 = (1 : −1 : 0) and

P5 = (1 : 0 : −1).

Example A.2.9 (A double conic and two lines [54, Example 7.40]). Let C be a

smooth cubic. Let L1 be an inflection line of C at a point P1 and choose a line L2

through P1 which is tangent to C at another point P2. We can construct a conic Q

through P1 and P2 so that Q is tangent to C at P1 with multiplicity two and Q meets

C transversally at P2. Moreover, Q intersects C at other three points, say P3, P4 and

P5.

Concretely, choose coordinates in P2 so that C is the cubic given by

y2z = x(x− z)(x− α · z) α ∈ C\{0, 1}

Then we can let L1 be the line z = 0 and hence P1 = (0 : 1 : 0) and we can let L2 be

181



either one of the lines x = 0, x− z = 0 or x− α · z = 0.

If we choose L2 as x = 0, then P2 = (0 : 0 : 1) and, similarly, if we take L2 as

x− z = 0 (resp. x− α · z = 0), then P2 = (1 : 0 : 1) (resp. P2 = (α : 0 : 1)).

Say we choose L2 to be the line x = 0, then we can let Q be the conic x2 + yz = 0.

Now, the pencil P generated by B = 2Q+ L1 + L2 and 2C is a Halphen pencil of

index two that yields a fiber of type IV ∗ in the corresponding rational elliptic surface.

Example A.2.10 (A triple conic [42, I.5.11],[54, Example 7.41]). In this example we

consider a rational elliptic surface of index two whose Jacobian is the surface X431 in

Miranda and Persson’s list [44].

Let Q ⊂ P2 be a smooth conic and choose three distinct points P1, P2 and P3 on

Q. Let Li be the line tangent to Q at Pi and consider the pencil generated by B = 3Q

and 2C, where C = L1 + L2 + L3.

Note that we need to blow-up each of the three points three times. That is, to

construct the desired surface we blow-up P2 at

P
(1)
1 , P

(2)
1 , P

(3)
1 , P

(1)
2 , P

(2)
2 , P

(3)
2 , P

(1)
3 , P

(2)
3 , P

(3)
3

which produces three disjoint chains of (−2)-curves, each of length 2 and formed by

exceptional divisors over the corresponding three points.

Example A.2.11 (A triple line, a conic and another line [54, Example 7.42]). Choose

two (distinct) lines L1 and L2 and a smooth conic Q in general position. Let {P2} =

L1 ∩ L2, let {P2, P4} = L1 ∩Q and let {P1, P3} = L3 ∩Q. We can find a cubic C so

that P1, P2, P3, P4, P5 ∈ C and C is tangent to Q at P3 with multiplicity three.
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Concretely, we can choose coordinates in P2 so that Q is the conic x2 +yz+xz = 0

and L1 and L2 are the lines x+ 2y + z = 0 and x = 0, respectively.

Then P1 = (0 : 1 : 0), P2 = (0 : 1 : −2), P3 = (0 : 0 : 1), P4 = (1 : 0 : −1) and

P5 = (1 : −1 : 1) and we have that C is the cubic given by

xy(x+ z) + (x2 + yz + xz)(2y + z) = 0

Now, the pencil generated by B = Q+ L1 + 3L2 and 2C is a Halphen pencil of index

two which yields a fiber of type IV ∗ in the associated elliptic surface.

Example A.2.12 (A triple line, a double line and another line [54, Example 7.43]).

Let C be a smooth cubic and let L1 be an inflection line of C at a point P1. We can

choose another line L2 through P1 which is tangent to C at another point P2. Let

L3 be a third line which intersects C at three distinct points, say P3, P4 and P5, all

different than P1 and P2. Then the pencil P generated by B = L1 +3L2 +2L3 and 2C

is a Halphen pencil of index two and it yields a fiber of type IV ∗ in the corresponding

elliptic surface.

Concretely, we can choose coordinates in P2 so that C is the cubic given by

y2z = x(x− z)(x− α · z) α ∈ C\{0, 1}

we can let L1 be the line z = 0 (hence P1 = (0 : 1 : 0)) and we can choose L2 to be

either one of the lines x = 0, x− z = 0 or x− α · z = 0.

If we choose L2 as x = 0, then P2 = (0 : 0 : 1) and we can let L3 be the line

x+ y + z = 0.
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Example A.2.13 (A triple line and three more lines [54, Example 7.44]). Consider

four (distinct) lines L1, L2, L3 and L4 in general position. That is, such that the Li

determine six intersection points, say P1, . . . , P6. Now, choose a cubic C through

these six points so that C intersects each of the lines transversally, i.e. the Li are not

tangent lines to C.

The pencil P generated by B = L1 + L2 + L3 + 3L4 and 2C is a Halphen pencil

of index two and it yields a fiber of type IV ∗ in the corresponding rational elliptic

surface.

Example A.2.14 (A triple line and a cubic [54, Example 7.45]). Let D : d = 0 be

a nodal cubic with node at a point P4. Let L1 : l1 = 0 and L2 : l2 = 0 be two of its

inflections lines at points P1 and P2 ( 6= P4), respectively. And let L3 be a line through

the node P4 which does not contain the flex points P1 and P2. Then the cubic C given

by l1l2l3 +d = 0 is such that the intersection multiplicity of D and C at Pi for i = 1, 2

is IPi
(C,D) = IPi

(li, d) = 3 and, by construction, the node P4 lies on it.

Now let L be the line joining P1 and P2. Then L intersects D at a third (flex) point

P3 and we have that the pencil P generated by B = D+3L and 2C is a Halphen pencil

of index two which yields a fiber of type IV ∗ in the corresponding elliptic surface.

Concretely, we can choose as D the nodal cubic given by z3 + y3 + xyz = 0 with a

node at the point P4 = (1 : 0 : 0). We can let L1 be the line −x+ 3y + 3z = 0, hence

P1 = (0 : −1 : 1). And we can let L2 be the line −ωx+ 3y+ 3ω2z = 0, where ω3 = 1.

Then P2 = (0 : −1 : ω) and L is the line x = 0. Note that L intersects D at the third

184



flex of D, namely P3 = (0 : −1 : ω2). Moreover, we can take as L3 the line z = 0.

A.2.2 Type III∗

We now construct all possible examples of Halphen pencils of index two that yield

a fiber of type III∗ in the corresponding rational elliptic surface (Theorem A.1.5).

Example A.2.15 (A double line, a cubic and another line [54, Example 7.46]). Let D

be a nodal cubic and denote its node by P1. Let P2 be a flex point of D and denote the

corresponding inflection line by L1. Let L2 be a line through P2 so that L2 intersects

D at two other points, say P3 and P4. We can construct a cubic C through P1, . . . , P4

so that C is tangent to D (resp. L1) at P2 with multiplicity five (resp. three).

Concretely, let D be the nodal cubic given by y2z − x2(x + z) = 0. Then P1 =

(0 : 0 : 1) and we can let L1 be the line z = 0, hence P2 = (0 : 1 : 0). Thus we can

take L2 to be the line x − z = 0. And, further, we have that P4 = (1 :
√

2 : 1) and

P5 = (1 : −
√

2 : 1). Choosing C to be the cubic given by y2z−x(x2 + z2) = 0 we have

that all the points P1, . . . , P4 lie in C and, moreover, the intersection multiplicity of

C and D (resp. L1) at P2 is five (resp. three).

Now, the pencil P generated by B = D + 2L1 + L2 and 2C is a Halphen pencil

of index two which yields a fiber of type III∗ in the corresponding rational elliptic

surface.

Example A.2.16 (A double conic and another conic [54, Example 7.47]). Let Q

be a conic and choose a point P1 ∈ Q. We can construct another conic Q′ and a
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smooth cubic C so that Q is tangent to both C and Q′ at P1 with full multiplicity and,

moreover, the intersection multiplicity of Q′ and C at P1 is four and Q′ intersects C

at two other points, say P2 and P3.

Concretely, choose coordinates in P2 so that Q is the conic given by x2+yz = 0 and

let P1 be the point (0 : 0 : 1). Then we can let Q′ be the conic given by x2 +yz+y2 = 0

and we can let C be the cubic given by y3 + z(x2 + yz) = 0. Thus, P2 = (α : 1 : 1)

and P3 = (−α : 1 : 1), where α2 + 2 = 0

Now, the pencil P generated by B = 2Q′+Q and 2C is a Halphen pencil of index

two such that the corresponding elliptic surface has a fiber of type III∗.

Example A.2.17 (A triple conic [54, Example 7.48]). In this new example we

construct a rational elliptic surface whose Jacobian is the surface X321 in Miranda

and Persson’s list [44].

Let Q ⊂ P2 be a (smooth) conic. Then, there exists a line L (resp. a conic R)

that is tangent to Q with full multiplicity 2 (resp. 4). In fact we can assume we have

determined two distinct intersection points this way. Now, generically, L intersects

R at two other points.

Letting C = L + R and B = 3Q we have that the pencil generated by B and 2C

is a Halphen pencil of index two. In particular, blowing-up P2 at the nine base points

P
(1)
1 , . . . , P

(3)
1 , P

(1)
2 , . . . , P

(6)
2 we obtain a rational elliptic surface of index two. And

such surface has a type III∗ singular fiber.

Example A.2.18 (Two triple lines [54, Example 7.49]). Consider two (distinct) lines
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L1 and L2 and let P3 be their intersection point. Choose a cubic C which intersects

L1 and L2 at P3 with multiplicity one and which is tangent to each Li at a point

Pi (with multiplicity two). The pencil P generated by B = 3L1 + 3L2 and 2C is a

Halphen pencil of index two and it yields a fiber of type III∗ in the corresponding

rational elliptic surface.

Example A.2.19 (A triple line, a double line and another line [54, Example 7.50]).

Let C be a smooth cubic. Let L1 be an inflection line of C at a point P1 and choose

a line L2 through P1 which is tangent to C at another point P2. Let L3 be any line

through P2 which intersects C at another two points, say P3 and P4.

Then the pencil P generated by B = 3L1 +L2 +2L3 and 2C is a Halphen pencil of

index two which yields a fiber of type III∗ in the associated rational elliptic surface.

Concretely, we can choose coordinates in P2 so that C is the cubic given by

y2z = x(x− z)(x− α · z) α ∈ C\{0, 1}

we can let L1 be the line z = 0 (hence P1 = (0 : 1 : 0)) and we can choose L2 to be

either one of the lines x = 0, x − z = 0 or x − α · z = 0. If we choose L2 as x = 0,

then P2 = (0 : 0 : 1) and we can let L3 be the line y = 0.

Example A.2.20 (A triple line, a double line and another line concurrent at a point

[54, Example 7.51]). Consider three lines L1, L2 and L3 concurrent at a point P1 and

choose a cubic C so that C is tangent to L1 at P1 with full multiplicity, C is tangent

to L2 at a point P2(6= P1) (with multiplicity two) and it intersects L3 at two other

points P3 and P4.
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The pencil P generated by B = L1 + 3L2 + 2L3 and 2C is a Halphen pencil of

index two and such pencil yields a fiber of type III∗ in the associated rational elliptic

surface.

Example A.2.21 (A triple line, a conic and a line [54, Example 7.52]). Let Q be a

(smooth) conic. Choose a point P1 in Q and let L1 be the tangent line to Q at P1.

Choose two other points in Q, say P2 and P3, and let L2 be the line joining them. Let

P4 be the intersection point between L1 and L2. We can construct a cubic C through

these four points so that C is tangent to Q (resp. L1) at P1 with multiplicity four

(resp. two).

The pencil P generated by B = 3L1 +Q+L2 and 2C is a Halphen pencil of index

two which yields a fiber of type III∗ in the corresponding rational elliptic surface.

Concretely, choose coordinates in P2 so that Q is the conic given by x2 + yz = 0

and we have P1 = (0 : 1 : 0), P2 = (−1 : −1 : 1) and P3 = (0 : 0 : 1). Then L1 is the

line z = 0, L2 is the line x + y = 0, P4 = (−1 : 1 : 0) and C is the cubic given by

(x+ z)xz + (x2 + yz)(x+ y) = 0.

Example A.2.22 (A triple line and a cubic [54, Example 7.53]). Let D : d = 0 be

a nodal cubic and let P1 denote its node. Let P2 be a point in D which is not a flex

and let L : l = 0 denote the tangent line to D at P2. Let P3 be the third intersection

point between L and D and let L′ : l′ = 0 denote the line joining P1 and P3.

Then the cubic C given by l2l′ + d = 0 is such that the intersection multiplicity of

D and C at P = P2 (resp. P = P3) is 4 (resp. 3). Moreover, by construction, the
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node P1 lies in C.

Concretely, if D is the nodal cubic given by y2z = x2(x + z) we have that P1 =

(0 : 0 : 1) and we can let P2 = (1 : 0 : −1) so that L is the line x+ z = 0. Then P3 =

(0 : 1 : 0) and L′ is the line x = 0. Thus, C is the cubic given by z(y2 +x2 +xz) = 0.

Note that C consists of a line (z = 0) and a conic (y2 + x2 + xz = 0). Moreover, the

line is an inflection line of D and the node P1 lies in the conic.

Now, the pencil P generated by B = 3L+D and 2C is a Halphen pencil of index

two and the associated rational elliptic surface has a fiber of type III∗.

Example A.2.23 (A line with multiplicity four and a conic [54, Example 7.54]).

Consider either a smooth or nodal cubic C. Choose smooth points P1, P2 ∈ C so that

there exists a conic Q which is tangent to C at P1 (resp. P2) with multiplicity 4 (resp.

2). Let L be the line joining P1 and P2 and let P3 be the third intersection point

between L and C. Then the pencil P generated by B = Q+ 4L and 2C is a Halphen

pencil of index two which yields a fiber of type III∗ in the associated rational elliptic

surface.

For instance, consider the cubic C given by x2z + (x2 + yz)(y + z) = 0 and let

P1 = (0 : 1 : 0) and P2 = (0 : 0 : 1). Then L : x = 0 and P3 = (0 : 1 : −1) and we can

take Q : x2 + yz = 0.

Example A.2.24 (A line with multiplicity four and two other lines [54, Example

7.55]). Consider either a smooth or nodal cubic C and let P4 be a flex point of C.

We can always choose two lines L1 and L2 through P4 which are tangent to C at two
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other points P1 and P2, respectively. Moreover, if L3 is the line joining P1 and P2,

then C intersects L3 at a third point P3 and we have that the pencil P generated by

B = L1 + L2 + 4L3 and 2C is a Halphen pencil of index two with base points

P
(1)
1 , . . . , P

(3)
1 , P

(1)
2 , . . . , P

(3)
2 , P

(1)
3 , P

(2)
3 , P

(1)
4

Blowing-up P2 at these nine base points yields a fiber of type III∗ in the associated

rational elliptic surface.

Note that, concretely, we can choose coordinates in P2 so that C is the cubic given

by y2z = x(x − z)(x − α · z) for some α ∈ C\{0, 1}, we can let P4 = (0 : 1 : 0) and

we can choose L1 and L2 to be the lines x = 0 and x − z = 0. Then P1 = (0 : 0 :

1), P2 = (1 : 0 : 1), L3 is the line y = 0 and P3 = (α : 0 : 1).

A.2.3 Type II∗

We now construct all possible examples of Halphen pencils of index two that yield

a fiber of type II∗ in the corresponding rational elliptic surface (Theorem A.1.4).

Example A.2.25 (A triple conic [18], [54, Example 7.56]). We begin with an

example of a rational elliptic surface whose Jacobian is the surface X211 in Miranda

and Persson’s list [44].

Let C be a cubic with a node and let P0 be an inflection point of C that we take

as the identity for the group law. Choose another point P in C satisfying 6P = P0.

Then there exists a conic Q tangent to C at P with multiplicity 6 and to the pencil
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generated by B = 3Q and 2C we can associate a rational elliptic fibration Y → P1 of

index two with II∗ + 2I1 + I1 singular fibers.

Concretely, we blow-up P2 at the nine points P (1)
1 , . . . , P

(9)
1 where P (1)

1 = P . The

strict transform of C is the multiple fiber and the strict transform of Q is the

component of multiplicity 3 in the II∗ fiber that intersects the component of

multiplicity 6.

Example A.2.26 (Two triple lines [54, Example 7.57]). Let C be either a smooth

or nodal cubic. Let L1 be an inflection line of C at a point P1 and let L2 be a line

through P1 which is tangent to C at another point P2.

Then the pencil P generated by B = 3L1 + 3L2 and 2C is a Halphen pencil of

index two which yields a fiber of type II∗ in the associated rational elliptic surface.

Concretely, (if C is smooth) we can choose coordinates in P2 so that C is the cubic

given by y2z = x(x − z)(x − α · z) for some α ∈ C\{0, 1}, we can let L1 be the line

z = 0 (hence P1 = (0 : 1 : 0)) and we can choose L2 to be either one of the lines

x = 0, x− z = 0 or x− α · z = 0.

If we choose L2 as x = 0, then P2 = (0 : 0 : 1) and, similarly, if we take L2 as

x− z = 0 (resp. x− α · z = 0), then P2 = (1 : 0 : 1) (resp. P2 = (α : 0 : 1)).

Example A.2.27 (A triple line and a cubic [54, Example 7.58]). Let D : d = 0 be a

nodal cubic and let P1 denote its node. Let L : l = 0 be an inflection line of D and

denote the flex point by P2. Let L′ : l′ = 0 be the line joining P1 and P2.

Then the cubic C given by l2l′ + d = 0 is such that the intersection multiplicity of
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D and C at P2 is 7 and, by construction, the node P1 lies on it. We also have that L

is also an inflection line of C at P2. Now, the pencil P generated by B = D+ 3L and

2C is a Halphen pencil of index two which yields a fiber of type II∗ in the associated

rational elliptic surface.

Concretely, we can choose as D the nodal cubic given by y2z = x2(x + z), then

P1 = (0 : 0 : 1) and we can choose L to be the line z = 0 so that P2 = (0 : 1 : 0).

Then L′ is the line x = 0 and C has equation z2x+ y2z − x3 − x2z = 0.

Example A.2.28 (A line with multiplicity four and a conic [54, Example 7.59]). Let

C be either a smooth or nodal cubic. Choose a sextactic point P1 ∈ C (see Definition

A.2.2). And let Q be the corresponding osculating conic at P1. Choose a line L which

is tangent to both Q and C at P1 and let P2 be the third point of intersection between

L and C. Then the pencil P generated by B = Q+ 4L and 2C is a Halphen pencil of

index two which yields a fiber of type II∗ in the associated rational elliptic surface.

For instance, consider the cubic C given by

−3x3 + xz2 + y2z + 2xy2 = x3 + (y2 − 2x2 + xz) · (2x+ z) = 0

Let P1 = (0 : 0 : 1), let Q : y2− 2x2 + xz = 0 and let L : x = 0. Then the intersection

multiplicity of Q and C at P1 is 6 and we have that P2 = (0 : 1 : 0) is a flex point

with inflection line 2x+ z = 0.

Example A.2.29 (A line with multiplicity five and another line [54, Example 7.60]).

Consider either a smooth or nodal cubic C and let L1 be an inflection line of C at a

point P1. We can always choose another line L2 through P1 which is tangent to C at
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another point P2. And the pencil P generated by B = 5L2 + L1 and 2C is a Halphen

pencil of index two which yields a fiber of type II∗ in the associated rational elliptic

surface. Concretely, (if C is smooth) we can choose coordinates in P2 so that C is

the cubic given by y2z = x(x− z)(x− α · z) for some α ∈ C\{0, 1}, we can let L1 be

the line z = 0 (hence P1 = (0 : 1 : 0)) and we can choose L2 to be either one of the

lines x = 0, x− z = 0 or x− α · z = 0.
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Appendix B

Non-stable pencils of plane sextics

In Section II.2.5 (and in [56]) we studied the stability of pencils of plane curves

of degree six under the action of SL(3) in the sense of geometric invariant theory

(GIT). The next paragraphs serve as an appendix to Section II.2.5 (and [56, Section

3]), and provides a complete characterization of the non-stable pencils in P6 in terms

of explicit equations for their generators.

As in Section II.2.5, we use the notation 〈m1, . . . ,mn〉 to denote the subspace of

homogeneous polynomials of degree six in the variables x, y and z which is

generated by the monomials mi. Whereas 〉m1, . . . ,mn〈 denotes the subspace of

those polynomials which are generated by all the monomials which are different

from the mi.
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B.1 Equations associated to non-stability

Given a pencil P ∈ P6 and any of its curves, say Cf , we can represent Cf by a

triangle of coefficients of f =
∑

fijx
iyjz6−i−j:

f60

f50 f51

...

f22

...

f00 f01 f02 f03 f04 f05 f06

In particular, a pencil P ∈ P6 will satisfy the vanishing conditions in case 1 of

Theorem II.2.5.7 if and only if we can find coordinates in P2 and generators Cf and

Cg of P such that the coefficients below the corresponding lines in one of the cases in

Figure B.1 below all vanish.

f

g

Case 1

f

g

Case 2

f, g

Case 3

Figure B.1: Pictorial description of Theorem II.2.5.8

This gives a nice visual description of Theorem II.2.5.8 ([56, Theorem 3.1]).

Similarly we can prove:
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Theorem B.1.1. A pencil P ∈ P6 satisfies the vanishing conditions in case 2 of

Theorem II.2.5.7 if and only if there exist coordinates in P2 and generators Cf and

Cg of P such that either

1. f ∈ 〈x5z, x5y, x6〉 and g is arbitrary

2. f ∈ 〈x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5〈

3. f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4〈

4. f ∈ 〈x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3〈

5. f ∈ 〈x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f33 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, xz5〈

6. f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f32 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, xz5, xyz4〈

7. f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f31 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3〈

8. f ∈ 〈x2y4, x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f24 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2〈
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9. f ∈ 〈x2y3z, x2y4, x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with

f23 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2, xy4z, x2z4〈

10. f and g ∈ 〈x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and

i+ j ≤ 6

Theorem B.1.2. A pencil P ∈ P6 satisfies the vanishing conditions in case 3 of

Theorem II.2.5.7 if and only if there exist coordinates in P2 and generators Cf and

Cg of P such that either

1. f ∈ 〈x5y, x6〉 and g is arbitrary

2. f ∈ 〈x5z, x5y, x6〉

and g ∈〉z6〈

3. f ∈ 〈x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5〈

4. f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4〈

5. f ∈ 〈x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f33 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, xz5〈

6. f ∈ 〈x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f40 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, xz5〈
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7. f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f32 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, xz5, xyz4〈

8. f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f31 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, xz5, xyz4, xy2z3〈

9. f ∈ 〈x2y4, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f24 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2〈

10. f ∈ 〈x2y4, x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f24 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2, x2z4〈

11. f ∈ 〈x2y3z, x2y4, x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with

f23 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2, x2z4〈

12. f ∈ 〈x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and i + j ≤ 6,

plus f22 6= 0

and g00 = . . . = g14 = g20 = g21 = 0

13. f and g ∈ 〈x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and

i+ j ≤ 6

Theorem B.1.3. A pencil P ∈P6 will satisfy the vanishing conditions in case 4 of

Theorem II.2.5.7 if and only if we can find coordinates in P2 and generators Cf and
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Cg of P such that the coefficients below the corresponding lines in one of the cases in

Figure B.2 all vanish.

f, g

f

g

f

g

f

g

f

g

f

g

f

g

Figure B.2: Pictorial description of case 4 of Theorem II.2.5.7

Theorem B.1.4. A pencil P ∈ P6 satisfies the vanishing conditions in case 5 of

Theorem II.2.5.7 if and only if there exist coordinates in P2 and generators Cf and

Cg of P such that either

1. f ∈ 〈x6〉
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and g ∈〉z6〈

2. f ∈ 〈x5y, x6〉

and g ∈〉z6, yz5〈

3. f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉, with f41 6= 0

and g ∈〉z6, yz5, y2z4, xz5, xyz4〈

4. f ∈ 〈x4y2, x5z, x5y, x6〉, with f42 6= 0

and g ∈〉z6, yz5, y2z4, xz5〈

5. f ∈ 〈x5z, x5y, x6〉, with f50 6= 0

and g ∈〉z6, yz5, y2z4, xz5〈

6. f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3〈, with mijkl = 0 for i, j, k and l (in order) in the

list below:

{1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2}, {1, 0, 5, 0},

{1, 1, 3, 2}, {1, 1, 4, 0}, {1, 1, 4, 1}, {1, 2, 4, 0}, {2, 0, 3, 2}, {2, 0, 4, 0}

7. f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2〈, with mijkl = 0 for i, j, k and l (in order)
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in the list below:

{1, 0, 3, 1}, {1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2},

{1, 0, 5, 0}, {1, 1, 3, 1}, {1, 1, 3, 2}, {1, 1, 4, 0}, {1, 1, 4, 1}, {1, 2, 3, 1},

{1, 2, 4, 0}, {2, 0, 3, 1}, {2, 0, 3, 2}, {2, 0, 4, 0}, {2, 1, 3, 1}

8. f ∈ 〈x2yz3, x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and

i+ j ≤ 6

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z〈, with mijkl = 0 for i, j, k and l (in

order) in the list below:

{1, 0, 2, 1}, {1, 0, 2, 2}, {1, 0, 2, 3}, {1, 0, 2, 4}, {1, 0, 3, 0}, {1, 0, 3, 1},

{1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2}, {1, 0, 5, 0},

{1, 1, 2, 1}, {1, 1, 2, 2}, {1, 1, 2, 3}, {1, 1, 2, 4}, {1, 1, 3, 0}, {1, 1, 3, 1},

{1, 1, 3, 2}, {1, 1, 4, 0}, {1, 1, 4, 1}, {1, 2, 2, 1}, {1, 2, 2, 2}, {1, 2, 2, 3},

{1, 2, 3, 0}, {1, 2, 3, 1}, {1, 2, 4, 0}, {1, 3, 2, 1}, {1, 3, 2, 2}, {1, 3, 3, 0},

{1, 4, 2, 1}, {2, 0, 2, 1}, {2, 0, 2, 2}, {2, 0, 2, 3}, {2, 0, 3, 0}, {2, 0, 3, 1},

{2, 0, 3, 2}, {2, 0, 4, 0}, {2, 1, 2, 2}, {2, 1, 3, 0}, {2, 1, 3, 1}, {2, 2, 3, 0}

9. f ∈ 〈x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and i+ j ≤ 6

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2〈, with

mijkl = 0 for i, j, k and l (in order) in the list below:
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{2, 0, 2, 2}, {2, 0, 2, 3}, {2, 0, 3, 0}, {2, 0, 3, 1}, {2, 0, 3, 2}, {2, 0, 4, 0},

{2, 1, 2, 2}, {2, 1, 3, 0}, {2, 1, 3, 1}, {2, 2, 3, 0}

Theorem B.1.5. A pencil P ∈ P6 satisfies the vanishing conditions in case 6 of

Theorem II.2.5.7 if and only if there exist coordinates in P2 and generators Cf and

Cg of P such that either

1. f ∈ 〈x5y, x6〉, with f51 6= 0

and g ∈〉z6, yz5, xz5〈

2. f ∈ 〈x6〉

and g ∈〉z6, yz5〈

3. f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4〈, with mijkl = 0 for i, j, k and l (in order) in the list

below:

{1, 0, 4, 1}, {1, 0, 4, 2}, {1, 0, 5, 0}, {1, 0, 5, 1}, {1, 1, 4, 1}, {1, 1, 5, 0},

{2, 0, 4, 1}

4. f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3〈, with mijkl = 0 for i, j, k and l (in order) in the

list below:
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{1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2}, {1, 0, 5, 0},

{1, 0, 5, 1}, {1, 1, 3, 2}, {1, 1, 4, 0}, {1, 1, 4, 1}, {1, 1, 5, 0}, {1, 2, 4, 0},

{2, 0, 3, 2}, {2, 0, 4, 0}, {2, 0, 4, 1}, {2, 1, 4, 0},

5. f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z4〈, with mijkl = 0 for i, j, k and l (in order)

in the list below:

{1, 0, 3, 1}, {1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2},

{1, 0, 5, 0}, {1, 0, 5, 1}, {1, 1, 3, 1}, {1, 1, 3, 2}, {1, 1, 4, 0}, {1, 1, 4, 1},

{1, 1, 5, 0}, {1, 2, 3, 1}, {1, 2, 4, 0}, {2, 0, 3, 1}, {2, 0, 3, 2}, {2, 0, 4, 0},

{2, 0, 4, 1}, {2, 1, 3, 1}, {2, 1, 4, 0}, {3, 0, 3, 1}

6. f ∈ 〈x2yz3, x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and

i+ j ≤ 6

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z〈, with mijkl = 0 for i, j, k and l (in

order) in the list below:
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{1, 0, 2, 1}, {1, 0, 2, 2}, {1, 0, 2, 3}, {1, 0, 2, 4}, {1, 0, 3, 0}, {1, 0, 3, 1},

{1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2}, {1, 0, 5, 0},

{1, 0, 5, 1}, {1, 1, 2, 1}, {1, 1, 2, 2}, {1, 1, 2, 3}, {1, 1, 2, 4}, {1, 1, 3, 0},

{1, 1, 3, 1}, {1, 1, 3, 2}, {1, 1, 4, 0}, {1, 1, 4, 1}, {1, 1, 5, 0}, {1, 2, 2, 1},

{1, 2, 2, 2}, {1, 2, 2, 3}, {1, 2, 3, 0}, {1, 2, 3, 1}, {1, 2, 4, 0}, {1, 3, 2, 1},

{1, 3, 2, 2}, {1, 3, 3, 0}, {1, 4, 2, 1}, {2, 0, 2, 1}, {2, 0, 2, 2}, {2, 0, 2, 3},

{2, 0, 3, 0}, {2, 0, 3, 1}, {2, 0, 3, 2}, {2, 0, 4, 0}, {2, 0, 4, 1}, {2, 1, 2, 2},

{2, 1, 3, 0}, {2, 1, 3, 1}, {2, 1, 4, 0}, {2, 2, 3, 0}, {3, 0, 3, 1}

7. f ∈ 〈x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and i+ j ≤ 6

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2〈, with

mijkl = 0 for i, j, k and l (in order) in the list below:

{2, 0, 2, 2}, {2, 0, 2, 3}, {2, 0, 3, 0}, {2, 0, 3, 1}, {2, 0, 3, 2}, {2, 0, 4, 0},

{2, 0, 4, 1}, {2, 1, 2, 2}, {2, 1, 3, 0}, {2, 1, 3, 1}, {2, 1, 4, 0}, {2, 2, 3, 0},

{3, 0, 3, 1}

8. f ∈ 〈x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2, xy4z, xy5〈
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Theorem B.1.6. A pencil P ∈P6 will satisfy the vanishing conditions in case 7 of

Theorem II.2.5.7 if and only if we can find coordinates in P2 and generators Cf and

Cg of P such that the coefficients on the left of the corresponding lines in one of the

cases in Figure B.3 all vanish.

f, g f g

f
g

Figure B.3: Pictorial description of case 7 of Theorem II.2.5.7

B.2 Equations associated to unstability

Theorem B.2.1. A pencil P ∈ P6 satisfies the vanishing conditions in case 1 of

Theorem II.2.5.6 if and only if there exist coordinates in P2 and generators Cf and

Cg of P such that either
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1. f ∈ 〈x5z, x5y, x6〉 and g is arbitrary

2. f ∈ 〈x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4〈

3. f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3〈

4. f ∈ 〈x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2〈

5. f ∈ 〈x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f33 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, xz5〈

6. f ∈ 〈x3yz, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3〈

7. f ∈ 〈x2y4, x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f24 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2, xy4z, x2z4〈

8. f ∈ 〈x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2, xy4z〈

Theorem B.2.2. A pencil P ∈ P6 satisfies the vanishing conditions in case 2 of

Theorem II.2.5.6 if and only if there exist coordinates in P2 and generators Cf and

Cg of P such that either
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1. f ∈ 〈x5y, x6〉 and g is arbitrary

2. f ∈ 〈x5z, x5y, x6〉

and g〉z6〈

3. f ∈ 〈x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4〈

4. f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3〈

5. f ∈ 〈x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f33 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, xz5, xyz4〈

6. f ∈ 〈x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f40 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, xz5〈

7. f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f32 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, xz5, xyz4, xy2z3〈

8. f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2〈

9. f ∈ 〈x2y3z, x2y4, x3z3, x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2, xy4z〈, with

mijkl 6= 0 for i, j, k and l (in order) in the list below:
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{2, 0, 2, 3}, {2, 0, 2, 4}, {2, 0, 3, 0}, {2, 1, 2, 3}

Theorem B.2.3. A pencil P ∈ P6 satisfies the vanishing conditions in case 3 of

Theorem II.2.5.6 if and only if there exist coordinates in P2 and generators Cf and

Cg of P such that either

1. f ∈ 〈x6〉 and g is arbitrary

2. f ∈ 〈x5y, x6〉

and g ∈〉z6〈

3. f ∈ 〈x5z, x5y, x6〉

and g ∈〉z6, yz5〈

4. f ∈ 〈x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4〈

5. f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉, with f41 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, xz5〈

6. f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2〈, with mijkl 6= 0 for i, j, k and l (in order)

in the list below:
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{1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 1, 3, 2}, {1, 1, 3, 3},

{1, 1, 4, 0}, {1, 2, 3, 2}

7. f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z〈, with mijkl 6= 0 for i, j, k and l (in

order) in the list below:

{1, 0, 3, 1}, {1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 1, 3, 1},

{1, 1, 3, 2}, {1, 1, 3, 3}, {1, 1, 4, 0}, {1, 2, 3, 1}, {1, 2, 3, 2}, {1, 3, 3, 1},

{2, 0, 3, 1}

8. f ∈ 〈x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4〈

9. f ∈ 〈x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and i+ j ≤ 6

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2, xy4z〈, with

mijkl 6= 0 for i, j, k and l (in order) in the list below:

{2, 0, 2, 2}, {2, 0, 2, 3}, {2, 0, 2, 4}, {2, 0, 3, 0}, {2, 0, 3, 1}, {2, 1, 2, 2},

{2, 1, 2, 3}, {2, 1, 3, 0}
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Theorem B.2.4. A pencil P ∈ P6 satisfies the vanishing conditions in case 4 of

Theorem II.2.5.6 if and only if there exist coordinates in P2 and generators Cf and

Cg of P such that either

1. f ∈ 〈x6〉

and g ∈〉z6〈

2. f ∈ 〈x5y, x6〉

and g ∈〉z6, yz5〈

3. f ∈ 〈x4y2, x5z, x5y, x6〉, with f42 6= 0

and g ∈〉z6, yz5, y2z4, xz5〈

4. f ∈ 〈x5z, x5y, x6〉, with f50 6= 0

and g ∈〉z6, yz5, y2z4, xz5〈

5. f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉, with f41 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, xz5, xyz4〈

6. f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2〈, with mijkl 6= 0 for i, j, k and l (in order)

in the list below:
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{1, 0, 3, 1}, {1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2},

{1, 0, 5, 0}, {1, 1, 3, 1}, {1, 1, 3, 2}, {1, 1, 3, 3}, {1, 1, 4, 0}, {1, 1, 4, 1},

{1, 2, 3, 1}, {1, 2, 3, 2}, {1, 2, 4, 0}, {1, 3, 3, 1}, {2, 0, 3, 1}, {2, 0, 3, 2},

{2, 0, 4, 0}, {2, 1, 3, 1}

7. f ∈ 〈x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and i+ j ≤ 6

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z〈, with mijkl 6= 0 for i, j, k and l (in

order) in the list below:

{1, 0, 2, 2}, {1, 0, 2, 3}, {1, 0, 2, 4}, {1, 0, 3, 0}, {1, 0, 3, 1}, {1, 0, 3, 2},

{1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2}, {1, 0, 5, 0}, {1, 1, 2, 2},

{1, 1, 2, 3}, {1, 1, 2, 4}, {1, 1, 3, 0}, {1, 1, 3, 1}, {1, 1, 3, 2}, {1, 1, 3, 3},

{1, 1, 4, 0}, {1, 1, 4, 1}, {1, 2, 2, 2}, {1, 2, 2, 3}, {1, 2, 3, 0}, {1, 2, 3, 1},

{1, 2, 3, 2}, {1, 2, 4, 0}, {1, 3, 2, 2}, {1, 3, 3, 0}, {1, 3, 3, 1}, {1, 4, 3, 0},

{2, 0, 2, 2}, {2, 0, 2, 3}, {2, 0, 2, 4}, {2, 0, 3, 0}, {2, 0, 3, 1}, {2, 0, 3, 2},

{2, 0, 4, 0}, {2, 1, 2, 2}, {2, 1, 2, 3}, {2, 1, 3, 0}, {2, 1, 3, 1}, {2, 2, 3, 0}

8. f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉, with f32 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, x2z4〈
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9. f ∈ 〈x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3〈 plus m2040 = 0

10. f ∈ 〈x2yz3, x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and

i+ j ≤ 6

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3, xy3z2, xy4z〈, with

mijkl 6= 0 for i, j, k and l (in order) in the list below:

{2, 0, 2, 1}, {2, 0, 2, 2}, {2, 0, 2, 3}, {2, 0, 2, 4}, {2, 0, 3, 0}, {2, 0, 3, 1},

{2, 0, 3, 2}, {2, 0, 4, 0}, {2, 1, 2, 2}, {2, 1, 2, 3}, {2, 1, 3, 0}, {2, 1, 3, 1},

{2, 2, 3, 0}

Theorem B.2.5. A pencil P ∈ P6 satisfies the vanishing conditions in case 5 of

Theorem II.2.5.6 if and only if there exist coordinates in P2 and generators Cf and

Cg of P such that either

1. f ∈ 〈x5y, x6〉, with f51 6= 0

and g ∈〉z6, yz5, xz5〈

2. f ∈ 〈x6〉

and g ∈〉z6, yz5〈

3. f ∈ 〈x4y2, x5z, x5y, x6〉
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and g ∈〉z6, yz5, y2z4〈, with mijkl 6= 0 for i, j, k and l (in order) in the list

below:

{1, 0, 4, 2}, {1, 0, 5, 0}, {1, 0, 5, 1}, {1, 1, 5, 0}

4. f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉, with f41 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, xz5, xyz4, x2z4〈

5. f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2〈, with mijkl 6= 0 for i, j, k and l (in order)

in the list below:

{1, 0, 3, 1}, {1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2},

{1, 0, 5, 0}, {1, 0, 5, 1}, {1, 1, 3, 1}, {1, 1, 3, 2}, {1, 1, 3, 3}, {1, 1, 4, 0},

{1, 1, 4, 1}, {1, 1, 5, 0}, {1, 2, 3, 1}, {1, 2, 3, 2}, {1, 2, 4, 0}, {1, 3, 3, 1},

{2, 0, 3, 1}, {2, 0, 3, 2}, {2, 0, 4, 0}, {2, 0, 4, 1}, {2, 1, 3, 1}, {2, 1, 4, 0},

{3, 0, 3, 1}

6. f ∈ 〈x2yz3, x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and

i+ j ≤ 6

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z〈, with mijkl 6= 0 for i, j, k and l (in

order) in the list below:
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{1, 0, 2, 1}, {1, 0, 2, 2}, {1, 0, 2, 3}, {1, 0, 2, 4}, {1, 0, 3, 0}, {1, 0, 3, 1},

{1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2}, {1, 0, 5, 0},

{1, 0, 5, 1}, {1, 1, 2, 1}, {1, 1, 2, 2}, {1, 1, 2, 3}, {1, 1, 2, 4}, {1, 1, 3, 0},

{1, 1, 3, 1}, {1, 1, 3, 2}, {1, 1, 3, 3}, {1, 1, 4, 0}, {1, 1, 4, 1}, {1, 1, 5, 0},

{1, 2, 2, 1}, {1, 2, 2, 2}, {1, 2, 2, 3}, {1, 2, 3, 0}, {1, 2, 3, 1}, {1, 2, 3, 2},

{1, 2, 4, 0}, {1, 3, 2, 1}, {1, 3, 2, 2}, {1, 3, 3, 0}, {1, 3, 3, 1}, {1, 4, 2, 1},

{1, 4, 3, 0}, {2, 0, 2, 1}, {2, 0, 2, 2}, {2, 0, 2, 3}, {2, 0, 2, 4}, {2, 0, 3, 0},

{2, 0, 3, 1}, {2, 0, 3, 2}, {2, 0, 4, 0}, {2, 0, 4, 1}, {2, 1, 2, 2}, {2, 1, 2, 3},

{2, 1, 3, 0}, {2, 1, 3, 1}, {2, 1, 4, 0}, {2, 2, 3, 0}, {3, 0, 3, 1}

7. f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3〈, with mijkl 6= 0 for

i, j, k and l (in order) in the list below:

{2, 0, 3, 2}, {2, 0, 4, 0}, {2, 0, 4, 1}, {2, 1, 4, 0}, {3, 0, 3, 1}

Theorem B.2.6. A pencil P ∈ P6 satisfies the vanishing conditions in case 6 of

Theorem II.2.5.6 if and only if there exist coordinates in P2 and generators Cf and

Cg of P such that either

1. f ∈ 〈x5y, x6〉
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and g ∈〉z6, yz5, xz5〈

2. f ∈ 〈x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, with mijkl 6= 0 for i, j, k and l (in order) in the list

below:

{1, 0, 4, 2}, {1, 0, 5, 0}, {1, 0, 5, 1}, {1, 0, 6, 0}, {1, 1, 5, 0}, {2, 0, 5, 0}

3. f ∈ 〈x4yz, x4y2, x5z, x5y, x6〉, with f41 6= 0

and g ∈〉z6, yz5, y2z4, y3z3, xz5, xyz4, x2z4

4. f ∈ 〈x3yz2, x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2〈, with mijkl 6= 0 for i, j, k and l (in order)

in the list below:

{1, 0, 3, 1}, {1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2},

{1, 0, 5, 0}, {1, 0, 5, 1}, {1, 0, 6, 0}, {1, 1, 3, 1}, {1, 1, 3, 2}, {1, 1, 3, 3},

{1, 1, 4, 0}, {1, 1, 4, 1}, {1, 1, 5, 0}, {1, 2, 3, 1}, {1, 2, 3, 2}, {1, 2, 4, 0},

{1, 3, 3, 1}, {2, 0, 3, 1}, {2, 0, 3, 2}, {2, 0, 4, 0}, {2, 0, 4, 1}, {2, 0, 5, 0},

{2, 1, 3, 1}, {2, 1, 4, 0}, {3, 0, 3, 1}, {3, 0, 4, 0}

5. f ∈ 〈x2yz3, x2y2z2, x2y3, x2y4, xiyjz6−i−j〉, where 3 ≤ i ≤ 6, 0 ≤ j ≤ 6 and

i+ j ≤ 6
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and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z〈, with mijkl 6= 0 for i, j, k and l (in

order) in the list below:

{1, 0, 2, 1}, {1, 0, 2, 2}, {1, 0, 2, 3}, {1, 0, 2, 4}, {1, 0, 3, 0}, {1, 0, 3, 1},

{1, 0, 3, 2}, {1, 0, 3, 3}, {1, 0, 4, 0}, {1, 0, 4, 1}, {1, 0, 4, 2}, {1, 0, 5, 0},

{1, 0, 5, 1}, {1, 0, 6, 0}, {1, 1, 2, 1}, {1, 1, 2, 2}, {1, 1, 2, 3}, {1, 1, 2, 4},

{1, 1, 3, 0}, {1, 1, 3, 1}, {1, 1, 3, 2}, {1, 1, 3, 3}, {1, 1, 4, 0}, {1, 1, 4, 1},

{1, 1, 5, 0}, {1, 2, 2, 1}, {1, 2, 2, 2}, {1, 2, 2, 3}, {1, 2, 3, 0}, {1, 2, 3, 1},

{1, 2, 3, 2}, {1, 2, 4, 0}, {1, 3, 2, 1}, {1, 3, 2, 2}, {1, 3, 3, 0}, {1, 3, 3, 1},

{2, 0, 2, 1}, {2, 0, 2, 2}, {2, 0, 2, 3}, {2, 0, 2, 4}, {2, 0, 3, 0}, {2, 0, 3, 1},

{2, 0, 3, 2}, {2, 0, 4, 0}, {2, 0, 4, 1}, {2, 0, 5, 0}, {2, 1, 2, 2}, {2, 1, 2, 3},

{2, 1, 3, 0}, {2, 1, 3, 1}, {2, 1, 4, 0}, {2, 2, 3, 0}, {3, 0, 3, 1}, {3, 0, 4, 0}

6. f ∈ 〈x3y2z, x3y3, x4z2, x4yz, x4y2, x5z, x5y, x6〉

and g ∈〉z6, yz5, y2z4, y3z3, y4z2, y5z, y6, xz5, xyz4, xy2z3〈, with mijkl 6= 0 for

i, j, k and l (in order) in the list below:

{2, 0, 3, 2}, {2, 0, 4, 0}, {2, 0, 4, 1}, {2, 0, 5, 0}, {2, 1, 4, 0}, {3, 0, 3, 1},

{3, 0, 4, 0}
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