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ABSTRACT
A Monadic Interpretation of Categorical Mackey Functors

Elijah H. Gunther
Mona Merling, Advisor

We study a monadic version of categorical Mackey functors proposed by Bonventre which
we call Y (—)-algebras or SGAs. These are algebras over the monad Yol (—) in categories
fibered over Fin“ satsifying an additivity condition. The monad operation encode genuine
commutative operations, which we can also interpret as transfers. These have several condi-
tions we can strengthen or weaken, offering substantial flexibility. By varying the conditions on
these algebras, we show we can recover the permutative Mackey functors of Bohmann-Osorno
and the symmetric monoidal Mackey functors of Hill-Hopkins. In the process we construct a

convenient strict (2,1)-category of spans. We also define commutative monoids in an SGA.
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Chapter 1

Introduction

One of the most fundamental concepts in category theory and algebra is that of a symmetric
monoidal category - a category with a monoidal product, unital, associative, and commutative
up to natural isomorphism; in the case of a permutative category associativity and unitality
are strict. For instance we have the symmetric monoidal category of Set with the cartesian
product, or R — Mod with ®g. With this structure we can define rings and algebras as
examples of a general concept of monoids. Additionally, by taking algebraic K-theory or
the classifying space of a symmetric monoidal category, we can connect the structure of the
category to topology.

Group actions are similarly omnipresent across mathematics, appearing frequently in topol-
ogy, geometry, and number theory. In particular we consider a fixed finite group G. Recenty,
spurred on by the proof of the Kervaire Invariant 1 Problem by Hill-Hopkins-Ravenel [HHR21],
and connections to trace methods in algebraic K-theory, equivariant homotopy theory and
equivariant algebra have come to the spotlight as techniques from this field have found more

widespread use.



Central to these are Mackey functors best thought of as the equivariant analogue of abelian
groups. These can be defined as additive functors from Fin®, the category of finite G-sets
and equivariant maps, to Ab with both covariant transfer and contravariant restriction maps,

related by the double coset formula.

Remark 1.0.1. Throughout equivariant homotopy theory and algebra, we often see a dis-
tinction between naive and genuine commutative objects. The former merely has both a
commutative monoidal structure and a G-action, whereas in the latter the two have a more
subtle interplay. For instance we have abelian groups with a G-action compared to Mackey

functors or Borel G-spectra versus genuine G-spectra.

With this in mind, we might expect many of the symmetric monoidal categories encoun-
tered in equivariant homotopy theory and algebra to have some additional structure. Here
lays a gap which is only natural to fill:

How we can define a genuine equivariant symmetric monoidal category? That is to say
a suitable equivariant analogue of a symmetric monoidal category.

Multiple authors have presented versions, often with similar names, so we use the term
genuine equivariant symmetric monoidal category to refer to the general idea of a construction
aiming to answer this question, and refer to their constructions as different models of it.
Similar to how one can refer to co-categories in the abstract and to specific models such as
quasicategories.

We start by outlining several desiderata of a theory of genuine equivariant symmetric

monoidal categories.

e Mackey functors and semi-Mackey functors give discrete ones; taking isomorphism classes



gives us semi-Mackey functors.
e There is an equivariant K-theory functor to genuine G-spectra.

e Equivariant K-theory is surjective up to homotopy equivalence. Ideally K-theory has a

homotopy-inverse analogous to Thomason’s theorem.

e They include naive equivariant symmetric monoidal categories, but are not limited to

them.

e They include the examples of finite G-sets, G-Mackey functors, and genuine G-spectra.
These each should also include or recover the data of Finl, Macky, Sp, respectively,

as well as restriction and norm functors N§ for all H < G,

The Eilenberg-Maclane spectrum H(—) and 7y functor are monoidal.

e There is a notion of a genuine commutative monoid, and in the latter two examples they

are Tambara functors and G-ring spectra.

e For G = {e} the theory reduces to that of non-equivariant symmetric monoidal cate-

gories.

e Genuine equivariant colored operads specialize to them, in the same way that symmetric

colored operads (multicategories) specialize to permutative categories.

We now introduce several of the models. For completeness we start with two naive versions.

e Symmetric monoidal categories with a G-action by symmetric monoidal functors.



o A symmetric monoidal object in G-categories is a G-object in categories with an equiv-
ariant biproduct ® and fixed unit object, so that the unitor, associator, and symmetry

natural isomorphisms are G-isomorphisms [Rub20)].

It is straightforward to check that this is equivalent to a symmetric monoidal category

with G-action by strict symmetric monoidal functors.

Remark 1.0.2. We note that in a symmetric monoidal category with G-action by lax or strong
monoidal functors, the fixed point category C¥ is generall not symmetric monoidal as g(1¢) #
le, so 1le € CH and g(z) @ g(y) # g(x @ y), so v,y € CH Az @y € CH.

We observe that a symmetric monoidal category with strong monoidal strictly unital G-
action, is equivalent to a G-category C with a pseudo-equivariant functor C ® C — C, with
a fixed unit object, so that the unitor, associator, and symmetry natural isomorphisms are
G-isomorphisms.

By [Merl7] Cor 3.4, this makes C"! := Fun(EG,C)! = Fun(EH,C)! a symmetric
monoidal category as we have the induced functor ® : CM x ChM — CMI. Additionally, by
[Mer17] Prop 3.3, given a pseudoequivariant functor F': C®C — C, by applying Fun(EG, —)
we have an equivariant functor. Consequently, given a symmetric monoidal category with
G-action by strong symmetric monoidal strictly unital functors, by applying Fun(EG, —) we

have a symmetric monoidal object in GG-categories.

The first are those modelled on Mackey functors, we can think of these as being indexed

on Fin® or O, the full subcategory of transitive G-sets.

e First are the permutative Mackey functors or categorical Mackey functors of Bohmann-

Osorno [BIO15]. These were originally defined as enriched functors from (GE')? —

4



Perm, where GE’ is a version of the span category on Fin® enriched in permutative cat-
egories, and Perm is the category of permutative categories which is eriched over itself.
They define a version of K-theory and use it to construct Eilenberg-Maclane genuine
G-spectra which is one of the key desiderata. We construct an equivalent enriched span

category GE,,.q which we use instead as it is more convenient.

e Next are the symmetric monoidal Mackey functors of Hill-Hopkins as well as a general-
ization called genuine G-symmetric monoidal structure [HH16]. These are defined much
less rigidly but also less precisely. As a result they are comparatively unwieldy. They
also define genuine G-commutative monoids which are known to include some of the

desired examples.

e Third we have the G-symmetric oco-categories of Nardin-Shah, part of the series of
parametrized higher category theory and higher algebra [BDG16, NS22]. These can be
viewed as a higher categorical version of Mackey functors taking values in co-categories.
This theory connects to parametrized oo-operads and includes some of the desired ex-
amples. These are both the most general and in a sense the morally correct approach.
However they are abstract and unwieldy and for many purposes working with 1- and

2-categories is simpler and more elucidating.

The second group consist of a single category symmetric monoidal or permutative category

with extra operations on it. The first two of which are closely related to E., — G-spaces.

e A T'—G-category as defined by Shimikawa is a functor X : Fin, — Cat% [Shi89, Shio1].
It is special if the map X(n), — X(1)} is an H-equivalence, for all H < G and all p :
H — %, where H acts on them through p : H — G x%,,. (These are equivalent to special

5



[g-categories.) These give an equivariant generalization of the Segalic construction of

K-theory.

e A permutative (resp. symmetric monoidal) G-category of Guillou-May-Merling-Osorno
is a pseudoalgebra (resp. algebra) over the categorical equivariant Barratt-Eccles operad
with n'* level is the G-category Fun(EG, EY.,) [GM12, GMMO19, GMMO23] . By work
of [BBK™19] these cannot be described as permutative category with finitely many extra
operations. But the operad is equivalent to a finitely generated one. These have a well-

studied version of K-theory which is multiplicative.

e A normed symmetric monoidal category of Rubin is a symmetric monoidal object in
G-categories with the additional structure of compatible H-equivariant external norm
functors @7 : CT — C, where T is a finite H-set and H acts on C* by simultaneously
permuting the components and action on them, and natural untwistor isomorphisms

relating the external norms to multiplication C'"1 — C [Rub20)].

o A G-parsummable category by Lenz is a G-object in the category of parsummable cate-

gories, a variation of symmetric monoidal categories [Len22].

The main thrust of this paper is introducing the monad 3¢ ¢ (—), whose (pseudo)algebras
can be viewed as a new type of categorical Mackey functor. There are several parameters we
can vary separately which together determine the strength of additivity an SGA has, whether
restrictions are functorial or pseudofunctorial, whether they are strong or strict monoidal,
and similarly for transfers. This also provides a precise way to describe the naturality of a

double-coset isomorphism. SGAs were created by Peter Bonvetre and Luis Pereira and further



developed in joint work with Bonventre. Most of the technical results on the structure of SGAs
and some in their proofs were devised by Bonventre

With this we reach a main success of this paper - carefully interpolating between the
[BIO15, HH16] versions of symmetric monoidal and permutative Mackey functors by varying
the different parameters.

A significant challenge when constructing categorical Mackey functors is that pullbacks are
only defined up to isomorphism, so there is no prefered way to define composition of spans.
In the 1-categorical case this is not an issue as we are only concerned with isomorphism
classes of spans. Guillou-May [GM11] and Bohmann-Osorno [BIO15] deal with this problem
by working in Fin®, the category of ordered G-sets including all (unordered) equivariant maps,
with only a single object of each ordered isomorphism-type. In this category we can define the
lexicographical pullback, giving us a preferred choice of pullbacks. However if we use this to
define a 2-category of spans, it results in the bicategory GE as opposed to a strict 2-category.
Guillou-May sidestep this issue by cleverly defining GE', a slight modification which is a strict
2-category, and Bohmann-Orsono contains a minor error as their construction of G& is not in
fact a strict 2-category, as noted in [JY22].

One main result of this paper is proving that there is not consistent choice of pullbacks
in Fin® which would make GE a strict 2-category. Consequently something else is necessary.
We define GE,,q, the (2,1)-category of spans in Fin® whose left leg is order preserving. This
is equivalent to GE and GE’ as a 2-category and biequivalent to GE' as a category enriched
in permutative categories. GE,,4 is more closely connected to the category Fin® and thus
simpler to work with. As a result, later in the paper we use GE,,4 as the domain category for

permutative Mackey functors.



On the other hand we have the work of Guillou-May-Merling-Osorno [GMMO19, GMMO23].
They define genuine symmetric monoidal G-categories as alebgras over an operad. At the mo-
ment however the connection between their version of genuine equivariant symmetric monoidal
categories and the various Mackey functor versions is poorly understood. We believe this to
be a fundamentally different approach. A major question is to what extent these all arise
from naive symmetric monoidal G-categories. Lenz has proved that all do up to a notion of
equivalence [Len22].

We believe genuine G-symmetric monoidal categories could be viewed as a type of a gen-
uine G (colored) operad in the same way that symmetric multicategories extend permutative
categories. Indeed this is the approach taken in [NS22]. We do not know of similar work in a
lower-category theoretic context. However it is not apparent how such a connection would be
formed.

We believe that many of the ideas in this thesis have a natural application in the six-
functor formalism and Beck-Chevalley transformation of algebraic geometry. In many ways
this is formally similar to that of Mackey functors.

Much of the first section of this work deals with Fin®, the skeleton category of ordered
finite G-sets. This is so that we can define products and coproducts of finite G-sets so that
they form a permutative category, and so that we have a well-defined choice of pullbacks. This
is needed in order to construct permutative Mackey functors in a strict 2-functorial way. We
emphasize that although large sections of this paper rely heavily on the mechanics of ordered
sets and maps, they are not philosophically meaningful to us, rather they are useful merely
for the formal properties they satisfy.

There are other approaches. The tradition 1-categorical approach is to work with isomor-



phism classes of G-sets or spans of them, making pullbacks well-defined. Another approach
is to work entirely with weak 2-categories and pseudofunctors. This is the approach taken by
[HH16]. In many ways this is a more natural and “morally correct” approach. A disadvantage
is that these are generally unwieldy and unpleasant to deal with. Additionally some work such
as [BIO15, EMO6] uses strict 2-categories, and they are needed for multiplicative K-theory
constructions. Even when working with weak 2-categories, one will often want to strictify to
strict 2-categories and permutative categories as in [Guil0]; so we ultimately lose the strictness
at one point or another. A final way is to work with oo-categories, which could be thought of
as even more natural. However in this case the higher level of abstraction can obscure more
than it reveals, particularly as the work in this direction is somewhat less accessible.

With SGAs we can carefully tweak the different ways in which things can be weak, strong,
or strict.

We create the Fin® categories - essentially these are functors (Fin®)? — Cat which are
weakly additive, and the equivalences and invertible 2-cells witnessing them are suitably nat-
ural. In a sense this is a rather messy and ad-hoc definition, but we believe it is the weakest
set of conditions needed for SGAs to have the desired properties. Fortunately in the strongly
additive case, the extra naturality conditions are satisfied a fortioti. These were first defined

by Bonventre as a setting for SGAs and refined in this work.



1.1 Outline

After reviewing some basic definitions and notation, we discuss the background topics of equiv-
ariant mathematics and various ways of describing monoids. These motivate the constructions
of the different types of genuine equivariant symmetric monoidal categories. In particular, the
idea of what genuine means in such a context.

In the next three chapters, we review definitions and results from 1-category theory, 2-
category theory, as well a brief overview of co-categories. We will need some of these later in
the paper.

We then review symmetric monoidal categories, multicategories and enriched categories,
building up to defining Perm, the category of permutative categories enriched in the multi-
category of permutative categories. We touch on results of [BIO15] on change of enrichment
and multiplicative K-theory of [EMO06], which are used to construct genuine G-spectra from
functors enriched in permutative categories.

Next we discuss Fin®, the skeleton category of finite ordered G-sets and equivariant maps.
We prove several technical results on lexicographical-pullbacks in Fin® which we use through-
out the rest of the paper.

We then introduce chosen pullback systems, a selection of pullbacks in a category C, and
draconian chosen pullback systems, a choice which is suitably unital and associative, allowing
us to define a strict (2,1)-category of spans in C. We prove that no such structure can exist
on Fin or Fin®, essentially telling us there is no convenient way to define a strict Burnside

2-category on Fin®.
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Instead we are forced to constuct a slight variation originally proposed by Bonventre. We
discuss the strict (2,1)-categories GE' of [GM11] and GE,,4 which we define as the strict (2,1)-
category of spans in Fin® with left leg order preserving. This idea was presented by Bonventre.
These are biequivalent as categories enriched in permutative categories, and we choose to use
GE,,q as it is more cleanly defined than GE'.

We start the second section by defining Fin“-categories which are categories fibered over
(FinG)"p satisfying a particular weak additivity propert. This was also first devised by Bon-
ventre and then refined in this thesis. We define 3¢ then ¢ (—), the latter a monad in the
category of Fin“-categories. For a Fin%-category C, intuitively S¢ 1 C encodes the fibers of C
as well as genuine equivariant operations.

We then introduce a ¢ ! (—)-algebra or SGA as a pseudoalgebra over this monad which
was proposed by Bonventre. We discuss several ways to strengthen and weaken this definition
and then present several important examples. In the next chapter we prove technical results on
the structure of SGAs, the key takeaway being that SGAs share much of the key information
as a Mackey functor but in categories, with various invertible 2-cells being highly coherent.

In the next section we compare SGAs to two other models of genuine equivariant sym-
metric monoidal categories. We first show that given a permutative SGA, one satisfying some
strictness assumptions, we can construct a permutative Mackey functor. And given a permu-
tative Mackey functor satisfying a mild technical assumption we can construc an SGA. We
observe that on the categories and 1-morphism present, these constructions are inverses, but
we do not have a proof of a stronger statement.

We then observe that pseudo-SGAs, a weaker version, capture the idea described in [HH16]

as a symmetric monoidal Mackey functor. We then define commutative monoids in an SGA

11



and compare them to the G-commutative monoids of [HH16].
We finish by discussing some different choices we could have made in this paper as well as

directions of further research.
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Part 1

Conventions and Preliminaries
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Chapter 2

Basics

Notation 2.0.1. Through this entire paper, G will denote a finite group, H, K will denote

subgroups, and e will denote its identity element.
We discuss the importance of finiteness in Remark 3.2.12.

Notation 2.0.2. Fin denotes a skeleton category of finite sets and all maps. For concreteness
its objects are n := {1,--- ,n}, with 0 = 0.
We let X denote its maximal subgroupoid and use cycle notation to denote its elements.

Fin. denotes finite pointed sets with elements ny = {,1,--- ,n}.
Notation 2.0.3. X, denotes the automorphism group of n in Fin.

Notation 2.0.4. We use the term (genuine) equivariant symmetric monoidal category to mean
a genuine equivariant version of a symmetric monoidal category, though there are several
models for this.

Many terms similar to this are used by different authors to refer to very different construc-

tions so may we refer to those by their authors’ names to minimize ambiguity.

14



Notation 2.0.5. Throughout, “=" will only be used to denote strict equality; in diagrams we

use “=" and “Id” interchangeably. We use “=” to denote an isomorphism, “~" will denote

an equivalence of cateogories, an equivalence of 2-categories, or a homotopy equivalence; and

113 Y

“~” will denote weak equivalences or ad hoc equivalence relations; wil denote a (zig-zag

2@7

of) Quillen equivalence(s) between model categories.

Notation 2.0.6. For a category C we will write x € C to denote that x is an object of C.
We will write “f: x — y in C” to mean f € Home(zx,y).

Notation 2.0.7. We will denote a commutative square

A—— B

]

C —— D

as A, B,C, D,

Notation 2.0.8. For a group GG, BG denotes the associated groupoid.

Definition 2.0.9. A G-object in a category C is a functor BG — C, equivalently and object in
C upon which G acts by automorphisms. These form the category C% := Fun(BG,C) where

morphisms are natural transformations, equivalently equivariant maps in C.

Definition 2.0.10 ([Merl7]). For two G-categories C,D, a functor F' : C — D is pseudo-
equivariant if for g € G, we have a natural isomorphism gF = Fg, which is suitably preserved

along multiplication in G.

Definition 2.0.11. For a G-set A, A//G is the action groupoid with objects elements of A

and morphisms are pairs a — ga for each (a,g) € A x G.

Definition 2.0.12. For a group G, its chaotic category or indiscrete category EG is the action

15



groupoid of G acting on itself by translation. This has an object for each element of G and a

unique morphism between every two elements. We observe that G acts on this by translation.

Definition 2.0.13. Given two G-categories C, D, Fun(C,D) is the category of all functors
C — D, it has a G-action via conjugation and Fun(C, D) is the full subcategory of equivariant

functors.

We note that Fun(EG,C) ~ C, but they are not equivalent as G-categories. For H < G, we

call CM" .= Fun(EG,C)" the homotopy fived points of C.

Proposition 2.0.14 ([Merl7]). Given a pseudo-equivariant functor F : C — D, it induces an

equivariant functor we also denote F : Fun(EG,C) — Fun(EG, D).

16



Chapter 3

Equivariant Background

In this chapter we introduce several concepts in the field of equivariant algebra which motivates
later constructions. We present several important definitions and theorems. We also explain
many key bits of intuition in equivariant algebra. Some topics we present only briefly here
and only present more formally in other chapters. We hope this chapter could be of use to
novices of equivariant homotopy theory.

In Chapter 8 we introduce a specific model of Fin®, the category of finite G-sets and
equivariant maps, which has a preferred way of taking finite co/products and pullbacks. In

this chapter any equivalent category suffices.

Notation 3.0.1. When discussing group actions, we always mean left actions. G/H denotes
the set of left cosets, those of the form gH. We let gHg ' := {ghg™ | ¢ € G} denote the

conjugate subgroup of H.

Definition 3.0.2. The orbit category O is the full subcategory of Fin® on transitive G-sets

of the form G/H.

17



Lemma 3.0.3. All transitive G-sets are isomorphic to those of the form G/H.

Projection maps 7 : G/K — G/H for K < H and conjugacy maps c: G/H — G/(gHg™)
generate the morphisms in this category.

For a G-object X, X# denotes the H-fixed points of X, which in a general category can
be defined as lim(BH X, C) when it exists.

We note that in Set, X# = Hom(G/H, X) = X

Lemma 3.0.4. Any finite G-set is a finite coproduct of G-sets of the form G/H, which are

exactly the transitive G-sets.

We note that we mean this a as categorical product as opposed to an ordered one. Alter-

natively every element of Fin® is isomorphic to one of the form IT;G JH;.
Lemma 3.0.5. Fin" ~ Finf(G/H).

Proof. We first pick a set of coset representatives {g;}; of G/H, where gy = e. Let X € Fin®,
we have the G-set X x G/H , where g;h(z, g;H) = (hx, ¢;9;H). Thus projection X x G/H —
G/H is G-equivariant. In the other direction, given p: Y — G/H, p~'(eH) is an H-set.

]

Given H O X and K < H then K O X and X¥ C XX, We call these both restriction.
And gHg™ ! acts on X by ghg~'(x) := h(z) which we call conjugation.
These are equivalent to the functors: Finf(G/H) — Fing/K and Finﬁg/m — Fing/(gHg_l)

given by pullback along 7, c.

Theorem 3.0.6. (Elmendorf) We have a Quillen equivalence

18



Top® ~q Fun(OZ, Top)

Given by

X +— (G/H — X")

On the LHS weak equivalences are maps which induce weak homotopy equivalences on all fixed

points, on the RHS weak equivalences are defined objectwise.

We note that there are many analogues of Elmendorf’s theorem across equivariant homo-
topy theory. This motivates out slogan:

“When doing equivariant homotopy theory, it is just as good to study fixed points as it is
to study objects with a G-action.”

From the lemma we know that defining a (contravariant) functor from Fin® which sends
coproducts to (products) coproducts is equivalent to defining a (contravariant) functor on Og
As a result, throughout equivariant mathematics we often study coefficient systems, functors

out of OF.

3.1 Commutative Monoids

Definition 3.1.1. A monoid is a set M with a multiplication map p: M x M — M and an

element 1,; € M called the unit, such that

N(a’ :u(bv C)) = H’(:u(a» b)’ C)v M(IM’ a) =a= /L(a’ IM)

19



and it is commutative if p(a,b) = p(b, a).

We will generally assume monoids are commutative unless otherwise stated. This definition
can be generalized from Set to a general symmetric monoidal category in Chapter 7.

We present three other equivalent ways to view commutative monoids.

The first is a Segalic construction. A special I' set is a functor F' : Fin, — Set, such that
F(*) = * and the natural map F((n+m)) — F(ny)x F(m.) induced by the order-preserving
maps sending n + 1,--- ,n+m to x and 1,--- ,n to * respectively, is an isomorphism. This
we call this the Segal condition.

The Segal condition implies F(ny) = M™ and we view this as an identification. The
intuition is that F(1,) is M, F(x — 1) picks out 1.

The fold map F(n, — 1,) sending only * — % induces the monoidal product. The
compatibility of these folds across different n and the action of ¥, imply associativity and
commutativity.

More generally for f: n, — my, we view F(f): M" — M™ as sending the n-tuple
(ai, -+ ,a,) to the m-tuple whose " entry is Hjef,l(i) aj, which means the product via p
over that set, and interpret as 1, in the case of the empty set. The structure of Fin, then
implies the operation is also unital. Numbers sent to * are essentially discarded.

These can be in terms of spans.

We let Span(Fin) be the span category of Fin with objects the same as those of Fin and
morphisms A to B are isomorphism classes of spans (A < X — B). Composition is by
pullback which is well defined up to isomorphism. It is routine to check that the coproduct

of sets gives the product of objects in Span(Fin).

20



A span-monoid! is a product preserving functor G : Span(Fin) — Set. We let M = G(1)
and we identify G(n) with M". G(0) =0 — 1) gives a map * — M whose image will be the
unit. G(2 =2 — 1) gives the multiplication. Via similar arguments as in the case of special
[ sets, the structure of Span(Fin) is enough to show that multiplication in M is associative,
unital, and commutative.

The other direction is much more intuitive as discussed in [Frel3]

Given a commutative monoid M, we let G(n) = M".

For f: n — r we get a function M"™ — M™, by (a1, ,an) — (b; = asq))i.

These contravariant maps we call restrictions and think of as rearranging and picking out
the relevant entries of M".

For g: r — m we get a function M" — M™ sending (b1, ,b.) = (¢ = X pe 10 bk )iy
and 1, in the case of the empty set. This covariant map we call a transfer, and this encodes
the multiplication. This is well defined up to isomorphism of spans.

Given a span h = (n L r % m) G(h) : M™ — M™ is defined as the composite of the
restriction then transfer.

This is philosophically quite similar to special I'-categories. Both assign sets to natural
numbers and the Segal condition corresponds exactly to the span monoids being product-
preserving.

Given amap f: n, — m in Fin, it creates the span in Fin given by n <~ f~*({1,--- ,m}) ER
m. In the case restriction is injective this gives an exact correspondence between maps of finite

pointed sets and isomorphism classes of spans.

But in the case restriction is not injective we no longer have the exact correspondence.

'We do not know of another term for this construction so use this ad-hoc one for clarity.
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Intuitively this encodes multiple copies of an element appearing. For instance (1 < 2 = 2)
gives (a) — (a,a) and (1 < 2 — 2) gives (a) — (a + a).

In special Segal sets, we must use the diagonal map of sets to formulate this. For instance
by M S MxMand M2 Mx M M respectively.

Lastly, we note that via the disjoint union of spans, Span(Fin) is enriched in commuta-
tive monoids. We could just as well define span monoids as functors enriched in monoids
F: Span(Fin) — CMon, and via a straightforward calculation the enrichment implies the
product-preserving condition we had. Similarly this gives a monoidal structure on F(1),
which turns out to be the original one of F/(1) € CMon via an Eckman-Hilton argument.

An operadic description of monoids is as algebras over the operad C'omm enriched in Set,

where Comm(n) = *.

3.2 Equivariant Monoids

We now consider suitable ways to define commutative monoids in an equivariant context.
At the most basic level we can consider a G-object in commutative monoids, equivalently,
a commutative monoid in the category of G-sets. These we call naive as they are the most
basic.

However in many situations naive equivariance does not capture the full nature of the
interplay between an algebraic structue and the group G.

The key intuition is in a genuine equivariant situation, G not only acts on an object,

but also permutes the inputs of the monoidal operation simultaneously. For instance, loosely
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speaking given an K-spectrum X, its Hill-Hopkins-Ravenel (HHR) norm is the H-spectrum
Nk jer/k Xi where gh = h;k acts by k acting on the separate copies of X, and h; permuting
them Then Ap,jeq/sX; is converted back to a genuine spectrum [HHR21].

In a sense operations can be parametrized by maps of finite G-sets. We decompose these
as the composition of a quotient or conjugation G/K — G/H to pass from one subgroup to
another. And then a fold map - encoding the basic (nonequivariant) operation as we had used
folds to encode operations in a monoid, and then quotients. These can also be parametrized
by the G-corollas of [BP21].

Thus the naive vs. genuine distinction only appears in situations which are algebraic in
some way with a form of commutativity.

We now explain this intuition as it pertains to spectra. Intuitively a (non-equivariant)
connective spectrum is the homotopical version of an abelian group. Indeed they are equivalent
to grouplike [E., spaces. For each abelian group A we have the Eilenberg Mac Lane spectrum
HA which we can view as the “discrete” spectrum on A. In the other direction, taking m
gives us abelian groups. The idea is that the delooping gives a direction in which we can
“add”.

Borel spectra or naive G-spectra are just spectra with a G-action, we can think of these as
the naive equivariant homotopical version of abelian groups. Indeed given an abelian group
A with G-action, HA is a naive G-spectrum, and taking 7y of a naive G-spectrum gives an
abelian group A with G-action. By analogy this means that G can permute the “inputs” we
add and that the commutativity respects this.

In a genuine G-spectrum, we have deloopings with respect to all finite G-representations,

Given something monoidal with strict commutativity, naive implies genuine, as the action
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of G by permuting inputs has no effect.

As an example, given an abelian group, ring, or strict symmetric monoidal category with
a G-action, we can create their genuine versions, respectively a Mackey functor, Tambara
functor, or genuine equivariant symmetric monoidal category. So we only are concerned with
genuine versus naive when we have commutativity up to homotopy or isomorphism.

There are several different equivalent definitions for a Mackey functor and we will review

a few of them.

Definition 3.2.1. A Mackey functor is a function M : {subgroups of G} — Ab. With
morphisms I : M(K) — M(H),RE : M(H) = M(K),c, : M(H) — M(gHg™") for all

K < H < @ and g € G satistying the following identities:

IH RE cpy: M(H) — M(H) are all identities for H and h € H.

RERH — RU THIK — [H for J < K < H.

® CyCp = Cygp,

gHg™' H 79Hg™' _ 7H
° RgKg,lcg = cy Ry, ]gKg,lcg = I3
HpH _ J -
o RIIY =) cink IJﬁo:KmflczRK,l‘, » for J, K < H. This we refer to as the double coset
formula.

Definition 3.2.2. A Mackey functor M = (M,, M*) consists of a covariant functor M, :
Fin® — Ab and a contravariant functor M* : (Fin®)® — Ab which agree on objects. We call
M*(f) a restriction and M,(f) a transfer.

M must satisfy the double coset formula: given a pullback square in Fin®
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Lastly M satisfies an additivity condition in that for 14 : A - ANl B,1p : B — AIl B the

resulting map

M.(14) & M.(15) : M(A) ® M(B) — M(ATLB)

is an isomorphism.

Lemma 3.2.3. The following is a pullback diagram in Fin®,

A— G/K

Lol

G/J — G/H
where J, K < H and

A= U:EEJ\H/KG/(J U IL'KI'_l).
This is the origin of the name double coset formula.
Definition 3.2.4. A Mackey functor is an additive functor Span(Fin®) — Ab.

Definition 3.2.5. We define a semi-Mackey functor as a Mackey functor which takes values
in commutative monoids instead of abelian groups. As our definitions never used inverses,
nothing else needs to be modified here.

Equivalently, a semi-Mackey functor is a product preserving functor Spcm(FinG) — Set.
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Example 3.2.6. Given an abelian group A with G-action, we have a fixed point Mackey functor
G/H — Af restriction are inclusion of fixed points A? — AX for K < H, transfers are by
summing a € A% w37, e hi(a) € AT

Remark 3.2.7. In equiariant algebra and related fields one often talks about both transfers
and norms. Intuitively these are the same, only that transfers refer to operations we view as
additive and norms refer to ones we view as multiplicative. As a result when there is only one

sort of operation the two are essentially synomynous.

Mackey functors form a closed symmetric monoidal abelian category, with symmetric
monoidal product given by the box product( O), defined by Day convolution. The monoidal
unit is the Burnside Mackey functor Ag .

Furthermore, Mack¢, the category of G-Mackey functors forms an abelian category. This

leads to our slogan: “Mackey functors are the equivariant version of abelian groups.”
Definition 3.2.8. A Green functor is a monoid in the symmetric monoidal category (Mackg, d, Ag).

This has an equivalent definition in terms of concrete formulae similar to our first definition
of Mackey functors.

In a Green functor M, M(A) has the structure of a commutative ring. Restrictions are
ring homomorphism and transfers are abelian group homomorphisms.

Intuition - Green functors are genuine equivariant with their additive structure, but only

naive monoids with their commutative structure.

Definition 3.2.9. A Tambara functor is a Green functor with the additional structure of
covariant morm maps which are maps of multiplicative monoids. They must satisfy several
additional conditions similar to those in 3.2.1.
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Tambara functors can also be defined as product preserving functors from the category of
bispans in Fin®, just as we can define Mackey functors as product preserving functors from
the category of bispans in Fin®.

Just as in a Mackey functor the left side of a span encodes restriction and the right side
the transfer. A bispan has three legs @ < e — o — o. The left is restriction, the middle is
the norm, the right is transfer. Composition of bispans is complicated and unenelightening so
we omit it.

The intuition is that a Tambara functor is a monoid in the “genuine equivariant symmetric
category” of Mackey functors. This has been formalized by [?].

Currently there is little work in the way of homological algebra

Example 3.2.10. Given a ring R with a G-action, the fixed point Mackey functor is also a

Tamabra functor with norms given by multiplying: A +— H[ki] eK/H ki(a)
Ezample 3.2.11. Given a G-ring spectrum, its my Mackey functor is a Tambara functor. [Bru06|
The intuition here is that 7y is a genuine monoidal functor so it sends monoids to monoids.

Remark 3.2.12. A common question is why we restrict to G a finite group. This is only the
case in algebraic settings.

First, transfers often arise from summing over the set of cosets in a group, which roughly
speaking requires a group we can integrate over like a (pro)finite group or compact Lie group.
Indeed genuine equivariant spectra work well in these contexts.

Second, However for genuine equivariant spectra to give us Mackey functor via my we need

transfers arising from X% — X for K < H via
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XY = [SF(G/H), X) = [Se, SF(G/H)AX] = [Se, E5(G/K)AX] = [S5(G/K), X) = X¥

This comes from the fact that 3 (G/H,) is self dual, which does not hold for G compact Lie.
Finally, following the intuition that in a genuine equivariant monoid, G permutes the

inputs of an operation, this is only meaningful if G acts on finite sets.
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Chapter 4

1-Categorical Preliminaries

Remark 4.0.1. Let Cat be the category of categories and functors. This has the potential to

lead to size issues, but we assume that we can pass to a larger universe as needed.

Definition 4.0.2. A category C is a skeleton category if it has no isomorphisms between

different objects. Equivalently it has only one object of each isomorphism class.

Remark 4.0.3. Skeleton categories are often more convenient to work with and in many sections
of this paper we will replace categories with equivalent skeleton categories.

Using the axiom of global choice!, every category is equivalent to a skeletal subcategory,
by choosing one object from each isomorphism class.

However this does not generaly make (co)limits strictly well-define as opposed to defined
up to unique isomorphsim as (co)cones are part of the data of a (co)limit and obects in skeleton

categories can still have non-trivial automorphism groups.

Ezample 4.0.4. Let C be a skeleton category with object A, B. Further suppose that (A x

IThis is essentially the axiom of choice for classes.
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B,ma,mp) is the product of A and B in C, and that ¢ : A x B = A x B is a non-trivial

isomorphism. Then (A x B, ma¢, Tpy) is also a product of A and B in C.

Ax B

|

Ax B Ax B
PN T
A B A B
We recall another result which will prove useful.

Lemma 4.0.5. Let F : C — D be an equivalence of categories, given G : D — C and a
natural isomorphism n : Ide = GF there is a unique natural isomorphism ¢ : FG = Idp so

that F' 4 G,n, e is an adjoint equivalence.

4.1 Cartesian Morphisms and Fibrations

All the results in this section are standard in the literature so do not prove them here. NLab

and [FK18] provide some of the best explanations of these.

Definition 4.1.1. Let p : E — B be a functor, we say f : e — €' in E is cartesian if for all
flie" =€ inC and g:p(e”) — p(e) in D such that p(f’) = p(f)g, there exists a unique lift

g of g so that f' = fg.
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in C e’

in D p(e”)

ple) —=3 nle)

We note that cartesian is not an absolute term but is only meaningful relative to p.
Remark 4.1.2. Everything in this section has a dual version simply by applying the definitions
to p° : CP? — DP.

We note some direct implications of the definition.

Lemma 4.1.3. Let f : e — €, f' 1 ea — € two cartesian morphisms over b — p(e’). Then

ple1) = p(ez) and there is a unique isomorphism ¢ : ey — ex in E that p sends to Id,q) and

such that f = f'p.

Lemma 4.1.4. Let h: b — U, k' : b;— V' be morphisms in B and h, I, h'h be cartesian lifts.

Then there is a unique isomorphism ¢ between the sources ofﬁ and W' so that Wh = goh7h.

Definition 4.1.5. A functor p : F — B is a fibration if for all e € E,;b € B and h : b — p(e)

there is a lift 4 in E which is cartesian.

We point out that this is not required to be unique.
Some author call this a categorical fibration, fibered category, cartesian fibration, or Grothendieck

fibration.

Definition 4.1.6. Given a fibration p, a cleavage is a choice of cartesian lift of every morphism
in B with target in the image of E.

31



By the axiom of global choice we can always find one.

Definition 4.1.7. A cleavage is normal if h = Id implies h = Id.

It is split if it preserves composition in the sense that (h~k) = hk.

Lemma 4.1.8. Let p : E — B be a fibration with a cleavage. It defines a pseudofunctor
B®? — Cat which sends b € B to the fiber E, C E consisting of objects sent to b and

morphisms sent to Id,. On morphisms h : b — b we define the functor
h* - Eb/ — Eb

which sends an object € to the source of the chosen cartesian lift of h : b — p(€'), which we
denote h*(b').
In general this only defines a pseudofunctor, but in the case that the cleavage is split and

normal, this is a functor.

Definition 4.1.9. Given a functor (or more generally pseudofunctor) F' : B®? — Cat, we
construct an associated split fibration 7 : [ F' — B called the Grothendieck construction
on F. The objects of [ F are pairs b € B,a € F(b). Its morphisms are pairs f: ¢ —
d,a: F(f)(a) — a'. The functor 7 is simply the forgetful functor.

This is functorial in the sense that a natural transformation is sent to a map of split

fibrations.

Remark 4.1.10. (f,a) is a cartesian lift of f if o is an isomorphism in F(V). [F & Bis a

split fibration where the chosen cartesian lifts are those with a = Id,,.

Proposition 4.1.11. The process of taking fibers and the Grothendieck construction are in-
verse weak 2-functors which make an equivalence of weak 2-categories between pseudofunctors
B? — Cat and fibrations over B.
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We briefly note that pseudofunctors are a type of weak functor between 2-categories which

we discuss more in Chapter 5.

Definition 4.1.12. For two fibrations (resp. fibrations with cleavages) p: £ — B,p' : £/ —
B’ a morphism of fibrations is a pair of functors F': E — E',G : B — B’ so that Gp = p'F
and F' sends cartesian morphism (resp. also takes chosen cartesian lifts of p to chosen lifts of
p).

Definition 4.1.13. Given two morphisms of fibrations (F,G) and (F',G’), a natural trans-
formation of fibrations consists of natural transformations n : F' = F' e : G = G’ so that n

lies above €. In the case G = G’ = Idp and € = Id as well, this mean the components of 7 all

lie above identity morphisms in B.
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Chapter 5

2-Categories

In this chapter we briefly review key concepts from the theory of 2-categories, sometimes

omitting technicalities present in some definitions.

Remark 5.0.1. Throughout this paper we almost exclusively deal with strict 2-categories and
strict 2-functors as opposed to weak 2-categories or pseudofunctors. Unless otherwise specified,
we use 2-category and 2-functor to refer to the strict version.

Much of the content of this paper could be done just as well with bicategories (weak 2-
categories) and pseudofunctors and in some cases this would be more natural. For instance
the main theme of Chapter 9 is finding conditions when pullbacks can be taken in a strictly
coherent way so as to create strict 2-categories.

We prefer to work with strict 2-categories for two main reasons. First, much of the existing
literature we build on, such as [BIO15], uses strict 2-categories. Second, strict 2-categories are
much simpler to deal with, and in the context of this paper we rarely lose generality or any
of the key ideas.

For the same two reasons, we prefer to work with permutative categories as opposed to
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symmetric monoidal ones when possible. (Though we generally have no choice but to use
strong monoidal functors as opposed to strict monoidal ones).

In the opposite direction, one can work with oco-categories!, which in many ways is even
more natural. Indeed some work has been done in this direction in the papers on Spec-
tral Mackey Functors and Parametrized Higher Algebra [Barl7, BGS20, BDG'16, NS22].

Throughout we mention connections to this work.

Definition 5.0.2. A (strict) 2-category is simply a category enriched in categories. This
has objects, a hom-category Hom(A, B) for every pair of objects, and identity object in
Hom(A, A), and a composition functor Hom(B,C) x Hom(A,B) — Hom(A,C). These
satisfy the usual associatvity and unitality conditions.

We may refer to the objects as 0-cells, the objects in the hom-categories as morphisms,

1-morphisms, or 1-cells, and the morphisms in the hom-categories as 2-morphisms or 2-cells.

In this section, let C be a strict 2-category unless otherwise specified.

Definition 5.0.3. Given a diagram of objects, morphisms, and 2-morphisms in C, we say it

commutes if all comparable pasting diagrams that can be formed strictly agree.

Example 5.0.4. Cat, the 2-category of categories, functors, and natural transformations is the

prototypical 2-category.

Most of the 2-categories discussed in this paper are a variant on Cat, specifically a 2-
category whose objects are a certain type of category, morphisms are a type of functor, and

2-cells are a type of natural transformation.

!The namesake of Infty mentioned in the acknowledgements
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Example 5.0.5. We observe that every category can be viewed as a 2-category with discrete

hom-categories.

Definition 5.0.6. A (strict) 2-functor between 2-categories is simply a functor enriched in
categories.
It sends objects to objects, and has a functor between the suitable hom-categories, satis-

fying strict unitality and compositionality identities.

There are numerous weakenings of the definition of a 2-category, but one which is most

relevant here.

Definition 5.0.7. A bicategory is a type of weak 2-category. A bicategory has objects, a
hom-category for every pair of objects, with an identity object in Hom(A, A) and a compo-
sition bifunctor. These satisfy the typical unitality and associativity but only up to natural
isomorphisms as opposed to the equality we have in a strict 2-category. The associator and

unitor transformations must also satisfy coherence diagrams.

Definition 5.0.8. A pseudofunctor between 2-categories or bicategories F' : C — D is a
weaker version of a 2-functor, in which unitality and composition are only preserved up to
natural isomorphism. We note that we can define this with C a 1-category as well via Example
11.1.17.

Formally we have an assignment F' : Obj(C) — Obj(D), a functor F,,: Home(x,y) —
Homp(F(x), F(y)), an isomorphism n,: Idp@n)y = Fp.(Idy) in Homp(F(x), F(x)), for f €
Home(z,y), 9 € Home(y, z) an isomorphism fiys,: F, .(f) o Fy,(f) = Fy.(g o f), which is
natural in f,g. We require these satisfy associativity and unitality diagrams, which also

incorporate the associativity and unitality isomorphisms making D a bicategory.
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This is the natural type of morphism between bicategories, among which we cannot in

general define strict 2-functors.

Definition 5.0.9. We say ' : C — D is an equivalence of 2-categories if it is essentially
surjective on objects (i.e. surjective up to equivalence in D) and induces equivalences on the
hom-categories.

Equivalently it has a weak inverse pseudofunctor G : D — C and pseudonatural transfor-

mation equivalences: GF ~ Ide, FG ~ Idp.

We note that F' can be an equivalence even if its weak inverse is only a pseudofunctor.

Example 5.0.10. A commuting cube in C is a diagram of the form

A

IZIRN

4

where the following pasting diagrams agree:

/\/

A » B

N2\ / .
|- /
N N

~N 7

We will often display diagrams in 2-categories as cubes in this way:.
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Remark 5.0.11. We note that the same basic rules of diagram-chasing in 1-categories apply

to diagrams in 2-categories, replacing commuting squares with commuting cubes.

Example 5.0.12. If two commuting cubes share a face in common, they can be glued along a

face and then the composite cube also commutes.
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Chapter 6

oo-categories

We only briefly discuss oo-categories in this paper and never in technical terms so we only

give an intuitive definition.

Definition 6.0.1. An oco-category, or (o0, 1)-category is a weak higher category with n-
morphisms for all 0 < n < oo. All n-morphisms are invertible (up to higher morphisms) for
n > 1.

Composition is only well-defined up to higher morphisms; associativity and unitality are

only satisfied up to higher morphisms.

Remark 6.0.2. In an oco-category essentially nothing is defined in a strictly unique way, rather
things are unique up to a contractible space of choices.

We can also think of an co-category as being like a category enriched in spaces.
Quasi-categories, a type of simplicial set satisfying a lifting property, are the most common
model of co-categories. This theory is fleshed out in [Lur09].
Definition 6.0.3. The nerve N : Cat — Caty is a functor taking in a 1l-category and
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outputting an oo-category.

Definition 6.0.4. The Duskin nerve NP : Cat(s1) — Cats is a functor taking in a (2,1)-

category and outputting an oo-category.

We will generally identify a 1- of (2, 1)-category with its nerve.

Remark 6.0.5. Most 1-categorical notions (e.g. (co)limits, cartesian morphisms, fibrations,
etc.) have oco-categorical analogues.
Generally speaking if an object (resp. morphism, category, functor) has a 1-categorical

property, its nerve satisfies the oo-categorical analogue.
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Chapter 7

Symmetric Monoidal Categories,

Multicategories, and Enrichment

Remark 7.0.1. This chapter reviews definitions and results found in the literaure. Most of this
is found in [EMO6], the section on Perm as a PC-category is best explained in [BIO15], and

the most comprehensive reference is [JY22].

7.1 Symmetric Monoidal and Permutative Categories

Definition 7.1.1. A monoidal category is a category C with a monoidal product functor
®:CxC—C

which is unital and associative up to coherent isomorphisms. It has an object 1¢, and unitor

natural isomorphisms

Y

nr:a®1cga:10®a:nﬁ,
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and an associator natural isomorphism

a:(a®b)®c=Za® (b®c).

Finally the unitality and associativity isomorphisms must be suitably coherent in the sense

that every diagram made of associators and unitors commutes as in [Mac63].

Definition 7.1.2. A symmetric monoidal category is a monoidal category which also has a

symmetry isomorphism

T:a®@b=bRa

which is coherent with unitality and associativity.

We will almost exclusively deal with symmetric monoidal categories in this paper as op-

posed to monoidal ones.

Definition 7.1.3. A permutative category is a symmetric monoidal category in which the

unitality and associativity isomorphisms are identities.

Definition 7.1.4. A functor F' : C — D is lax monoidal if there is a natural distributivity

transformation

0: F(=)@p F(=) = F(=&c—)

and a morphism

nNr . 1D—>F<1c)
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which are compatible in that ¢ and g satisfy coherence conditions related to the unitors and
associators of C and D.
If C, D are symmetric monoidal, we say F'is symmetric monoidal if the following diagram

commutes.

F(z)® Fly) —— F(z ®y)

| |#o)

Fy)® F(z) —— Fly®x)

F'is strong monoidal if §, np are isomorphisms and strict monoidal if they are equalities. We

say F'is strictly unital if ng is an equality and if on of the inputs is 1¢ then ¢ is as well.

We will primarily work with strictly unital strong symmetric monoidal functors in this
paper between permutative categories. In this case the compatibility conditions of monoidal

functors simplify to the following diagram commuting

F(z) ® F(y) ® F(z) 9% F(2) @ Fly ® 2)

6®IdF<Z)l lg
Faey)@F(z) —— Flroy®?)

In nature, symmetric monoidal categories are common but it is comparatively uncommon

to find permutative categories. Fortunately we can remedy this.

Theorem 7.1.5 (Isbell. [Isb69, JS93]). Given a symmetric monoidal category C there is a
permutative category C' with a strong monoidal functor C — C' which is an equivalence of

categories.

Essentially this tells us that we can replace symmetric monoidal categories with permuta-
tive ones for free. However the analagous result does not work with regards to permutative

categories which are strictly symmetric.
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Definition 7.1.6. Given monoidal functors F,G : C — D, 0 : F = G is a monoidal natural

transformation if for z,y € C the diagrams commute:

F(x) ®p F(y) 2% G(z) ©p G(y) 1
51{ lac V “
F(ZL‘ XRe y) W G([E Re y) F(lc) o, > G(lc)

There are several other ways to characterize symmetric monoidal and permutative cate-

gories which we briefly discuss.

e An unbiased version replaces the ® bifunctor with functors ®”" : C" — C for each n > 0,
which essentially multiply n objects. n = 0 is the inclusion of the unit object I : * — C.
Symmetry is realized by natural isomorphisms ®"c = ®" for a permutation isomorphism
o : C" — C". Associativity by natural isomorphisms relating the ®”" for multiple n at

once.

e This has an equivalent operadic description. The categorical Barratt-Eccles operad, en-
riched in categories, is defined by &, = E3Y, which we recall has an object for each
element of ¥,, and a unique isomorphism between each pair of objects.. Algebras over
it are permutative categories and pseudoalgebras over it are symmetric monoidal cate-
gories. Symmetry is encoded by the operad action &, x C" — C and associativity by the

compatibility of this action across multiple n.

(We recall that a pseudoalgebra is one in which the algebra coherence equalities are

replaced by natural isomorphisms, as defined in [CG13].)

o A special T category is a functor F : Fin, — Cat, such that F'(x) ~ x and satisfying the
Segal condition that
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F(n+m)— F(n) x F(m)
is an equivalence of pointed categories.

These correspond to permutative categories.

e Another version uses spans and considers (weakly) product-preserving functors

Span(Fin) — Cat

Where Span(Fin) has the same objects as Fin and morphisms are isomorphism classes
of spans. Its products are given by coproducts in Fin. We give a complete description

in 9.2.1.

e Finally we have the monadic version of [BP21|, which heavily influenced this paper. We
consider the monad F? (=) in Cat which sends C to the Grothendieck construction of
the functor Fin®» — Cat given by I — C’. This is a monad with F{F!C — F{C defined

by

(((Cz’j)ielj L) ey J) — <(Cij)ij, 11 Ij)

jeJ
If C is a symmetric monoidal category it gives an algebra over F{ (—) via C! — C by

multiplication. And in the other direction given an algebra over F{ (—), we can define

a multiplicative structure on it in this way.

Many analogues of symmetric monoidal categories are based on these versions such as
the symmetric monoidal oo-categories of [Lurl7]. We see that most the various versions of
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equivariant symmetric monoidal categories take one of these approaches and adds a G in, for

instance replaces finite sets with finite G-sets.

Definition 7.1.7. A monoid in a symmetric monoidal category C is an object M with a
multiplication map p: M ® M — M and a unit map n : 1¢ — M so that the associativity

and unitality diagrams commute:

puxId nxId Idxn

MMM —— MM le®@M — M QM +——— M ®1¢
]dxul lﬂ \ lM/
e Nr
MOM ——— M M

M is commutative if this diagram commutes as well:

M M T y M @ M
x /
M

In a loose sense, symmetric monoidal categories can be thought of as weak monoids in the

symmetric monoidal category of categories.

Proposition 7.1.8. Let C,®,1¢ be a symmetric monoidal category. The category of com-
mutative monoids in C is equivalent to the category of strong symmetric monoidal functors

(Fin7 H, Q)) — (C, ®7 1C)

Definition 7.1.9. A monoidal category C is closed monoidal if for all objects B € C, the
functor (—) ® B has a right adjoint, which we denote by Hom(B,) and that this is natural in

B.

The intuition is that Hom(A, B) is an object in C of morphisms A — B. This is further

motivated by the bijection (in a locally small category)
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Home(1e, Hom(A, B)) = Hom¢ (A, B).

We also have an evalutation morphism

ev: A® Hom.(A, B) — B.

7.2 Enrichment in Symmetric Monoidal Categories

Definition 7.2.1. Let V be a symmetric monoidal category. A category C enriched over ) has
objects X, and for every XY € C, a hom-object C(X,Y) € V with units Idy : 1, — C(X, X)
and composition maps

comp:C(Y,Z)®C(X,Y) = C(X, Z).

Such that the diagrams commute in V:

C(Y.Z)® C(X,Y) @ C(W, X) s » C(Y, Z) @ C(W,Y)
comp®1 dl lcomp
C(X,Z) @ C(W, X) — s C(W, Z)
le®C(Y,X) —=2 , o(X, X)® C(Y, X) CX,Y)®1c M c(X,Y) ® C(X, X)
\ lcomp x lcomp
C(X,Y)

Notation 7.2.2. The convention when discussing enriched categories is to use )V to denote the
enriching category. We call these V-categories. Some authors switch the composition ordering
convention and instead write C(X,Y)® C(Y, Z) — C(X, Z).
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For V = Set, this is exactly the definition of a locally small category.

Definition 7.2.3. Given a category C enriched in V), its opposite category CP is a category
enriched in V with the same objects as C. And C?(X,Y) :=C(Y, X).

comp : CP(Y, Z) @ C®?(X,Y) — C®(X, Z) is defined as the composition:

CP(Y,Z)QCP(X,Y)=C(Z,Y)2C(Y,X) 5 C(Y,X)®C(Z,Y) =% C(Z,X) = CP(X, Z).
Remark 7.2.4. We note the importance of the symmetry isomorphism 7 in this.

Definition 7.2.5. A V-enriched functor F' : C — D sends object of C to those of D, and for
X,Y € C has a morphism in V, Fxy : C(X,Y) = D(F(X), F(Y)) so that

the diagrams in V commute:

C(Y,Z)® C(X,Y) omre » O(X, Z)

1
FY,Z®FX,Y\L lFX,Z Idxl
C(X, X) T D(F(X)

D(F(Y), F(2)) @ D(F(X), F(Y)) Gmpg D(F(X), F(2))

compp

, F(X))

Remark 7.2.6. Given a V-functor F' : C — D it defines a V-functor F°P : C°? — D°P,

Definition 7.2.7. For enriched functors F,G : C — D a V-enriched natural transformation
a @ F = @ consists of morphisms ay : 1y, — D(F(X),G(X)) for each X € C so that the

diagram commutes:
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ly ® C(X,Y) C(X,Y)®1y
E(F(Y),G(Y)) @ E(G(X),G(Y)) E(F(X), F(Y)) ® E(F(X), G(X))

M) W

Definition 7.2.8. In this way V-enriched categories form a strict 2-category which we denote

by V—Cat. We might also use the 1-category attained by ignoring the natural transformations.

7.3 Multicategories

Definition 7.3.1. A multicategory M has objects {z} and n-ary multimorphisms, a set (or

proper class)

Hom(z1, -+ ,xn;y) for objects z1, -+ ,xp,y

an identity morphism Id, € Hom(z;x), and a composition map

HOmM(?Jlf o 7yn7z) X HOmM(.Z'Ll, e 7$l,k1;yl) XKoo X Hom/\/l(xn,b' o axn,kn;yn)

— Hom./\/l(xl,b s Tk Z)

satisfying suitable associativity and unitality conditions [EM06]. We note that we allow nullary

morphisms where n = 0. This is the same as a colored non-symmetric operad.
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A symmetric multicategory M is one with isomorphisms o : Homa(z1,- - ,Tp;y) —
Homam(2o(1), -+, Tom):y) for each permutation o € 3, that is suitably compatible with
composition and unitality.

This is the same as a colored symmetric operad.

Definition 7.3.2. We say a multicategory M is unital if it contains an object 1,4 and unitor
binary morphisms 7, € Homa(1pa, z;x),n, € Homa(x, Lag; ) which are natural in z such
that they induce bijections natural in y: Homp(z, 1y y) = Homa(z;y) = Homa (I, 23 y)
We require the unitors to be compatible with associativity and symmetry if M is symmetric;

satisfying conditions analogous to those of symmetric monoidal cateogories.

Definition 7.3.3. A multifunctor F : M — N sends objects of M to those of N and

functions

Homp(z1, -+ ,xn;y) = Homp (F (1), -, F(2,); F(y))

subject to the obvious unitality and composition-preserving conditions. This is the same as a
morphism of (non-symmetric) operads.

A symmetric multifunctor is a multifunctor between symmetric multicategories is one
which is also ¥,-equivariant on hom-sets. This is the same as a morphism of (symmetric)
operads.

If M,N are unital, we require that F is strictly unital, so that F(1,) = 1u, and it

preserves the unitors.

Example 7.3.4. Given a symmetric monoidal category V we can form a multicategory V with

the same objects and
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H0m9<x17 T 7xn7y) = Homv($1 Q- .Z'n,y)

We use the conventions that the empty monoidal product is 1y, so Homy,((); y) :== Homy(1y,y)

and 11 ® - T, = (11 Q-+ @ Tp_1) ® Tp.

Remark 7.3.5. Given a permutative cateogory V, we can form a symmetric unital multicate-
gories enriched in V by having M(z1, -+ ,x,;y) be an object of V instead of a set or proper
class. Composition is defined similarly as to enriched categories and analogous unitality and

associativity identities hold.

Definition 7.3.6. A category C enriched in a multicategory M has objects X and an object
C(X,Y) € M for every pair of objects in C. We have a composition multimorphism in
Homm(C(Y,Z),C(X,Y);C(X,Z)) and a unit in Hom(;C(X, X)) satisfying associativity in
the sense that the two composite 3-morphisms agree in the left diagram and unital in that

the three unary morphisms agree in the right diagram.

C(C, D), C(B.C),C(A, B) “™X (¢, D),c(4,0) C(A, B) " o B) (A, B)
~
Id,compl lcomp Idca,B) ,IdAl Idea,B) lcomp
C(B,D),C(A, B) ———— C(A,D) C(A, B),C(A, A) —— C(A, B)

Most of constructions with categories enriched over a (symmetric) monoidal category can
be generalized to categories enriched in (symmetric) multicategories.

We can define M-enriched functors and natural transformations analogously to the case
of enrichment in a symmetric monoidal category. This forms the category of M-categories
and M-functor which we denote M — Cat. Similarly we can define the opposite category of

an M-category in a functorial way, all in the case that M is symmetric.
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For a permutative category V), a category enriched over V is the same as one enriched over
the multicategory V.

Given a multifunctor F': M — N we have a change of enrichement 2-functor

F,: M—Cat — N — Cat

For a M-category C, F,(C) has the same objects as C and F,(C)(X,Y) := F(C(X,Y)).

Definition 7.3.7. We say a multicategory M is closed if for object x1,--- , x,,y there is an

object Hom y (1, -+ ,xn;y) € M and an evaluation multimorphism
ev € HOmM<_HOmM<ZL’1, T, T y)wrl’ crr 5, Tps y)

satisfying a bjiection universal property similar to that of the adjunction seen in 7.1.9 (closed
monoidal cat). [BLM12].

In this way we can view M as enriched over itself.
We note that C is closed if and only if C is closed.

Proposition 7.3.8. Let M, N be closed unital multicategories and F : M — N a unital

multifunctor. We have an N -functor

CI)FF.(M> %N,

on objects Pp(X) := F(X), and on hom-objects

Cp xy : F(Hompy(X,Y)) = Homy (F(X), F(Y))

1s defined as the adjoint to
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F(evpm) : F(Hom(X,Y)), F(X) — F(Y)
This is generalization of the ® of [BIO15] § 6.

Definition 7.3.9. Perm is defined as the multicategory of permutative categories and strong
monoidal strictly unital multilinear functors.

Its objects are permutative categories.

HOmperm(Ml, et 7Mn;N)

is the set (or class) of multilinear functors:

F:M{x---xM, —N

which are strong monoidal strictly unital in each variable meaning that for each 1 < i < n,

there is a distributivity structure natural isomorphism:

5@':F(x17"' s Lgy e ,l’n)®F(l‘1,“' ,l’;,"' ,fEn)—>F(IE1,“' ,l’z®l’;, wIn)

and strictly unital in that F'(z1,--+ , 1y, -+, @) = Ly and §; = Id if any of the z, or 7} is 1 4.
We require analogues of the diagrams in the definition of permutative functors to commute and
a third pentagonal diagram relating d;,d; as in [EMO06] pg. 11. Nullary morphisms () — M
pick out objects of M.

When composing we get distributivity morphisms as follows. Given (g, {67}) : (By, -, B,) —

C and (f;, {5?}) : (Aja, -, Ajr;) — Bj their composite is
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go(fi-- f5) = (go (i x - x f;), {0, =D g(6F) 0 6%}

as described in [EM06] 3.2.

Remark 7.3.10. We are forced to use multicategories when working with permutative cat-
egories in this way, as there is no tensor product of permutative categories satisfying the

appropriate bilinearity universal property.

Remark 7.3.11. We can instead consider the multicategory of permutative functors and lax
monoidal strictly unital multilinear functors. This is the approach taken in [BIO15] and [EMOG]
For the most part these behave exactly the same; we will only need the ds to be isomorphisms
in the proof of 14.2.6, but everything in this chapter works identically. We could also consider
strict monoidal multifunctors, where the § are identities, but this is too restrictive for most

purposes.

Proposition 7.3.12 ([BIO15]). Perm is a closed unital multicategory.

7.4 PC-Categories

Definition 7.4.1. A PC-category is a category enriched over Perm. A PC-functor between
PC-categories is a functor enriched in PC-categories. A PC-natural transformation is an

enriched natural transformation.

Remark 7.4.2. By forgetting the monoidal structure, a PC-category has the underlying struc-

ture of a strict 2-category, and a PC-functor has an underlying 2-functor.
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Definition 7.4.3. Perm is a PC-category with objects permutative categories and in Perm(C, D)

the monoidal product is given by applying the product in D objectwise:

(f +9)(x) = fx) + g(x)

the distributivity morphism of f ® g is given by

F@) +g(@) + Fy) + 9u) 5 F2) + Fy) + 9(2) + () L5 fz @) @ gz @ y).

We have a composition bilinear bifunctor

comp : Perm(B, C) x Perm(A, B) — Perm(A, C)

where §; is the identity as (go f) + (¢’ o f) = (g + ¢') o f by definition, and 0, is given by

§9:(gof)+(gof)—=gol(f+f).

Remark 7.4.4. One can also consider categories enriched in symmetric monoidal categories as
opposed to permutative categories, and in many cases these are more natural. However that
they have an underlying bicategory 5.0.7 as opposed to an underlying strict 2-category.
Fortunately by Guillou’s strictification result [Guil0], all such symmetric-monoidally-
enriched categories are suitably equivalent to PC-categories.
Essentially this tells us that by restricting to PC categories we do not lose any important

examples or information.
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7.5 Spectra and K-theory

In this paper we briefly discuss spectra and G-spectra but never do in-depth calculations with
them, so we do not get too deep into their construction or choose a model to work with.

We emphasize that we are generally interested in spectra and G-spectra up to weak homo-
topy equivalences. We chose to work with the homotopy category as the different constructions

on K-theory are only equivalent up to homotopy.

e Sp denotes the (homotopy) category of spectra. Sp>o denotes the subcategory of con-

nective spectra, those with trivial negative homotopy groups.

e Spis a closed symmetric monoidal category with the smash product A as its monoidal

product, the sphere spectrum S as its unit, and Sp(—, —) the mapping spectrum.

e Spc denotes the (homotopy) category of genuine G-spectra, those with desuspensions
for all finite G-representations. This is in contrast to (Sp)®, the category of naive or
Borel G-spectra, which are simply G-objects in the category of spectra. Spg>¢ denotes
the subcategory of connective G-spectra, those with trivial negative homotopy Mackey

functors.

e Spg is similarly a closed symmetric monoidal category with the smash product A as its
monoidal product, the equivariant sphere spectrum Sg as its unit, and Spg(—, —) the

mapping G-spectrum.

Definition 7.5.1. Given a symmetric or permutative category C we can define its algebraic
K -theory spectrum K(C) € Sp>o.
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Intuitively this is a homotopical version of group completing C with its monoidal structure.
For instance m (K (C)) is the group completion of the monoid of isomorphism classes in C (for
C a small category).

There are too main constructions of this, which agree up to homotopy. The first uses

special ['-categories, the second uses an operadic construction.

Theorem 7.5.2 (Elmendorf Mandell [EMO06]). K defines a symmetric multifunctor
K : Perm — 3’;9

Theorem 7.5.3 (Thomason). Every connective spectrum is equivalent to the K-theory of a
permutative cateqory.
This can be upgraded to show that the homotopy category of permutative categories is

equivalent to that of connective spectra.

Theorem 7.5.4. [Man10, Elm21]

There is a multifunctor

—

K~ (Spso) — Perm

which is a weak inverse (i.e. inverse up to natural equivalence) to K. However it is not strictly

symmetric.

Theorem 7.5.5 (Guillou May). [GM11] There is a zig-zap of Quillen equivalences:

Fung, ((K.(GE'))OP, Sp) ~g Spa

where GE' is a version of the PC-enriched Burnside category we discuss in 10. We note that
in this case we are using the full categories of (G-)spectra, not just their homotopy categories.
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Remark 7.5.6. A current area of research is attempting to use multiplicative inverse K-theory
and the Guillou-May theorem to prove a version of Theorem 7.5.4 using permutative Mackey
functors. Currently the fact that inverse K-theory is not known to be symmetric is the main

obstruction as this is needed when taking enriched opposite categories.
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Chapter 8

The Category FinC

In this chapter we prove several technical results on skeleton category of ordered finite G-sets

which will be used in future chapters.

Definition 8.0.1. Fin® is a skeleton category of ordered finite G-sets and all equivariant
maps. For concreteness, we can view this as the category with objects (n,«) where n € Fin

and « : G — %, a group homomorphism.

Remark 8.0.2. We point out that these categories have unordered maps and that there is no
compatibility required between the ordering and the G-action. In a sense though restricting
to order preserving morphisms does not limit the morphisms we can have. For instance given
an arbitrary equivariant map A — B, by choosing suitable orderings, we can make this be
order preserving as well.

The ordering is not mathematically necessary at a moral level, but it is quite usual for
bookeeping and ensuring objects are equal as opposed to isomorphic, which makes many
steps simpler. In fact we use ordering for some nice formal properties it gives Fin®, namely a
permutative disjoint union, a permutative product, and a choice of pullbacks satisfying several
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key properties.

Notation 8.0.3. We used — to denote unordered maps, and — to denote order preserving

maps.

Remark 8.0.4. We observe the useful fact that the only order-preserving isomorphisms in Fin®

or Fin are identities.

We can also view Fin C Fin® as the full subcategory of objects with trivial G-action. In this
way we let n € Fin® denote the (unique ordered) G-set with n elements and trivial G-action.
We can also view Fin as Fin® for G = {e} the trivial group.

In fact Fin® is just the category of G-objects in Fin.

Given a G-set A, we order A/G based on the least elements in an orbit.

We specify choices of disjoint unions and products in a way that makes Fin® permutative

with respect to both.

e A1l B is the disjoint union where 14 : A - AII B, 1p : B — AIl B are both order
preserving and for a,b € AIl B, a < b. Equivalently in AIl B, a < ' if and only if

a<a € A;similarly b< b € AII B if and only if b < ¥ € A; and a < b.

This makes Fin® permutative with () as the monoidal unit. However it is not strictly
symmetric although as objects AIIl B = BII A, the coproduct morphisms are not the

salne.

For a finite ordered set I or G-set, 11} A; is the disjoint union with components ordered

by I.

e A x B is the cartesian product with the lexicographical ordering or lex-product; the
unique ordering where 74 : A X B — A is order preserving and g : A X B — B is order
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preserving on fibers over a € A. Equivalently it is the ordering where (a,b) < (o', V') if
a < a orif a ="and b < b'. We can characterize it as the ordering on the product where

the entry in A take precedence. We let A"™ denote n x A.

Similarly this makes Fin® a permutative but not strictly symmetric category with % =
(1,1) as the monoidal unit. We also note that the product strictly distributes over the
disjoint union on the right: (Al B) x C' = (A x C) II (B x C). However it is not

distributive on the left: A x (BIIC) # (A x B) 1 (A x C).

For a finite ordered set I or G-set, [[; A; is the disjoint union with components ordered

by I.

The product with colexicographical ordering or colex-product of A and B is simply the

categorical product where the role of A and B is reversed.

We similarly have a prefered choice of pullbacks. Given a cospan (A — X <« B), the
lexicographical pullback or lez-pullback A X x B is the subset of A x B satisfying the

pullback universal property. In diagrams we denote the lex-pullback as:

AXXB—>B

q*fl lf

In particular we use the convention that the vertical leg is the order-preserving one.

We might also use ¢*B to denote A xx B. We also observe that ¢*f is order preserving

by definition

We note that the ordering is very important here as (A — X < B) is not equal to the
lex-pullback of (B — X «+ A).
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Finally, the right distributivity of lex-products over coproducts implies a similar dis-

tributivity property for lex-pullbacks and coproducts.

Our convention in this paper is that pullback refers to any categorical pullback satisfying
the universal property; we will sometimes refer to them as categorical pullback when we
want to emphasize the distinction. Lez-pullback refers to this specific model, and chosen

pullback for a choice of pullbacks discussed in depth in Chapter 9.

We use the word cartesian for pullback diagrams and for cartesian arrows in the context

of a Grothendieck fibration.

Given a map f : A — B, we define A, to be the lex-pullback of B = B LA As
a G-set A, p is isomorphic to A, but is reordered to that A, ~— B and the maps on
fibers (Ayxp)y — A, are order-preserving. Equivalently we can also view Ayp as having
the same underlying G-set as A, but ordered lexicographically first by their image in B,
then by their original ordering. The intuition is that A, p is A twisted by the ordering

on B.

We lastly note that as Fin® is a skeleton category, AIL B and A x B might not be equal
to the obvious point-set interpretation of the disjoint union or product. But this does
not pose any issues and the same happens when discussing ordered pullbacks. We can

address this using the approach of [GMMO23].

Using out concrete model of Fin®| as a set (j, )I(k, B) := (j + k, allB), where (all3)(g)
permutes the first j elements of j + % as a(g) permutes j and (o I 8)(g) permutes the
final & elements of j +k as §(g) permutes k. ¢; : (j,) = (j + k, o II B) is a bijection

on the first j elements of j + k and ¢ is a bijection on the final k elements.
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As aset (j,a) x (k, ) := (jk,a x ). For x = nk +r € jk where 0 <n < j,0<r <k
and g € G, (a x B)(g)(z) = (a(g)(n+ 1) — 1)k + B(g)(r). The £1’s appear because
o; permutes 1 to j whereas n ranges from 0 to j — 1. m; : jk — j sends z — n + 1.
Ty jk — k sends ¥ — 1.

There is no general formula for a pullback j x, £ C j x k of this form, so we must view

it as some (m,y) with a suitable inclusion map into j x k.

8.1 Properties of Lex-Pullbacks

We prove a few basic lemmas about lexicographical pullbacks which will prove useful later.
For the most part they tell us that some key facts about categorical pullbacks also apply to

lex-pullbacks.

Lemma 8.1.1. Consider the following diagram in Fin® so that both square are lez-pullback

squares. Then the full rectangle is a lez-pullback square.

k

A h

\

7
pl

\

7

D

~

K

-

We call this result horizontal pasting of lex-pullbacks.

\
7

t

Proof. We know that the full rectangle is a categorical pullback by a standard result in category
theory so we must show the ordering is correct. As the left square is a lex-pullback square, p

is order preserving.
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Consider a < a’ € f~1(d); it suffices to show that kh(a) < kh(a’). As they are in the same
fiber over d, h(a) < h(a’); these two are both in the fiber over tp(a) = tp(a’), so kh(a) < kh(a’)

]

Ezxample 8.1.2. In contrast, the analogous statement of vertical pasting is false. For instance
in the following diagram it is easy to see that both the top and lower squares are lex-pullbacks,

but the rectangle as a whole is not.

>

= 19— It
—
no

However vertical pasting does hold in a key circumstance.

Lemma 8.1.3. Consider the following diagram in Fin® so that both squares are lex-pullbacks

and q is order preserving. Then the full rectangle is a lex-pullback square.

A%

S

-
1

r

g

EF——F

Proof. We know that the full rectangle is a categorical pullback by a standard result in category
theory so we must show the ordering is correct.

Let a < a’ € A, so that e = rp(a) = rp(a’). In the case that p(a) = p(a’), then as they
are in the same fiber over C' and the top square is a lex-pullback, f(a) < f(a'). Otherwise,
p(a) < p(a’); as these are in the same fiber over E and the bottom square is a lex-pullback,
qf(a) = gp(q) < gp(d') = qf(a’). As q is order preserving, this implies f(a) < f(a’). O
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Lemma 8.1.4. Consider the following diagram in Fin® so that the right square and full

rectangle are lex-pullback squares. Then the left square is a lex-pullback square.

A-Ll.p 2,0
R |
D——F y F

We call this result horizontal reverse-pasting of lex-pullbacks.

Proof. We know that the full rectangle is a categorical pullback by a standard result in category
theory so we must show the ordering is correct.

As the full rectangle is a lex-pullback, p is order preserving. Let a < a’ € A, both in
p~1(d). Suppose for contradiction that f(a) > f(a’). Then qf(a) = rp(a) = rp(a’) = qf(d’);
then as the right square is a lex-pullback, gf(a) > ¢gf(a’), which contradicts the full rectangle

being a lex-pullback.

Example 8.1.5. The vertical analogue does not work in general as shown in this example:

—
[
N

~

= N — o
= N0 — 0o

—
—
N

Nl

However, it does hold in a special case.

Lemma 8.1.6. Consider the following commutative diagram in Fin®, where the lower square
and the full rectangle are lex-pullbacks, and the map q is order preserving. Then the upper

square 1s a lex-pullback.



M Qe
ok
T Y o

We call this result vertical reverse-pasting.
These conditions intially appear ad-hoc or contrived, but in fact they apply in some im-

portant situations we will encounter later

Proof. First we note that g thus f are isomorphisms as they are pullbacks of isomorphisms.

We must first show that f is order preserving when restricted to fibers over ¢ € C. This
follows from it being order preserving on fibers over e € E.

Second we must show p is order preserving. Suppose for contradiction there are a <
a’ € A so that p(a) > p(a’). As rp is order preserving by assumption, rp(a) < rp(a’). As
r is order preserving, the only way for this to happen is if a,a’ are in the same fiber over
e =rp(a) = rp(a’). We know that f is order preserving on fibers over e and an isomorphism
so f(a) < f(a'). Then gp(a) = qf(a) < qf(a’) = gp(a’). As g is order preserving on fibers,

p(a) < p(a’), a contradiction. O

Lemma 8.1.7. If f is an isomorphism, then its lez-pullback ¢* f is an identity.

Proof. 1t is clear that this is a categorical pullback, that Id is order preserving, and that r is

order preserving on fibers as those are all singletons. O]

Corollary 8.1.8. The lex-pullback of an identity map is an identity; ¢*Id = Id
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We call this result one-sided unitality of lex-pullbacks.

Ezxample 8.1.9. In contrast, even in a weaker form, this does not work in the reverse orientation.

Let f be a non-identity isomorphism, then the leg opposite the identity is not an identity.

A1 B
| L
A=A

Remark 8.1.10. The failure of lex-pullbacks to satisfy the pasting and unitality in both orien-
tations proves to be a major limitation to developing an elegant theory of categories of spans.
In fact by Theorem 9.3.1 we can not get around these issue by choosing pullbacks in some

very clever way. This is discussed in much greater length in Chapter 9.
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Chapter 9

Chosen Pullbacks

9.1 Chosen Pullback Structures

Definition 9.1.1. Let C be a category with all categorical pullbacks. The structure of a class

of chosen pullbacks is a choice of a single (categorical) pullback for each cospan.

Example 9.1.2. So far this is a very weak condition. By the axiom of global choice, any

category C with pullbacks of all cospans has a class of chosen pullbacks.

Remark 9.1.3. We note that the choice need not be symmetric, in general the chosen pullback

of (A — X < B) is not equal to the chosen pullback of (B — X « A).

There are three key properties a class of chosen pullbacks can have that interest us:

Definition 9.1.4. A class of chosen pullbacks is unital if the chosen pullback of an identity

morphism is an identity morphism in either orientation
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b Al

Definition 9.1.5. A class of chosen pullbacks satisfies the pasting property if given two chosen

pullback squares, the combined rectangle is also a chosen pullback square

o ) > o . > ® > ®

I = |

[ ] > @ > @ [ ] > @ > @
— —

— o0 i— o
0Oi—— O0<— @
e @0<— @
e{— 0<— o

°* —— —

Definition 9.1.6. A class of chosen pullbacks is associative if given two composable cospans,
taking the chosen pullback of the left then the right gives the same span as the right than the

left. I.e. the outside spans of the following diagrams agree:

/\/
\/\

\/ \/

Ezxample 9.1.7. For C = Fin or FinG, the lexicographical pullback is associative and satisfies
one of the unital squares and one part of pasting, but not the other. The colexicographical

pullback satisfies the other unital square and other part of pasting

Remark 9.1.8. These three definitions here are symmetric so any statement about horizontal
pullbacks also applies to vertical ones.
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Definition 9.1.9. A class of chosen pullbacks on C is draconian if it is unital, associative,

and satisfies the pasting property!.

As we will see, these are not logically independent.

Example 9.1.10. If C is a group there is a draconian class of chosen pullbacks. We define the

chosen pullback as follows:

Example 9.1.11. On a single category C there can be multiple draconian chosen pullback
structures. For instance given a good chosen pullback structure, we can take the reverse of it,
where the new chosen pullback of (A — X <« B) is the old chosen pullback of (B — X « A).

In the example of groups we have an alternative choice given by

[ ] L} [ ]
fgf‘ll lg :
[ J T} [ J
Lemma 9.1.12. If a chosen pullback structure satisfies the pasting property it is also asso-

ciative.

Proof. We consider the two composable cospans at the bottom of the diagram. We first take
the pullbacks of those two cospans, then the pullback of the new cospan they generate. By
pasting, the left and top squares glue to a chosen pullback so the large span is equal to that of
left one in the associativity definition. Similarly, by pasting, the right and top squares glue to

a chosen pullback so the large span is equal to that of right one in the associativity definition.

"'We would like to thank Kate Ponto for advice on creative terminology
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]

Lemma 9.1.13. If a chosen pullback structure satisfies unitality and associativity that it

satisfies the pasting property.

Proof. Consider the following diagram where we assume that squares 1 and 3 are chosen
pullbacks; we aim to show that the rectangle combining 1 and 3 is also a chosen pullback.
By unitality, square 2 is a chosen pullback. Then the rectangle formed by 1 and 2 is equal to
square 1 so it is also a chosen pullback. So then the outside span is equal to the span around
the rectangle of 1 and 3. By associativity, the outside span is equal to the span of the chosen
pullback of the cospan around the rectangle of 1 and 3. This shows that pasting is satified.

Showing pasting in the other direction is identical.

"~
N
N A

7\
\/\

O

Lemma 9.1.14. If a chosen pullback structure satisfies unitality and associativity then it is
draconian .
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9.2 Span Categories

Definition 9.2.1. Let C' be any category with all pullbacks. The classical category of spans
in C, also called the Lindner category of C, Span(C), is defined as the category with the same
objects as C and morphisms are isomorphism classes of spans between objects in C. Where

two spans are isomorphic if there is an isomorpisms as follows:

X

N

A < X' s B

Composition of two spans (A < X — B) and (B + Y — () is formed by outer span in the

below diagram where Z is a pullback of (X — B < C) in the below diagram.

Z
X Y
A B C
As we are only interested in isomorphism classes of spans composition is well defined despite
the fact that pullbacks are not strictly unique. The isomorphism class represented by span
(A= A= A) is the identity with respect to composition.
Remark 9.2.2. Span(C) is equal to its dual.

Remark 9.2.3. The categorical product in Span(C) of X,Y € C is given by the coproduct

X IOY in C if it exists.

Remark 9.2.4. If C also has all finite coproducts, then Span(C) is enriched in monoids:
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(A« X—>B)+ (A« X' —-B)=(A+ XIIX - B)

Definition 9.2.5. For a category with finite coproducts, the homset-wise group completion
of Span(C) is the Burnside category which is much better known. (Though some authors

[Bar17, BGS20] use slightly different conventions).

Definition 9.2.6. Let C be a category with a draconian chosen pullback structure. We define
its new pan 1-Category, Span’(C), as the category with the same objects as C and morphisms
are spans between objects in C. Composition of two spans (A < X — B) and (B <Y — ()
is formed by outer span in the below diagram where Z is the chosen pullback of (X — B <« C)

in the below diagram.

A

X
A B C
The span (A = A = A) is the identity with respect to composition.

\Y
/

Unitality implies that the span (A = A = A) is the identity with respect to composi-
tion. Associativity is equivalent to composition being associative. This motivates the term
draconian . Note that Span’(C) is not in general equal to its dual.

Span’(C) is not equivalent to Span(C) as homsets in the former consist of spans whereas
in the latter they are isomorphism classes of spans. In a sense though, both are 1-categorical

versions of the same 2-category.

Definition 9.2.7. Let C be a category with a chosen pullback structure). We define the (2,1)
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span category of C denoted Spans(C) as the bicategory with object the same as those of C.
Hom(A, B) is equal to the maximal groupoid of spans over A and B. Composition is formed

by taking the chosen pullback of the middle cospan.

In the case that C has a draconian chosen pullback structure, unitality and associativity
ensure this is a strict 2-category, however in the more general case, associativity and unitality

only hold up to ismorphism.

Lemma 9.2.8 ([Lur23] Ex. 2.2.6.13). Given two different chosen pullback structures on C,

we have two versions of Spans(C) which are distinct, but equivalent as 2-categories.

Ezample 9.2.9. The bicategory GE of [GM11] is defined as Spany(Fin®) with the lex-pullback.

We discuss it more in Chapter 10.

By taking the homotopy 1-category of the (2,1) span category we get the classical span
category. By taking the underlying 1-category we get the new span category. Although the
former is the more “morally correct” version, the latter is often more useful and appears in
relevant literature, namely [BIO15].

This is easily generalized to a 2-category as opposed to a (2,1)-category by including all
morphisms of spans, not just isomorphisms. However I do not know of any uses for this so it
is not discussed.

In the world of co-categories, this is all much more natural as we are not concerned with

a distinction between “strict” and “up to coherent equivalences”.

Definition 9.2.10 ([Barl7, BGS20]). For a category or oo-category C with pullbacks, the
effective Burnside category A®/J(C) is the co-category, viewed as a quasicategory with n-
simplices given by diagrams in C of the form:

74



7N

anl Xn

°
. / \ .

[} \ [} /
7N

Xo X

where all squares are pullbacks. Intuitively, this encodes all of the possible ways to compose

the spans from object Xy to X,,.

Remark 9.2.11. For a l-category C with pullbacks it is suspected that NP (Spany(C)) =~

A¢T(C). 1 believe that a proof might involve [Lur23] Cor. 8.1.3.12.

9.3 Chosen Pullbacks on Fin

Theorem 9.3.1. There is no class of draconian chosen pullbacks on Fin.

Unfortunately the proof is tedious and unilluminating so we leave it for the end of the

chapter.

Remark 9.3.2. We believe this result to be widely suspected or considered common sense but

it is not explicitly stated anywhere nor is a proof written.
Corollary 9.3.3. There is no class of of draconian chosen pullbacks on Fin®.

Proof. of corollary.

Suppose we have a draconian chosen pullback system on Fin®. If we restrict to objects
with a trivial G-action this gives us a draconian chosen pullback system on Fin® because
categorical pullbacks of trivial G-objects are also trivial.
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Remark 9.3.4. As draconian classes of chosen pullbacks deal with strict equality of objects and
morphisms, as opposed to uniqueness up to unique isomorphism, standard category theoretic
techniques do not always work and we are forced to work very concretely. For instance,
although a class of chosen pullbacks is preserved under an equivalence of categories, this is
not known to be the case for a draconian class of chosen pullbacks. Additionally, although we
suspect this result also applies in T'op and the non-skeletal category of finite sets and G-sets,
our proof heavily relies upon our use of a skeleton category and it is not clear how we could

generalize it.

9.4 Proof of Theorem 9.3.1

We first prove a few lemmas.

Lemma 9.4.1. Assume there is a draconian pullback structure on Fin. For any surjection in

Fin, s: X =Y, ifk:Z —Y is such that s'k = Idx, then Z =Y and k = Idy.

Proof. Let t be the right inverse to s. Then by unitality t*Idx = Idy. But by pasting and

unitality, that’s also (st)*k = Idyk = k.

A s X s 7
[
y L3 X .Y
\_/‘r
Idy
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Lemma 9.4.2. Assume there is a draconian pullback structure on Fin. For any injection in

Fint:Y — X, and k:Z — Y, then there is a h: W —Y stk =1t*h.

Proof. Let s be a left inverse to ¢. We take the chosen pullback of (X Ly Ltz ) which we
denote W and draw as the right square. Then we take the pullback of (Y Lxd W). By

pasting and unitality, t*h = k.

Z s W A
o
y L3 X 2,V
\_/‘7
Idy

]

Lemma 9.4.3. Let this be a chosen pullback square in a category with a draconian pullback

structure

We call this process flipping.
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Proof. We just prove the first case, the second one is identical. Consider the diagram:

Jt f
[ ) > @ > @
ql pl q
g ! g
[ ) > @ > @

The right square is a pullback square by assumption and the full rectangle is by unitality.
That implies ¢g~1*¢ = p and as f is invertible the top arrow is f~.

]

Lemma 9.4.4. As before, let the following be a chosen pullback square of a category with
draconian choice of pullbacks, and we assume that g and q are non-identity isomorphisms.

Then f and p are also not identities.

Proof. Suppose for contradiction that p is an identity. Then we have the following diagram

and by flipping, the left square is a chosen pullback.

J1 f
) > @ > @
ql pl q
g ! g
) > @ > @

However, p is an identity and by unitality ¢ is as well, a contradiction. The case for g is

identical. 0

We now are ready to procede to proving Theorem 9.3.1.

Proof. of Theorem 9.3.1

We begin by assuming for contradiction that there is a draconian chosen pullback system
on Fin. In this section all squares shown in diagrams will be chosen pullback squares. We
focus on endomorphisms of the set 3 = {1,2, 3}.

Let e be the endomorphism of 3 given by 1+ 2,2 +— 2,3 +— 3.
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We definer:3 —-2byl—1,2—1,3—2and?:2—3 by 1+ 2,2 3.

First we state some basic facts about these three morphisms.

e is idempotent.

e(12) =e.

There are 6 endomorphisms conjugate to e.

ri = Idy.

We define f: 3 — 3 as 7*(12) and we consider the following diagram:

3 > 2 > 3 > 2
lf l(w) lf lm)
S T

€ Id

By assumption the left and right squares are chosen pullbacks. As Id*(12) = (12) the
composite of the middle and right squares are chosen pullbacks, so i*f = (12) and the middle

square is a chosen pullback as well.

e We know f is an isomorphism as a pullback of an isomorphism is an isomorphism; as

Fin is a skeleton category it must also be an automorphism of 3.

o f#Idyasr*ldy=Idy# (12) =7r*f.

e As shown in the diagram, e* f = f.

Throughout this section we let f denote such an isomorphism and we call it a morphism
fixed by e*.
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e Let ¢ be the conjugate of e via (12); ¢ : 1 +— 1,2 +— 1,3 — 3. Via direct calculation we

see that €' is idempotent, ee’ = e,e’e = ¢'. (12)e = ¢/, and (12)e’ = e.

e If f is fixed by e* then it is also fixed by €.

Again the right square and full rectangle are chosen pullbacks, pasting implies the left

must be as well.

e By the same argument, if f’ is any automorphism of 3 fixed by €* then it is also fixed

*

by e*.

e If f is fixed by e*, then (12)*f = f,

Similarly the right square and full rectangle are chosen pullbacks, pasting implies the

left must be as well.

e fis fixed by e™*.

We know both squares are chosen pullbacks so pasting the full rectangle is as well.
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Recall that there are 6 idempotents conjugate to e of which ¢’ is one. These are the
endomorphisms which fix two elements and send the other one to one of the fixed points.

We let fi5 := f as f corresponds to the idempotents sending 1 and 2 to the same point.
By symmetry, there are other non-identity isomorphisms fixed by the other 4 idempotents of
that type. We call them fi3, fo3 based on which idempotents they fix.

So far we know that they are non-identity isomorphisms, but we have not shown yet that
they are distinct.

Also note that everything we have proved about f applies to the other two, though with
the numbers suitably changed. For instance They are pullbacks along maps conjugate to r of
(12) € X9, And (32)* fi3 = fi3, (23)* faz = fo3.

We will prove they are distinct though this is a bit tricky. Let ¢ : 3 — 1 be the unique
map, and ¢; : 1 — 3 send 1+ 1, similarly for 75,43 : 1 — 3. Let ¢; : 3 — 3 send everything to
1, similarly for ¢y, c3. Then ci; = Idy,i;c = ¢;j.

Then ¢} f = Id3, and similarly for fss, fi3

3 > 1 >3
Idl Id fl
351943

|

The right square is the chosen pullback of (1 b, 3 L 3), and i;f = Idy as it is the only
automorphism of 1. The left square is a chosen pullback by unitality. By pasting the full
rectangle is a chosen pullback.

We now prove fi5 # fo3 and by the same argument we can show that the other pairs are

distinct as well.
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Let es3 : 3 — 3 be the idempotent sending 1 — 1,2 — 2,3 +— 2. It is one of the 6
conjugates of e. By symmetry €5, fog = fos .

By direct computation esse = c¢o. Assume for contradiction that fio = fo3 then we would
have:

—
f2

? 3

€23
—

e —— e
W — W

|

QO <— W

—
fa3
_e
C2
We know the right square is a chosen pullback. As fy3 is an isomorphism, we know that
f = fi2 = €"fa3 so the left vertical arrow is f. By pasting the full rectangle is a chosen
pullback, so the left vertical arrow is ¢} fos = Id3, a contradiction.
We claim that in Aut(2) (12)*(12) = (12). This is as (12)*(12) is an isomorphism, but

cannot be Idy by the lemma. Thus this is a chosen pullback square:

(12)

(12) (12)

DO —— Do
Do — o

=
So f = (r(12))*(12).

We also note that there are 6 distinct surjections 3 — 2 including r and /. Also by
symmetry, fi3, fog are the pullbacks of (12) along these surjections, where each of {f, fis, fa3}
comes from two of the surjections.

Consider the following diagram. By Lemma 9.4.2 there is a k so that the right square is a

chosen pullback.
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3 > 3 > 3 > 3
£f23(13)> gf £ >£f (3) >k£

\ . /r
By direct computation, the bottom row is es3. So now we know (13)*f = fo3. By similar
arguments (23)*f = fi3 and (12)* f13 = fos.
We claim that f = fi9, fo3, f13 are transpositions. Consider the following diagram where

the top square is from flipping

lﬁ

0o —— o0 ¢—— [0
I
ﬁ\
1

I 4—— I8 ¢—— b

(12)

7
L

=
—
=
N
—

|

By examination, 7’ is a surjection conjugate to r so f~' € {f, fi3, fos} By symmetry, f53', fi3' €
{f = fi2, fo3, f13} as well. Thus they come in inverse pairs, so at least one must be its own
inverse, thus a transposition.

Without loss of generality, let fi» be the transposition. Note that this is the first time we

have made assumptions about it different from those of fi3 and fo3. We have:

f

oo —— oo —— Ico
I
i\
1

o —— 00— b

~
—
—
no
s

~
—
=
N
-

]

Assume for contradiction that » = r’. By direct computation, there is no transposition f € 33

so that (12)r = rf, contradicting the above diagram. Thus r # 1’
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Thus ' = (12)r as we know ((12)r)*(12) = f. By direct computation, the only transposi-
tion f satisfying rf =ris f = (12).
We will show fo3 must also be a transposition. If not its either (123) or (132). Then for the
left square to commute, the top arrow is /d, contradicting Lemma 9.4.4.

If it is (132) we know the following are chosen pullback squares:

3 ﬂ 3 3 ﬂ 3 ﬂ) 3 3 _)> 3
(12)l l(lQ) (132)l l(m) 123)l l(u) 132)l l(132)
3 —3 3 —3 33— 3 33— 3
(12) (23) (23)

For the first we had already proven (12)*f = f, the second as (13)*f = fas, the third we get
by making the same argument with (23) as f13 to show that (23)*f = f13 = (123) and as we

had assumed fi3 = f,3', the fourth as by assumption (23)* fo3 = fas3.

3 (13) 3 3 (123) 3 3%, ( 3 3 (13) 3
(123)l l(u) (12)l l(123)(123)l l 123) 12)l l(123)
3 —=3 33— 3 3—3 3 ——3
(123) (23) (13) (132)

Now we glue squares 1 and 2 of this set vertically and glue squares 3 and 4 vertically to get

the following two chosn pullbacks:

3,3 3,3
(23)l l(13) (23)l l(lSZ)
3——3 3 ——>3
(23) (132)

to get (23) = (23)*(13)
Then glue the 3d and 4th square here verically to get (132)*(132) = (23). But flipping

the second one vertically contradicts the earlier square 2. Thus fo3 # (132) and it must a
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transposition. So then fi3 is as well. Using the same argument as with f;5 we show they are
(23), (13) respectively.
We had shown that (13)*f = f23, and (12>*f13 = f23

So we have the squares:

33,3 3 2,3
(23)l l(u) <23>l l(m)
3 ——+3 3 ——>3
(13) (12)

But all the arguments we made in this section could also be made switching the two legs
of a cospan when taking the chosen pullback. That is to say switching the horizontal and
vertical axes.

But these two squares are not switched versions of each other. Thus we have a contradiction

so Fin cannot have a draconian chosen pullback structure. O
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Chapter 10

GE’ and GE_

In this section we consider three versions of an enriched Burnside category on Fin®

Definition 10.0.1. GE is defined as the PC-bicategory with objects those of Fin®,

GE(A, B) is the category of spans (A <— X — B) and isomorphisms of spans. GE(A, B)
is permutative with IT as its monoidal product. The unit span in GE(A, A) is (A = A = A)
Composition GE(B, C) x GE(A, B) — GE(A, C) is defined by taking the outer span where the

square is the lex-pullback:

gy

S

\ (10.0.1)

Y

X

LN N

Composition is strictly associative, however as the lex-pullback is only unital on one side, GE

is not strictly unital but is only a bicategory.
We recall that the distributivity isomorphism d; relates addition of Y, Y’ to composition

and 65 relates addition of X, X’ to composition, though this may initially be counterintuitive.
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We have that 0, is a non-identity isomorphism via the reordering isomorphism ¢*(YI1Y"') =
(¢*Y I g*Y")x = ¢*Y I g*Y’ which is natural. And 0, is the identity as the ordered disjoint

union right distributes over the lex-product and thus lex-pullback: (¢II¢')*Y = ¢*Y I1¢g*Y. !

As Theorem 9.3.1 tells us, we cannot simply get around this issue by using another choice
of pullback instead of the lex-pullback. Admittedly we have not shown that there can be no
clever way of choosing a different pullback for each pair of spans to make it work but this

remains unlikely. So we must resort to nastier measures.

Definition 10.0.2 ([GM11], more details in [JY22]). GE' is the PC-category whose objects
are the same as Fin®. For A # B or A = B and |A| < 1 we let GE'(A, B) := GE(A, B) with
the same permutative structure.

For |A| > 2, GE'(A, A) has objects spans (A < X — B) and a whiskered compositional
unit we denote Id4. The morphisms in GE'(A, A) are generated by the isomorphisms of spans
and a unique isomorphism Idy = (A=A = A).

On the spans the permutative structure of GE'(A, A) agrees with that of GE(A, A), (A «+
) - A)II Ida := Id4 and for all other spans (A< X — A) I Idy:= (A« XITA— A).

On spans composition is defined using the lex-pullback as in GE. And Id, is a strict unit
with respect to composition.

For spans 47 is the reordering isomorphism and 4, is an equality, both as in GE.

For the whiskered unit, /dgo (A« X - B)=(A+ X - B)=(B=B=DB)o (A «+
X — B) and we recall that Idp and (B = B = B) behave the same under addition so there

is nothing new to check here for §;. On the other side is it more subtle.

"'We could also phrase this in terms of right (resp. left) composition being strong (resp. strict) monoidal,

but this phrasing can be less readable.
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However as (A=A = A)o (A <+ X — B) # (A + X — B), composition is only strong
monoidal; 0o # Id.

We calculate:
(A X > A)+1ds)o (A« Y = B) = (A+ ZII (Yea) = B)

whereas

(A~ X > A)o(A+Y > B)+Idyo(A+Y - B)=(A+ ZI1Y — B)

where Z is the lex-pullback of (X — A < Y). The distributivity isomorphism then comes
from the reordering isomorphism Y = Y4 over A.
Thus in general 6;, d, are non-identity isomorphisms and composition in GE' is strong but

not strict bilinear.
Lemma 10.0.3. GE and GE' are biequivalent.

Proof. We have an inclusion pseudofunctor i : GE — GE’, which is the identity on objects,
morphisms (spans), and 2-morphisms (isomorphisms between spans). It is easy to see that
it induces monoidal equivalences on hom-categories, preserves composition up to natural iso-

morphism, and sends units to objects isomorphic to Id4. O

GE' is adequate for constructing spectral or permutative Mackey functors as in [GM, BO],
however the whiskered unit is somewhat unwieldy, and does not interact particularly nicely

with Fin® itself. For that reason we introduce a different PC-category to replace GE

Definition 10.0.4. We define GE,,; as the PC-cat whose objects are again those of Fin®,
in GE,.4(A, B) objects are spans whose left leg is order preserving: (A «—~ X — B) and
morphisms are isomorphisms of spans.
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As before we compose spans by taking the outer span resulting using the lex-pullback

which is strictly associative. It is strictly unital with (A = A = A) € GE,.4(A, A) the unit as

D <

M < <

is a lex-pullback square.

Its permutative structure is more complicated. We define

(A=«X —>B)+(A—~=Y - B)=(A—=(XIIY)xa — B).

It is clear this is strictly unital with (A +- () — A) as the additive unit.

In both (XY )xallZ)xa and (X (Y ILZ),4)xa elements are ordered lexicographically
first by which element of A they lie over, then whether they come from X, Y, or Z, then based
on the original ordering in those sets. This can also be shown via a diagram chase. This shows

those are the same as ordered G-sets, so associativity is strict.

We now describe the distributivity isomorphisms 91, ds.
On the other side it is only strong monoidal; d; is a non-identity isomorphism. We can
display

(B~Y—=C)+(B—~Y' —=0C))o(A—~X — B)

as the following diagram where both squares are lex-pullback and by gluing 8.1.1 the rectangle

is as well. V' is the lex pullback of (X — B — (Y IIY').5).
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T

(YIIY' )y

™

ynuy’

o
SIS
k\\\QBK//// \\\$

A

C

And we can display

(B—~Y —=>C)o(A=X—=>Y)+(B—~=Y - C)o(A=X—=Y)

in the following diagram:

(ULLU")xa

T

/////UHW\\\NYHV)
\/\

where U, U’ are the lex-pullbacks of (X — B «~Y), (X — B <= Y’) respectively. The middle

/

A C

square is a pullback square but not a lex-pullback. However its legs are order preserving
when restricting to Z, Z', Y, Y’ its legs are order preserving. The leg (UL U"), 4 — A factors

through X so we can draw:



p% -~ \(UHU’)
A/ \X/ \(YHY’)

where the lower left square is a lex-pullback, but the top square is not a lex-pullback. We

claim that (U U’)wa)xx = Z", and that their maps to A and C agree as well.

\X/ ) \(UHU’)
\A/ \B/ \C

This reduces to showing that the composite rectangle of squares 1, 2, and 3 is a lex-
pullback. We know the left leg (U II U’)ya)xx — X is order preserving, so we consider
u<u € (UDU)xa)xx lying over x € X and we prove hgf(u) < hgf(v') in Y IIY’. First
we have that f(u) < f(u') as f is the top square is a lex-pullback. As u,u’ are in the same
fiber over x, they are also in the same fiber over A, so gf(u) < gf(v'), and g is the top
leg of the lex-pullback square given by the composite of squares 2 and 4. Now gf(u), gf(u')
are still in the same fiber over x € X. If both are in U then as U is the lex-pullback of
(X = B« Y), his order preserving when restricted to U so hgf(u) < hgf(u'). This same
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argument holds if both are in U’. The other case is that gf(u) € U, gf(v') € U’ in this case
as h(U) CY,h(U’") C Y’ we must have that hgf(u) < hgf(u).
So now we have a natural distributivity isomorphism d; : V = (UTIU" ) a)wx = (UTTU" ) 4
Consider spans (A «—~ X — B),(A «—~ X' - B),(B «— Y — C) Let Z,Z' be the lex

pullbacks of (X — B «~Y), (X' — B «<Y) respectively.

(B—~Y = C)o((A—~X—B)+(A—~X — B))

can be drawn as the diagram:

C

where W is the lex-pullback of (X II X'),z — B <= Y). We observe that the leg W — Y
factors through ZI11Z’, and that the lower right square with the dotted arrow is a lex pullback.
By reverse pasting the top square is as well. By pasting the rectangle formed by the top square
and lower left square is a lex-pullback; thus W = (Z 11 Z'), 4.

We also have by definition that
(B—~Y —5C)o(A~X—-B)+(B—~Y 5C)o(A =X -B)=(A—=(ZUZ")xa— C)

so composition on this side is strict monoidal, 9 = Id.

Theorem 10.0.5. There is a biequivalence R : GE' — GE,,q
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Proof. We start by constructing R as a 2-functor, then show it is in fact a PC-functor. It acts

as the identity on objects and on hom-categories we define:

R4 p: Homge (A, B) — Homge, ,(A, B)
AL X =B — AL XS B

where ¢ is determined uniquely by the reordering isomorphism X = X, 4. R(Id,) := (A =

A = A). We see in the diagram how R acts on a morphism 7 between spans:

>< >< H (10.0.2)

This is well-defined by the universal property of pullbacks and it is clear that it preserves
identity morphisms and composition. Thus R4 p defines a functor.

By construction R sends the composition units of GE’ to those of GE,,q.

Next we show that it preserves composition which amounts to Z,c = Z” in the diagram,
where Z is the lex-pullback of (X — B «<Y), and Z” is the lex-pullback of (Xy4 — B «=
Y«p). To better keep track of the maps, we use “—” here to denote the top arrows in a

lex-pullback square.
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Z//

z1
LTI,
NN

The squares 1 and 2 shown below are both lex-pullbacks, so using Lemma 8.1.1 on horizontal

(10.0.3)

pasting, the composite square 3 is also a lex-pullback.

Z" s Yip ¢t s Y 7" —Y
I 7 =] [
XD(A—>B:B XKA—>B

We now return to diagram 10.0.3, which we have simplified by substituting in square 3 in

place of squares 1 and 2 and omitting C' as it is no longer relevant.

Z//
Z:A
|
Xua 7
] N
A X Y

N

Next, the arrow Z, 4 — A factors through X, 4 which follows from X, 4, — X being invertible.
This implies the lex-pullback square 8 shown below is the composite of squares 4 and 5. Using

the fact that square 5 is a lex-pullback square, we can reverse gluing of Lemma 8.1.6 to see
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that square 4 is a lex-pullback. We then use that square 6 is a lex-pullback to apply horizontal

pasting of Lemma 8.1.1 to show that square 7, the composite of 4 and 6, is also a lex-pullback.

Lya —— 7 Lya — 7 AR > v > Y s ——Y
P« 0«7 Tl T -]
A=——A Xua — X Xua s X s B Xz — B
[ oo |
A A

This completes the proof that both Z” and Z, 4 are lex-pullbacks of (X4 — B < Y). We
already showed that R sends units to units so we have already shown composition is preserved
in the case that either 1-cell is and Id. Showing that composition is a bifunctor comes from
a lengthy but straightforward diagram chase.

This completes the proof that R is a strict 2-functor.

We now need to show that it is PC-enriched. By direct checking we see that

(XTY)xa = (XuallY,a)xa meaning that Ry p is strict monoidal.

Next we need to show that in the following diagram commutes in the sense that both
ways around the diagram give the same bilinear bifunctor of permutative categories. We have
already shown that as bifunctors they are the same so it remains to show that the distributivity

isomorphism 4, do agree.

GE'(B,C) x GE'(A,B) —™~ GE'(A,C)

r| |7

GEord(Ba C) X GEord(A7 B) P —— GEord(Aa C)

comp

As R, p is strict monoidal, we only need to consider the distributivity morphisms of

composition.

We consider spans with X, X’ YY" as before. For d; going across we have ¢*Y I g*Y’ =
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("Y1 g*Y")wx = ¢*(YIIY”) going down we then have (¢*Y I1g*Y")ua = ((¢*Y L g*Y") s x ) xa-
We observe that the RHS is equal to (¢*Y II ¢*Y”’).x which is the same as the §; of GE,4.
We recall that on the whiskered unit 0, is defined the same as on the span (B = B = B) so
there is nothing new to check there.

For §, we first consider spans in GE'. Going across d, is equality, so then applying R we
once again get equality. As dy is an equality in GE,.; these agree. On the whiskered unit,
we recall that in GE' §, is the reordering Z 11 Y, 4 = ZII'Y. Applying R to this we get
(ZMYya)ua = (Z11Y )4 so this is again an equality, agreeing with the dy of GE,,4.

Next we show it is a biequivalence of 2-categories.

By definition it is surjective on objects, so we must show R4 p is an equivalence of cate-
gories. In the case of A = B we note that GE'(A4, A) ~ GE(A, A) and R factors through the
retract so we do not need to treat this case any differently.

R4 p is surjective on objects because Homgg,,,(A, B) is a subcategory of Homgg (A, B)
and R, p is a retract.

Alternative explanation is that Homgg,,,(A, B) already has all spans whose left side is
order preserving, and R4 p leaves these unchanged.

For fully faithfullness we consider the square in diagram 10.0.2 and note that all the maps
in the middle are isomorphisms, in particular so 7 and R4 g(n) uniquely determine each other.

]

Remark 10.0.6. There is no strict 2-functor GE,,; — GE’. To see this we note that in GE’ Id4

cannot be expressed as a composition of two non-identity spans, whereas in GE,,4 the identity

(A= A= A) can be.
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Definition 10.0.7 ([BIO15]). A permutative Mackey functor is a PC-functor (GE)”*? —
Perm, or from a PC-category biequivalent to (GE')°P. This forms a 2-category with PC-

natural transformations and modifications.

We note that the original definition used lax monoidal functor whereas we use strong

monoidal ones.

Proposition 10.0.8. PMFs with GE' are equivalent (how?) to those with GE,.q which we

denote PMF,,

Funpc(GE'™, Perm) ~ Funpc(GEZ,, Perm)

Proof. As R is a biequivalence, it has a weak inverse we denote S : GE,.q — GE’, which is a
pseudofunctor, and monoidal pseudonatural equivalences RS ~ Idgg, ,, SR ~ Idgg.

we have a precomposition functors R?* : PMF' — PMF,,4, S?* : PMF,.; — PMF’,
which are a strict 2-functor and pseudofunctor respectively. Similarly, the monoidal pseudo-
natural equivalences induce natural equivalences S?*R?* ~ Idpyr, , and RP*SP* ~ Idpypr

making this an equivalence of 2-categories.

By this result we chose to use to work with PMF's from GE,,, instead.
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Part 11

f]g-Algebras
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Chapter 11

FinG-categories and EG

SGAs were first introduced by Peter Bonventre and Luis Pereira in an unpublished draft.
Bonventre later refined the definition to its current version for which he defined Fin®-categories.
The work in this and the following chapters builds on their work and fills in technical lemmas

in their work. This work is largely based on joint work with Peter Bonventre.

11.1 Fin“-Categories

Definition 11.1.1. Let C : (FinG)"p — Clat be a strictly unital pseudofunctor whose image
does not include the empty category. Equivalently we can view this as a fibration over Fin
whose fibers are non-empty along with a normal cleavage (i.e. a strictly unital choice of

cartesian lifts such that ). In the case that C is a functor C — Fin® is a split fibration.

Remark 11.1.2. By the equivalence of weak 2-categories between contravariant functors to

Cat and categorical fibrations, we know that everything done in this chapter could also be
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done in terms of pseudofunctors (Fin®)?? — Cat, however we believe that some parts are more
convenient when phrased in terms of fibrations, paraphrasing the slogan attributed to Elden
Elmanto,

“Functors are better for intuition, fibrations are better for calculations.”

Definition 11.1.3. For f : A — B in Fin®, we denote associated functor f* : C(B) — C(A)
which we call the restriction along f.

We say C is weakly additive (resp. strongly, strictly) if for all A, B € Fin® the natural map

C(ATI B) 2%, ¢(4) x C(B) (11.1.1)

is an adjoint equivalence of categories (resp. isomorphism, equality). We denote the weak

inverse A and associated natural isomorphisms 7, €:

n: IdQ(A]_[B) :g> )\(LZ X [,*B), €. (LZ X L}g))\ :g> [dQ(A)XQ(B) (1112)

Note that we can replace n or € with another natural isomorphism to make this the case if
it is not already, so we can expand the Fin®-categories to include those that merely have
equivalences. As this is an adjoint equivalence, both A, % x ¢} are left and right adjoints.
Our choice of 7 and € as the unit and counit respectively as opposed to their inverses (which
would be counit and unit respectively) is thus arbitrary.

We next require that € is suitably preserved by restriction along isomorphisms. Spelled

out this means given isomorphisms A — A’, B — B’ the whiskering diagrams agree:
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V(A) x V(A" V(A) x V(A)

T

. ——— V(AL A)
V(B) x V(B V(A) x V(A L (11.1.3)
\)\
~
—<—— V(BIB) r
V(B) x V(B V(B) x V(B

Implicit in this we are requiring restriction along isomorphism to strictly commute with .
A quick diagram chase using the triangle identities shows that this is equivalent to a similar
condition on 7.
We next require that they are associative and commutative in the sense that the following

diagrams strictly commutes for all A, B, C', and that they are suitably compatible.

C(A) x C(B) x C(C) =% C(ATI B) x C(C)
IdxAl lA (11.1.4)
C(A) x C(BIIC) —2— C(AIIBII )

C(A) x C(B) — C(ATI B)

l l” (11.1.5)

C(B) x C(4) —— C(BILA)

where 7 denotes both twist maps.

These additional conditions mean we have a well defined A : [, C(A4;) — C(II;A;) which is
equivariant with respect to action of »,,.

This is a weak inverse to [, ¢} , however a priori we can form the (co)units by various
compositions of the ns and es.

We finally require that the various compositions yield the same natural isomorphism.
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Consquently we have an equivalence A : [[,C(A;) — C(I;A;) : [, %, with specified

(co)units, which we also denote 7, €.

Remark 11.1.4. By lemma 4.0.5 if we have n’s and €’s forming these equivalences and we
replace the n’s (or €’s) so as to form adjoint equivalences, they still are suitably compatible

as required.

Notation 11.1.5. For concision we will occasionally use ¢* to denote % X ¢, and r for a
restriction. We will sometimes use ¢ for clarity if multiple fibrations are present.
Throughout this paper for clarity we will generally prove results only for A, .* in the case of
two objects, however by the required well-definition and compatibility, the same proofs work
just as well for multiple objects. And we will appeal to some results in the case of multiple

objects.
Lemma 11.1.6. Weak (resp. strong) additivity implies that C(0) ~ = (resp. C(0) = *).
We call this weak unitality (resp. strong).

Proof. We observe that applying the natural map 11.1.1 to A = B = () we obtain:

C() = C(B110) =5 C(0) x C(1).

As A =1 x 1. In the weak case, as A is essentially surjective, for (a,b) € C(0) x C(0) there
must be a d € C(0) so that (a,b) = (d,d) in C(0) x C(0). This implies a = d = bin C((). Thus
all objects are isomorphic.

Next, by full faithfulness, A : Endeg)(a, a) = Endeg)xc@)((a, a), (a,a)) = Ende@(a,a) x
Endgg)(a,a). Thus Endeg)(a,a) is a singleton. Finally as we assume C(()) is not the empty
category, it must be equivalent to *.
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In the strict case, singletons are the only non-empty sets (or proper classes) which are in
bijection with their product with themself via the diagonal, so C(0)) has a single object. As it
is equivalent to *, it now must be isomorphic to * as well.

This is the only occasion we use the assumption that C only takes values in non-empty

categories. O

Lemma 11.1.7. Restrictions and \s commute up to isomorphism, and strictly if C is strongly

additive.

Proof. They commute up to the 2-cell A defined by the pasting diagram:

C(A) x C(A)

T

=t C(ALL A

—

C(A) x C(A)

" (11.1.6)
r C(BII B
C(B) xC(B') ——
\‘
C(BLUB')

The center square commutes strictly if C is a split fibration and up to isomorphism if not.
The unit and counit 7 and € are trivial in the case of strict additivity.

]

Lemma 11.1.8. A transitive along restrictions. Explicitly we mean that given A ENY XNV

and A' L5 B' L5 ¢ the first and last diagram in 11.1.7 agree.
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Proof. The following pasting diagrams agree.

C(C) xC(C) —— c(CuC) C(C) xC(C) —— c(CuC)
* 1% / 7\ * * 2 \ * -
gxgl /A l(gﬂg) gwl ¢ @—H
C(B) x C(B) —— C(BUB) C(B) x C(B') d(epived
1 f l N l(fﬂf) H o= l(gug)
C(A) x C(A') —— C(AL A) C(B) x C(B') —— C(B1L B)
* ! \ * —_—
| =]
C(A) x C(A") C(BLLB)
. e 11.1.7
|e==e o a7
C(A) x C(A') —— C(AT A)
C(C) x C(C") —2— C(C I1C") C(C) x C(C") 2= ¢c(cTC)
(9)"x(g' )*l o= H (gf)*X(g’f’)*l /A/ l(ngg’f’)*
C(A) x C(A) C Clc) C(A) X C(A') —— C(ATT A)
H<:5‘>L \ lgfﬂgf

C(A) x C(A') —2 C(ATLA)
To go from the first to the second we expand the As. From the second to the third we apply

the triangle identities and use the functoriality of restrictions. From the third to the fourth

we contract A. O

Definition 11.1.9. (Bonventre) Finally, we define a Fin%-category as a weakly additive split
fibration over Fin®, with non-empty fibers.

A pseudo-Fin®-category is then a weakly additive fibration over Fin® with a chosen normal
cleavage and non-empty fibers.

We call these strong (resp. strict) if it is strongly (resps. strictly) additive.

Remark 11.1.10. At first glance the additivity condition imposed by A appears to be a sort
of Segal condition and sufficient to create a monoidal structure on C. The rough intuition
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behind this is that a monoidal structure on C(A) is induced by

C(A) x C(A) = C(AILA) --» C(A)

where the dashed arrow is induced by the fold map. However this is misleading, as Fin® —Cats
have contravariant functors from Fin®, such a map does not exist. We will see later in
Proposition 13.0.16, that the covariant transfer maps in an SGA induce such a structure.
Instead the proper way to view this condition is that it tells us that a Fin®-category is
essentially determined by its values on Og up to equivalence of categories (resp. isomorphism)

in a coherent way.

Definition 11.1.11. A morphism of Fin®-categories is a morphism of fibrations over Fin®,
meaning a functor over Fin® sending cartesian arrows to cartesian arrows.
A split morphism of Fin-categories is a morphism of split fibrations over Fin®, sending

chosen cartesian arrows to chosen cartesian arrows.

We recall that this induces pseudofunctors between the respective fibers, and functors in

the case of a split morphism.

Definition 11.1.12. An additive morphism of between Fin®-categories is one which is natural

with respect to the respective As. l.e. the diagram 11.1.8 strictly commutes.

C(A) x C(B) — 5 C(ALLB)

Fl lp (11.1.8)
D(4) x D(B) —— D(ALLB)

Note that in order for ® to be natural with respect to A, B, n and € must be suitably natural

as well.
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Lemma 11.1.13. The additivity square 11.1.8 commutes up to isomorphism.

Proof. We define ® as the following pasting diagram, where the central natural isomorphism

comes from morphisms of (non-split) fibrations commuting with restriction up to isomorphism.

. (11.1.9)
~

D(AILB)
/

D(A) x D(B) c—s
\

D(AIL B)

AD

]

Corollary 11.1.14. If C,D are strongly additive and F s split, then F 1is automaticallty

additive.

Lemma 11.1.15. The following three pasting diagrams are equal:

e(4) x ¢(B)
e(4) x ¢(B) — = D(A)xD(B)  C(4) xC(B)
k — - ey
: C(ATLB)  C(A) xC(B) j 1= C(ALB)
»= S T
D(4) x D(B) k ) T paus) ) x<cs) )
AD ~ l KL/ | §g§& l
= D(AILB) D(A) x D(B) — = F D(ATI B)
e Ty l e
D(A) x D(B — w—— D(ATIB)  D(A)x D(B)
o L
D(A) x D(B)



Proof. To go from the first to second we simply expand ®. To go from the second to the third,
we see that the bottom two cells for the triangle identity of the «, A\ adjunction, so they paste

to the identity 2-cell. O]

Lemma 11.1.16. The following three diagrams are equal:

C(ALB)
C(ALLB)  C(A)xC(B) —— C(ATLB)
/ ~ N - /
C(A) x C(B) —— = — 01— C(AIIB)  C(A) x C(B) I
~ g ~.
T~ — T
r C(ATLB)  C(4)xC(B) " P D(ALI B)
l \ . ~. l /
D(A) x D S~ e
D D(B) F F D(AILl B) D(A) x D(B)
D(AIIB)  D(A) x D(B) — = D(AII B)
AD -
D(ATI B)
Proof. Again we expand ® then use the triangle identity. m

We can also display this by saying these two triangular prism-shaped 2-diagrams commute,

where their rear face is the identity 2-cell:

107



D(AII B) ¢F: /— D(AIL B)
~, = J T
~ "
D(A) x D(B)
(11.1.10)

Ezrample 11.1.17.

Id : Fin® — Fin
is a strong Fin%-category corresponding to the constant functor (FinG)"p — x C Cat.
Notation 11.1.18. When viewing Fin® in this way as a Fin®-category, we denote it .

Ezample 11.1.19 (Bonventre). Given a coefficient system C : OF — Cat we can extend it to
a strict Fin“-category by CT(A) := [TveagC(U). Restrictions f* are given by the composite

[Tev) — Ty 22 T ew)

B/G A/G A/G

with fi: U — F(U).

Ezxample 11.1.20. Let C be a category with a G action; by taking fixed points it defines a
coefficient system G/H ~— C with restrictions given by inclusion. Using the above example

it then gives a strict Fin® category.
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11.2 3¢ and S¢ (—)

Definition 11.2.1. Let S — Fin® be the fibration given by the Grothendieck construction
on the functor B Finfoord the subcategory of the slice category over B consisting of only
order-preserving arrows A »— B. On morphisms f : B’ — B it gives the functor sending
(p: A— B) — f*p: Axp B’ — B. Horizontal pasting and partial unitality suffice to make
this functorial.

So then S¢ has objects A — B and morphisms are pullback squares.
Lemma 11.2.2. 3 is a strong Fin®-category.

Proof. This is a split fibration as is comes from a Grothendieck construction.

Showing it is strongly additive takes a bit more work. Let A, B € Fin®. The functor

A

S 1C(ALLB) 2%, $5.0C(A) x $61C(B) sends
(p: X — AILB) — ((pil(A — A), (p”H(B) — B))

Its inverse A is

(X — A),(Y — B)) — (XIIY — AII B).

Associativity and commutativity of A is clear. Fin% is the subcategory of Fin® consisting of

only (Id: 0 — 0). O

Definition 11.2.3. For C € Fin® — Cat, we define the wreath product f]G ! C to be the
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following 1-pullback:

C
l l (11.2.1)
where s is the source map (A — C) — A. Objects are tuples (A — B,x) with z € C(A), and
arrows pullback squares in Fin® and a map 2/ — = in C over A’ — A.
Proposition 11.2.4. This is again a Fin®-category via the composite
Y6 1C — Se 5 Fin®
Furthermore, this construction is functorial in C with respect to (split, additive) morphisms of

fibrations. In the case that C is a pseudo-Fin®-category then S 1C is as well.

Proof. This clearly defines a functor ¢ C — Fin®. For ¢ : B' — B in Fin® and (A — B, )

in ¢ 1 C(B) its chosen cartesian lift is

¢ (A— B,x):=(¢"A— B, ¢x) (11.2.2)

where ¢’z is the source of the chosen cartesian lift of C of ga: ¢§ — . We can also display

this visually in a diagram:
(qa)": gar ——

A A (11.2.3)

! |

B —% B

Checking that this is in fact cartesian, we consider ¢’ : B” — B’ and a pullback/commuting

square A”, A, B”, B above qq" as well as " € C(B”) and a map in C 2" — x above ¢¢'.
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I

Fin® B

B’ B

Now to confirm existance and uniqueness, ¢’ is the only map B” — B’ here; by the universal
property of the pullback, A” — ¢*A is uniquely determined. " — x then exists and is unique
by virtue of C being a fibration.

We confirm that this is a split fibration and (Id)* = Id as C is assumed to be a normal
split fibration. and because lex-pullback is suitably unital and transitive. Unitality is also
easy to check.

In the case of C a pseudo-Fin®-category, this gives us a normal cleavage instead of a split
one.

Finally, this is weakly (resp. strongly) additive whenever C is as in 3¢ C, % X % is given

by

(0: X — AT B,a) — (7 (A= At aw), (57 (B) — Byi pa).

With (resp. strict) inverse Ay oC
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((X — A, x), (Y — B,y)) — (XTIY — ATl B, Ae(z,9)).

For X 1C , n and € are defined as:

Ne:(p: X — AU B, ) % (p:XHAHB,)\Q(LaA.T,L;BI')

Id,ec

E(zy) - ((X — A’ LE,A()‘Q(:E7y))7 (Y — B, LE,B()‘Q(:Evy)))) — ((X — A,ZL‘), (Y — Bay))

These satisfy the adjunction triangle identities, following directly from the fact that ne and
ec do; similarly for being preserved by isomorphisms.

Associativity and commutativity of A follow from that of ¢, as do the coherence conditions
on the 7, e.

The fiber over 0 is {(Id : 0 — 0)} x C(0) which is nonempty.

For F : C — D a morphism (resp. split, additive), gives SelF 31D — SgiCis a
morphism (resp. split, additive).

This sends (A — B,z) — (A — B, F(x)) on objects, and on morphisms f : 2’ — = to
the identity on squares and F(f) : F(z') — F(z). It is clear this is all over Fin®. As F is a
morphism of (split) fibrations X ! F is as well. To see this is additive, we observe from the

description of A that it commutes with ¢ L F when F is additive.
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FExample 11.2.5. As a simple example we have S LFin® = 3¢,

Ezample 11.2.6. $¢ 13 consists of composable order-preserving G-maps (A1 — A — A_y),
and morphisms are stacks of pullback squares. The left vertical and top horizontal maps of

11.2.1 delete A; and A_;, respectively.
Ezample 11.2.7. i?(’;“zg = iGz(igzg) consists of pairs (Ay — ... — Ay — A_1,x € C(Ax))
of a string of maps and an element of the appropriate fiber; morphisms are stacks of pullback

squares and a map ' — g;x. Our convention is that f]g 1C=C.

Remark 11.2.8. The intuition behind this construction is that the ordered maps can be thought

of as operations.

Proposition 11.2.9. (Bonventre) The iterated wreath products ig“ LC form a coaugmented
cosimplicial object in Fin®-Cat (resp. with split, additive morphisms). This also holds for

pseudo-Fin®-categories. Its cofaces are
§;: S C - St e

inserting equalities A; = A; for —1 < i <k, and codegeneracies

deleting A; and composing the adjacent maps for 0 <1 < k.
Moreover, Solo; = oir1 and Yald = 01
Furthermore this is functorial in C with (split, additive) morphisms of (pseudo-)Fin®-

categories.

Corollary 11.2.10.
(EG { (_>7007 5—1)
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forms a monad in (pseudo-)Fin®-categories (resp. with split, additive morphisms).

For explicitness, we observe that 6_; : C — S¢ 1C sends z € C(A) to (Id : A — A,x) €

Y l1C(A).
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Chapter 12

Defining ig—algebras

Definition 12.0.1. (Bonventre) A ig-algebm or SGA! is a pseudoalgebra over the monad

A

Y. (=) in the category of Fin®-categories.

First we write this out in full detail. An SGA consists of a Fin%-category ¥V — Fin®, a

multiplication map of fibrations ® : S 1)V — V

202 2 )E

Z\ /

Fin®
We denote the image of (f : A — B,z) in X¢ 1 C(B) under ® by ®(f,z). Along with an

associativity natural isomorphism of fibrations o over Fin®:

Zg Ly —>2G2® ZA]G Ly
| }/a/ l® (12.0.1)

"We choose this name for clarity and to disambiguite it from terms like “genuine equivariant symmetric

monoidal category”.

115



2

and a unitality natural isomorphism of fibrations 2 w over Fin®:

<

51 (12.0.2)

7

Yo

<

TZ

We recall that o, w being natural transformations of fibrations means that objectwise lie over

identities in Fin®. They are also subject to the relations that these pasting diagrams are equal:

N 2
Bal® ¢ ® SE® &

A AZZ A A 3 A
SRRV S PRV RRaCIENG SR VY SB Yy —95 52y 29 Sy —2
]
SN2 Do ¢ ® 2 fJGZXQ:ZJGZO[ s ®
YolY — XglY >V Yoy > Yg Y
O'Ol = H o0 =
EGZE ) >£ EGZE ? >
and that these two are equal as well:

Y —— Y v SgY = 5 1Y ——= Y

1l o, ol 7| |

S2y 2 Sy 2y S2y 2 Sy~ v

"] = | g = |

g1V Y g1V ——V

Definition 12.0.2. There are many possible strengthenings and weakenings of this structure:

(a) We say an SGA is split (resp. additive) if the action map SelV S Vs split (resp.

additive) as a map of Fin®-categories.

(b) We say an SGA is strict if it is in fact an algebra over 3¢ { (—).

2We call it w as 7 is taken.
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(¢) If the underlying Fin®-category of V is strongly (resp. strictly) additive, we say V is

strongly (resp. strictly) additive as a Fin category.®
(d) If V is split, strict, and additive we call it permutative.
(e) In the case that V is a pseudo-Fin®-category we call it a weak SGA.

Remark 12.0.3. If V is split and strongly additive as a Fin®-category then it is additive.

Remark 12.0.4. Intuitively, ® is a way of turning genuine equivariant operations combinatori-
ally encoded by maps of G-sets B — A into functors V(B) — V(A). As before, the restriction
to order-preserving maps does not reflect any deeper meaning, it is merely so technical parts

work out cleanly.
Conjecture 12.0.5. Given an SGA we can strictify it to an equivalent permutative SGA.

As a rough sketch we first make ® additive, which we could do by making V and thus SalV
strongly additive as Fin®-categories. We can attempt to do this by first restricting to the fibers
over Og, then expanding to strongly additive ones via the (—)* construction. Next we modify
® into a split morphism, perhaps by replacing SV or V with an equivalent fibration with
a different choice of cleavage. Finally we strictify from pseudo-algebras to algebras, perhaps

using results of [Lac02] or [BKP89).

3We recall that all Fin®-categories are at least weakly additive.
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12.1 Examples

Ezample 12.1.1. Given a (split, additive) Fin®-category C, ScC is also a (split, additive) strict
SGA. This we view as the free SGA on a Fin®-category as it is left adjoint to the forgetful

functor from SGAs to Fin®-categories.

Example 12.1.2. Fin® := S LFin® = f]g is an example of this.

This is a prototypical example in the sense that Fin is the prototypical symmetric monoidal
category. Intuitively it should be thought of as the equivariant symmetric monoidal category
Fin® viewed as an SGA. Indeed Fin®(G/H) ~ Fin”  with restriction being restriction of
subgroups K < H and transfers being X — X xx H.

Intuitively, this is the free SGA on a single generator.

Ezample 12.1.3. Id : Fin® — Fin® of Example 11.1.17 is a permutative SGA where
®: 3¢ LFin® = 3¢ 5 Fin® where p is the fibration map. We denote this by * as each fiber is
the singleton category.

To see that « is an equality, we observe that for (A — B — () € f)g ! Fin® both ways
around the diagram ?? give C. For unitality 0_; : Fin® — 3¢ sends A4 — (Id : A — A)
making it a section which shows w is an equality.

This is the terminal object in the category of Fin® categories. It is also the initial object

(in a 2-catgorial sense) in the category of SGAs as morphisms of SGAs are unital.

Definition 12.1.4. We say a map of fibrations x — V is an object of V. In particular we
note it picks out an object of each fiber, which are sent to one another by restrictions. We
note that it is equivalent to specify an object of V(G /G) as it is initial in (Fin®)°P.
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Lemma 12.1.5. To define a strict SGA it suffices to give a categorical coefficient system
F:(Og)® — Perm and for each f : A— B a functor f.: F(A) — F(B) which is functorial
and satisfies a strict double coset formula for lez-pullbacks.

This defines ®, as it strictly satisfies a double coset formula, it defines a natural trans-
formation from SclF = F, viewed a coefficient systems, which then via the Grothendieck
construction corresponds to a split map of Fin®-categories. As F, Sl F are strongly additive,

® 1s as well.

Remark 12.1.6. We suspect that we can weaken this to defining a pseudo-SGA given a pseud-
ofunctor F': (Og)® — SymMon and for each f: A — B a functor f,: F(A) — F(B) which

is pseudofunctorial and satisfies a natural double coset isomorphism.

Remark 12.1.7. We suspect that we can define T'op as the pseudo-SGA given via G/H +
Top*. Restriction along G/K — G/H is by restriction BK — BH — Top. Transfer along
G/K — G/H isby X — X xx H.

Ezxample 12.1.8 ([Hav18|). Mack is defined as the Grothendieck construction applied to
G/H — Macky. Restrictions agree with Resfl . Mackg — Macky induced by the for-

getful functor Fin® — Fin" and transfers agree with the norm N§ : Macky — Macke. Using

results 3.1.3, 3.1.15, and 3.1.16 of [Hav18] this is a pseudo-SGA.

Remark 12.1.9. T believe that most of [Hav18| could be redone using lex-pullbacks, and the

added strictness would allow us to define Mack as an SGA as opposed to a pseudo-SGA.

Ezample 12.1.10. Spg is the pseudo-SGA of genuine G-spectra; Spg(G/H) = Spy. Restric-
tion is given by the usual restriction and transfers are given by the HHR norm. By [BH17]

89, we have that the double coset formula is suitably natural.
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Remark 12.1.11. As [BH17] work with oo-categories, we can only apply their results to the
homotopy category of G and H-spectra. So as we have been doing throughout this paper we
work with homotopy categories. Similarly, it is not clear how easily we could strictify this, as

originally everything is defined up to homotopy.

Example 12.1.12. For a permutative category C with a GG action by strict symmetric monoidal
functors. We have an SGA C given by applying the Grothendieck construction to G/H ~ C*.
Restrictions are via precomposition. For f: G/K — G/H, ® f(x) is given by ®n,jcm/rxhi(x).

Given a symmetric monoidal category with GG action by strictly unital strong symmetric

monoidal functors, we have a SGA with G/H ~ C"" using Remark 1.0.2.

Ezxample 12.1.13. Consider a semi-Mackey functor M = (M*, M,) which we view using the
second definition.

G s Cat where we

We define M as the Grothendieck constuction applied to M* : Fin
identify sets (monoids) and function with discrete categories, (permutative) categories and
(strict monoidal) functors. This is a stronly additive Fin®-category.

We define ®(f : A — B,z) as M,(f)(x). This is a map of Fin“-categoires following from

the double coset formular of Mackey functors and additive as M, f]G ! M are strong additive.

Ezample 12.1.14. For X € Fin® we define £¢ ! X as the Grothendieck construction applied
to A — GE,q(A, X) where for f : B — A we define f* : GE,q4(A, X) — GE,4(B, X) as
composition with (B = B EN A).

We can show this is a strong Fin® category using essentially the same proof of Lemma
11.2.2 where we showed Y¢ = S 1 is a strong Fin%-category; only now we also have maps
to X.

We now construct its SGA structure. For g : A — A’ we define ®(g, (A «—~ Y — X)) as
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the composition (A «—~Y — X)o (A & A= A) in GE,q.
This is a map of split fibrations as it satisfies the double coset formula by composition
in GE,q. As ¢ Xis a strong Fin® category, S (X 1 X) is as well, so additivity of ® is

automatic. Strict associativity and unitality follow from GE,.; being a strict 2-category.

Ezample 12.1.15. Fin®C for a permutative category C is given by the Grothendieck construc-

tion on A — []..,C. ® is given by summing as in C, in the order given by the ordering of

a€A

A.
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Chapter 13

Structure of SGAs

Notation 13.0.1. For the remainder of this chapter (V, ®, a,w) will be a fixed SGA. VY will be

reserved for SGAs and C will denote a generic Fin®-cateogory.

In this section we prove several key results on the structure of SGAs. The different levels
and different types of strength (pseudo-, strict, split, additive) will affect the strength of these

results. We summarize the main results:

e For an order preserving map F' : A — B we have a covariant map f, : V(A) — V(B)

we call a transfer (Definition 13.0.2).

e There is a natural double coset isomorphism (identity for lex-pullbacks if ¥ split) (Propo-

sition 13.0.10, Lemma 13.0.11).

e )V is levelwise symmetric monoidal (permutative if additive, split, and strict) (Proposi-

tion 13.0.16).

e Restrictions are functorial and strong monoidal (strict monoidal if V split and additive
as a Fin®-category) (Proposition 13.0.19).
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e Transfers are pseudofunctorial (functorial if V is strict) and strong monoidal (Lemma

13.0.9).

e For V the double coset isomorphism is a monoidal natural isomorphism (Proposition

13.0.21).

e For V permutative, the double coset isomorphism suitably commutes with A\ | restric-

tions, and transfers (Lemma 13.0.15).

Definition 13.0.2. Given an order preserving map f : A — B in Fin® we have a function
vp : V(A) = S 1 V(B) defined by x ~ (f, ) on objects. On morphisms it sends 2 — 2’ to

the pullback square shown below along with © — 2’ .

 p—
fI f
—— B

Remark 13.0.3. We note that this is not a functor over Fin® and that it is a fully faithful

inclusion.

Lemma 13.0.4. v is pseudonatural in the sense that given a pullback square in Fin®,

AP s A

1o
B —— B

There is a natural isomorphism I' making the following diagram commute up to isomorphism.
I is also suitably natural. In the case of a lex-pullback square, I is the identity and the diagram

strictly commutes.
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(13.0.1)

\\

V(A)
l =
G V(B) — 561 V(B)
Saig*)
Furthermore, I' is preserved by morphisms of fibrations.
Proof. For x € V(A), going down then across gives us ¢*g,¢%x. This is the source of the
chosen cartesian morphism in SV over q, as displayed in Diagram 11.2.3.

Going across then down yields f, p*z. In the case the original pullback was a lex-pullback,

this is equal to ¢*g, ¢}yz. This is the source of the morphism in SelV
pr — «x

AP A

fl gl
B — - B

which also lies above ¢. In fact we can show it is a cartesian lift of ¢, using an argument
identical to the one we used to show the first map is cartesian in the proof of Proposition
11.2.4. By the universal property of cartesian lifts there is a unique isomorphism between
these two, which is how we define IT',.

Furthermore, this is natural in the sense that that given two pullback squares:

=
S
2\
S
bS]
~
N

P
[,
P
Q
PR

%
w
@

the following diagrams agree.
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V(4) — V() s V() v(a) —2 @)
ng P = l’Yf P Z l Th
SV (B) @ SV (B') S SV (B") SV (B) —> SV (B")
This follows from the fact that all three ways to trace through the pasting diagram give
sources of cartesian lifts of ¢¢’, there are unique isomorphisms between them and the unique-
ness implies the pasted morphism agrees with that of the right hand diagram.

Lastly, a morphism of fibrations F' : C — D sends cartesian lifts to cartesian lifts, so it

must preserve the unique isomorphisms between their sources.

]

Definition 13.0.5. Given an order preserving map f : A — B in Fin®, we have a transfer

f« : V(A) — V(B) defined as the composite:

fo: V(A) L S v(B) S v(B) (13.0.2)

Remark 13.0.6. We remark that we do not define transfer only for order-preserving map for
a deep reason. Rather we want them to interact well with disjoint unions, products, and

pullbacks of objects in Fin®.
Lemma 13.0.7. Transfers commute with \s up to isomorphism (resp. strictly if ¥ is additive).

First we spell out exactly what we mean by this. Given order preserving maps f : A —

A’, g : B — B’ then the following diagram commutes up to an isomorphism we call W:

V(A) x V(B) V(AT B)
f*xg*l / lfﬂg
V(A) x V(B') V(A 11 B
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Proof. We expand the above diagram and define ¥ as the composite:

V(A) x V(B) ——2—— V(AIIL B)

o 1

SElV(A) x S V(B) —2 S V(AT B) (13.0.3)
/
®l /¢/ ®l
V(A) xY(B) ———— V(AL B')

By assumption in the bottom square ® commutes with A up to isomorphism (resp. strictly)
so it reduces to showing that in the top square V(A) — I V(A’) does as well; in fact it
actually commutes strictly:

Given (z,y) € V(A) x Y(B) if we go right then down we get (f g, \y(z,y)). Going down

gives ((f,2),(g,y)), then across we also get (f Il g, Ay(z,y)) by Lemma 11.2.4.

We have a version of the prism lemmas relating A and transfers.

Lemma 13.0.8. Consider order preserving maps f : A — A',g : B — B’. The following

prism diagrams commute, where the vertical arrows are those of Definition 15.0.5:

V(A) x V(B) V(AL B) V(AL B)
\ = = \ /
\) /
V£ XYg V(A B) V£ XVg Vsig V(A Yug
/
\I« Yrilg 1% VXY N
c V(A" x E( ' V(B) 7 V(A x EG V(B') Yl Y(A'ILB) Y V(A B)
\ / \ Z? Ap —
\/L ~ /
G V(A1 B S V(A) x Sg 1 V(B

Proof. We recall from the proof of Lemma 13.0.7 that the squares with As strictly commute.

And the rear squares do as well. Next, the I's are identities by Lemma 13.0.4 as they arise

126



from pullback squares similar to
A—"+ AUB

7 i

A/L—A/>A/HB,

which are lex-pullbacks.

We observe that %, (f Il g) = f and ¢,(f Il g) = g proving that these are the same.
Showing that the square commutes on morphisms uses the same argument.

Now we show directly that the prisms commute. As all the squares are identity 2-cells, it

suffices to show the following pairs of whiskering diagrams agree.

V(A) x V(B) V(A) x V(B) ————— S 1V(A) x g1 V(B)

| o
V(AL B)
V(A) x V(B) —— Sg 1 V(A) X S V(B) == S I V(A) x Sg 1 V(B
)‘Cl //
V(A1 B)
V(AT B) — V(AII B) >y D I V(A' 1L B)
L*l /77 Ac
V(A) x V(B)
G LV(A) x S V(B)
4l \\
V(AIIB) ——— S V(A 1L B) SOV(A LB

This now comes down to checking definitions. In the first diagram for (z,y) in V(A) x V(B)

the composite natural transformation is

((F: 2@ 9. (9.5 M @) = ((£.2),(9.)).
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Is given by (e, €,) and the pullback squares:

A——A B——— B

| |
| F PR '
A/ A/ B/ B/

Tracing through the second diagram we have this morphism as well.

For z € V(AL B) in the third pasting diagram we have

(fIlg,2z) — (fg,\"z)

which is given by 7, and the pullback square:

AIODB —— AIB
fﬂgl lfﬂg
ANNB —— A11B

Tracing through the fourth diagram we have this morphism as well.

Proposition 13.0.9. Transfers are pseudofunctorial. If ¥ is strict, they are functorial.
This means (¢f)« = g.f. and that (Id), = Id.

Proof. This essentially come down to associativity and unitality of V) as a monad.

Consider order preserving maps A L B% Candze V(A).

We view this as (A EN JEN C,z) € &1 V(C) and we trace around the associativity
diagram ?7?.

Applying $¢ 1@ we get (B 5 C,@(f,2)) € B¢ i V(C). Applying ® to this we get

®(g, @(f, 7)) = 9.(f+(2))
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Applying oy we get (A £2NYe) z) € 2 1V(C) applying ® we get @(A EiNVe) z) = (gf)«(x).
By associativity these are naturaly isomorphic (resp. equal).

Now for x € V(A), applying o we get (Id: A— A x) € Yo L V(A). Then applying ® we
get ®(Id,z) € V(A). By unitality this is naturally isomorphic (resp. equal) to x

The fact that a,w are natural transformations of fibrations is needed to imply that the
isomorphisms between elements of V(C') they create are not merely morphisms in V, but in
the fiber over C'. The coherence diagrams relating a and w are needed to imply that these

pseudofunctorility isomorphisms of transfers are suitably coherent.

Similarly to classical Mackey functors, we have a version of the double coset formula

Proposition 13.0.10. Consider a pullback square in Fin® with its vertical arrows order pre-
serving
AL A
gI If (13.0.4)
B 5B

Then for an SGA YV, we have a natural isomorphism of functors V(A) — V(B')

Oqr: 90" = ¢ [ (13.0.5)

Furthermore if this is a lex-pullback square A" = ¢*A and V is split, then O s is the identity

and the two are equal.
We refer to this result and © as the double coset formula.

Proof. We define O ; as the composite given by the pasting diagram, where the bottom square

comes from ® being a map of fibrations.
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“/fl /F/ l’yg
56 10(B) g3 S V() (13.0.6)
® o / ®l
=

In the case of a lex-pullback the top square commutes strictly. In the case of V split, the
bottom square commutes strictly. With a simple diagram chase, this implies that naturality
as in the pasting diagrams of Lemma 13.0.11 both ways around the diagram given cartesian
lifts so the resulting isomorphisms between them must be the same.

]

We note that nothing in this proof relied on ¥ — Fin® being a split fibration, so indeed
this result applies to pseudo-Fin®-categories as well.

We will see later in Proposition 13.0.21 that © is a monoidal natural transformation.

Lemma 13.0.11. O is natural in the sense that when gluing pullbacks either horizontally or

vertically, the corresponding pasting diagrams of © equal the isomorphism of the full pullback.

Proof. For the pullback squares in Fin®:

p
AT L A y A

q
o ——— y B

the two pasting diagrams are equal:

V() —2 s yan = V(A) —2 p(A) 2 y(ar)
= // =z

f*l /@qs,f ]’L*l f l l l//("')s,g lh*

V(B) — > V(B") v >—>v< N —— V(B")

(gs)*
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This follows from the naturality of I', and the fact that ® is a map of Fin® categories, so 2 is

also appropriately natural. And for the pullback squares in Fin®

AP A

]

B 1. B

L

= C

the two pasting diagrams are equal, where the “*”s come from the pseudofunctoriality of

transfers.

V(A) L p(a) V(A)—>VA’

(hf)- / *
fol =

'rhf * = (

/

P

V(O) —— V(C) y( ) e c'

We prove this using the following diagram:

V(A > S L V(B Se1® s V(B
s YL V(B) Se® :
1‘/ 1“/
G® N EG ZZ(C,,)
\A 4 /2@@ \)2
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Going right then down is applying one transfer than the other. Down then right is applying
the transfer of the composite.

The top composite face is O, the right composite face is O, the left and bottom faces
paste to form ©. The front composite face pastes to form the 2-cell of (kg). = k.g., the
back composite face pastes to form the 2-cell of (hf). = h, f.. So now it suffices to show this
2-diagram commutes.

The top cube commuting is exactly the fact that I' commutes with the morphisms of Fin®
categories, namely ﬁ)g 1R f]g Y = V.

The bottom cube commuting is exactly the fact that « is a natural isomorphism of fibra-
tions so is natural with respect to the restriction of C' — C.

The left prism is a bit trickier, we must do a direct calculation. Starting at z € V(A)
applying v¢ we get (A ER B,z) € iGZZ(B). Applying 7, we get (A ENY-JN C,x) € 2222(0),
applying oo to this yields (A 2N C,z) € Sg 1 V(C). Direct observation tells us this is the
same a Y,¢(z), so the front face strictly commutes. The same argument applies to the back
face.

I', is then the unique isomorphism between sources of the cartesian lifts of r, as is the

composite of the 2-cells the other way around.

]

Remark 13.0.12 (Bonventre). We note that, even in the case where A’ = ¢*A is the chosen
pullback, we do not have an equality between p,g* and f*q.. This is due to the necessary
choice of an ordering of the pullback, which is not preserved by switching B’ and A, yielding

that ¢* A is isomorphic, but not equal, to f*B’.
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Lemma 13.0.13. Consider the following commutative diagram in Fin® where the top, bottom,

left, and right sides are pullbacks.

N

E

NN

G s H

Then the following 2-diagram commutes, where the 2-cells are ©s and r,t denote restrictions

A

~

C

~

and transfers of the obvious maps:

V(A) ¢

Proof. The front and back squares commute strictly as restrictions commute with restrictions.
By pasting, the top and side faces combine to form a single 2-cell from the double coset formula.
This is by the naturality of the double coset formula. Similarly for the left and bottom faces.
As the front and back faces of the original cube commute, the two pastings are the double

coset formula applied to the same maps, so they agree and the cube commutes. O

Lemma 13.0.14. Consider the following commutative diagram in Fin® where the top, bottom,

left, and right sides are pullbacks.
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CH— —<D:J

“ij

\
7

Q——m

~

J

Then the following 2-diagram commutes, where the top, bottom, left, and right 2-cells are

Os and r,t denote restrictions and transfers of the obvious maps, the front and back faces
do not strictly commute but only up to the isomorphism coming from the pseudonaturality of

transfers.

» V(B)

t\\‘\
l\ \ V(F)

(C

t

%\l

Proof. The front and back squares commute up to isomorphism as transfers are pseudofunc-

torial; and commute strictly in the case that V is strict. By pasting, the top and side faces
combine to form a single 2-cell from the double coset formula. This is by the naturality of the
double coset formula. Similarly for the left and bottom faces. As the front and back faces of
the original cube commute, the two pastings are the double coset formula applied to the same

maps, so they agree and the cube commutes O]

These two results we refer to as the cube lemmas.

Lemma 13.0.15. Consider the two pullback squares in Fin®.
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—

ill

Q——

—

Then the following cube commutes.

V(A) x Y(A') ¢ . V(B) x Y(B')
ATLA) < V(BLUB)
| \ e

We refer to this result as A commuting with the double coset formula.

Proof. We prove this using a 2-diagram pasting argument. Consider the following 2-diagram.

V(A) x V(A’) ) X V(A) < . (B) x V(B)

~

S V(C) x S V(C)

® Q/
~ j/ I/
V(C) x V(C) / YD)
\ @ ®
™~ ' 7 N
V() < - Yi(editel (edivel!

First we confirm that its outer faces agree with the ones we seek to show commute. The

internal faces paste to form Os.
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The middle parallelipiped commutes by the cube lemma 13.0.13, the top two prisms com-
mute by Lemma 13.0.8, the bottom two prisms commute by Lemma 11.1.10 applied to ®.

]

Proposition 13.0.16. Let ¥V be a SGA, then for each A, V(A) is a symmetric monoidal
category. In the case that ¥ is permutative (additive, strict, and split) V(A) is a permutative

category.
Proof. We construct a multiplication map! ® : V(A)* — V(A) as the composite:
@ V(AF S V(A™) S V(A x k) 25 V(A) (13.0.7)

where ¢ is the reordering isomorphism. For k& = 0 this is V, : Y(0) — V(A). Recall that
V(D) ~ x with equality if V is additive. So this defines an object or contractible choice of
objects in V(A) which will be the unit.

This is symmetric up to isomorphism as ® is pseudonatural with respect to reordering

isomorphisms y : k — k:

V(AR —2 5 YA 5 P(Ax k) — v

xl X*l X*l H (13.0.8)

V(A —— V(A) —— V(A x k) —— V(A

The left commutes strictly by 11.1.5, the middle as restrictions are functorial, and the right

commutes up to © (strictly if V is additive) as it comes from the lex-pullback square:

Axk X5 Axk

‘| Js

A=——A

IWe use ® to denote both the operation of V as a monad over ¢ (=) and the monoidal product internal

to V(A). In context it should be clear which we are referring to.
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To see associativity, consider kq,--- , k, and k = ). k;. We consider the following diagram:

[1, [T, V(A) —2 T, V(A™) — T V(A x k) —=— [T, V(A)

N 13.0.9
R (1309)

where we note that k x A =1II,, (A4%).

We go through the cells of this diagram in order.

e The top left triangle commutes as A is associative 11.1.4.

e The top middle square commutes up to isomorphism given by A and strictly if V is

strongly additive as a Fin® category.

e The top right commutes up to isomorphism as transfers commute up to isomorphism

with A\ and strictly if V is additive (13.0.7).
e The middle triangle commutes as restrictions are functorial.

e The middle right square commutes up to isomorphism by the double coset formula. In

the case that V is split, it strictly commutes as it arises from a lex-pullback.

e The bottom triangle commutes up to isomorphism as transfers are pseudofunctorial and

strictly if V is strict (13.0.9).

We note that unitality is the special case of associativity when [k;] = () for some i; this
also demonstrates compatibility of unitality and associativity.
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Compatibility of the symmetry and associativity isomorphism follows from this diagram
being pseudonatural with respect to block permutations = : II;k; — II;k;. We display this as
a large 2-diagram. The arrows coming out of the page are induced by =, the rest are those of

the above diagram. We have not drawn the 2-cells for clarity.

We go through the prisms and cubes in order to confirm they commute.

e The top left triangular prism commutes as A is commutative and associative in a com-

patible way by 11.1.4 and 11.1.5.

e The top middle cube commutes as A is transitive with respect to restrictions 11.1.8.

e )\ The top right cube commutes by 13.0.15.

e The middle triangular prism commutes as restrictions are functorial (all the 2-cells here

are trivial).

e The middle right cube commutes by the cube lemma 13.0.13.
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e The lower right triangular prism commutes by the cube lemma 13.0.14.

]

Remark 13.0.17. We point out that the coherence condition on A, n, and € of 11.1.4, 11.1.5,

11.1.3 are required for us to have a symmetric monoidal structure.

Remark 13.0.18 (Bonventre). Using this symmetric monoidal structure, we can give an isomor-
phic description of the additivity inverses A. Indeed, A is naturally isomorphic to (t4)«+ ()«
as natural transformations V(A) xV(B) — V(AILB), with equality holding if ¥ is permutative.

To see this, consider the following diagram:

V(A) x V(B) —2—— V(AIIB) ———— V(AII B) =——— V(A1 B)

(
LA*XLB*\L \I!/ lLAHLB* @/ LAI_[ILB* E/ H
4/ = v 4/
V(AILB) x V(AL B) —— V((ALLB)"?) —— V((ALL B) x 2) — V(AL B)

The left square commutes up to ¥ which is an identity if V' is additive, the middle square
commutes up to the double coset formulat which is an equality if V is split the right square
commutes up to isomorphism as transfers are pseudofunctorial by Lemma 13.0.9 and commutes

strictly if V is strict. As the bottom composite is multiplication in V(AILB), the result follows.

Proposition 13.0.19. For f: A — B, f*: Y(B) — V(A) is strong monoidal, and strict in

the case that V is split and additive.
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Proof.

Axk — Bxk

| |

A—— B

The left square strictly commutes if V is split and the right square strictly commutes if V is

additive, using the fact that the bottom square is a lex pullback. O

Proposition 13.0.20. For f : A — B, the transfer f. : V(A) — V(B) is strong monoidal;
f« 1s strict monoidal in the case that V is additive and strict and f is injective.
Proof.

V(A =2 V(AM) — V(A x k) — V(A)

= =
f*l )/ )4 f*l l/ )
k Ik
V(B)Y —— V(B™) —(— V(B x k) ——— V(B)

fxldl lfk

Bxk—— B*
The left square commutes up to the isomorphism W, which is an equality when )V is additive.
The middle square commutes up to the isomorphism ©, which is strict when V is additive and
the lower square is a lex-pullback in Fin®, which is the case if f is injective. The third square

commutes up to isomorphism as transfers are pseudofunctorial by Lemma 13.0.9, and strictly

if V is strict.
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Proposition 13.0.21. For a SGA, © of the double coset formula is a monoidal natural

transformation.

Proof. This is another 2-diagram chase. We omit the 2-cells for readability.

V(AP —————— IT A)
J:*/ \ J(f*/ \ e

V(B)” —— V(BILB) e —— V(B x2

/
R \A,\
o N \

V(B')? B — V(B'II B) — V(B — X(B’

\\<

(Ax2) ——— V(4)
— V(A

X
e

The left cube commutes as © commutes with A as in Lemma 13.0.15. The middle cube
commutes by the cube Lemma 13.0.13, and the right commutes by the other cube Lemma
13.0.14.

]

Remark 13.0.22. Similar results hold for pseudo-SGAs, although they were not detailed in
the interest of concision. The main differences are that as restrictions are pseudofunctorial,
we also must include invertible 2-cells to account for composition and unitality. Thus our
lemmas and results which used the functoriality of restrictions now must also include these
new 2-cells. Generally this means that a commuting square or triangle now has a non-trivial
2-cell.

The main consequence is that everything is weak - fibers are symmetric monoidal instead
of permutative, restrictions and transfers are strong symmetric monoidal functors but not

strictly unital, and the double coset formula is generally not an equality.
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13.1 Morphisms of SGAs

Definition 13.1.1. A morphism of morphism of SGAs is a morphism of fibrations F' : Y — W

that is also a lax morphism of pseudoalgebras over Sal (—), meaning that we have the 2-cell

b:
Sy =4 Sow
| |
0 07 S
)% —F w
so that the following 2-diagrams commute:
. 5 .
ng G® > EG 22 v \ / La
~N
> ~ / A A
SEW — £ So1® | r Yo W YV
oo %a . F F
~ M g0 o N / ® v iGZF v
Yg Y ——|—=@ /—; )% w 5 w
EN /ﬂ \F Y WX» %
felt . ~ / \ 4 -1 . N
Yo LW ® > W YW

There are several possible strengthenings similar to those of SGAs.

F'is strong if F' is a strong morphism of pseudoalgebras, meaning that (3 is invertible.

F'is strict if F' is a strict morphism of pseudoalgebras, meaning that (3 is the identity.

Fis split if F'is morphism of split fibrations.

F is additive if F is an additive morphism of Fin® categories.
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Remark 13.1.2. We believe but do not yet have a full proof that lax morphism of SGAs induces
a lax symmetric monoidal functor on fibers, strong monoidal if strong, and strict monoidal if
strict, split, and additive.

The natural transformation F(—) ®w) F'(—) = F(— ®ya) —) is given by the following

2-cell:

7 Lz -
Fl il lF /: lp A Fl /6 F
W(A) 7 W(AT) e W(AX k) —= Xt W(A) - W(A)

The first square on the left commutes up to ®~! which is an equality in the case that
F is additive. We use ®~! as opposed to ® simply to have the correct directionality. The
second square commutes up to isomorphism as a map of fibrations is pseudofunctorial in this
sense; it is an equality in the case that F'is split. We directly check that the third square
strictly commutes. Given z € V(A) both ways around send it to (V, F'(x)). The fourth square
commutes up to [, which is invertible if F'is strong and an equality if F' is strict. The unit
morphism is given by this same cell for £ = 0. It is clear to see that this cell weakly commutes
with restrictions and transfers in V and W.

The subtlety arises in showing that this natural transformation satisfies the necessary
conditions relating it to the associativity, unitality, and symmetry isomorphisms in Y(A) and
W(A).

Conjecture 13.1.3. We believe that my : Spg — Mackg is a lax morphism of SGAs. The

strength of my as well as the methods of proving this claim depend heavily on the exact ways

in which we construct Spg and Mackg as SGAs.

Definition 13.1.4. A natural transformations of SGAs is a natural transformation o : F' = G

143



of fibrations.
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Part 111

Comparison of f]g—algebras and other

Models
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Chapter 14

Permutative Mackey Functors

Definition 14.0.1. We define a permutative Mackey functor (PMF) as a PC-functor
(GEprq)? — Perm
and that they form a 2-cateogry with PC natural transformations and modifications.

Remark 14.0.2. The original version in [BIO15] used GE’ and permutative categories with lax

monoidal multifunctors.

14.1 SGAs to PMFs

Theorem 14.1.1. Given a permutative SGA, ¥V, we can construct a PMF My : GEX, —

ord

Perm.

Let ¥V be a permutative SGA. We first briefly recall that as V is permutative, V(A) is
permutative, restrictions are strong monoidal strict unital, transfers are functorial and strong
monoidal strictly unital, and the double coset formula is an equality for lex-pullbacks.
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We construct the PMF M), : GE??, — Perm® as follows.
o My(A) :=V(A).
e For y = (4 & X 5 B), witht order preserving, My(x) is the composition My(A) =
V(4) 5 V(X) = V(B) = My(B).

e For £ = (A i N B) and n : x = & we construct V(n) as follows. We have the map of

A« X ‘3B
spans in Fin®, with 7 an isomorphim: \ ln /
,r,l t/
Y

As 1 may not be order preserving, so we cannot take transfers along it. But we have the

pullback square:

R
o =

Sy

By the double coset formula, we have a monoidal natural transformation t”* = g, o t*

It is sent to

The left triangle strictly commutes, and the right one is connected by the natural trans-
formation described above. This gives a monoidal natural transformation between the two
functors.

We first show that My is a strict 2-functor, and will later show that it is PC-enriched.

We claim that My , ; is functorial. This sends Id¢ to Idyp, ) as the pullback square is a

147



lex-pullback. For composition we consider:

X
/ 7|7 t
\I/
A—v Y —v— B —
T]/
,r.// v t”
A
V(X) — V(B) V(X) — V(B)
r* — 1% / r*
/ l” 1%? H / /
V(A) =2 YY) —— V(B) = V(A) S)
=
o e | ,,
Y(Z) —— Y(B) Y(Z) —— VY(B)

Where the equality is by the naturality of ©.

To see that compositional unit are preserved we recall that as Id* = Id, Id, = Id.

On objects (spans) this amounts to showing the two compositions agree:

Where Z is the chosen pullback.
v,outos,or*=v, 0w, o0t or*=(vow),o(rot)

Where the first equality is from the double coset formula.

148



Now we show that this commutes on morphisms. For the diagram in Fin

G

X/T\Y

SN,

we need to show that the two pasting diagrams agree

Va b > Vy » Vo
H l / e
Vi — Vy > Vi > Ve
Va > Vy
H

y Vo
| _—|
Va > Vg

Using the naturality of ©, the second diagram is equal to the following one

Va > Vx 7 > Vy y Vo
I 17
Vi —— Vxs > Vg >

> VC
By the cube lemma 13.0.13, the composite of the middle two cells in this are equal to the

middle two cells of the first diagram, using the fact that Z, Z’ are lex-pullbacks. This completes
the proof that My is a strict 2-functor

Now we show that it is PC-enriched. The first step is to show that My , , : G
Perm(V(A),V(B)) is strong monoidal strict unital

Ezfd(A> B )
Now we need to show this is monoidal on hom-categories
Y

Given spans (A < X —
B), (X < X’ — B) we have the monoidality isomorphism given by the large pasted 2-cell
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where 7,t denote restrictions and transfers, ¢ is the reordering isomorphism. © is trivial as

the square shown at the bottom left is a lex-pullback.

V(A) : » V(X) x V(X') —— V(B) x V(B)
VXTI X )yp) 20 VXTI X) —Z= Y(XTTX) — Ly Y(B™)
" 6= e
) I == !
(XTX')up ——s XTI X' V(XTI X")p) — V(B x [2])
I |
Bx2 & ., pmw V(B) V(B)

Showing this is natural in X, X’ comes down to showing we can “stack” this diagram; i.e.
the following diagram commtues. Consider spans (A < Y — B),(A < Y’ — B) and

isomorphisms of spans X 2 Y, X' =Y’

/
/

V(A) \
- Z
V(YTIY)up) = VYY) — VY IY') — //— — V(B™)

V(X TTX'),5) = V(X [1X) = V(X TTX) V(B")
V(Y V"), 5) > V(B x [2)
(\V«X 1 X), ) —>\v<3\; 2)
v(B) v(B)

S~

Here we have omitted most labels for readability. The top left trapezoidal prism commutes

|

V(B) v(B)

as all of its faces strictly commute (all 2-cells here are trivial). The top triangular prism

commutes by the naturality of 1 with respect to restrictions along isomorphisms. The top
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right cube commutes by Lemma 13.0.15, The middle right cube commutes by Lemma 13.0.13
and the bottom right cube commutes by Lemma 13.0.14.

The additive units are preserved as V() = * And this is symmetric with respect to
swapping X and Y so this is a strictly unital functor of permutative categories.

Now we show that composition is enriched, in other words the following diagram commutes

in Perm. We have alread shown that the underlying functor commute, so we show that the

distributivity morphisms agree as well.

GE?>?

ord

(B,C) x GE™ (A, B) o GE® (A, C)

M) |

Perm(V(B),V(C)) x Perm(V(A),V(B)) —= Perm(V(A),V(C))

comp

In Perm, §; = Id. In GE,.4 62 = Id, implying that in GE?,, §; = Id, so all the relevant 2-cells
are trivial and monoidality is preserved.

Checking 69 is trickier though. First we do some set up. Consider spans (B < Y »—
C),(A+ X — B),(A <+ X' — B). Let U, U’ be the lex-pullbacks of (Y - B «— X), (Y —
B «— X') respectively.

Across then down yields the top diagram, down then across yields the bottom.
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V() —— — » V(U) x V(U") —— V(C) x V(C)
- | =7} ;
T~ . " € <+ v
r* V(ULU)e) qb—)E(UHU') ‘—‘AZ(UHU') te —> E(C’m)
l \ ld)* EI:F
V(U LU )wy) ¢ > V(U LU )we) —t-— V(C x [2])
; 7 [
te o . .
V(YY) ts > Y(C) V(C) V()
V(4) r > V(U) x Y(U')
\7" 7‘/ \t
T~ — It
VX)) xV(X') —t— V(B) x Y(B) —r— YY) x V(Y) —t— V(C) x Y(C)
7 : : 4
V(XPX’) V(X1 X) t—> X(BHQ) r— E(YHQ) t— E(C’m)
¢ f; é
V(XTI X")p) V(XTI X)) —t— V(B x[2]) r— V(Y x [2]) —t— V(C x [2])
V(B) r » YY) t > V(O)

To show they agree we make the following large diagram. There are four 3-cells in it. The
trapezoidal prism on the left commutes as all of its side strictly commute (only trivial 2-cells).
Checking the triangular prism commutes comes down to writing out the definition of A from

11.1.8 and checking the appropriate pasting diagrams agree. The top cube commutes by
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Lemma 13.0.15, and the bottom cube commutes by Lemma 13.0.13.

V(X) x Y(X') t—— Y(B) x Y(B)

P A N N

() t———— YY) x Y(Y)

N2
I

~
=
<]
=

XHX v ,
Yy
\t
. N v
o E(CHZ)
I N
XHX (X

I X")xp) t—-| ——\=> V(B x[2]) V. > V(B)
\r e \T \T

~

~ N
((UH U’)w) —\—t——> V(Y x[2]) V. > V(Y)

’ N N \

V(U I )we)

Definition 14.1.2. Given a permutative SGA V, we define its equivariant K-theory as the

K theory of My.

Proposition 14.1.3. For X € Fin®, Y41 X is sent to the PMF Sx := GE®

ord

(X,-) =

GEori(—, X)
This is by a direct check of the definitions.
Proposition 14.1.4. (Equivariant Barratt-Priddy-Quillen)
K(Ein%) =S¢

Proof. We recall that Fin® = ¥ @ * and we apply Theorem 9.4 of [BO] that ®K,(Sx) corre-

sponds to £ (X, ). Plugging in X = * we have that K (Fin®) = ©%(x,) = S¢. O
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14.2 PFMs to SGAs

In this section we let M : GE” , — Perm be a PMF.

ord

Notation 14.2.1. Let f : A — B, g : C — D in Fin®. We call (B La= A) restriction and
denote it by f*. We call (C' =C EN D) transfer and denote it by g.. Note that M is implicit

in these definitions.

Remark 14.2.2. We observe that using restrictions M defines a functor M* : (Fin®)? — Cat

sending A — M(A),f : A — B~ f*: M(B) — M(A). Similarly using transfers we can

define a functor M, : Fin® — Cat sending A — M(A), f: A — B f, : M(A) — M(B).
These follow from the associativity and one-sided unitality of lex-pullbacks in Fin® as well

as M being strictly functorial.

Lemma 14.2.3. Restrictions and transfers created by M satisfy a version of the double coset
formula.

Given a pullback square in Fin®:

A%B
p q

We have that p.f* = g*q. with equality if the square is a lex-pullback. This is also natural

similarly to the case with SGAs.

Proof. We first prove this in the case of a lex-pullback. As M functorial, this follows from the

op

g having the same composite:

two pairs of spans in GE

154



AN
/
N\
Vs

AN
Y
AN
/

B D C

In the case that A is not the lex-pullback here, then the composite of the top span is (B L
AL (') which is isomorphic as a span to the composite of the lower two spans. Thus M
sends it to a natural isomorphism. Showing the naturality comes down to similar diagram

chasing arguments. O

Lemma 14.2.4. Let 1; : U; — X = ILU; be the inclusion. Then we have the following
identities:

Gitie = Id, Gty =0 fori # 3, and Y, 10 = Idx.
We use this notation through this section.

Proof. These we verify directly with the help of these diagrams showing composition in GE?

ord

ey SN
SN NN
U/U\U
NN
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And direct computations show that the sums of the (X <+~ U — X) over U is (X = X = X))

in GE?

ord

(X, X).

]

Lemma 14.2.5. Let iy : M(U) = [[; M(U) denote the inclusion which is the identity on
the M(U) factor and the zero functor on all others.

Then for C € Perm, f; : C — M(U;), for each i, as functors C — [, M(U;),

(fi)i = ZiM(Ui) o f;.

i

This follows from direct computation.
Proposition 14.2.6. PMFs are weakly additive in that M (X) ~ [, M(U;).

Proof. In one direction we have ¢* : M(X) — [[, M(U;) defined as (M (¢}));.

By the lemma this is equal to ), iaw,) 0 M(L]).

In the other direction we construct A : [[, M(U;) — M(X) as Y, M(ti)mpu,)- We observe
that A\ here is associative and symmetric in the sense of 11.1.4 and ?7. We now construct the

unit and counit of this equivalence.

n : Idmw ZZM OWMU)—ZZM(U o M} OL]*)O’]TM(U)

2

ZiM(Ui)OM(L:)OM(Lj*)OWM(U Porm (Z ZM f ) @) (ZM(LJ*) Oﬂ—M(Uj)) = L*o)\

/[:7j

¢:hoif = (ZM<Li*>owM<Ui>)o<M<J>> = > M{1s) 0 M() =
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~

ZM Liw 0 L) —> MZLZ-* ouf, = M(Idx) = Idux)

Op

The first morphism (Perm) is an equality because the left distributivity morphism for com-
position is equality (see [BIO15], top of page 10) and there is no addition on the right here.

dpsr denotes the distributivity morphisms of M. O

Remark 14.2.7. This is where we needed PMF's and thus PC-categories to be strong monoidal

instead of lax.

Lemma 14.2.8. ¢ is natural along the restrictions of isomorphisms in Fin® in the sense of

Diagram 11.1.5.

Notation 14.2.9. In this proof welet X = U LNV, X' =U'II V' andr : U - U',s:V = V'

isomorphisms

Written out we require that the two pasting diagrams (of monoidal functors) agree:

><MV’

M((rlls)")

M(U) x M(V)
/
M LIs)) M(X)/ J \M

M(X)

Proof. By the definition of €, this is the same as these two pasting diagrams agreeing
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>0 M(usr™)

m

M(X7) Y M(X') —— M(X)

\V

M(Z(L*L*)) EM(L*L*)

m

M(xy D x) b M(X)
M (ext™))

As (r I s)* is invertible with inverse ((r IT s)~!)* it suffices to show these agree:

S M (et
rIIs)—1)* — . 3 rlls)*
MV ey T s xR x)
M)
MO (st

M(X) \b M(X)
M(Z (7))

This follows from the diagram commuting as monoidal functors - the distributivity morphisms

(in this case the middle one) are suitably preserved.

GE>

ord

(X, X') x GE? (X', X") x GE”

ord

(X', X) comp s GE®P

We apply this to (r I s)~')*, t,c*, (r 1L s)* in the top left, where ¢ = ¢17, 1. And using the fact
that ((r ILs)™1)* o vy 0 tf; 0 (s IT7)* = gy 0 1}y and similarly for V' in place of U.

]

Theorem 14.2.10. Given a PMF M we can construct a strict, split SGA, furthermore it is

additive when M satisfies a certain technical condition.

This technical condition is stated in Equation 14.2.1. It can be summarized as saying that
either My p is strict monoidal its image is strict monoidal in a particular circumstance.
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Proof. We construct V as follows.

e As a Fin“ category, V is given by applying the Grothendieck construction to M* :
(Fin®)? — Cat. So V(A) = M(A) and the chosen lift of f: A — B is M(f*): V(B) —
V(A). This is clearly a split fibration as M* is a functor.

e Additivity comes from that of M, which we showed in Proposition 14.2.6.

By construction A is associative and commutative.

€ is preserved by restriction along isomorphism as shown in Lemma 14.2.8. On the other
hand, we do not know the orginal n of Lemma 14.2.6 is adjoint to € so we replace it with

1’ which is. Then 7’ is preserved by restriction along isomorphisms.

e ® comes from transfers. Showing this is a map of split fibrations will be the tricky
part. We need to show that it is actually a functor, might follow from Grothendieck

construction but we need to check.

® : g1 V(A) — V(A)

is given by

AL Az e VA = M(f)(z)

A morphism in Sa 1V over f:B— A

Consists of a pullback square in Fin®
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Along with a morphism « : M(¢g*)(x) — 2/ in M(B’). It is cartesian if the morphism «
is an isomorphism, and the chosen lift if the pullback square is a lex-pullback, and « is

an equality.

® applied to such a square is defined as

)

Fpu@) = g9 (@) 2 .(2)

where the first isomophism comes from the double coset formula of Lemma ?7; this is a

morphism in ¥V = [ M* as hoped.

If the original morphism is cartesian, this is as well. If it is the chosen cartesian lift of
f, then the square is a lex-pullback, so the double coset isomorphism is an identity and
g«(a) is an equality as well. This is the chosen lift in the Grothendieck construction.

This shows that ® is a map of split fibrations.

Next we show that ® is associative and unital, in other words V' is an algebra. These
essentially come down to the fact that transfers are functorial. For this we simply
check that the diagrams 12.0.1 and 12.0.2 commute. For unitality we claim that V —511—>
361V S Vs the identity. This composite is given by (4,2 € M(A)) — (A, Idy: A —
Ax e M

(A)) = (A, Ida.x) which is the identity as Ida, = Idpay. For associativity

we consider
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(A LpSoxe M (A)) Applying ¥ ® to this gets (B % C, f.(x) € M(B)) applying
® to this gives g. f.(z).
On the other side we first apply og to get (A 9, C, x); applying ® to this gives (¢f).(z).

This is equal as transfers are functorial.

e We now discuss the additivity of ® recalling that it means the following diagram strictly

commutes:

St V(U) x St V(V) —2 Sa i V(X)

o| o

V(U) x V(V) ——5—— V(X)

A

We start with (f,z)(g,y) € Sa WY(U) x gt V(V), where f: U — U,g:V'—V and
let X' =0U"1IV".
Going across then down gives M ((f II ¢g).)(M(es)(z) + M(ts)(y)). Going down then

across gives M (1) M (f)(x) + M (t.) M (g:)(y).

Thus additivity is exactly having the equality:
M (e ) M(f)(x) + M () M(g.)(y) = M((f L g).) (M(e) () + M(ea)(y).  (14.21)

This holds if M((fII g).) is strict monoidal when applied here. This is also satisfied if
M((f1lg).) = M(f.)+ M(g.) = M(X' < U’ 4, X))+ M(X" <& V' % X), which holds
if M is strict monoidal on hom-categories.

We note that 14.2.1 is satisfied for PMFs originating from permutative SGAs.

]

Theorem 14.2.11. On the underlying categories, restrictions, transfers, and \s, these two
constructions are inverses.
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By construction the categories, restrictions, and transfers correspond. In the case of per-
mutative SGAs we recall that A is defined as a sum of transfers so this follows as well.
We note that this does not imply these are inverse constructions as it does not take into

account any of the relevant 2-cells.

Conjecture 14.2.12. We believe that these form equivalent 2-categories.
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Chapter 15

Comparison with Equivariant
Symmetric Monoidal Structures of
Hill Hopkins and G-Symmetric

Monoidal co-categories

15.1 Hill Hopkins

In this chapter we review the symmetric monoidal Mackey functors and equivariant symmetric

monoidal structures of [HH16] and compare them with SGAs. All numbers refer to that paper.

Definition 15.1.1. A symmetric monoidal coefficient system is a pseudofunctor (Og)”? —

Sym, the category of symmetric monoidal categories and strong monoidal functors.

We observe that this is equivalent to a strictly additive pseudo-Fin®-category.
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Definition 15.1.2. A symmetric monoidal Mackey functor M = (M*, M,) consists of two
pseudofunctors M* : (Og)? — Sym, M, : Og) — Sym called restriction and transfer which

agree on objects and satisfy a double coset formula up to isomorphism.

Remark 15.1.3. We note that this definition of [HH16] is rather vague, and one of the goal of
developing SGAs was to formalize the details of this definition and the coherences involved.
Remark 15.1.4. We can realize these as pseudo-SGAs, strictly additive as a Fin® category.

Definition 15.1.5. Set is the symmetric monoidal coefficient system given by G/ H + Finf! ~

FinﬁG /m)- Restriction is given by pullback along G /K — G/H, trasnfer by postcomposition.
We observe that this is equivalent to the SGA FinC.

Definition 15.1.6. Set!*° is the symmetric monoidal coefficient system given by taking the

objectwise maximal subgroupoid of Set.

Proposition 15.1.7 ([HH16] 3.1). The category of symmetric monoidal coefficient systems

has a product gicen by objectwise cartesian products.

Definition 15.1.8. A bilinear functor of symmetric monoidal coefficient systems C; xC, — D

which is bilinear on objects and suitably coherent.

Definition 15.1.9. A genuine G-symmetric monoidal structure on a symmetric monoidal
coefficient system C is a bilinear map O : Set’** x C — C

such that when restricting to trivial H-sets X € Set’**(G/H), O(G/H) : X x C(G/H) —
C(G/H) is simply the exponentiation functor A — A®IXl and such that the following commu-

tative diagram commutes up to natural ismorphism:
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M[SO % &Iso % Q M M[so % Q

(—><—)><Idl lD

ﬁ[soxg s C

O )

Proposition 15.1.10 ([HH16]). Let M be a symmetric monoidal Mackey functor, we a a
genuine G-symmetric monoidal structure on it given by J(H/K,—) : M(G/K) — M(G/K)

by Tri Res!L.

15.2 G-Symmetric Monoidal oo-categories

We briefly discuss the connections between SGAs and the G-symmetric monoidal co-categories

of [BDG+16, NS22].

Definition 15.2.1. A G-symmetric monoidal co-category is a product preserving functor

Spany(Fin®) — Cat,.

These can also be defined in terms of spans of fibrations over a version of Fin¢ which

satisfy a Segal condition. This is best explained in [Hor19] §2.4 and App B.

Remark 15.2.2. Given a SGA we can make a (pseudofunctorial) PMF, then take its nerve we

get a G-symmetric monoidal co-category.
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Chapter 16

Genuine Commutative Monoids

Definition 16.0.1. A G-commutative monoid in a SGA V is a map of SGAs u : Fin® — V.

Remark 16.0.2. The non-equivariant intuition here is that in a symmetric monoidal category
C, a commutative monoid is equivalent to a symmetric monoidal functor Fin — C, where the

monoid object is the image of 1.
Expanding this, for each H we have a symmetric monoidal functor Fin! — V(G/H).

Definition 16.0.3. A morphism of G-commutative monoids is a natural transformation of

fibrations that commutes with the 2-cell.

Lemma 16.0.4. Given a morphism of SGAsY — W and a G-commutative monoid in YV, its

image is a G-commutative monoid in V.

This explains why homotopy groups of a ring spectrum are Tambara functors.

Remark 16.0.5. We do not know of any version of monoids in a PMF or in the G-symmetric
monoidal co-catogories of [GMMO19]. We believe that in we can similarly view monoids as
maps out of the analogue of Fin%.
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Definition 16.0.6. In a genuine symmetric monoidal structure of [HH16], a G-commutative

monoid is an object M € C(G/G) and an extension:

Miso —aM y Q

In the case that C comes from the symmetric monoidal Mackey functor M we also require

that N is a map of symmetric monoidal Mackey functors.

The condition that N is a map of symmetric monoidal Mackey functors can be explicitly
described as in [Horl19] 3.2.2.

In that case a G-commutative monoid is a commutative monoid M € M(G/G), with
commutative monoid maps NGOM — *[OM = M, which are pseudonatural in that NG N =
NG,

Remark 16.0.7. A map of symmetric monoidal Mackey functors F' : Set — M nearly deter-

mines a G-commutative monoid in M. Indeed we calculate:

H/KORes$ M = TriResti Res% M = Trf ResG M = Trit ResS F(x)F(Trit Res$x) = F(H/K)

This isomorphism arises from symmetric monoidal Mackey functors being defined as pseudo-
functors from Og and (Og)?. The extension property simply requires this to be an equality

instead essentially adding a particular sort of strictness on Set”’ which is not present in

general.

Ezxample 16.0.8. [Hor19] Tambara functors are the G-commutative monoids in Mack,,, viewed

as a symmetric monoidal Mackey functor.
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We believe that this result also hold for monoids in the SGA Mack,, however we do not

have a full proof of this at the moment.
Congecture 16.0.9. A monoid in Sp¢ is a genuine G-ring spectrum.

Conjecture 16.0.10. We expect that monoids in Fing are equivalent to semi-Mackey functors.

This is essentially Thm 5.6 of [HH16].

Remark 16.0.11. We can also attempt to define G-commutative monoids in PMF's. For this we
can consider Fin® as the PMF S, defined in [BIO15] Defn . 9.1; given by S,(A) := GE,q(*, A);
equivalently A — Fian ord - Restrictions are lex-pullbacks, transfers are by post-composition.

Then we can define a genuine G-commutative monoid in a PMF M is a map of PMFs
M — Fin®. This is philosophically the same as our approach for monoids in SGAs and for
G-commutative monoids in [HH16].

However we anticipate that the extreme strictness of PMFs relative to both SGAs and
symmetric monoidal Mackey functors could prevent these from including useful examples.
There might be workarounds such as finding strict versions using ordered G-sets similar to
much of the work in this paper. One could also attempt to define a suitable weak morphism

of PMFs and define a monoid using these instead.
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Chapter 17

Musings and Further Directions

There are several choices we made in our general approach to SGAs as a way of unifyinging the
different versions of genuine equivariant symmetric monoidal categories, and it is worthwhile

considering other ways we could have done it.

e We could have just as well defined Fin categories and SGAs in terms of functors
(Fin®)? — Cat instead of as fibrations over Fin®. Of course we know that these should
yield (2-categorically) equivalent theories. But the comparisons with PMFs and the
symmetric monoidal Mackey functors of [HH16] might be cleaner working entirely with
functors as opposed to fibrations. In particular we might have a more tractible relation-

ship between the 2-categories of SGAs and PMFs.
e We could have chosen to work primarily in bicategories as opposed to strict 2-categories.

e We could have chosen to work internally to PMFs. Originally a major motivation for
the development of SGAs was a way to bridge the K-theoretic machinery of PMFs with

the monoids of [HH16]. Only at the very end of the process did we realize that we can
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interpret monoids as maps of PMF's from S,.

On its own this approach this would not account for the symmetric monoidal Mackey
functors of [HH16] as these use pseudofunctors. But combining this with bicategories
could work well. We still might not be able to fine-tune the different types of strictness

as we can with SGAs.

A major innovation of this paper was to use GE,,q instead of GE’ or GE. This required

the lengthy technical results on pullbacks in Fin®.

Further directions

Flesh out the 2-category of SGAs. In particular what do morphisms and natural trans-
formations look like on the fibers. We expect them to be symmetric monoid functors

and monoidal natural transformations, however this has not been proven.

Compare the various Mackey functor constructions to Shimakawa’s I'; categories. These
have their own K-theory construction, which we hope would be equivalent to ours. These

also are more closely connected to [GMMO)].

Develop a notion of multiplicative equivariant K-theory for SGAs and PMFs. This has
already been done in [GMMO23| to prove a multiplicative equivariant Barratt-Priddy-

Quillen theorem.

For this we would define a (possibly genuine equivariant) symmetric monoidal structure
on the category of SGAs, whose monoids are bipermutative SGAs. Then K theory of
SGAs should extend to a multiplicative functor and the K-theory of bipermutative SGAs
should be genuine G-ring spectra.
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e In many equivariant situations, it is necessary to work with indexing systems - roughly
a subset of maps along which we can define transfers or norms. This is necessary as
equivariant algebraic structures are not well behaved under localization. We expect that
most of the constructions of this paper could be generalized to indexing systems. In the

case of G-commutative monoids, this is already done by [HH16] §4.

e A major desiderata of a good theory of genuine equivariant symmetric monoidal cate-
gories is a version of Thomason’s theorem and ideally something even stronger such as
an inverse equivariant K-theory functor. A version of Thomason’s theorem has been
proven in [Len22]. Another active area of research in that direction is to use multiplica-
tive inverse K-theory the Guillou-May theorem to give an inverse of the K-theory of

PMFs.

[ am also not aware of any version of K-theory directly using [HH16|, however it is

relatively straightforward to strictify those into PMFs.

e Hitherto there has been minimal writing on the theory of monoids in a general equiv-

ariant symmetric category. I believe this would be a fertile ground for new research.

One avenue is applying genuine symmetric monoidal structures to the homological alge-

bra of Mackey functors.

e As mentioned in the desiderata, we expect that genuine equivariant colored operads,
such as those of [BP21], specialize to them such as those of [BP21]; analogous to how
symmetric colored operads (multicategories) specialize to permutative categories. In a
sense the version in [NS22] is simply defined as equivariant operads satisfying a suitable
condition (analous to how symmetric monoidal co-categories are a type of co-operads as
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in [Lurl7]). However we do not expect this to carry over neatly to the lower-categorical

constructions, so would require independent work.
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