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ABSTRACT

THE GEOMETRY OF CAPILLARY AND CONSTANT MEAN CURVATURE

SURFACES

Artur Bicalho Saturnino

Davi Maximo Alexandrino Nogueira

Constant mean curvature (CMC) surfaces are critical points of the area functional for

variations that preserve the volume of the region enclosed by the surface. Capillary

surfaces are de�ned in a similar way, but instead of the area functional, one considers

a functional that is the sum of the surface area with a boundary term. Both of these

types of surfaces arise in nature as the interface between a liquid and air. The index

of a CMC or a capillary surface is an integer that measures how far the surface is

from minimizing the functional. In this thesis, we explore the relationship between

the index and the geometry of capillary and CMC surfaces.

We begin by showing that the index together with the area bound the genus of

compact CMC surfaces embedded in a compact 3-manifold. We also show that in the

case where the surface is not minimal and the 3-manifold has �nite fundamental group,

the index and the mean curvature are su�cient to bound the genus. Then we move

on to study capillary surfaces immersed in 3-manifolds. Amongst other results, we

describe the conformal structure of noncompact capillary surfaces with �nite index,

one consequence of this description is that the only noncompact capillary surface

immersed in a half-space with acute contact angle and zero index is the half-plane.

iii



Contents

Acknowledgment ii

Abstract iii

List of Illustrations vi

1 Preliminary 1

1.1 Basic De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Constant mean curvature surfaces . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Capillary surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Capillary surfaces of �nite index . . . . . . . . . . . . . . . . . . . . 11

1.3 Harmonic coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 On the Genus and Area of Constant Mean Curvature Surfaces 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Outline of the proofs of the main theorems . . . . . . . . . . . . . . . 24

2.2 Graph parametrization of CMC surfaces . . . . . . . . . . . . . . . . 25

2.3 CMC laminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



2.4 Curvature bounds for CMC surfaces with �nite index . . . . . . . . . 34

2.5 Picture near blow-up points . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Picture away from blow-up points . . . . . . . . . . . . . . . . . . . . 47

2.7 Proof of the main theorems . . . . . . . . . . . . . . . . . . . . . . . 50

3 Capillary Surfaces: Index, Stability and Curvature Estimates 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Index estimates for compact capillary surfaces . . . . . . . . . . . . . 55

3.1.2 Noncompact capillary surfaces . . . . . . . . . . . . . . . . . . . . . . 57

3.1.3 Curvature estimates for strongly stable capillary surfaces . . . . . . . 60

3.2 Index estimates for compact capillary surfaces . . . . . . . . . . . . . 62

3.2.1 Harmonic one-forms and vector �elds . . . . . . . . . . . . . . . . . . 62

3.2.2 Index of a capillary surfaces and harmonic vector �elds . . . . . . . . 63

3.3 The structure of noncompact capillary surfaces with �nite index . . . 68

3.3.1 Noncompact capillary surfaces in general 3-manifolds . . . . . . . . . 69

3.3.2 Weakly stable capillary surfaces in a half-space of R3 . . . . . . . . . 78

3.3.3 L2 characterization of the strong index . . . . . . . . . . . . . . . . . 83

3.4 Curvature bounds for capillary surfaces . . . . . . . . . . . . . . . . . 92

Bibliography 96

v



List of Illustrations

1.1 Vectors and angles for a spherical cap in a half-space of R3. . . . . . 9

vi



Chapter 1

Preliminary

Constant mean curvature (CMC) surfaces often appear in nature as the interface

between �uids in equilibrium, think of, for example, the surface of a small water drop

in suspension. Capillary surfaces can be seen in similar contexts, except that now we

assume that the �uid touches some container. Examples of this type of surface can be

seen in small drops of liquid in a smooth table or the interface between �uids inside

a thin tube. In fact, these surfaces are so natural to consider that they have been

studied by Gauss [29] and Laplace [33] in the early 19th century, before the modern

formulation of di�erential geometry.

Capillary and CMC surfaces are equilibrium solutions, however this equilibrium

might be unstable. The index of a surface is a way of quantifying instability by,

roughly, counting the number of directions where deforming the surface leads to a

decrease in energy. It is expected that more complex surfaces have higher index than

simpler surfaces, as the more complex surface have regions where a deformation could
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decrease energy. As we will see in many points along the text, there are many results

that relate the index to the geometry and topology of minimal surfaces. Less is

know for the more general case of CMC surfaces, and even less is known for capillary

surfaces. Here we aim to decrease this knowledge gap.

We begin this work by brie�y introducing these two types of surfaces in general

Riemannian 3-manifolds. We will also de�ne the weak and the strong Morse index

of these surfaces, study the relationship between these indices, and some properties

exhibited by surfaces of �nite index. Most of the results and concepts presented in

this chapter can be easily generalized to higher dimensions, however since our main

results in later chapters regard surfaces in 3-manifolds, we will state our results and

de�nitions for this particular case.

Our results in CMC surfaces have appeared in [46] and can be found in Chapter 2,

while Chapter 3 contains the results on capillary surfaces, which have been obtained

in collaboration with Han Hong and have appeared in [32].

1.1 Basic De�nitions

1.1.1 Constant mean curvature surfaces

Let M be a Riemannian 3-manifold and Σ be a 2-sided surface immersed in M

by X : Σ→M . If Σ has a boundary, we assume the boundary is not contained in Σ.

2



Fix an ε > 0, we say that a smooth map

X : Σ× (−ε, ε) −→M

X(p, t) = Xt(p)

is a compact variation of X if

1. For all t ∈ (−ε, ε), the map Xt : Σ→M is an immersion of Σ in the interior of

M .

2. The immersion X0 coincides with X.

3. X is supported on a compact set K ⊂ Σ, that is, t 7→ Xt(p) is constant for all

p ∈ Σ \K.

Note that since Σ does not contain its boundary, any K as above must be bounded

away from the boundary of Σ.

Fix a normal vector �eld ν along Σ. We de�ne the signed volume functional

associated to the variation X as

Vt =

∫
[0,t]×K

X
∗
(dV ) (1.1)

where dV is the volume form of M . Note that in the case where X is an embedded

bounding a compact region of M and t is small, Vt is the di�erence between the

volume bounded by X(Σ) and Xt(Σ). It is easy to see that the derivative of (1.1) is

d

dt

∣∣∣∣
t=0

Vt =

∫
Σ

〈Y, ν〉 (1.2)

3



where the measure used in the integral to the right is induced by X, and Y = ∂t|t=0Xt

is the variational vector �eld associated to Xt. In case d
dt

∣∣
t=0

Vt = 0 we say that the

variation X is volume-preserving.

Fix a compact set K containing the support of X and let At be the area of K by

the measure induce by Xt. It is well-known that (see e.g [21, p. 7])

d

dt

∣∣∣∣
t=0

At = −
∫

Σ

〈Y, ~HΣ〉, (1.3)

where ~HΣ is the mean curvature of Σ associated to X, which we de�ne as

~HΣ = DE1E1 +DE2E2

where D is the pull-back of the Levi-Civita connection on M by X and {E1, E2} are

vector �elds in Σ that form an orthonormal basis in a neighborhood of Σ.

We say that Σ is a constant mean curvature surface if for any volume-preserving

compact variation of X have that d
dt

∣∣
t=0

At = 0. Note that this condition is equivalent

to HΣ = |〈 ~HΣ, ν〉| being constant along Σ. Alternatively, when the value of the mean

curvature is important, we say that Σ is a HΣ-surface. A 0-surface is called a minimal

surface. It is possible for a minimal surface to be one-sided, however we will not

consider this case.

Let Σ be a CMC surface immersed in M by X : Σ → M and take a volume-

preserving compact variation X. Since a CMC surface is a critical point for area it

is natural to take the second variation of this functional. Standard calculations yield
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(see e.g. [21, p. 39])

d2

dt2

∣∣∣∣
t=0

At =

∫
Σ

|∇u|2 − (|AΣ|2 + RicM(ν, ν))u2

where u = 〈Y, ν〉 and AΣ is the second fundamental form of Σ. For this reason, the

stability operator of Σ is the symmetric bilinear form on C∞0 (Σ) de�ned by

Q(u, u) =

∫
Σ

|∇u|2 − (|AΣ|2 + RicM(ν, ν))u2 = −
∫

Σ

uJu (1.4)

for u ∈ C∞0 (Σ), where J is the Jacobi operator

J = ∆ + |AΣ|2 + RicM(ν, ν). (1.5)

Now assume additionally that Σ is bounded. Let B(Σ) = {u ∈ C∞0 (Σ) :
∫

Σ
u = 0}

be the set of balanced (mean zero) functions on Σ with compact support, then the

weak (Morse) index of Σ is

Indexw(Σ) = max{V ⊂ B(Σ) : V is a subspace and Q|V×V is negative-de�nite}.

(1.6)

Informally, the weak index counts the number of directions where one can decrease

the area of the surface while keeping the volume functional constant to �rst degree.

Similarly, the strong (Morse) index of Σ is de�ned as

Indexs(Σ) = max{V ⊂ C∞0 (Σ) : V is a subspace and Q|V×V is negative-de�nite}.

(1.7)

It is easy to see that the weak index is no larger than the strong index. However, as
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we will see in Section 1.2, they cannot di�er by more than one. When the weak (or

strong) index of Σ is zero we say that Σ is zero we say that Σ is weakly (resp. strongly)

stable. This particular case plays a central role in the study of these surfaces.

Barbosa and Berard [11, Proposition 2.2] show that the weak index of a bounded

CMC surface can also be understood as the maximum k such that λ̃k < 0 where

λ̃1 < λ̃2 ≤ λ̃3 ≤ · · · are the L2(Σ) eigenvalues associated to the problem

Ju+ λ̃u = 1
|Σ|

∫
Σ
Ju in Σ,

u = 0 along ∂Σ,

∫
Σ
u = 0.

(1.8)

Similarly, the strong index of a bounded CMC surface is the index of the largest

negative eigenvalue associated to the problem


Ju+ λu = 0 in Σ,

u = 0 along ∂Σ,

(1.9)

So it follows from standard elliptic theory that the weak and the strong index of

a bounded CMC surface must be �nite.

1.1.2 Capillary surfaces

Now let M be a Riemannian 3-manifold with boundary and let Σ be a 2-sided

surface with boundary immersed in M by X : Σ→M . Assume additionally that the

interior of Σ does not touch the boundary of M , that is ∂M ∩ X(Σ) ⊆ X(∂Σ) and
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that Σ meets the boundary of M transversally. We assume that Γ = X(∂Σ)∩ ∂M is

smooth, but allow ∂Σ \ Γ to be only continuous. Following Carlotto and Franz [12]

we will refer to ∂Σ \ Γ as the edge of Σ. Topologically, we assume that Σ contains Γ

but not its edge. Similarly to as we had in Subsection 1.1.1, we say that a smooth

map

X : Σ× (−ε, ε) −→M

X(p, t) = Xt(p)

is an admissible variation of X if

1. For all t ∈ (−ε, ε), the map Xt : Σ → M is an immersion of Σ in M such that

∂M ∩Xt(Σ) ⊆ Xt(∂Σ).

2. The immersion X0 coincides with X.

3. X is supported on a compact set K. That is, t 7→ Xt(p) is constant for all

p ∈ Σ \K.

Note that since Σ does not contain its edge but contains Γ, an admissible variation

must �x the edge of Σ, but can move Γ.

Fix a normal vector �eld ν along Σ. We de�ne the volume and area functionals At

and Vt exactly as in the CMC case, additionally we de�ne the wetting area functional

by

Wt =

∫
[0,t]×(K∩∂Σ)

X
∗
(dA)
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where dA is the area element of ∂M . In the case where X(Γ) is embedded and bounds

a compact region of ∂M , the value of Wt for t small is the di�erence between the area

bounded by X(Γ) and Xt(Γ).

It is easy to see that

d

dt

∣∣∣∣
t=0

Wt =

∫
∂Σ

〈Y, T 〉

where Y is the variational vector �eld associated to X and T is the unit normal vector

�eld of Γ in ∂M chosen according to the orientation given by ν.

Again we have that

d

dt

∣∣∣∣
t=0

Vt =

∫
Σ

〈Y, ν〉

but the variation of the area functional does include a boundary term, more

speci�cally,

d

dt

∣∣∣∣
t=0

At = −
∫

Σ

〈Y, ~HΣ〉+

∫
∂Σ

〈Y, η〉

where η is the conormal of Σ.

Fix a θ ∈ (0, π). We de�ne the energy functional

Et = At − cos θWt,

then

d

dt

∣∣∣∣
t=0

Et = −
∫

Σ

〈Y, ~HΣ〉+

∫
∂Σ

〈Y, η − cos θT 〉.

We say that Σ is an edged capillary surface at a constant angle θ if for every

volume-preserving admissible variation we have that d
dt

∣∣
t=0

Et = 0. It is clear that this

condition holds if, and only if, Σ is CMC and the angle between η and T is constant

8
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Figure 1.1: Vectors and angles for a spherical cap in a half-space of R3.

equal θ. In our convention, we will choose ν such that 〈 ~HΣ, ν〉 is nonpositive, for the

second fundamental form of Σ we adopt the convention AΣ(·, ·) = 〈D·ν, ·〉. We will

use N to refer to the outwards normal of the ambient spaceM . Figure 1.1 exempli�es

our conventions.

Note that, by our de�nition, an edged capillary surface is always two-sided. A

capillary surface is an edged capillary surface with empty edge, this implies that a

capillary surface is complete in the sense of metric spaces. A CMC surface can be seen

as an edged capillary surface where the capillary boundary (that is, Γ = X(Σ)∩∂M)

is empty. A free boundary CMC surface is a capillary surface at a constant angle π/2,

note that in this case the energy functional equals the area functional.

Consider an edged capillary surface Σ immersed inM byX : Σ→M at a constant

angle θ and take an admissible variation X. Then second variation of area is

d2

dt2

∣∣∣∣
t=0

At =

∫
Σ

|∇u|2 − (|AΣ|2 + RicM(ν, ν))u2 −
∫
∂Σ

qu2

where u = 〈Y, ν〉, Y is the variational vector �eld associated to X, and q is de�ned
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by

q =
1

sin θ
h∂M(T, T ) + cot θAΣ(η, η). (1.10)

In the above h∂M(T, T ) = 〈DTN, T 〉 (for a proof, see [42, p 357-360]). Note that

η =
1

sin θ
N + cot θν, (1.11)

so if we let H∂M = trh∂M , then it follows from (1.11) that q can be re-written as

q =
1

sin θ
H∂M + cot θHΣ − κ∂Σ, (1.12)

where κ∂Σ is the geodesic curvature of ∂Σ in Σ, that is, κ∂Σ = 〈Dτη, τ〉 with τ unit

tangent vector �eld in ∂Σ. It is also interesting to note that any function u ∈ C∞0 (Σ)1

can be realized as the product the normal to Σ with the variational vector �eld of

some admissible variation [4, Proposition 2.1].

The stability operator of Σ is de�ned as the quadratic form on C∞0 (Σ) such that

for all u ∈ C∞0 (Σ) we have

Q(u, u) =

∫
Σ

|∇u|2 − (RicM(ν, ν) + |AΣ|2)u2 −
∫
∂Σ

qu2

= −
∫

Σ

uJu+

∫
∂Σ

u

(
∂u

∂η
− qu

)
, (1.13)

where J the Jacobi operator.

The weak and the strong indices of a bounded edged capillary surface are de�ned

by (1.6) and (1.7) respectively. Similarly to the CMC case, the weak and the strong

1Recall that by our de�nition an edged capillary surface contains the capillary part of its
boundary, hence a compactly supported function on Σ can take nonzero values in this part of
the boundary.
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indices can be characterized by an eigenvalue problem, but in this case the associated

eigenvalue problem has mixed Dirichled and Robin boundary, conditions. Namely,

the eigenvalue problem associated to the weak index becomes

Ju+ λ̃u = 1
|Σ|

∫
Σ
Ju in Σ,

∂u
∂η

= qu along Γ,

u = 0 along ∂Σ \ Γ,

∫
Σ
u = 0.

(1.14)

And the eigenvalue problem associated to the strong index becomes



Ju+ λu = 0 in Σ,

∂u
∂η

= qu along Γ,

u = 0 along ∂Σ \ Γ.

(1.15)

So it follows from standard elliptic theory that when Σ is bounded the weak index

and the strong index must be �nite.

1.2 Capillary surfaces of �nite index

In this section we will de�ne the (weak and strong) index for unbounded (not

pre-compact) edged capillary surfaces, and examine some fundamental properties of

surfaces with �nite index. We will state our results for edged capillary surfaces, as

they are the more general case. To apply these results for CMC surfaces the boundary

11



term must be ignored.

Let Σ be an unbounded edged capillary surface immersed in M . Note that every

bounded open subset Ω ⊂ Σ is an edged capillary surface, so we can de�ne the weak

and the strong index of Ω as in (1.6) and (1.7), respectively. Furthermore, it is clear

from the de�nition that if Ω̃ ⊃ Ω is open and bounded, then Indexw(Ω̃) ≥ Indexw(Ω)

and Indexs(Ω̃) ≥ Indexs(Ω). Take an exhaustion of Σ by bounded open sets Ω1 ⊂

Ω2 ⊂ · · · ⊂ Σ we de�ne the weak index of Σ as

Indexw(Σ) = lim
n→∞

Indexw(Ωn), (1.16)

and the strong index of Σ as

Indexs(Σ) = lim
n→∞

Indexs(Ωn). (1.17)

Note that these limits can tend to positive in�nity. Now we show that the index is

well-de�ned.

Proposition 1.1. The limits limn→∞ Indexw(Ωn) and limn→∞ Indexs(Ωn) are

independent of the choice of exhaustion by bounded open sets Ω1 ⊂ Ω2 ⊂ · · · ⊂ Σ.

Proof. Let Ω̃1 ⊂ Ω̃2 ⊂ · · · ⊂ Σ be another exhaustion as the one above, note that

since each on the sets Ωn are bounded, for all n ∈ N there is a number k(n) ∈ N such

that Ω ⊂ Ω̃k(n), because limn→∞ k(n) =∞ we have

lim
n→∞

Indexw(Ωn) ≤ lim
n→∞

Indexw(Ω̃k(n)) = lim
n→∞

Indexw(Ω̃n).

The same argument shows that limn→∞ Indexw(Ωn) ≥ limn→∞ Indexw(Ω̃n),

12



concluding the proof for the weak index. The same arguments also work for the

strong index.

The following result will be useful to decompose a capillary surface into

components of smaller index.

Proposition 1.2. Let Ω1,Ω2 ⊂ Σ be open and disjoint, then Indexs(Ω1 ∪ Ω2) =

Indexs(Ω1) + Indexs(Ω2).

Proof. We will only consider the case where Ω1 and Ω2 are bounded, since the other

cases follow by considering an exhaustion and taking a limit. Note that we can

extend any function in C∞0 (Ωk), k = 1, 2 to a function in C∞0 (Ω1 ∪ Ω2) by setting

the extension to be zero outside the original domain. Since Ω1 and Ω2 are open and

disjoint, restricting any function in C∞0 (Ω1∪Ω2) to Ωk, where k = 1, 2, gives a function

in C∞0 (Ωk). So we can decompose C∞0 (Ω1∪Ω2) ≡ C∞0 (Ω1)⊕C∞0 (Ω2). Furthermore, Q

respects this decomposition in the sense that for any pair ϕ ∈ C∞0 (Ω1), ψ ∈ C∞0 (Ω2)

we have that Q(ϕ, ψ) = 0 because the supports of ϕ and ψ are disjoint. So any

subspace of C∞0 (Ω1 ∪ Ω2) where Q is negative-de�nite is equivalent to a sum of two

subspaces, one in C∞0 (Ω1), other in C∞0 (Ω2), where Q is negative-de�nite.

It is also interesting to note that the strong index and the weak index are closely

related.

Proposition 1.3. For any edged capillary surface Σ exactly one of the following must

hold:

13



(a) Indexw(Σ) = Indexs(Σ) =∞; or

(b) Indexw(Σ), Indexs(Σ) <∞ and Indexw(Σ) ≤ Indexs(Σ) ≤ Indexw(Σ) + 1.

Proof. Note that it is enough to show that for every bounded open set Ω ⊂ Σ be have

Indexw(Ω) ≤ Indexs(Ω) ≤ Indexw(Ω) + 1.

The inequality Indexw(Ω) ≤ Indexs(Ω) follows from the fact that B(Ω) ⊂ C∞0 (Ω).

To show the other inequality assume by contradiction that Indexs(Ω) ≥ Indexw(Ω)+2

and let V ⊂ C∞0 (Ω) be such that dimV = Indexw(Ω) + 2 and Q|V×V is negative-

de�nite. Note that there must be a function ϕ ∈ V such that
∫

Σ
ϕ = 1, else we would

have that V ⊂ B(Ω). Now, note that the linear map L : V → V ∩B(Ω) de�ned by

L(u) = u− ϕ
∫

Ω

u

has kernel generated by ϕ, hence dimV ∩B(Ω) ≥ Indexw(Ω)+1, a contradiction.

In the cases where the weak and the strong indices of Σ are both �nite we will say

that Σ has �nite index. Note that if Σ has �nite index, the for a large enough open

bounded set Ω ⊂ Σ we must have Indexs(Ω) = Indexs(Σ), and hence by Proposition

1.2 we can conclude that Σ \ Ω must be strongly stable.

We say that a function u ∈ C2(Σ) is a Jacobi function if
Ju = 0 in Σ,

∂u
∂η

= qu along Γ = ∂Σ ∩ ∂M.

(1.18)
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Jacobi functions play an important role in the study of (edged) capillary surfaces

with �nite index. Fisher-Colbrie and Schoen have shown that the existence of a

positive Jacobi function characterizes strong stability in complete, noncompact

minimal surfaces [27, Theorem 1]. Here we will show an analogous result for edged

capillary surfaces. In the following result we denote the �rst eigenvalue of the

stability operator Q in Ω ⊂ Σ by λ1(Ω).

Proposition 1.4. Let Σ be an unbounded edged capillary surface in a 3-manifold M

and let C ⊂ Σ be a compact subset. The followings are equivalent:

1. λ1(Ω) ≥ 0 for all bounded open sets Ω ⊂ Σ \ C.

2. λ1(Ω) > 0 for all Ω as above.

3. There exists a positive Jacobi function u in Σ \ C.

Proof. This proof is very similar to the one used by Fishcer-Colbrie and Schoen for

complete, noncompact minimal surfaces [21,27]. We will show the proof here for the

sake of completeness.

To show that (1) ⇒ (2) assume by contradiction that there is a bounded open

set Ω ⊂ Σ \ C such that λ1(Ω) = 0. Let Ω̃ ⊂ Σ \ C be a bounded open set strictly

containing Ω, since 0 ≤ λ1(Ω̃) ≤ λ1(Ω) = 0 we can conclude that λ1(Ω̃) = 0. Let φ be

eigenfunction associated to λ1(Ω) and let H1
0 (Ω) be the closure of C∞0 (Ω) under the

Sobolev H1-norm. Since |φ| ∈ H1
0 (Ω) is also a minimizer for the Rayleigh quotient

of Q, we can assume that φ ≥ 0. Notice that the function φ̃ : Ω̃ → R that extends
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φ by zero outside Ω is in the space H1
0 (Ω̃) and is also a minimizer for this Rayleigh

quotient. So it is also a weak solution to the Jacobi equation (1.18). However, since

φ̃ is zero at some point it follows from the Harnack inequality (see the version in [16])

that φ̃ vanishes everywhere, a contradiction.

Now, to show that (3)⇒ (1) let us write p = |AΣ|2 + RicM(ν, ν) and let w = log u

where u is a positive Jacobi function. Then

∆w = −p− |∇w|2,

and along the capillary boundary Γ:

∂w

∂η
= q.

Let f ∈ C∞0 (Ω) where Ω ⊂ Σ \ C is open and bounded. Then

∫
Σ

f 2p+ f 2|∇w|2 = −
∫

Σ

f 2∆w

= 2

∫
Σ

f〈∇f,∇w〉 −
∫

Γ

f 2∂w

∂η

≤ 2

∫
Σ

|f ||∇f ||∇w| −
∫

Γ

f 2q

≤
∫

Σ

f 2|∇w|+ |∇f |2 −
∫

Γ

f 2q.

So Q(f, f) ≥ 0.

Finally we show that (2) ⇒ (3). Note that a weak solution in H1
0 (Ω) to the
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problem 

Jv = f1 in Ω

∂v
∂η
− qv = f2 on Γ ∩ Ω

v = 0 on ∂Ω \ Γ.

can be characterized as a function v ∈ H1
0 (Ω) such that for all ϕ ∈ C∞0 (Ω) we have:

Q(v, ϕ) =

∫
Ω

f1ϕ+

∫
Γ∩Ω

f2ϕ.

The existence of weak solutions for any f1 ∈ L2(Ω), f2 ∈ L2(Γ∩Ω) can be established

through the Fredholm alternative using (2) and standard arguments (for example, by

following the arguments in [25, Section 6.2.3]). In particular, there is a weak solution

v to 

Jv = −RicM(ν, ν)− |AΣ|2 in Ω

∂v
∂η
− qv = q on Γ ∩ Ω

v = 0 on ∂Ω \ Γ.

So u = v + 1 is a Jacobi function in Ω. Furthermore, u must be positive, since if u is

not positive, then u|u<0 is an eigenfunction of Q in the set {u < 0} associated to the

eigenvalue zero, contradiction the hypotheses.

Consider an exhaustion Ω1 ⊂ Ω2 ⊂ · · · ⊂ Σ \ C of Σ \ C by bounded open sets.

Fix a point x ∈ Ω1, for each n ∈ N let un be a positive Jacobi function, by rescaling

un we can assume that un(x) = 1. So it follows from the Harnack inequality [16] that

for all compact sets K ⊂ Σ \C containing x there is a constant CK such that, for all
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n

sup
y∈K,n∈N

un(x) ≤ CK .

Using the Schauder estimates of Agmon, Douglis and Nirenberg [2, Theorem 7.3]

we can conclude that for all α ∈ (0, 1) there is a constant C ′K such that all un|K have

C2,α-Hölder norm bounded by C ′K . So, passing to a subsequence, we can assume that

the un converge in C2,α/2-Hölder norm to a positive Jacobi function in K. Using a

standard diagonal argument we can construct a positive Jacobi function on Σ\C.

1.3 Harmonic coordinates

Harmonic coordinates will be a very important tool in showing the curvature

estimates (theorems 2.10 and 3.6) because they allow for control of the metric tensor in

terms of curvature and injectivety radius. We will say that a Riemannian 3-manifold

M , possibly with boundary, has bounded geometry if there are positive constants ι

and Λ such that:

(i) M has absolute sectional curvature bound |KM | ≤ Λ;

(ii) the boundary of M has second fundamental form bound |h∂M | ≤ Λ;

(iii) every geodesic of M and every geodesic of ∂M with length at most ι is

minimizing;

(iv) there is a collar neighborhood U of ∂M in M and a function f ∈ C2(U) such

that f |∂M = 0, |∇f | = 1 and f(U) ⊃ [0, ι).
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More speci�cally, when (i)-(iv) hold we will say thatM has curvature bounded above by

Λ and injectivity radius bounded below by ι. In a local sense, these quantities control

how farM is from looking like a part of R3. This is formalized by the theorem below,

which is essentially the same as a result by Anderson et al. [9, Theorem 3.2.1] (see

also [43]). Here dM is the intrinsic distance in M and BM
r (p) is the intrinsic ball in

M of radius r > 0 centered at p ∈M .

Theorem 1.5. SupposeM is a Riemannian 3-manifold with curvature bounded above

by Λ and injectivity radius bounded below by ι. Fix an α ∈ (0, 1), then there are

constants r0 > 0 and Q0 > 1 depending only on Λ, ι and α such that for all p ∈ M

we have:

(i) If dM(p, ∂M) > r0, then there is a neighborhood U of ~0 in R3 and a coordinate

chart ϕ : U → BM
r0

(p) such that ϕ(~0) = p, and, in these coordinates, the metric

of M is bounded by

Q−1
0 δij ≤ gij ≤ Q0δij (1.19)

as a quadratic form, where δij represents the Euclidean norm. Additionally, the

metric has Hölder bounds

‖gij‖C1,α ≤ Q0. (1.20)

(ii) If dM(p, ∂M) ≤ r0, there is a b ≤ 0, a neighborhood U of ~0 in {x ∈ R3 : x1 ≥ b}

and a coordinate chart ϕ : U → BM
2r0

(p) such that U ∩ {x1 = b} is mapped to

∂M , ϕ(~0) = p and (1.19)�(1.20) still hold in these coordinates.
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We will often refer to the charts given by the theorem above as harmonic

coordinates. Note that since the result above is local in nature, it also holds in the

interior of any region where curvature and injectivity radius are bounded. In the

case where M is complete, the conditions involving the boundary are ignored.
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Chapter 2

On the Genus and Area of Constant

Mean Curvature Surfaces

In this chapter we will present results published by the author in [46]. We will

begin in Section 2.1 by contextualizing and introducing our main results. Then we will

discuss the local parametrization of CMC surfaces as graphs in Section 2.2, introduce

a blow-up technique in Section 2.4, before �nally showing our main results in Section

2.7.

2.1 Introduction

As we established in Chapter 1, the (weak and strong) index is a natural variational

quantity associated to CMC surfaces, hence it is expect to be controlled in CMC

surfaces produced through variational methods. For example, it has been shown that
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the index of minimal surfaces associated to the volume spectrum are controlled by the

order of the associated spectrum element [34, 55], and analogous results are believed

to hold for CMC surfaces produced through the Zhou-Zhu min-max procedure [34,56].

On the other hand, the geometry and topology of surfaces produced through

variational methods tend to be hard to control directly. With the objective of bridging

this gap, we are interested in the relation between the index of CMC surfaces and

classical geometric and topological quantities. This relation has been well explored for

minimal surfaces and hypersurfaces (see, for example [6, 17, 18, 40, 47, 52]), although

the following conjecture from Marques and Neves' 2014 ICM lectures is still open:

Conjecture 2.1 ([37]). If the ambient manifold has positive Ricci curvature, then

an index I embedded orientable compact minimal hypersurface has �rst Betti number

bounded by a �xed multiple of I.

The relation between the index and the geometry of CMC surfaces and

hypersurfaces is well known in some special cases (e.g [3, 14,44]). Here we will study

the area and genus of CMC surfaces of bounded index by describing the

degeneration of sequences of such surfaces in a similar way as Chodosh, Ketover and

Maximo have done for minimal surfaces [17]. We will show that in any closed

3-manifold, the genus of a CMC surface is controlled by its index and area

independently of the value of its mean curvature:

Theorem 2.2. Let I, A0 ≥ 0 and suppose M is a closed Riemannian 3-manifold.

There is a constant C depending only on M, I and A0 such that any closed, connected
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CMC surface embedded in M with area at most A0 and strong index at most I has

genus at most C.

If M is spherical, that is, M is closed with �nite fundamental group, we will

show that every sequence of closed, connected, CMC surfaces embedded in M with

an uniform lower mean curvature bound and an uniform upper index bound has a

subsequence that does not accumulate away from a �nite set or points. Using this

fact we are able to show:

Theorem 2.3. Let I ≥ 0, η > 0, and suppose M is a spherical Riemannian 3-

manifold. There are constants B and C depending only on M, I and η such that any

closed, connected CMC surface embedded in M with strong index at most I and mean

curvature at least η has area at most B and genus at most C.

The compactness assumption in Theorem 2.3 is necessary [22], as is the lower

bound on the mean curvature [19]. However it is not clear if the assumption on the

fundamental group of M is essential.

Here we always assume the surfaces are connected, unless stated otherwise. Recall

that we also assume that that CMC surfaces are one-sided, however it is also possible

to have one-sided minimal surfaces. In this case, the proof of Theorem 2.2 is given in

[17]. Now we will now present the main ideas in the proof of theorems 2.2 and 2.3.
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2.1.1 Outline of the proofs of the main theorems

Theorems 2.2 and 2.3 are shown by studying the degeneration of sequences of

closed CMC surfaces, possibly with varying mean curvature, with strong index at

most I embedded in a closed 3-manifoldM . Let {Σn}n∈N be such a sequence, assume

by contradiction that the genus of the Σn form a divergent sequence, and assume

for simplicity that, passing to a subsequence, the Σn have uniformly bounded mean

curvature (if this is not the case, an extra rescaling is needed).

By Theorem 2.10, we can pass the sequence {Σn} to a subsequence with uniformly

bounded second fundamental form away from a set of at most I points in M , called

blow-up points. Near the blow-up points we follow the arguments of Chodosh, Ketover

and Maximo [17] to show that, after rescaling the surfaces Σn, a subsequence must

converge to a minimal surface in R3 with index at most I. This fact allows us to

bound the genus and area of the surfaces Σn near the blow-up points.

Away from the blow-up points, the surfaces Σn must subconverge to a weak CMC

lamination of M 2. If this limit lamination is formed by properly embedded leafs, we

can use these limit leafs to bound the genus of the surfaces Σn away from the blow-up

points. In order to show that the limit lamination is formed by properly embedded

leafs, we have to bound the number of sheets of any surface Σn that pass through a

small region away from the blow-up points. At this part, the proofs of theorems 2.2

and 2.3 diverge.

2Even tough we will not use this fact, it is interesting to note that by Theorem 2.10 and the
Local Removable Singularity Theorem for CMC laminations [36, Theorem 1.2] we can choose a
subsequence so this limit lamination extends to the blow-up points.
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In the case of Theorem 2.2 we have uniform area bound for the surfaces Σn, so

the bound of the number of sheets follows from a standard argument. On the other

hand, to proof Theorem 2.3 we will to show that ifM is spherical, the direction of the

mean curvature vectors of the sheets associated to any surface Σn must alternate in

a certain sense. This, together with an uniform lower bound on the mean curvature

of these surfaces, will give uniform bounds on the maximum number of sheets of any

of the surfaces Σn that can pass tough a small region away from the blow-up points.

2.2 Graph parametrization of CMC surfaces

In order to show the main results of this chapter, we need to understand CMC

surfaces as graphs and their convergence. The results on this section are valid for

CMC hypersurfaces of arbitrary dimension, however, to be consistent with the rest

of the text, we will consider only consider the 2-dimensional case.

Let U ⊂ R3 be a open set and let suppose g is a metric on U such that (1.19) and

(1.20) hold for some α ∈ (0, 1) and Q0 > 1. Suppose Σ is a CMC surface in U which

is parametrized by the graph of a function u : D ⊂ R2 → R near some point p. Let

νu : D → R3 be a parametrization for the normal of the graph of u, we assume that

νu points upward in the sense that its product with the third coordinate vector �eld
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is positive. The mean curvature of Σ in the direction of νu is given by

〈νu, ~HΣ(·, ·, u(·, ·))〉 = aij
(

∂u

∂xi∂xj
+ Γ3

ij +
∂u

∂xi
Γ3

3j +
∂u

∂xj
Γ3
i3 +

∂u

∂xi

∂u

∂xj
Γ3

33

)
−

2∑
m=1

∂u

∂xm
hij
(

Γmij +
∂u

∂xi
Γm3j +

∂u

∂xj
Γmi3 +

∂u

∂xi

∂u

∂xj
Γm33

)
(2.1)

where the Γkij are the Christo�el symbols associated to g and

aij = gij −
(

1 + gnm
∂u

∂xn

∂u

∂xm

)−1

gikgj`
∂u

∂xk

∂u

∂xl

(for details see [20, Ch. 5])

Note that the quantity of the left hand side of (2.1) is constant and equal to ±HΣ,

depending on the direction of the mean curvature vector ~HΣ. Then, assuming that

|∇u| < C for some constant C, we have that the ellipticity of aij is controlled by C

and Q0. Using this fact and the C2,α bounds on on the metric g we can apply the

Schauder estimates [30, Thm 6.2] to �nd C2,α bounds for u in the interior of D in

terms of C,Q0 and the maximum of |u|. This fact is central to the proof of lemma

below.

Lemma 2.4 (Uniform Graph Lemma). Let U ⊂ R3 be an open set and consider a

metric g in U such that (1.19) and (1.20) hold for some α ∈ (0, 1) and Q0 > 1. Let

Σ ⊂ U be a properly embedded CMC surface and suppose the second fundamental

form of Σ is bounded above by a constant C. Then there are ε > 0, ρ > ε and C ′ > 0

depending only on Q0, C and α, such that for every x at euclidean distance at least ρ

from ∂U there is a rotation R ∈ O(3) such that:
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1. Every connected component of R(Σ∩BR3

ε (x)) is part of the graph of a function

u over the disk of euclidean radius ρ.

2. For all such functions u we have

‖u‖C2,α ≤ C ′.

Proof. We will assume without loss of generality that x = ~0. From (1.19) and (1.20)

we can conclude that there is a K > 0 depending only on Q0 and C such that the

norm of the euclidean second fundamental form of Σ is at most K. Fix an ε > 0 and

let Σ′ = Σ ∩ BR3

ε (~0). In the following, G : Σ→ RP2 will be the euclidean unoriented

Gauss map of Σ.

We �rst claim that there is an ε > 0 depending only on C and Q0 such that

sup
p,q∈Σ′

dRP2(G(p), G(q)) <
π

4
.

For p and q in the same connected component of Σ′, the existence of ε follows

immediately from the bounds on the second fundamental form. For p, q in distinct

connected components, we can use the bound on the second form to show that if ε is

su�ciently small and the distance between G(p) and G(q) is more than π/4, then

the connect components of Σ containing p and q must cross.

Choose a rotation R so that the tangent planes to R(Σ′) are bounded away from

any vertical plane by a distance of at least π/6. It follows that there is a constant

ρ > ε depending only on K and ε such that the connected components of
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R(Σ) ∩ BR2

ρ (~0) × R intersecting BR3

ε (~0) are graphs of a functions over BR2

ρ (~0). The

bounds on the euclidean second form and on the distance from the tangent planes

to vertical planes give bounds on the C2 norms for these functions. Making ρ

smaller and applying interior Schauder estimates (see e.g. [30, Theorem 6.2]) to the

mean curvature equation (2.1) we can obtain C2,α bounds for these functions.

Remark 2.5. Lemma 2.4 can be easily extended for general manifolds with bounded

geometry by using harmonic coordinates. In this case ε, ρ and C ′ depend only on C,

the sectional curvature bound and the injectivity radius bound of the ambient manifold.

As we have previously noted, the quantity in (2.1) can have di�erent signs

depending on the direction of the mean curvature vector. We will show that if two

graphs parametrizing distinct parts of a CMC surface have mean curvature vectors

pointing in distinct directions, then these two graphs cannot be close together in the

C0 metric.

Proposition 2.6. Consider Σ, U, g, α,Q0 and C as in the statement of Lemma 2.4.

Let ρ > 0 and write D(ρ) for the disk around the origin in R2 with radius ρ. Suppose

the graphs of u, v : D(ρ)→ R parametrize parts of Σ and let hu, hv : D(ρ)→ R be the

mean curvature of the graphs of u and v respectively in the direction of the upwards

pointing normal vector �eld. Assume that HΣ > η for some η > 0 and

1. hu and hv have distinct signs;

2. u ≤ v point-wise;
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3. ‖u‖C2,α(D(ρ)), ‖v‖C2,α(D(ρ)) ≤ C ′ for some C ′ > 0.

Then there is a c > 0 depending only on Q0, α, ρ, η and C such that

‖u− v‖C0(D(ρ)) > c.

Proof. Since u and v have C2,α norm bounded above by C ′, we can conclude that for

all ε > 0 there is a δ > 0 depending only on C ′, α, ε and ρ such that

‖u− v‖C2(D(ρ/2)) < ε

whenever ‖u − v‖C0(D(ρ)) < δ. So if u and v can be made arbitrarily close in D(ρ),

their mean curvatures can be made to be arbitrarily close in D(ρ/2).

On the other hand, we can conclude from the mean curvature equation (2.1) that

there is a constant C ′′ depending only on Q0, α, ρ and C ′ such that

2η = ‖hu − hv‖C0(D(ρ/2)) ≤ C ′′‖u− v‖C2(D(ρ/2))

whenever u and v are close enough in the C2 metric. It then follows that u and v

cannot be made arbitrarily close in the C0 metric.

Finally, we use the result above to show that, if the direction of the mean

curvarvature vector alternates between graphs, then it is possoble to control the

number of graphs passing tough a small region of space.

Proposition 2.7. Consider Σ, U, g, α,Q0 and C as in the statement of Lemma 2.4.

Let ρ > 0 and suppose u1, · · · , un : D(ρ) → R parametrize parts of Σ. For k =
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1, · · · , n let huk : D(ρ)→ R be the mean curvature of the graph of uk in the direction

of the upwards points normal vector �eld. Assume that there is η > 0 such that

HΣ > η and

1. huk and huk+1
have distinct signs for all k = 1, . . . , n− 1;

2. u1 < u2 < · · · < un point-wise;

3. ‖uk‖C2,α(D(ρ)) ≤ C ′ for some C ′ > 0 and all k = 1, . . . , n;

4. infD(ρ/2) |uk| < ε for some ε > 0 and all k = 1, . . . , n.

Then there is a number N depending only on Q0, α, C
′, ρ and ε such that n < N .

Proof. Let k ∈ {1, . . . , n − 2}, the di�erence wk,k+2 = uk+2 − uk follows an elliptic

equation with ellipticity and coe�cients controlled by the C1 norms of the metric,

uk+2 and uk (see [20, Chapter 5; 21, Chapter 7]). It follows that the functions wk,k+2

obey a Harnack inequality in D(ρ/2) with a constant C ′′ that only depends on Q0, C
′

and ρ [30, Theorem 8.20]. Using the C2,α bounds for the functions uk, we conclude

that there must be some k ∈ {1, . . . , n− 2} such that

wk,k+2(~0) ≤ 2C ′

n
.

So it follows from the Harnack inequality that

‖wk,k+2‖C0(D(ρ/2)) <
2C ′C ′′

n
.

So we must have n < 2C ′C ′′c−1 where c is as in Proposition 2.6.
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2.3 CMC laminations

A lamination of a 3-manifold M is the union of a collection L of smooth, pairwise

disjoint embedded surfaces called Leaves such that
⋃
L∈L L is closed. Furthermore,

we assume that L has a local product structure in the sense that for every p ∈ M

there is a neighborhood U of p in M and a continuous coordinate chart Ψ : U → R3

such that each leaf L ∈ L passing tough U is the union of sheets of the form

Ψ(U) ∩ {t}

where t ∈ R. A CMC lamination is a lamination where each leaf is a CMC surface,

and an H-lamination is a CMC lamination where each leaf has mean curvature H.

A minimal lamination is a laminations where the leafs are minimal.

We are also interested in the case where leafs can touch at isolated points, since

these cases appear naturally in the limit of CMC laminations. In this case, the

lamination is called a weak CMC lamination, the de�nition of a weak CMC lamination

is similar to that of a CMC lamination, except that instead of requiring the leafs to

be pairwise disjoint we require that near any point of contant between two leafs or

between a leaf and itself, the surfaces lie at one side of the other. And instead of

assuming that there is a coordinate chart that recti�es the lamination, we assume

that second fundamental form of the leafs is uniformly bounded on compact sets of

M (see e.g. [36]). A weak H-lamination is a weak CMC lamination where each leaf

has mean curvature H. Note that it follows from the maximum principle for CMC
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surfaces that if a point belongs to two leafs of a weak H-lamination, then the mean

curvature vector of the two leafs at p must point in opposite directions.

We say that a sequence of CMC surfaces {Σn}n∈N properly embedded in M

converges to a weak CMC lamination L∞ if the union of the leaf of L∞ is the limit

set of the sequence of surfaces, that is, if every convergent sequence {pn}n∈N where

pn ∈ Σn converges to a point in a leaf of L∞ and if every point if a leaf of L∞ can be

obtained by taking such a limit. We say that the converge occurs with multiplicity

at most m if, for all L ∈ L∞ and all p ∈ L there is a neighborhood U of p is M such

that, in U , L is parametrized as a graph and for all n large enough Σn is

parametrized as a union of at most m graphs. If there is such a m, we say that

convergence occurs with �nite multiplicity.

Theorem 2.8. Let M be a complete Riemannian 3-manifold with bounded geometry.

Consider a sequence of CMC surfaces {Σn}n∈N properly embedded in M . Suppose

there is a constant C > 0 and an open set Ω ⊂ M such that for all n ∈ N and

x ∈ Σn ∩ Ω we have that |AΣn(x)| < C. Then there is a constant H ≥ 0 and a weak

H-lamination L∞ of Ω such that a subsequence {Σnk}k∈N converges to L∞ in Ω.

Proof. We can assume there are points pn ∈ Σn ∩ Ω such that, passing to a

subsequence, they converge to some point p ∈ Ω (else the set of limit points is

empty in Ω, so the intersection of Ω with the leafs of L∞ must be empty). Passing

to a subsequence we can assume that the tangent planes of the surfaces Σn at the

points pn must converge to some plane at p. Fix a parametrization ϕ of M near p
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with harmonic coordinates as described in Theorem 1.5.

Using Lemma 2.4 we have that that, after possibly making U smaller, for every

α ∈ (0, 1) there is ρ > 0 depending only on ambient curvature bound Λ, the ambient

injectivity radius bound ι, C and α such that, for n large enough, ϕ−1(Σn) is

parametrized by graphs of functions un,1, . . . , un,Kn over some disk Dρ with C2,α

bounds that do not depend on n.

First we assume that for all n ∈ N the mean curvature vectors or all un,1, . . . , un,Kn

point upwards, later we will deal with the more general case. Set Mn,k = un,k(~0)

where k = 1, · · · , Kn, then we de�ne a coordinate chart Ψn : U → R3 by letting

Ψ−1
n (x1, x2, x3) = (x1, x2, fn(x1, x2)) where

fn(x1, x2, x3) = un,k(x1, x2) +
x3 −Mn,k

Mn,k+1 −Mn,k

(un,k+1(x1, x2)− un,k(x1, x2))

for (x1, x2, x3) ∈ U ∩ R2 × [Mn,k,Mn,k+1]. Using similar arguments to the one used

in Proposition 2.7, we can apply the Harnack inequality to bound the oscillation of

un,k+1(x1, x2)− un,k(x1, x2) and the Schauder inequality to bound the gradient of the

un,k. Using that

∇fn(x1, x2, x3) = ∇un,k(x1, x2) +
x3 −Mn,k

Mn,k+1 −Mn,k

∇(un,k+1(x1, x2)− un,k(x1, x2))

+
un,k+1(x1, x2)− un,k(x1, x2)

Mn,k+1 −Mn,k

∂

∂x3

and the mentioned above, it is possible to obtain a bi-Lipschitz bound for Ψn in a

region of U that does not depend on n (see e.g. [20, Prop. B1]). Then, making U

smaller and passing to a subsequence we can conclude that the Ψn converge in C
α to
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some Lipchitz map Ψ : U → R3. The leaves of L∞ in U are the accumulation set of

the sheets Ψn(ϕ−1(Σn)). Note that, using the Shauder estimates for the function un,k

we can conclude that L∞ is a H-lamination of U where H = limn→∞HΣn .

In case there are graphs in U with mean curvature vectors pointing upwards and

downwards we can follow a similar procedure as above, �rst only considering the

graphs pointing in one direction and then only considering the graphs pointing the

other other direction. This means that we get two maps rectifying the L∞, one for

each direction. In this case, leaves with mean curvature vectors pointing in distinct

directions can touch, for this reason we can only grantee a weak lamination. Finally,

we can extend the lamination to all of Ω by a standard continuity procedure followed

by taking a diagonal sequence.

Remark 2.9. In the case where we can bound the number of graphs parametrizing

the Σn in small neighborhoods, the limit weak lamination must be a �nite collection

of properly embedded CMC surfaces.

2.4 Curvature bounds for CMC surfaces with �nite

index

In 1983, Schoen [49] proved that the second fundamental form of a strongly stable

two-sided minimal surface immersed in a 3-manifold is bounded above by a constant

multiplying the reciprocal of the distance to the boundary, and this constant only
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depends on the curvature of the ambient manifold and its covariant derivative. In

particular, he proved that

|AΣ(p)| ≤ C

dΣ(p, ∂Σ)
∀ p ∈ Σ, (2.2)

where Σ is a strongly stable two-sided minimal surface immersed in R3 and C > 0 is

a constant independent of Σ. This curvature estimate gives a di�erent proof to the

fact that a two-sided stable complete minimal surface in R3 must be a plane.

Schoen's curvature estimates have many generalizations, those more relevant to

our work are the generalization to strongly stable free boundary minimal surfaces by

Guang, Li and Zhou [31], generalization to strongly stable immersed CMC surfaces

by Rosenberg, Souam and Toubiana [43] and the generalization of embedded minimal

surfaces of �nite index by Chodosh, Ketover and Maximo [17].

An estimate like (2.2) cannot hold for strongly stable CMC surfaces in general

3-manifolds. For instance, horospheres are strongly stable complete CMC surfaces in

hyperbolic 3-space but are not totally geodesic. However, Rosenberg-Souam-Toubiana

[43] showed that far away from its boundary, the second fundamental form of a

strongly stable immersed CMC surface is bounded above by an universal constant

C that does not depend on the ambient space or the surface divided by the square

root of an absolute sectional curvature bound of the ambient space. More precisely,

they obtained the following curvature estimate: There is a constant C such that for

any complete 3-manifold M with sectional curvature bounds |KM | < Λ, and for any
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strongly stable two-sided CMC surface Σ immersed in M

|AΣ(p)| ≤ C

min{dΣ(p, ∂Σ), (
√

Λ)−1}
∀ p ∈ Σ. (2.3)

In order to show this inequality they use a blow-up procedure with harmonic

coordinates. Using harmonic coordinates usually requires a lower injectivity radius

bound, in order to avoid any assumptions on injectivity radius they �rst pull a

neighborhood of the ambient manifold back to its tangent space through the

exponential map, where there are lower injectivity radius bounds that depend only

on Λ.

We will show a version of this inequality for CMC surfaces of �nite index drawing

from ideas of [43] and [17]. In this chapter we will only use this result in the case

where the surfaces are embedded, however we will prove the result for the case of

immersed surfaces since we will need to use this case for Theorem 3.6.

Theorem 2.10. For all I ≥ 0 there is a constant C depending only on I such that the

following holds: Let M be a complete Riemannian 3-manifold with curvature bounded

above by Λ and injectivity radius bounded below by ι > 0. Suppose Σ is a CMC surface

immersed in M with strong index at most I. Then there is a set B ⊂ Σ with at most

I points such that

|AΣ(p)|min
{
dΣ(p, ∂Σ ∪ B), ι, (

√
Λ)−1

}
≤ C (2.4)

for all p ∈ Σ.

This Theorem will be shown later on in this section. It is possible to improve the
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result above so it does not depend on the injectity radius of the ambient manifold

(see [46]). But since we will not need this fact, we opt to show the inequality with

the injectivity radius factor since it simpli�es the proof and makes it more similar to

Theorem 3.6.

One consequence of the fact that the constant C in Theorem 2.3 does not depend

on the mean curvature of Σ is that we can use this result to bound the diameter of

CMC surfaces with large mean curvature.

Corollary 2.11. Let C be the constant given by Theorem 2.10 in the case I = 0.

Let Σ be a CMC surface with �nite index immersed immersed in M and assume

HΣ ≥
√

2C max{ι−1,
√

Λ}. Then,

� in case Σ has nonempty boundary,

dΣ(p, ∂Σ) ≤ (Indexs(Σ) + 1)
2
√

2C

HΣ

(2.5)

for all p ∈ Σ; and

� in case Σ is closed

diamΣ(Σ) ≤ Indexs(Σ)
2
√

2C

HΣ

, (2.6)

where diamΣ(Σ) is the intrinsic diameter of Σ.

Proof. We will only show (2.5) since the proof of (2.6) is very similar. Let I =

Indexs(Σ), �rst we consider the case where I = 0. Since |AΣ| ≥ HΣ/
√

2, it follows

from Theorem 2.10 that

HΣdΣ(p, ∂Σ) ≤
√

2C
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for all p ∈ Σ.

Now consider the case when I > 0. Let p ∈ Σ and take γ : [0, L]→ Σ to be an unit

speed geodesic minimizing the distance from p to ∂Σ. Assume by contradiction that

γ has length (I + 1)(2
√

2CH−1
Σ + ε) for some ε > 0. Fix numbers 0 = t0 < t1 < · · · <

tI+1 = L such that ti+1 − ti ≥ 2
√

2C/HΣ + ε for i = 0, · · · , I. Let Di be the geodesic

disks around γ(ti) with radius
√

2C/HΣ +ε/2. Note that, by construction, these disks

are pair-wise disjoint and they are disjoint from the edge of Σ for i = 0, · · · , I. The

case I = 0 implies that these disks cannot be strongly stable. So we conclude from

Proposition 1.2 that Σ must have strong index at least I + 1, a contradiction.

Before showing Theorem 2.10 we will de�ne what we mean by a sequence of

rescaled surfaces. Suppose {Mn}n∈N is a sequence of 3-manifolds with uniform

sectional curvature bounds |Kn| ≤ Λ and injectivety radius bounds ιn ≥ ι > 0. For

each n ∈ N, let Σn be an Hn-surface (possibly with boundary) immersed in Mn.

Take a sequence of points pn ∈ Σn. By abuse of notation, denote image of pn under

the immersion of Σn in Mn by pn.

Fix an α ∈ (0, 1) and let r0, Q0 be as in Theorem 1.5. For every n ∈ N, take

an open set Un ⊂ R3 containing ~0 and harmonic coordinates ϕn : Un → BMn
r0

(pn).

We de�ne Σn − pn to be the immersed surface in Un obtained by pulling back the

connected component of Σn in BMn
r0

(pn) containing pn.

Take a sequence of positive numbers {σn}n∈N with σn → ∞. Let µσ : R3 → R3

be the dilation x 7→ σ−1x. De�ne g̃n = (ϕn ◦ µσn)∗gn where gn is the metric in Mn.
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Then we can also dilate Σn − pn to get a surface immersed in σnUn, which we will

denote by σn(Σn−pn). We refer to any sequence of surfaces constructed through this

procedure as a sequence of rescaled surfaces.

Note that in the g̃n metric, σn(Σn − pn) is a Hn
σn
-surface. Furthermore, it follows

from (1.19) and (1.20) that (σnUn, g̃n) → (R3, δij) locally in C1,α as n → ∞ (for a

proof, see [43]).

Proof of Theorem 2.10

We will use induction on I. The case I = 0 has been done by Rosenberg, Soaum

and Toubiana [43], we will present the arguments here for the sake of completeness.

Assume by contradiction that there is a sequence of complete 3-manifolds with

bounded geometry Mn and immersed, strongly stable Hn-surfaces Σn immersed in

Mn with points qn ∈ Σn such that

|An(qn)|min{dn(qn, ∂Σn), ιn, (
√

Λn)−1} > n

where

� dn and An are the intrinsic distance and the second fundamental form on Σn,

respectively;

� Λn is an upper bound on the absolute value of the sectional curvature of Mn;

� ιn is a lower bound bound on the injectivity radius of Mn.

Since the quantity on the left hand side of (2.4) is scale-invariant, we can rescale

the metrics of the Mn we can assume that Λn = ιn = 1. Fix an α ∈ (0, 1) and
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consider the values r0, Q0 given by Theorem Theorem 1.5 with ι = Λ = 1, we can

assume without loss of generality that r0 < 1. Note that

|An(qn)|min{dn(qn, ∂Σn), r0} ≥ r0|An(qn)|min{dn(qn, ∂Σn), 1} > r0n.

Let Dn be the intrisic disk in Σn around qn with radius min{dn(qn, ∂Σn), r0}. Take

pn to be the point in Dn maximizing

|An(p)|dDn(p, ∂Dn).

Let λn = |An(pn)| and Rn = dDn(pn, ∂Dn). By construction we have that λnRn > r0n

and λn > n because Rn ≤ r0.

Let D̃n be the intrinsic disk in Dn centered at pn with radius Rn/2. Note that by

construction

dDn(p, ∂Dn) ≥ Rn

2

for all p ∈ D̃n. It follows that for all such p we have

|An(p)| ≤ λnRn

dDn(p, ∂Dn)
≤ 2λn.

Consider the sequence of rescaled surfaces

λn(D̃n − pn).

immersed in λnUn where Un ⊂ R3 is as described above. Since λnUn equipped with

the pull-back metric converges locally in C1,α to the euclidean 3-space, it follows that

for any m ∈ N there is a n ∈ N such that the euclidean ball of radius m centered at
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the origin, which we write as Bm(~0), is contained in λnUn. Following [43], we de�ne

∆n,m to be the component of λn(D̃n − pn) ∩ Bm(~0) containing the point associated

with pn ∈ Σn, which we will denote by 0n ∈ λn(D̃n − pn). Since λnRn > r0n, the

intrinsic distance between 0n and the boundary of λn(D̃n − pn) is at least r0n/2, and

since we are scaling the immersion by λn, the norm of the second fundamental form

of λn(D̃n − pn) in the pull-back metric is bounded above by 2 and equals 1 at 0n.

Hence, by making n = nm large enough in relation to m, we can assume that the

boundary of λn(D̃n− pn) is disjoin from Bm(~0) and that ∆nm,m has euclidean second

fundamental form with norm bounded above by 5 everywhere and bounded below by

1/2 at 0n.

Let ∆n = ∆nm,m, up to passing to a subsequence we can assume that the tangent

planes T0n∆n converge. Rotate the ambient space so this limit plane is {x3 = 0}. It

follows from standard arguments (see Lemma 2.4, [43, Proposition 2.3], [35, Lemma

4.35]) that there are positive constants C and δ such that a part of ∆n is the graph

of a function un over the disk Dδ = {x ∈ Bδ(~0) : x3 = 0} and

|∇un| < 1, ‖un‖C2(Dδ) < C.

Applying the Schauder estimates to the mean curvature equation (2.1) (see Lemma

2.4, [43, Lemma 2.4]) it is easy to see that there is a δ′ ∈ (0, δ) such that, after

possibly making C larger

‖un‖C2,α(Dδ′ )
< C.
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Passing to a subsequence we can assume there is a function u : Dδ → R such that

un → u in C2(Dδ) and C
2,α/2(Dδ′). Fix a δ′′ ∈ (δ′, δ) and let x0 ∈ Dδ′ be at euclidean

distance of δ′/2 from the origin. By repeating the arguments above we have that,

for n large, the surfaces ∆n are parametrized by graphs over the disk of radius δ′′ in

the tangent plane of the graph of u at (x0, u(x0)). Passing to a subsequence, graphs

must converge in the C2,α/2 topology, extending the graph of u to a larger surface.

Continuing this construction and using a diagonal argument we encounter a complete

noncompact CMC surface S immersed in euclidean 3-space with second fundamental

form bounded above by 5 everywhere and passing through the origin with nonzero

second fundamental form. Now we will show that S is strongly stable by showing it

accepts a positive Jacobi function. It the follows that S must be a plane [23], which

contradicts the fact that S passes tough the origin with nonzero second fundamental

form.

Let S̃ be the universal cover of S. We will show that S̃ accepts a positive Jacobi

function. It follows from the construction used in Proposition 1.4 that we only have

to show that every bounded open set Ũ ⊂ S̃ accepts a positive Jacobi function. Let

Π : S̃ × (−ε, ε) be the immersion Π(p, t) = f̃(p) + tν̃(p) where f̃ is the immersion

of S̃ in R3 and ν̃ is a choice of normal in S̃. Let U be the image of Ũ in S. By

construction, for n large, a piece of ∆n will be close enough to U everywhere so that

this piece is parametrized by a function Π(·, ũn(·)) where ũn : Ũ → (−ε, ε). Since any

part of a strongly stable CMC surface is also strongly stable, it follows that ∆n is
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strongly stable, and hence it accepts a positive Jacobi function vn. Let ṽn : S̃ → R+

be such that ṽn(·) = vn(Π(·, ũn(·))), through an analogous construction, the Jacobi

operator on ∆n de�nes an elliptic operator on Ũ . Since the metrics are converging

in C1,α to the Euclidean metric and ũn → 0 in C2,α/2, we can conclude that these

operators converge to the Jacobi operator on Ũ and that the functions ṽn converge

to a positive Jacobi function in Ũ . This concludes the base case.

Now assume that the statement holds for all I ≤ k − 1 where k ∈ N. Let Σn be

sequence of CMC surfaces with strong index k immersed in manifolds with bounded

geometry. We will use the same construction and the same notation used in the base

case. Consider the surfaces ∆n, it follows that there must be a ρ > 0 such that

∆n ∩Bρ(~0) is unstable for all n large enough, since else we can follow the same steps

from the base case to derive a contradiction. This implies that there is a ρ′ > 0 such

that, for all n large, the disk BΣn
(ρ′/λn)(pn) is unstable. So Σ̂n = Σn \ BΣn

(ρ′/λn)(pn) has

strong index at most k− 1, then there must be a set B̂n ⊂ Σ̂n making (2.4) hold. We

will show that we can take Bn = B̂n ∪ {pn}.

Assume by contradiction that there are points zn ∈ Σn such that

|An(zn)|min{dn(zn, ∂Σn ∪ Bn), 1} → ∞

We will consider two cases. First assume

lim inf
n→∞

λndn(zn, pn) <∞.
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Passing to a subsequence we have

dn(zn, pn)

Rn

=
λndn(zn, pn)

λnRn

→ 0,

so from n large enough we can deduce that zn ∈ D̃n, and hence |An(zn)| ≤ 2λn so we

conclude

lim
n→∞

|An(zn)|dn(zn, pn) ≤ lim
n→∞

2λndn(zn, pn) <∞,

which contradicts the choice of zn.

Now assume

lim inf
n→∞

λndn(zn, pn) =∞.

It follows that for n large enough dn(zn, pn) > ρ′/λn, hence zn ∈ Σ̂n. Since

dn(zn, ∂B
Σn
ρ′/λn

(pn)) = dn(zn, pn) − ρ′/λn are positive and bounded below for n large

enough, we must have

|An(zn)|min{dn(zn, ∂Σ̂n ∪ B̂n), 1} → ∞,

contradicting the inductive hypothesis.

Remark 2.12. As we have observed, Theorem 2.10 also holds without any injectivety

radius assumptions. The proof in this case is very similar, expect that in this case,

before constructing the sequence of rescaled surfaces one must �rst pull back the surface

to the tangent space of the ambient manifold. For more details see [43, 46].
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2.5 Picture near blow-up points

In this section we will consider sequences of CMC surfaces {Σn}n∈N embedded in

a closed 3-manifold M . Following Chodosh, Ketover and Maximo [17] we say that a

sequence of �nite sets of points Bn ⊂ Σn is a sequence of blow-up sets if:

1. The curvature blows up at the points in Bn, that is, taking λn(p) = |An(p)| we

have

lim inf
n→∞

min
p∈Bn

λn(p)→∞.

2. Taking any sequence of points {pn ∈ Bn}n∈N we can pass to a subsequence so

λn(pn)(Σn − pn)→ L∞,

where L∞ is a weak CMC lamination of euclidean 3-space with ‖AL∞‖C0 ≤ 5

and |AL∞ |(~0) = 1.

3. The blow-up points do not appear in the blow-up limit of the other points, that

is

lim inf
n→∞

min
p,q∈Bn,p 6=q

λn(p)dM(p, q) =∞

Proposition 2.13. Suppose that the strong index of the surfaces Σn is uniformly

bounded above by a constant I. Then there is a sequence of blow-up sets Bn ⊂ Σn

with cardinality at most I, a constant C depending only on I and a constant cM

depending only on M such that

|An|(x) min{dM(x, ∂Σn ∪ Bn), cM} ≤ C (2.7)
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for all n and all x ∈ Σn.

Proof. We will show that one can take the sets Bn as in the proof of Theorem 2.10 by

changing the distance function from the intrinsic distance to the extrinsic distance.

It is clear that these sets have cardinality at most I and that the λn(pn)(Σn− pn) are

embedded with bounded second fundamental form and the distance from the origin

to boundary of λn(pn)(Σn − pn) diverges. So it follows from Theorem 2.8 that these

surfaces must subconverge to a weak CMC lamination of euclidean 3-space.

To show the third item in the de�nition holds, let B̂n be as constructed in the

proof of Theorem 2.10 and assume by contradiction that

lim inf
n→∞

min
q∈B̂n

λn(pn)dM(pn, q) <∞.

Take qn to be a point in B̂n closest to pn and let λn(qn) = |An(qn)|, repeating the

arguments from the proof of Theorem 2.10 we have that, passing to a subsequence,

for n large enough

λn(qn) ≤ 2λn(pn),

so lim infn→∞ λn(pn)dM(qn, pn) <∞. This clearly implies

lim
n→∞

|An(qn)|dM(qn, ∂Σ̂n) <∞

contradicting the choice of qn.

In the case where the mean curvature of the Σn are uniformly bounded, repeating

the arguments in [17, Section 4] we can conclude:
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Lemma 2.14. Suppose {Σn} is a sequence of CMC surfaces embedded in a close

Riemannian 3-manifold M with mean curvature uniformly bounded above by a

constant H and strong index at most I. Suppose the blow-up sets Bn accumulate on

a set B∞. Then there is a δ > 0 such that the set

BM
δ (B∞) =

⋃
p∈B∞

BM
δ (p)

is a union of disjoint balls making the following hold for all n large enough. Let Σ′n be

the (possibly disconnected) surface formed by the connected components of BM
δ (B∞)∩

Σn passing through Bn and let Σ′′n be the complement of Σ′n in BM
δ (B∞) ∩ Σn, then:

1. The components of Σ′′n are CMC disks with second fundamental form uniformly

bounded above.

2. Σ′n intersects BM
δ (B∞) transversely in at most m circles.

3. The genus of Σ′n is at most r;

4. The surfaces Σ′n have uniformly bounded area;

where m and r depend only on H an I.

2.6 Picture away from blow-up points

In this section we will show that a sequence of CMC surfaces embedded in a space

with �nite fundamental group and with second fundamental form bounded above and

mean curvature bounded away from zero cannot accumulate in a dense region. The
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results presented here will be used to proof Theorem 2.3 and will also be needed to

remove any upper mean curvature bound assumption on Theorem 2.2. The results

here are valid for CMC hypersufaces of arbitrary dimensions, however we will only

state the results in dimension three in order to be consistent with the rest of the text.

Let M be a Riemannian 3-manifold (possibly with boundary) with �nite

fundamental group. Let Σ ⊂M be a properly embedded two-sided surface and let ν

be a normal vector �eld along Σ. Suppose γ : [0, 1] → M is a di�erentiable curve

between points in M \ Σ which is transversal to Σ. Write γ−1(Σ) = {t1, · · · , tn}

where t1 < · · · < tn. We say that Σ is `-alternating if for any such curve γ one of the

following holds:

� Either ` > n− 1;

� or there is a j ≤ `+ 1 such that

〈γ′(t1), ν(γ(t1))〉 and 〈γ′(tj), ν(γ(tj))〉

have opposite signs.

Proposition 2.15. Suppose |π1(M)| = `. Then any properly embedded two-sided

surface Σ ⊂M is `-alternating.

Proof. Let M̃ be the universal cover of M and let Σ̃ be the lift of Σ in the sense

that, for any evenly covered open set U ⊂M and any sheet Ũ ⊂ M̃ over U , Σ̃∩ Ũ is

mapped isometrically to Σ ∩ U by the covering map. Note that we can lift a normal

vector �eld ν of Σ to a normal vector �led ν̃ of Σ̃.
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Let γ : [0, 1] → M be a di�erentiable curve with ends away from Σ which is

transversal to Σ and intersects Σ it in at least ` + 1 points. Choose any lift γ̃ of γ.

Note that γ−1(Σ) = γ̃−1(Σ̃) and for each tj in this set

〈γ′(tj), ν(γ(tj))〉 = 〈γ̃′(tj), ν̃(γ̃(tj))〉.

So we only need to show that there are j, j′ ≤ `+ 1 such that

〈γ̃′(tj), ν̃(γ(tj))〉 and 〈γ̃′(tj′), ν̃(γ̃(tj′))〉

have opposite sings.

Since the order of the cover M̃ →M is `, Σ̃ has at most ` connected components.

So there must be a connected component Σ̃0 of Σ̃ intersecting γ̃ at least twice. Let

γ̃(s1) = x̃, γ̃(s2) = ỹ ∈ Σ̃0 be the �rst and second points of intersection of γ̃ with

Σ̃0, respectively. Assume by contradiction that the product of the velocity of γ̃ with

the normal of Σ̃0 has the same sign at both these points. By changing the direction

of the normal of Σ̃0 we can assume that these are both negative. Choose a path

η : [0, 1]→ Σ̃0 between x̃ and ỹ and for r ≥ 0 set

ηr(t) = expM̃(rν̃(η(t))).

Fix ρ > 0 small enough so that ηρ does not intersect Σ̃0. Taking ε > 0 small enough,

we can join γ̃|[s1−ε,s2−ε] to ηρ by two smooth curves that do not intersect Σ̃0. Let β

be the concatenation of these 4 curves. Then β is piecewise smooth and intersects

Σ̃0 exactly at x̃. On the other hand, since M̃ is simply-connected and Σ̃0 is properly
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embedded, the intersection number of β and Σ0 has to be even.

Using the result above and Proposition 2.7 we conclude that, under the hypothesis

of Theorem 2.8, ifM has �nite fundamental group, the lamination L∞ must be a �nite

collection of properly embedded CMC surfaces.

2.7 Proof of the main theorems

Now we are are ready to proof theorems 2.2 and 2.3. Since the proofs are very

similar we present the proof of Theorem 2.2 in more detail and reference it in the

proof of Theorem 2.3.

Proof of Theorem 2.2

Let M be a closed Riemannian 3-manifold and let {Σn}n∈N be sequence of closed

CMC surfaces embedded in M with index at most I and area at most A0. Suppose

by contradiction that the genus of the Σn form a divergent sequence. Passing to a

subsequence, we can assume that the sequence of blow-up sets {Bn ⊂ Σn}n∈N

accumulate. Let Hn be the mean curvature of Σn. We will consider two cases

depending on the behavior of the series {Hn}n∈N.

Case 1: lim infn→∞Hn <∞.

Pass to a subsequence so the Hn are uniformly bounded and divide the Σn into three

parts: Σ′n,Σ
′′
n as in Lemma 2.14 and

Σb
n = Σn \BM

δ/2(B∞).
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By Theorem 2.10, the norm of the second fundamental form of the surface Σn

is uniformly bounded away from BM
δ/3(B∞). Since the area of the Σn is uniformly

bounded above, the number of graphs in the local parametrization of Lemma 2.4 is

uniformly bounded. So we can pass to a subsequence such that the Σb
n converge with

�nite multiplicity to a (possibly disconnected) CMC surface Σb
∞ (see Theorem 2.8).

Hence for n large enough Σb
n is a cover of Σb

∞ with uniformly bounded degree. Using

this fact it is easy to bound the Betti numbers of the surfaces Σb
n.

Lemma 2.14 together with the area bound limits the Betti numbers of Σ′n and Σ′′n.

By [17, Lemma 3.1] the surfaces Σb
n intersects Σ′n and Σ′′n in annuli, so we can use

a Mayer-Vietoris sequence to bound on the Betti numbers of Σn
3. This contradicts

the assumption that the sequence of the genus of the Σn diverges.

Case 2: limn→∞Hn =∞.

To follows from Corollary 2.11 that the surfaces Σn converge to a point p∞ ∈ M in

the Hausdor� sense. So for n large enough

Σn ⊂ BM
r (p∞).

where r is smaller than the injectivity radius of M . Using the exponential map of M

at p∞ we can pull Σn back to a properly embedded Hn-surface

Σ̃n ⊂ (BR3

r (p∞), exp∗p∞ g).

3We can also use a surgery argument [17, Proposition 5.1]
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Scaling the Σ̃n by Hn we obtain a sequence of 1-surfaces

Σn = HnΣ̃n

with uniformly bounded diameter in an increasing sequence of balls with metrics

converging smoothly to the euclidean metric in compact sets.

Consider a decomposition of the Σn into Σ
′
n,Σ

′′
n and Σ

b

n analogous to the

decomposition of the Σn in Case 1. By Lemma 2.7 and Proposition 2.15, there are

uniform bounds on the number of sheets of the surfaces Σ
b

n on any small open set.

Hence we can conclude that, passing to a subsequence, the surfaces Σ
b

n converge to a

1-surface Σb
∞. These same arguments can be used to bound the number of

connected components of the Σ
′′
n. Finally we can conclude using the same

arguments from Case 1.

Proof of Theorem 2.3

First note that by Theorem 2.2 we only have to show that there is an uniform area

bound. Let M be a spherical Riemannian 3-manifold and let {Σn}n∈N be a sequence

of closed CMC surfaces embedded in M with index at most I and mean curvature

at least η > 0. Assume by contradiction that the area of the Σn form a divergent

sequence and pass to a subsequence so the sequence of blow-up sets {Bn ⊂ Σn}n∈N

accumulates.

Let Hn be the mean curvature of Σn. In the case where lim supn→∞Hn =∞, we

can pass to a subsequence so limn→∞Hn =∞. Following the arguments used in Case
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2 of the proof of Theorem 2.2 we can conclude that the area of the mean-curvature

rescaled surfaces Σn is uniformly bounded, hence the area of the surfaces Σn must

converge to 0, a contradiction.

So we may assume lim supn→∞Hn < ∞. In this case we can apply the same

decomposition used in Case 1 on the proof of Theorem 2.2 and use Lemma 2.15 to

bound the number of sheets of any Σb
n that can pass through small regions. A similar

argument can be used to bound the number of connected components of Σ′′n, and

hence we conclude that there are uniform area bounds for these two parts. Finally,

Lemma 2.14 allows us to conclude that there are uniform area bounds for the surfaces

Σ′n.
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Chapter 3

Capillary Surfaces: Index, Stability

and Curvature Estimates

Here we will present results that where obtained in collaboration with Han Hong

and appeared in [32]. In this chapter we show several results that relate the index to

the geometry and topology of capillary surfaces. We begin in Section 3.1 presenting

and contextualizing our main results. Sections 3.2 and 3.3 deal with compact and

noncompact capillary surfaces respectively. Finally we obtain curvature bounds for

strongly stable capillary surfaces in Section 3.4.
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3.1 Introduction

3.1.1 Index estimates for compact capillary surfaces

There are many results that, in the spirit of Conjecture 2.1, give an index bound

for free boundary minimal surfaces that depend on an a�ne function of the genus

and the number of boundary components (see e.g. the work of Sargent Sargent

[45] and Ambrozio-Carlotto-Sharp [8]). In these papers, harmonic one forms are

used to construct test functions for the second variation formula of area functional.

This idea was �rst discovered by Ros [41], and further developed by Savo [48] and

Ambrozio-Carlotto-Sharp [7] in the case when the surfaces in question are closed

minimal surfaces. Aiex and Hong applied a similar idea to the settings where the

surfaces are closed CMC surfaces and free boundary CMC surfaces in a general three-

dimensional Riemannian manifold [3] and obtained lower index bounds in terms of the

topology. In particular, as a byproduct, they showed that the index of free boundary

CMC surfaces in a mean convex domain of R3 is bounded below by (2g − r − 4)/6

where g is the genus of the surface and r is the number of boundary components of

the surface. This particular result was also obtained by Cavalcante-de Oliveira in

[13]. Here we generalize these results to compact capillary surfaces. More generally,

we show the following:

Theorem 3.1. Let M be a 3-dimensional oriented Riemannian manifold with

boundary isometrically embedded in Rd and let Σ be a compact capillary surface
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immersed in M at a constant angle θ with genus g and r boundary components.

Suppose that every non-zero ξ ∈ H1
T (Σ, ∂Σ) satis�es∫

Σ

2∑
i=1

|IIM(ei, ξ)|2 + |IIM(ei, ?ξ)|2 dA−
∫

Σ

RM |ξ|2 dA

−
∫
∂Σ

2

sin θ
H∂M |ξ|2 d` <

∫
Σ

H2
Σ|ξ|2 dA+

∫
∂Σ

2 cot θHΣ|ξ|2 d`.

Then

Indexw(Σ) ≥ 2g + r − 1− d
2d

.

In particular, in R3 we have

Corollary 3.2. Let M be a domain in R3 with smooth boundary and let Σ be a

compact capillary surface immersed in M at a constant angle θ with genus g and r

boundary components. Suppose that H∂M + HΣ cos θ ≥ 0 along ∂Σ and that one of

the following holds:

HΣ > 0,

or

H∂M > 0

at some point in ∂Σ. Then

Indexw(Σ) ≥ 2g + r − 4

6
.

Remark 3.3. When M is a closed half-space in R3, H∂M + HΣ cos θ reduces to

HΣ cos θ. As compact capillary surfaces in a closed half-space cannot be minimal due

to maximum principle, the assumption of Corollary 3.2 simply becomes θ ∈ (0, π/2].
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The ideas of the proof of Theorem 3.1 are essentially the same as those in [3],

though the calculations are more involved because of the angle θ is not necessarily

π/2.

3.1.2 Noncompact capillary surfaces

Fisher-Colbrie [26, Theorem 1] has shown that a two-sided complete noncompact

minimal surface with �nite index in an oriented ambient space of nonnegative scalar

curvature is conformally equivalent to a compact Riemann surface with �nitely many

points removed. We will show an analogous result for noncompact capillary surfaces,

which will be essential to all of our other results for this type of surface.

Theorem 3.4. Let M be an oriented Riemannian 3-manifold with smooth boundary

and let Σ be a noncompact capillary surface with �nite index immersed in M at a

constant angle θ. Assume that RM +H2
Σ ≥ 0 and that one of the following holds:

∂Σ is compact,

or

H∂M +HΣ cos θ ≥ 0 along ∂Σ.

Then Σ is conformally equivalent to a compact Riemann surface with boundary and

�nitely many points removed, each associated to an end of the surface. Moreover,

∫
Σ

RM +H2
Σ + |AΣ|2 +

∫
∂Σ

H∂M +HΣ cos θ <∞. (3.1)
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Let Σ be the compact Riemann surface that describes the topology of the

noncompact capillary surface Σ as in Theorem 3.4. Points removed from the interior

of Σ are associated to interior ends of Σ, and points removed from the boundary of

Σ are associated to boundary ends of Σ. These are described in more details in

Remark 3.10 and Remark 3.11. Two corollaries of Theorem 3.4 are proven. Namely,

Corollary 3.12 gives conditions under which noncompact capillary surfaces in

domains of R3 are minimal, and Corollary 3.13 describes the conformal type of

strongly stable capillary surfaces under suitable curvature assumptions.

Capillary surfaces in a half-space of R3 are particularly important because they

serve as local models for capillary surfaces near the boundary. This fact will be

essential to the proof of our curvature bounds for capillary surfaces (Theorem 3.6).

In particular, we will need to understand stable noncompact capillary surfaces in a

half-space of R3.

The only weakly stable complete CMC surfaces in R3 are planes, this was �rst

proved for two-sided strongly stable minimal surfaces independently by do Carmo-

Peng [24], Fischer-Colbrie-Schoen [27] and Pogorelov [38], later for weakly stable CMC

surfaces by da Silveira [23] and for one-sided strongly stable minimal surfaces by Ros

[41]. It is then natural to ask whether half-planes intersecting the boundary of a half-

space at a constant angle θ are the only weakly stable capillary surfaces immersed

in a half-space. When the angle is π/2, namely, the surface has free boundary, we

are able to re�ect the surface to get a smooth stable complete noncompact CMC
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surface, thus the result in the case when the surface has no boundary is helpful to

study the free boundary case. In particular, a re�ection argument has been used by

Ambrozio-Buzano-Carlotto-Sharp [5, Corollary 2.2] to show that a strongly stable

free boundary minimal surface in a half-space must be a half-plane. When the angle

is not π/2, the re�ection analysis apparently fails, moreover, the boundary term in

the second variation formula does not vanish. Nevertheless, we are able to show:

Theorem 3.5. Let Σ be a noncompact capillary surface immersed in a half-space of

R3 at constant angle θ. Assume that HΣ cos θ ≥ 0. Then Σ is weakly stable if and

only if it is a half-plane.

It is easy to see that the assumption HΣ cos θ ≥ 0 translates to Σ has nonzero

mean curvature and θ ∈ (0, π/2] or Σ is minimal. We will also observe in Remark 3.16

that there is no weakly stable noncompact capillary surface with compact boundary

immersed in a half-space of R3, even with HΣ cos θ < 0.

In order to prove Theorem 3.5 we �rst construct a test function involving angle

θ. Thanks to Theorem 3.4, we can construct a cuto� function such that its product

with u = 1
sin θ

+ cot θ〈ν,−E3〉 becomes a admissible test function. This function u is

designed so that the boundary integral in the quadratic form vanishes, this is essential

because we have no control over the sign or magnitude of the boundary integral when

the boundary is noncompact. If the surface is not totally geodesic, we can show that

this test function leads to negative second variation, thus contradicting weak stability.

When θ = π/2, the function u is constant. In particular, in the case where the surface
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is assumed to have free boundary, these arguments give a new and direct proof to

some results in [5].

Notice that there are noncompact capillary surfaces in a half-space besides

half-planes. For any angle θ ∈ (0, π) and any constant H > 0, one can construct a

noncompact capillary surface with mean curvature H and contact angle θ by cutting

an unduloid horizontally (by a plane orthogonal to its axis). Noncompact free

boundary surfaces with any constant mean curvature can also be obtained by

cutting an unduloid vertically (by a plane that contains its axis). These examples

however have in�nite index. Examples of minimal capillary surfaces with �nite

index and any contact angle θ ∈ (0, π) can be obtained by cutting a catenoid

horizontally. Cutting a catenoid vertically gives a noncompact free boundary

minimal surface with index one. Observe that another signi�cant di�erence between

cutting a catenoid horizontally or vertically is that the former has compact

boundary and one interior ends while the latter has no interior ends and two

boundary ends.

3.1.3 Curvature estimates for strongly stable capillary

surfaces

As we have already seen in Chapter 2, curvature estimates for strongly stable CMC

surface play an important role in the study of these surfaces. Here we will show a

curvature bound similar to Theorem 2.10 for strongly stable capillary surfaces. Note
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that, using the same arguments used to show Theorem 2.10, it is also possible to

extend this result to capillary surfaces of �nite index.

Theorem 3.6. Let θ ∈ (0, π). Then there is a constant C = C(θ) such that the

following holds: Let M be a 3-manifold with smooth boundary. Assume that M has

curvature bounded above by Λ and injectivity radius bounded below by ι. Let Σ be a

strongly stable edged capillary surface immersed in M at a constant angle θ. Then,

� if HΣ cos θ ≥ 0, we have

|AΣ(p)|min{dΣ(p, ∂Σ \ ∂M), ι, (
√

Λ)−1} ≤ C

for all p ∈ Σ; and

� if HΣ cos θ < 0, we have

|AΣ(p)|min{dΣ(p, ∂Σ \ ∂M), ι, (
√

Λ)−1,−(HΣ cos θ)−1} ≤ C

for all p ∈ Σ.

Since these bounds do not depend of the area of the surface, to the best of the

author's knowledge they are also new for the special case where Σ is an immersed

strongly stable free boundary minimal surface, and hence it gives a proof to a

conjecture of Guang, Li and Zhou [31, Conjecture 1.4].

When θ ∈ (0, π/2] and the mean curvature HΣ of Σ is large in comparisons with

ι−1 and Λ, it is possible to show that there is a bound on the diameter of Σ that

depends linearly on its strong index, in fact this is the content of Corollary 3.22. In
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the special case where the ambient manifoldM is a half-space of R3, ι−1 and Λ can be

taken to be arbitrarily small, so the bounds in Corollary 3.22 are valid for all HΣ > 0

as long as θ ∈ (0, π/2].

3.2 Index estimates for compact capillary surfaces

In this section we estimate the weak index of compact capillary surfaces in 3-

manifolds with boundary, generalizing results in [3]. Since we will use harmonic

vector �elds in the proof, we begin by de�ning these objects.

3.2.1 Harmonic one-forms and vector �elds

On an orientable surface Σ, let

∆[1]w = (dδ + δd)w

be the Hodge Laplacian acting on one-forms. Here d is the exterior di�erential and

δ is the codi�erential. A one-form w is harmonic if ∆[1]w = 0. In particular, if a

one-form w is closed and coclosed, i.e., dw = δw = 0, then it is harmonic. However,

the converse is not true for surfaces with boundary.

The metric on Σ induces a correspondence between one-forms and vector �elds,

let ξ = w# be the vector �eld corresponding to the one-form w. De�ne the Hodge

Laplacian on vector �elds as ∆[1]ξ = ∆[1]w. We say ξ is a harmonic vector �eld if

∆[1]ξ = 0, i.e., the corresponding one-form w is harmonic. Let ?ξ = (?w)# where ? is
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the Hodge operator with respect to the metric on Σ. If divΣ(ξ) = 0 and divΣ(?ξ) = 0,

then ξ is harmonic. This is because ?dw = divΣ(?ξ) and δw = − divΣ(ξ). The

classical Weitzenbock's formula relates the Hodge Laplacian and rough Laplacian of

a vector �eld, that is

∆[1]ξ = ∇∗∇ξ + RicΣ(ξ), (3.2)

where ∇∗∇ξ = −
∑2

i=1∇ei∇eiξ under a local geodesic frame {e1, e2} and RicΣ(ξ) is

de�ned by 〈RicΣ(ξ), X〉 = RicΣ(ξ,X) for any vector �eld X ∈ TΣ.

We will consider the following space:

H1
T (Σ, ∂Σ) = {ξ ∈ TΣ : divΣ(ξ) = divΣ(?ξ) = 0 on Σ and ξ is tangential along ∂Σ}.

It is known that, when Σ is compact, dimH1
T (Σ, ∂Σ) = 2g + r − 1 where g is the

genus and r is the number of boundary components of Σ (see [3, 45]).

The following Lemma will be used in the proof of Corollary 3.2.

Lemma 3.7 ([50, Theorem 3.4.4]). Let Σ be a complete connected, orientable

Riemannian surface with non-empty boundary ∂Σ. If a harmonic vector �eld

vanishes identically on U ∩ ∂Σ 6= ∅ for some open subset U ⊂ Σ, then it vanishes

identically on Σ.

3.2.2 Index of a capillary surfaces and harmonic vector �elds

Here we sill show Theorem 3.1, we will use 〈·, ·〉 and D for the Euclidean product

and connection respectively, aside from that we will use the notation established in
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Section 1.1.

Proposition 3.8. Let M be a 3-dimensional Riemannian manifold isometrically

embedded in some Euclidean space Rd. Let Σ be a compact capillary surface

immersed in M at a constant angle θ. Given a vector �eld ξ ∈ H1
T (Σ, ∂Σ), denote

uj = 〈ξ, Ej〉,

where {Ej}dj=1 is the canonical basis of Rd. Then

d∑
j=1

Q(uj, uj) =

∫
Σ

2∑
i=1

|IIM(ei, ξ)|2 + |AΣ(ei, ξ)|2 −
∫

Σ

|AΣ|2 +RM +H2
Σ

2
|ξ|2

− 1

sin θ

∫
∂Σ

H∂M |ξ|2 − cot θ

∫
∂Σ

HΣ|ξ|2,

(3.3)

where {ei}2
i=1 is an orthonormal frame on Σ, RM is the scalar curvature of M , IIM

is the second fundamental form of M in Rd and H∂M denotes the mean curvature of

∂M with respect to the inner normal vector −N .

Proof. Using a local orthonormal basis {ei}2
i=1 on Σ we have

∇uj =
2∑
i=1

ei〈ξ, Ej〉ei =
2∑
i=1

〈Deiξ, Ej〉ei.

Since

Deiξ = ∇eiξ − AΣ(ei, ξ)ν + IIM(ei, ξ),
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it follows that

d∑
j=1

|∇uj|2 =
d∑
j=1

2∑
i=1

|〈Deiξ, Ej〉|2

=
2∑
i=1

d∑
j=1

〈∇eiξ, Ej〉2 + 〈AΣ(ei, ξ), Ej〉2 + 〈IIM(ei, ξ), Ej〉2

= |∇ξ|2 +
2∑
i=1

|AΣ(ei, ξ)|2 + |IIM(ei, ξ)|2. (3.4)

Gauss' equation for Σ in M gives us

2KΣ = RM − 2 RicM(ν, ν)− |AΣ|2 +H2
Σ.

Hence, ∫
Σ

RicM(ν, ν)u2
j =

∫
Σ

(
RM

2
− |AΣ|2

2
+
H2

Σ

2
−KΣ

)
u2
j . (3.5)

Using Weitzenbock's formula (3.2) and the fact that ξ is harmonic we conclude

that

∇∗∇ξ = −KΣξ.

By computing the exterior derivative along ∂Σ we have

dξ[(η, ξ) = 〈∇ηξ, ξ〉 − 〈∇ξξ, η〉.

Since dξ[ = 0,

〈∇ηξ, ξ〉 = 〈∇ξξ, η〉 = −k∂Σ|ξ|2,

then

∂|ξ|2

∂η
= −2κ∂Σ|ξ|2.
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It follows from the divergence theorem and (1.12) that

∫
Σ

∆|ξ|2 =

∫
∂Σ

∂|ξ|2

∂η

= −2

∫
∂Σ

k∂Σ|ξ|2

= 2

∫
∂Σ

q|ξ|2 − (
1

sin θ
H∂M + cot θHΣ)|ξ|2 (3.6)

which together with

∆|ξ|2 = −2〈∇∗∇ξ, ξ〉+ 2|∇ξ|2

implies that

∫
Σ

|∇ξ|2 =

∫
Σ

∆|ξ|2

2
+

∫
Σ

〈∇∗∇ξ, ξ〉

=

∫
∂Σ

q|ξ|2 − (
1

sin θ
H∂M + cot θHΣ)|ξ|2 −

∫
Σ

KΣ|ξ|2. (3.7)

Combining (1.13), (3.5), (3.7) and (3.4) gives the desired result.

Theorem 3.9. Let M be a 3-dimensional oriented Riemannian manifold with

boundary isometrically embedded in Rd and let Σ be a compact capillary surface

immersed in M at a constant angle θ. Assume there exist a real number β and a

q-dimensional subspace Wq ⊆ H1
T (Σ, ∂Σ) such that any non-zero ξ ∈Wq satis�es∫

Σ

2∑
i=1

|IIM(ei, ξ)|2 + |IIM(ei, ?ξ)|2 −
∫

Σ

(RM +H2
Σ)|ξ|2

−
∫
∂Σ

(
2

sin θ
H∂M + 2 cot θHΣ)|ξ|2 < 2β

∫
Σ

|ξ|2.

Then

#{eigenvalues of J̃ that are smaller than β} ≥ q − d
2d

.
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Proof. Denote u?j = 〈?ξ, Ej〉. Since | ? ξ| = |ξ|, it follows from (3.6) that

∫
Σ

∆| ? ξ|2 = 2

∫
∂Σ

q|ξ|2 − (
1

sin θ
H∂M + cot θHΣ)|ξ|2.

Thus following the proof of Proposition 3.8 gives

d∑
j=1

Q(u?j , u
?
j) =

∫
Σ

2∑
i=1

|IIM(ei, ?ξ)|2 + |AΣ(ei, ?ξ)|2 −
∫

Σ

|AΣ|2 +RM +H2
Σ

2
|ξ|2

− 1

sin θ

∫
∂Σ

H∂M |ξ|2 − cot θ

∫
∂Σ

HΣ|ξ|2.

(3.8)

Note that whenever ξ 6= 0 we may pick e1 = ξ
|ξ| , e2 = ?ξ

|?ξ| as an orthonormal basis.

Using this fact it is easy to see that

2∑
i=1

|AΣ(ei, ξ)|2 + |AΣ(ei, ?ξ)|2 =
∑
i,j=1,2

|AΣ(ei, ej)|2|ξ|2 = |AΣ|2|ξ|2. (3.9)

Thus summing (3.8) and (3.3) gives

d∑
j=1

Q(uj, uj) +Q(u?j , u
?
j) =

∫
Σ

2∑
i=1

|IIM(ei, ξ)|2 + |IIM(ei, ?ξ)|2

−
∫

Σ

(RM +H2
Σ)|ξ|2 −

∫
∂Σ

(
2

sin θ
H∂M + 2 cot θHΣ)|ξ|2.

Let k = #{eigenvalues of J̃ that are smaller than β} and let φ̃1, . . . , φ̃k the

eigenfunctions of J̃ corresponding to eigenvalues λ̃1 ≤ . . . ≤ λ̃k < β. Consider the

linear map de�ned by

F : Wq −→ R2dk+d

ξ 7−→
[∫

Σ

ujφα,

∫
Σ

u?jφα,

∫
Σ

u?j

]
,

where α = 1, . . . , k and j = 1, . . . , d. By the Rank-Nullity Theorem, if 2dk + d < q,
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then there exists a nonzero harmonic tangential vector �eld ξ ∈ H1
T (Σ, ∂Σ) such that

uj, u
?
j are orthogonal to the �rst k eigenfunctions of J̃ . Moreover, Lemma 3.1 in [3]

shows that
∫

Σ
uj = 0 for any j = 1, . . . , d. Thus, it follows from the Min-max principle

for J̃ that
d∑
j=1

Q(uj, uj) +Q(u?j , u
?
j) ≥ 2λk+1

∫
Σ

|ξ|2 ≥ 2β

∫
Σ

|ξ|2

which contradicts the assumption in the proposition. We conclude that 2dk + d ≥ q,

that is, k ≥ q−d
2d

as claimed.

Theorem 3.1 follow by setting β = 0 in Theorem 3.9 and using the fact that

dimH1
T (Σ, ∂Σ) = 2g + r − 1.

We now give a proof to Corollary 3.2 in the Introduction. Let M be a domain of

R3 with smooth boundary and assume that H∂M +HΣ cos θ ≥ 0 along ∂Σ. If HΣ = 0

and H∂M > 0 at some point of ∂Σ, then the assumption in Theorem 3.1 is satis�ed

because IIM = RM = 0, and, by Lemma 3.7, a nonzero harmonic vector �eld ξ cannot

vanish in a segment of ∂Σ. Otherwise, if HΣ > 0, the assumption in Theorem 3.1

automatically holds.

3.3 The structure of noncompact capillary surfaces

with �nite index

In this section we show, amongst other results, theorems 3.4 and 3.5. We begin

it by studying noncompact capillary surfaces in general 3-manifolds with smooth
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boundary.

3.3.1 Noncompact capillary surfaces in general 3-manifolds

We begin by showing Theorem 3.4, that is, we will show that under certain

curvature assumptions on Σ and M , noncompact capillary surfaces with �nite index

share a key property of minimal surfaces with �nite index in ambient spaces with

nonnegative scalar curvature (see [26, Theorem 1]): They are conformal to compact

Riemann surfaces with a �nite number of punctures.

Proof of Theorem 3.4

Since Σ has �nite index, there exists a compact set C ⊂ Σ such that Σ \ C is

strongly stable. For the rest of this proof we will assume that H∂M + HΣ cos θ ≥ 0

along ∂Σ. It is easy to see that the proof in case where ∂Σ is compact follows from

the same arguments used below by taking C large enough so that ∂Σ ⊂ C.

From equation (1.12) we obtain that for all ϕ ∈ C∞0 (Σ \ C)

∫
Σ

|∇ϕ|2 − (RicM(ν, ν) + |AΣ|2)ϕ2 +

∫
∂Σ

ϕ2κ∂Σ ≥ Q(ϕ, ϕ) ≥ 0.

Applying the same techniques used to prove Proposition 1.4 we conclude that there

is a positive function v de�ned on Σ \ C such that
Jv = 0 in Σ \ C

∂v
∂η

+ vκ∂Σ = 0 on ∂Σ \ C.
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Extend v to all of Σ so that it is positive and ∂v
∂η

+ vκ∂Σ = 0 along all of ∂Σ. Let

ds̃2 = v2ds2 where ds2 is the metric of Σ. Notice that the metric ds̃ has Gaussian

curvature

K̃Σ = v−2(KΣ −∆ log v), (3.10)

where KΣ is the Gaussian curvature of ds2. From the Gauss' equation

∆v + (|AΣ|2 + RicM(ν, ν))v = ∆v −KΣv +
1

2
(RM +H2

Σ + |AΣ|2)v = 0,

then

KΣ −∆ log v = KΣ −
v∆v − |∇v|2

v2
=

1

2
(RM +H2

Σ + |AΣ|2) +
|∇v|2

v2
≥ 0. (3.11)

Hence K̃Σ ≥ 0 on Σ \ C. The geodesic curvature of ∂Σ in the metric ds̃2 is

κ̃∂Σ = v−2∂v

∂η
+ v−1κ∂Σ, (3.12)

so κ̃∂Σ = 0.

Now we will show that (Σ, ds̃2) is complete in the sense of metric spaces, that

is, every geodesic of (Σ, ds̃2) either exits for in�nite time or hits the boundary ∂Σ.

Following [26] we can construct a divergent geodesic γ of (Σ, ds̃2) starting at a point

p ∈ ∂Σ that minimizes distance to the boundary of any disk of (Σ, ds̃2) around p. To

be more precise, γ is constructed as the limit of geodesics of a family of metrics that

interpolates between ds2 and ds̃2, each of which equals ds̃2 in a neighborhood of p

and equals ds2 far away from p. It is enough to show that such γ has in�nite length,

which can be done by the same arguments used by Fischer-Colbrie [26]. We conclude
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that (Σ, ds̃2) is complete.

Since Σ has smooth boundary we can double it to obtain a smooth surface without

boundary Σ̌. Because (Σ, ds̃2) has totally geodesic boundary, the double accepts a

metric dˇ̃s2 that restricts to ds̃2 in both copies of Σ contained in Σ̌. Note that dˇ̃s2

might not be smooth, but it is C2 (see e.g. [54, Lemma 2.4]). We will argue that

(Σ̌, dˇ̃s2) is geodesiclly complete. Let Φ : Σ̌ → Σ̌ be the involution coming from the

doubling process, and let γ be a minimizing geodesic in (Σ̌, dˇ̃s2) that is not contained

in ∂Σ. Note that the interior of γ can intersect ∂Σ at most once, since otherwise we

can construct a minimizing geodesic that is not C1 by using Φ to re�ect the part of

γ between the �rst two intersections of γ with ∂Σ and joining this re�ected curve to

the rest of γ. Now we can use the fact that (Σ, ds̃2) is complete to show that if γ is

divergent, it must have in�nite length.

Since (Σ̌, dˇ̃s2) is complete with nonnegative Gaussian curvature away from a

compact set, it follows from the Huber Theorem that Σ̌, and hence also Σ, is �nitely

connected. The same arguments used by Fischer-Colbrie [26, p. 128] show that the

ends of (Σ̌, dˇ̃s2) are conformal to puncture disks.

Let dŝ2 = u2ds2 where u > 0 is such that u|Σ\C is a Jacobi function. The same

arguments used to show that (Σ, ds̃2) is complete also show that (Σ, dŝ2) is complete.

Furthermore, (3.10)�(3.12) apply to this conformal change and imply that in Σ \ C

K̂Σ ≥
1

2u2
(RM +H2

Σ + |AΣ|2),

71



where K̂Σ is the Gaussian curvature associated to dŝ2, and in ∂Σ \ C

κ̂∂Σ =
1

u sin θ
(H∂M +HΣ cos θ),

where κ̂∂Σ is the geodesic curvature of ∂Σ associated to dŝ2. We then conclude that

∫
Σ\C

RM +H2
Σ + |AΣ|2dA+

∫
∂Σ\C

H∂M +HΣ cos θd`

≤ 2

∫
Σ\C

K̂ΣdÂ+ sin θ

∫
∂Σ\C

κ̂∂Σdˆ̀, (3.13)

where dA, dÂ are the area elements associated to ds2 and dŝ2, respectively, and d`,

dˆ̀ are the length elements associated to ds2 and dŝ2, respectively.

Since K̂Σ and κ̂∂Σ are nonnegative outside C, we have that (Σ, dŝ2) accepts a total

curvature and a total geodesic curvature (as de�ned in [51]). Thus we obtain from

the Cohn-Vossen Theorem with boundary ([51, Theorem 2.2.1]) that

∫
Σ\C

K̂ΣdÂ+

∫
∂Σ\C

κ̂∂Σdˆ̀<∞.

Combining (3.13) with the inequality above completes the proof of the theorem.

Remark 3.10. One can think of a capillary surface Σ as in the statement of

Theorem 3.4 as a compact Riemann surface Σ with boundary and with points

p1, . . . , pk removed. We can order these points so that p1, . . . , p` are in the interior

of Σ (there might be no interior punctures, in which case we take ` = 0) and

p`+1, . . . , pk are in the boundary of Σ. Then each pi for i ∈ {1, . . . , `} corresponds to

an end of Σ that is away from its boundary, we will refer to these ends as interior
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ends. For i ∈ {` + 1, . . . , k}, each pi corresponds to an end of Σ that contains a

noncompact part of ∂Σ, we refer to these ends as boundary ends.

Remark 3.11. It is clear that each interior end of Σ is conformal to a punctured

disk D∗ = {z ∈ C : 0 < |z| < 1}. The boundary ends of Σ are conformal to

a semi-open punctured half-disk D+
∗ = {z ∈ D∗ : Re(z) ≥ 0}. To see this fact,

note that a neighborhood of a point pi for i ∈ {` + 1, . . . , k} in the double Σ̌ is

conformal to a punctured disk. We can assume that this neighborhood is symmetric

with respect to the isometry Φ, and hence Φ induces a conformal, orientation-reversing

di�eomorphism on the punctured disk. The composition of this transformation with

complex conjugation must be an injective holomorphic map from the punctured disk to

itself, and hence must be a rotation. So we can assume that the part of this punctured

disk corresponding to Σ is D+
∗ .

In what follows we show two consequences of Theorem 3.4. The �rst such

consequence is that, under some conditions on the contact angle, noncompact

capillary surfaces in weakly convex domains of R3 must be minimal.

Corollary 3.12. Let M be a weakly mean-convex domain of R3 and let Σ be a

noncompact capillary surface with �nite index immersed in M at a constant angle

θ ∈ (0, π/2). Then Σ must be a minimal surface. If M is a half-space, the

assumption on the angle can be weanken to θ ∈ (0, π/2].

Proof. It follows from Theorem 3.4 that Σ is conformally equivalent to a compact
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Riemann surface Σ̄ punctured at �nitely many points, and

∫
Σ

H2
Σ +

∫
∂Σ

HΣ cos θ <∞. (3.14)

Suppose Σ has an interior end. We choose a geodesic ray γ : [0,∞)→ Σ contained in

an interior end. Fix small ε0 > 0 and consider a sequence of points pj = γ(2jε0) such

that the geodesic disks Dε0(pj) of radius ε0 around pj satisfy Dε0(pj) ∩ Dε0(pk) = ∅

whenever j 6= k. From the uniform lower bound on the area of geodesic disks in

[28, Theorem 3] it follows that

A(Σ) ≥
n∑
j=0

A(Dε0(pj)) ≥ (n+ 1)C(ε0),

where A is the area and C(ε0) is a positive constant depending only on ε0. Since

above inequality holds for any n ∈ N, we obtain that Σ has in�nite area, thus it

follows from (3.14) that HΣ = 0.

If Σ has no interior end, it has at least one boundary end since it is noncompact.

Then it is easy to see that ∂Σ has in�nite length. Thus, if θ ∈ (0, π/2), we must have

HΣ = 0. This completes the �rst part of the theorem.

If θ ∈ (0, π/2] and M is a half-space, we only need to deal with the special

case where θ = π/2 and Σ has no interior ends. Denote a noncompact boundary

component of Σ by E, choose a sequence of disjoint points pj ∈ E and a small ε0 > 0

such that geodesic disks Dε0(pj) are disjoint. By using a similar idea to the use used

by Frensel [28], we show that A(Dε0(pj)) ≥ C(ε0) where C(ε0) is a positive constant

depending only on ε0. Indeed, without lost of generality, we assume that pj is the
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origin and let Dµ be the geodesic disk centered at origin with radius µ. For small µ,

denote Γµ = ∂Dµ ∩ P and Iµ = ∂Dµ \ Γµ where P is the plane, i.e., boundary of the

half-space. It is well known that ∆Σ|x|2 = 4 + 2HΣ〈ν, x〉. We integrate both sides of

this equation on the disk Dµ to obtain

(4− 2HΣµ)A(Dµ) ≤ 4|Dµ| − 2HΣ

∫
Dµ

|x| ≤
∫
Dµ

∆Σ|x|2.

By the divergence theorem,

∫
Dµ

∆Σ|x|2 =

∫
∂Dµ

2〈η, x〉 ≤ 2µl(Iµ),

where l denotes the length. In addition, from the co-area formula it follows that

∂A(Dµ)

∂µ
≥ l(Iµ).

Combining above equations results in

(
A(Dµ)

µ2

)′
≥ −HΣ

A(Dµ)

µ2
,

equivalently, (
log

A(Dµ)

µ2

)′
≥ −HΣ.

We then show the claim by integrating both sides over (a, ε0) and letting a tend to zero.

Hence the surface has in�nite area and thus (3.14) implies again that HΣ = 0.

The second corollary classi�es the conformal types of strongly stable noncompact

capillary surfaces.

Corollary 3.13. Let M be an oriented 3-manifold with smooth boundary and let Σ
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be a strongly stable noncompact capillary surface immersed in M at a constant angle

θ. Assume that RM + H2
Σ ≥ 0 in Σ and H∂M + HΣ cos θ ≥ 0 along ∂Σ. Then the

compact Riemann surface Σ is a disk and the ends of Σ can only have one of the

following con�gurations:

1. There are two boundary ends and no interior ends.

2. There are no boundary ends and a single interior end.

3. There is a single boundary end and no interior ends.

Moreover, if (1) or (2) holds, then Σ is totally geodesic, RM = 0 in Σ and H∂M = 0

along ∂Σ.

Proof. Since Σ is strongly stable, it accepts a globally de�ned positive Jacobi function

u. Considering a metric dŝ2 as in the proof of Theorem 3.4 we can conclude that

K̂Σ ≥ 0 on Σ and κ̂∂Σ ≥ 0 in all of ∂Σ, furthermore

∫
Σ

K̂ΣdÂ ≥ 0

with equality if and only if Σ is totally geodesic and RM = 0 on Σ, additionally we

have that ∫
∂Σ

κ̂∂Σdˆ̀≥ 0

with equality if and only if H∂M +HΣ cos θ = 0 along ∂Σ.

It follows from the Cohn-Vossen Theorem [51, Theorem 2.2.1] that

∫
Σ

K̂ΣdÂ+

∫
∂Σ

κ̂∂Σdˆ̀≤ π(4− 4g − 2r − k − `),

76



where g and r are the genus and number of boundary components of Σ, respectively,

and k, ` are the total number of ends and the number of interior ends of Σ, respectively.

Since Σ has a boundary and is noncompact, we conclude that k ≥ 1 and r ≥ 1. It

then follows that g = 0, r = 1, and k + ` = 1 or 2. Note that

k + ` = #{boundary ends}+ 2×#{interior ends},

so the only possible con�gurations of ends are the ones listed in (1)�(3). In the case

where k + ` = 2, we conclude that K̂Σ and κ̂∂Σ vanish, hence Σ is totally geodesic,

RM = 0 along Σ and H∂M = 0 along ∂Σ, proving the rigidity statement.

Remark 3.14. Observe that each of the three possibilities of Corollary 3.13 does

occur. For an example of:

1. consider M = R2 × [0, 1] and let Σ be an in�nite �at strip in M meeting the

boundary at a constant angle θ ∈ (0, π);

2. let M = S1 × R+ × R and take Σ = S1 × R+ × {0};

3. consider a half-plane in a half-space of R3.

Remark 3.15. Combining the inequality in Theorem 3.4 and Corollary 3.13, we

can also show that there are no strongly stable noncompact capillary minimal

surfaces Σ in a 3-manifold M with nonnegative scalar curvature and uniformly

mean-convex boundary, i.e., RM ≥ 0 and H∂M ≥ c > 0. Indeed, with such curvature

assumptions the inequality in Theorem 3.4 implies that ∂Σ must be compact.
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However, the arguments in the proof of Corollary 3.13 show that Σ has a single

boundary end and no interior ends, which is a contradiction.

3.3.2 Weakly stable capillary surfaces in a half-space of R3

Capillary surfaces in a half-space of R3 are analogous to complete CMC surfaces

in R3 in the sense that these are local models for capillary surfaces in any 3-manifold.

Hence the characterization of these capillary surfaces plays an important role in the

study of capillary surfaces in general 3-manifolds. The characterization of the stable

surfaces is particularly important, and that is the content of Theorem 3.5, namely,

we show that the only noncompact capillary surface immersed in a half-space of R3

at a constant angle θ such that HΣ cos θ ≥ 0 is a half-plane.

Proof of Theorem 3.5

It is clear from (1.13) and (1.12) that half-planes are weakly stable in a half-space

of R3. To show the other implication, let us assume without loss of generality that

the half-space is {x3 ≥ 0}. It su�ces to prove the following claim:

Claim 1. If |AΣ| is not identically zero, then there exists a compactly supported

function v on Σ such that

Q(v, v) < 0, and

∫
Σ

v = 0.

Since Σ is conformally equivalent to a compact Riemann surface Σ̄ with boundary

and �nite punctures p1, . . . , pk. Without lost of generality, we assume that p1, . . . , p`
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are punctures in the interior while p`+1, . . . , pk are punctures on the boundary. Thus

there exists a compact subset Σ0 ⊂ Σ such that each component Σi of Σ \ Σ0 is

conformally equivalent to either a semi-cylinder S1 × (0,∞) or a half-semi-cylinder

S1
+ × (0,∞) with the standard product metric.

Since |AΣ| is not identically zero, there exists p ∈ Σ such that |AΣ(p)| 6= 0. We

can choose Σ0 such that p ∈ Σ0 and

∫
Σ0

|AΣ|2 >
12(k + `)π

r(1− cos θ)
(3.15)

for some �xed r > 0 large enough that we will choose later.

We parametrize each end Σi by conformal coordiantes (ω, yi) ∈ S1 × (0,∞). For

each a > 0, we can de�ne functions ϕi : Σi → R+ by

ϕi(yi) =



1− yi
r
, 0 ≤ yi ≤ 2r

−1, 2r ≤ yi ≤ 2r + a

−1 + yi−(2r+a)
r

, 2r + a ≤ yi ≤ 3r + a

0, 3r + a ≤ yi.

(3.16)

We then de�ne a function ϕa : Σ → R+ such that ϕa ≡ 1 on Σ0 and ϕa = ϕi on Σi

for i = 1, . . . , k. Let u : Σ→ R+ be given by

u =
1

sin θ
+ cot θ〈ν,−E3〉.

where ν is the unit normal vector �eld of Σ and E3 is the 3rd standanrd coordinate

vector �eld. Note that 0 < 1−cos θ
sin θ

≤ u ≤ 2
sin θ

.We claim that there exists an a = a0 > 0
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such that ∫
Σ

uϕa0 < 0.

In fact,

∫
Σ

uϕa ≤
∫

Σ0∪(∪ni=1{ 0≤yi≤2r})
uϕa +

∫
∪ni=1{ 2r≤yi≤3r+a}

−u

≤
∫

Σ0∪(∪ni=1{ 0≤yi≤2r})
uϕa −

1− cos θ

sin θ

n∑
i=1

|{ 2r ≤ yi ≤ 3r + a}|

where the �rst term on the right-hand side is independent of a, thus a �xed number.

Since the area of Σ is in�nite, we can choose a0 > 0 such that the desired inequality

holds.

We now de�ne new functions ψi : Σi → R+ by

ψi(yi) =



1− yi
r
, 0 ≤ yi ≤ r + b

−b/r, r + b ≤ yi ≤ 3r + a0 − b

−1 + yi−(2r+a0)
r

, 3r + a0 − b ≤ yi ≤ 3r + a0

0, 3r + a0 ≤ yi.

(3.17)

We then de�ne a function ψa0,b : Σ → R+ such that ψa0,b = 1 on Σ0 and ψa0,b = ψi

on Σi. Note that ψa0,r = ϕa0 and ψa0,0 ≥ 0. Since the integral
∫

Σ
uψa0,b is continuous

in b and
∫

Σ
uψa0,0 > 0, there exists a 0 < b0 ≤ r such that

∫
Σ

uψa0,b0 = 0.

Let v = uψa0,b0 , notice it is a piece-wise smooth function with compact support.
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We now calculate Q(v, v). First note that

u|∂Σ =
1

sin θ
+ cot θ〈sin θT + cos θE3,−E3〉

=
1

sin θ
− cos2 θ

sin θ

= sin θ

= 〈η,−E3〉.

It follows from simple computations that η is a principal direction of Σ (see e.g.

[4, Lemma 2.2], [53, Prop 2.1]). Using this fact we obtain

∂u

∂η
= cot θ〈Dην,−E3〉

= cot θAΣ(η, η)〈η,−E3〉

= cot θAΣ(η, η)u|∂Σ.

= qu. (3.18)

Since ∆ν = −|AΣ|2ν in the coordinate-wise sense (see e.g [10, Proposition 2.24]), we

have

∆u+ |AΣ|2u =
|AΣ|2

sin θ
. (3.19)
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Then we have that

Q(v, v) =

∫
Σ

u2|∇ψa0,b0|2 + ψ2
a0,b0
|∇u|2 + 2uψa0,b0〈∇u,∇ψa0,b0〉 −

∫
∂Σ

qu2ψ2
a0,b0

=

∫
Σ

u2|∇ψa0,b0 |2 +
1

2
ψ2
a0,b0

∆(u2)− ψ2
a0,b0

u∆u+
1

2
〈∇(u2),∇(ψ2

a0,b0
)〉

−
∫
∂Σ

qu2ψ2
a0,b0

=

∫
Σ

u2|∇ψa0,b0|2 − ψ2
a0,b0

u∆u+

∫
∂Σ

uψ2
a0,b0

(
∂u

∂η
− qu)

=

∫
Σ

u2|∇ψa0,b0|2 − ψ2
a0,b0

u
|AΣ|2

sin θ

≤ 4

sin2 θ

∫
Σ

|∇ψa0,b0|2 −
1− cos θ

sin2 θ

∫
Σ

ψ2
a0,b0
|AΣ|2

≤ 4

sin2 θ

n∑
i=1

∫
Σi

|∇ψa0,b0|2 −
1− cos θ

sin2 θ

∫
Σ0

|AΣ|2 (3.20)

Since the Dirichlet energy is conformally invariant in dimension two, we have that for

i = 1, . . . , ` ∫
Σi

|∇ψa0,b0 |2 =

∫
Σi

|Dφi|2 dθdyi =
2π(r + 2b0)

r2
≤ 6π

r

and for i = `+ 1, . . . , k ∫
Σi

|∇ψa0,b0|2 ≤
3π

r
.

Then it follows from (3.20) and (3.15) that

Q(v, v) < 0.

This completes the proof of the claim. Since the surface Σ is weakly stable, by the

claim we must have that |AΣ| ≡ 0 and thus Σ is a half-plane.

Remark 3.16. Note that same arguments show that a weakly stable noncompact
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capillary surface (without angle condition) immersed in a half-space of R3 cannot

have compact boundary. Also, using the same test function we constructed above, one

can show directly that there is no strongly stable compact capillary surface immersed

in a half-space of R3.

3.3.3 L2 characterization of the strong index

Fisher-Colbrie [26, Proposition 2] showed that the index of a complete noncompact

minimal surface can be realized as the cardinality of a set of L2 eigenfunctions de�ned

globally on the surface. This fact is important to study the relation between the index

and the topology of these surfaces (see e.g. the work of Ros [41, Theorem 17]). In

what follows we will show that something similar also holds for capillary surfaces. In

order to show this result we need a Poicaré-type inequality (Lemma 3.18)

Let Σ be a surface, if Σ has a boundary, we suppose the boundary is contained in

Σ, so it is complete in the sense of metric spaces. Let w be a nonnegative Lipschitz

function o Σ with compact support. Note that, by our assumptions, w can be positive

on the boundary of Σ. Let Ω be the support of w and Γ = Ω ∩ ∂Σ. For a function

ϕ ∈ C(Ω) de�ne the norms

‖ϕ‖2
Ω =

∫
Ω

ϕ2, ‖ϕ‖2
Ω,w =

∫
Ω

wϕ2.

In order to show our Poincaré-type inequality we need the following results:
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Proposition 3.17. There is a constant C > 0 depending only on Σ and w such that

∫
Γ

wϕ2 ≤ C‖ϕ‖Ω(‖ϕ‖Ω + ‖|∇ϕ|‖Ω,w) (3.21)

for all ϕ ∈ C∞(Σ).

Proof. Let η̃ be a compactly supported smooth vector �eld in Σ that extends the

conormal η. Then for ϕ ∈ C∞(Σ) we have that

∫
Γ

wϕ2 =

∫
Ω

div(wϕ2η̃)

=

∫
Ω

ϕ2〈∇w, η̃〉+ 2wϕ〈∇ϕ, η̃〉+ wϕ2div(η̃)

≤ 2

(∫
Ω

wϕ2

) 1
2
(∫

Ω

w〈∇ϕ, η̃〉2
) 1

2

+

∫
Ω

ϕ2(|∇w||η̃|+ w|div(η̃)|)

≤ C‖ϕ‖Ω(‖ϕ‖Ω + ‖|∇ϕ|‖Ω,w),

where C depends only on w and η̃.

Lemma 3.18. For every ε > 0 there is a constant C > 0 depending only on Σ, w and

ε such that ∫
Γ

wϕ2 ≤ ε

∫
Ω

w|∇ϕ|2 + C

∫
Ω

ϕ2

for all ϕ ∈ C∞(Σ).

Proof. Suppose by contradiction that the result does not hold. Then, for some ε0 > 0

there is a sequence ϕn ∈ C∞(Σ) such that for all n ∈ N

∫
Γ

wϕ2
n > ε0

∫
Ω

w|∇ϕn|2 + n

∫
Ω

ϕ2
n. (3.22)

By rescaling we can assume that ‖|∇ϕn‖Ω,w = 1.
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Firstly, if ‖ϕn‖Ω → ∞, then by rescaling this sequence we can obtain another

sequence of functions ψn ∈ C∞(Σ) such that ‖|∇ψn|‖Ω,w → 0, ‖ψn‖Ω = 1 and∫
Γ
wψ2

n > n. This contradicts (3.21).

Thus we can assume that ‖ϕn‖Ω are uniformly bounded above. It follows from

(3.21) that
∫

Γ
wϕ2

n are uniformly bounded above, and hence by (3.22) we must have

that ‖ϕn‖Ω → 0. This is impossible since, by (3.21) it would imply that
∫

Γ
wϕ2

n → 0

but
∫

Γ
wϕ2

n > ε0.

Now we are ready to characterize the strong index by eigenfunctions of the Jacobi

operator. Note that the functions fi below are eigenfunctions in the weak sense.

Proposition 3.19. Let Σ be a noncompact capillary surface immersed in a

3-manifold with smooth boundary and let I = Indexs(Σ). Assume I <∞, then there

exists a subspace W of L2(Σ) having an orthonormal basis f1, . . . , fI consisting of

eigenfunctions for Q with eigenvalues λ1, . . . , λI , respectively, such that each λi < 0.

Moreover, for all ϕ ∈ C∞0 (Σ) ∩W⊥ we have

Q(ϕ, ϕ) ≥ 0.

Proof. For all R > 0, let BR ⊂ Σ be a ball of radius R centred at some point that

will be �xed through this proof. Take R0 ≥ 4 such that Σ \ BR0 is strongly stable.
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For R ≥ R0, let ζ ∈ C∞(Σ) be such that

ζ = 0 on BR,

ζ = 1 on Σ \B2R,

and

|∇ζ| ≤ 6

R
, |∇ζ|2 < 4(1− ζ2)

R2
.

For the construction of ζ see [26]. For simplicity we will write RicM(ν, ν) + |AΣ|2 as

p. Since Σ \BR is strongly stable, we have that for all ϕ ∈ C∞0 (Σ)

∫
∂Σ

q(ζϕ)2 +

∫
Σ

p(ζϕ)2 ≤
∫

Σ

|∇ζϕ|2 =

∫
Σ

ζ2|∇ϕ|2 + 2ζϕ〈∇ζ,∇ϕ〉+ϕ2|∇ζ|2. (3.23)

It follows from the Cauchy-Schwarz inequality and the arithmetic-geometric mean

inequality that ∫
Σ

2ζϕ〈∇ζ,∇ϕ〉 ≤
∫
B2R

ζ2ϕ2 + |∇ζ|2|∇ϕ|2.

Adding Q(ϕ, ϕ) to both sides of (3.23) and rearranging gives

−
∫
∂Σ

(1− ζ2)qϕ2−
∫

Σ

(1− ζ2)pϕ2 +

∫
Σ

(1− ζ2)|∇ϕ|2 (3.24)

≤ Q(ϕ, ϕ) +

∫
B2R

ϕ2 +
4

R2

∫
Σ

(1− ζ2)|∇ϕ|2.

Using Lemma 3.18 we conclude

∫
∂Σ

(1− ζ2)qϕ2 ≤ sup
B2R

|q|
∫
∂Σ

(1− ζ2)ϕ2 ≤ 1

4

∫
Σ

(1− ζ2)|∇ϕ|2 + CR

∫
B2R

ϕ2 (3.25)

for some constant CR depending on R. Since R ≥ 4 it follows from (3.24) and (3.25)
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that ∫
BR

|∇ϕ|2 ≤ 2Q(ϕ, ϕ) + C ′R

∫
B2R

ϕ2 (3.26)

for some new constant C ′R depending only on R.

Let ρ > R0, then there are functions f1,ρ, . . . , fI,ρ ∈ L2(Bρ) forming an

orthonormal set such that each fi,ρ is an eigenfunction of Q in the sense that

∆fi,ρ + pfi,ρ + λi,ρfi,ρ = 0 in Bρ

∂fi,ρ
∂η
− qfi,ρ = 0 on ∂Σ ∩Bρ

fi,ρ = 0 on ∂Bρ \ ∂Σ.

for some eigenvalue λi,ρ < 0. Extend fi,ρ to be 0 outside Bρ. Since maxi λi,ρ is

decreasing in ρ we can assume that λi,ρ ≤ −ε0 for some constant ε0 > 0. In addition,

from (3.26) it follows that Q(fi,ρ, fi,ρ) ≥ −CR
∫

Σ
f 2
i,ρ , thus there is a constant C > 0

such that λi,ρ ≥ −C for all i and ρ as above. Notice that

∫
Σ

2ζfi,ρ〈∇fi,ρ,∇ζ〉 =
1

2

∫
Σ

〈∇f 2
i,ρ,∇ζ2〉

=

∫
∂Σ

ζ2fi,ρ
∂fi,ρ
∂η
−
∫

Σ

ζ2(fi,ρ∆fi,ρ + |∇fi,ρ|2)

=

∫
∂Σ

q(ζfi,ρ)
2 −

∫
Σ

ζ2(−(p+ λi,ρ)f
2
i,ρ + |∇fi,ρ|2).

Substituting it in (3.23) we can conclude that

−λi,ρ
∫

Σ

ζ2f 2
i,ρ ≤

∫
Σ

|∇ζ|2f 2
i,ρ ≤

36

R2
.
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Since λi,ρ ≤ −ε0 we can conclude that

∫
Σ\B2R

f 2
i,ρ ≤

C ′

R2
(3.27)

for some constant C ′. Inequality (3.26) and the fact that Q(fi,ρ, fi,ρ) < 0 imply

∫
BR

|∇fi,ρ|2 + f 2
i,ρ ≤ C ′R + 1. (3.28)

By the Reillich-Kondrachov compactness theorem the embedding H1(BR)→ L2(BR)

and the trace map H1(BR) → L2(BR ∩ ∂Σ) are both compact (see [1, Theorem

6.3]). So using (3.28) and a standard diagonal argument we can construct a sequence

Rj → ∞ and functions f1, . . . , fI in Σ such that for all i = 1, . . . , I and R > 0 we

have as j →∞

fi,Rj → fi strongly in L2(BR),

fi,Rj |∂Σ → fi|∂Σ strongly in L2(BR ∩ ∂Σ),

fi,Rj → fi weakly in H1(BR).

It follows that the functions fi are eigenfunctions of Q in the weak sense, and the

corresponding eigenvalues are λi = limj→∞ λi,Rj . Furthermore, it follows from (3.27)

that f1, . . . , fI form an orthonormal set. Let W be the linear space spanned by these

functions and take ϕ ∈ C∞0 (Σ) ∩W⊥, then for all ρ > R we can write

ϕ =
I∑
i=1

ai,ρfi,ρ + ϕρ

where ai,ρ =
∫

Σ
ϕfi,ρ and ϕρ ⊥ fi,ρ. It is not hard to see that ai,Rj → 0 as j → ∞.
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Since λi,Rj are uniformly bounded below, we can conclude that

Q(ϕ, ϕ) = Q(ϕRj , ϕRj) + εRj ≥ εRj → 0.

Hence Q(ϕ, ϕ) ≥ 0. This completes the proof.

In the following corollary we give an application of Proposition 3.19. It further

characterizes the topology of an index one free boundary CMC surface in a 3-manifold

with boundary.

Corollary 3.20. Let M be an oriented �at 3-manifold with smooth weakly convex

boundary and let Σ be a noncompact free boundary CMC surface with strong index

one immersed in M . Then Σ is conformally equivalent to a compact Riemann surface

Σ̄ of genus g and r boundary components punctured at k points, and

k + ` ≤ 4

⌊
1− g

2

⌋
− 2r + 8,

where ` is the number of boundary punctures. In particular, g ≤ 3, r ≤ 3, g + r ≤ 4

and k + ` ≤ 6.

Proof. By Theorem 3.4, Σ is conformally equivalent to a compact Riemann surface Σ̄

of genus g with r boundary components punctured at k points p1, . . . , pk. Let ds
2 be

the metric on Σ. Let ρ be a positive smooth function such that (Σ, ρds2) is complete

as a metric space and has �nite area. Indeed, since each end is conformal either to a

punctured disk or half-disk, we can take conformal coordinates centered at zero near

each end and we can let ρ = 1/|z| in each of these neighborhoods, so that the metric is
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complete and the surface has �nite area. Let ds̃2 = ρds2. Since the Dirichlet integral

is conformally invariant in dimension 2, we have that

Q̃(u, u) =

∫
Σ

|∇̃u|2 − |AΣ|2ρ−1u2dÃ−
∫
∂Σ

ρ−1/2qu2d˜̀

coincides with the stability operator Q(u, u) for any compactly supported function

u on Σ. Since (Σ, ds2) has index one, Q̃ has index one. By Proposition 3.19, there

exists an eigenfunction f1 ∈ L2(Σ, ds̃2) corresponding to a negative eigenvalue for the

following eigenvalue problem:
∆̃u+ |AΣ|2ρ−1u+ λu = 0 in Σ

∂u
∂η̃

= ρ−1/2qu on ∂Σ.

The construction in Proposition 3.19 and standard arguments imply that f1 is strictly

positive and smooth. Furthermore, we have that Q(u, u) ≥ 0 for any u ∈ C∞c (Σ) that

is L2(Σ, ds̃2)-orthogonal to f1.

We claim that Q(u, u) ≥ 0 for any u ∈ C∞(Σ̄) that is L2(Σ, ds̃2)-orthogonal to f1.

As k∂Σ ≥ 0, (3.1) implies that |AΣ|2 and q are integrable, thus Q(u, u) is �nite. Note

that uf1 is in L
1(Σ, ds̃2) since u, f1 ∈ L2(Σ, ds̃2). The proof of the claim follows from

the standard cut-o� arguments (see e.g. [39, Prop. 1.1]).

We may view Σ̄ as a compact domain of a closed orientable surface Σ̂ of genus g

by sticking disks to the boundary components of Σ̄. Let Φ = (Φ1,Φ2,Φ3) : Σ̂ → S2

be a holomorphic map with degree less than or equal to bg+3
2
c. Since (Σ, ds̃2) has

�nite area it follows that f1 is integrable, so there exists a conformal di�eomorphism
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Ψ of S2 such that the composed map Ψ ◦ Φ satis�es

∫
Σ̃

f1(Ψ ◦ Φ) = ~0.

This is usually called the Hersch balancing trick, see [15, Lemma 5.1] for a proof. It

then follows that for i = 1, 2, 3

∫
Σ

|∇(Ψ ◦ Φ)i|2 − |AΣ|2(Ψ ◦ Φ)2
i −

∫
∂Σ

q(Ψ ◦ Φ)2
i ≥ 0.

Summing over i = 1, 2, 3 yields

8π deg(Ψ) =

∫
Σ

|∇(Ψ ◦ Φ)|2

≥
∫

Σ

|AΣ|2 +

∫
∂Σ

q

=

∫
Σ

H2
Σ − 2KΣ +

∫
∂Σ

H∂M − κ∂Σ

≥ −
∫

Σ

2KΣ −
∫
∂Σ

2κ∂Σ.

Note that KΣ and k∂Σ are both integrable due to (3.1), then combining above

inequality with the Cohn-Vossen inequality (see [51, Theorem 2.2.1]) we obtain

8π

⌊
g + 3

2

⌋
≥ −2π(4− 4g − 2r − k − l).

This completes the proof.
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3.4 Curvature bounds for capillary surfaces

In this section, we obtain curvature estimates for strongly stable capillary surfaces

in a 3-manifold with bounded geometry. The methods used to prove Theorem 3.6 are

very similar to those used to show Theorem 2.10, for this reason we will concentrate

on where the proofs diverge.

Proof of Theorem 3.6

We start as in the proof of Theorem 2.10 by assuming for the sake of contradiction

that there is a sequence of 3-manifolds with bounded geometry Mn, a sequence of

strongly stable edged capillary surfaces Σn immersed in Mn at constant angle θ, and

a sequence of points qn ∈ Σn such that

|An(qn)|min{dn(qn, ∂Σn \ ∂Mn), ιn, (
√

Λn)−1, (Hn cos θ)−1
− } > n,

where

� An, dn are the second fundamental form and the intrinsic distance of Σn,

respectively;

� ιn, Λn are the injectivity radius and curvature bounds of Mn, respectively;

� Hn is the mean curvature of Σn;

� (Hn cos θ)− is 0 if Hn cos θ ≥ 0 and is −Hn cos θ otherwise.

We can rescale the metrics of the ambient spaces Mn so that we can assume

Λn = ιn = 1 and HΣ cos θ ≥ −1. Fix an α ∈ (0, 1) and consider the values r0, Q0

92



given by Theorem 1.5 with Λ = ι = 1. We assume without loss of generality that

r0 < 1. So we have that

|An(qn)|min{dn(qn, ∂Σn \ ∂Mn), r0} ≥ r0n.

LetDn be the intrinsic disk in Σn around qn with radius min{dn(qn, ∂Σn\∂Mn), r0}

and take pn to be the point in Dn maximizing

|An(pn)|dDn(p, ∂Dn \ ∂Mn).

Writing λn = |An(pn)| and Rn = dDn(pn, ∂Dn \ ∂Mn), we have that by construction,

λnRn > r0n and λn > n.

Continuing to follow the proof of Theorem 2.10, we let D̃ be the intrinsic disk in

Dn centered at pn with radius Rn/2. So, by construction we have that for all p ∈ D̃n

|An(p)| ≤ λnRn

min{dDn(p, ∂Dn \ ∂Mn), r0}
≤ 2λn. (3.29)

Consider a sequence of rescaled surfaces λn(D̃n − pn) as in the proof of Theorem

2.10. Repeating the arguments of this proof, we have that, after passing to a

subseequnce, we can choose a piece ∆n of λn(D̃n − pn) such that ∆n has Euclidean

second fundamental form with norm bounded above by 5 everywhere and bounded

below by 1/2 at the point 0n that is identi�ed with pn. Furthermore, the extrinsic

Euclidean distance between 0n and the edge of ∆n diverges to ∞ as n→∞.

In case lim supn λndD̃n(pn, ∂D̃n) = ∞, we can pass to a subsequence so the

distance from 0n ∈ ∆n to its boundary diverges. In this case, we can use the same
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arguments from the proof of Theorem 2.10 to �nd a complete stable limit surface S

in Euclidean space that passes tough the origin with nonzero second fundamental

form, a contradiction to the uniqueness of the plane [23]. The only distinction is

that, in this case, the limit ambient space can be a half-space of R3, this however

does not require any modi�cation to the arguments.

In case lim supn λndD̃n(pn, ∂D̃n) < ∞, some modi�cations to the argument are

needed to account for the boundary. Pass to a subsequence so the sequence

{λndD̃n(pn, ∂D̃n)}n∈N converges. Note that since the edge of λn(D̃n− pn) is diverving

to in�nity, we must hace that limn→∞ dn(pn, ∂Mn) = 0. This means that, for n large,

the boundary of Mn is identi�ed with a plane in the ambient space of λn(D̃n − pn)

(case (ii) in Theorem 1.5). Since these planes are at a bounded distance from the

origin, we can pass to a subsequence so they converge, hence the ambient space

converges to some half-space H. The construction of the limit surface S proceeds as

in the previous case, except that some care needs to be taken near the boundary.

To be more precise, assume there is a sequence of points xn ∈ ∂∆n that converge

to some point x ∈ ∂H and such that the normal vectors of the surfaces ∆n at xn

converge to some vector v. Then we can parametrize each surface ∆n near xn as a

graph of a function over the plane passing tough x that is normal to ∂H and contains

the component of v that is perpendicular to ∂H. Using arguments analogous to those

of Lemma 2.4 we can obtain C2,α bounds for these functions. Since the contact angle

θ give control over the derivative of these functions at the boundary, we can use
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boundary Schauder estimates [2, Theorem 7.3] to get C2,α estimates at the boundary.

Now, we can again use the Jacobi function to show that the limit surface S is

strongly stable, hence a plane by Theorem 3.5. However, this contradicts the fact

that S passes tough the origin with nonzero second fundamental form.

Remark 3.21. In the case where Σ is capillary, that is, has empty edge, we interpret

dΣ(p, ∂Σ \ ∂M) to be positive in�nity for all p ∈ Σ.

The Corollary below is an analog of Corollary 2.11. Since the proof of both results

is essentially the same, we will omit it here.

Corollary 3.22. Fix θ ∈ (0, π/2] and take C,M, ι and Λ as in the statement of

Theorem 3.6. Let Σ be an edged capillary surface with �nite index immersed immersed

in M at constant angle θ. Assume HΣ ≥
√

2C max{ι−1,
√

Λ}. Then,

� in case Σ has nonempty edge,

dΣ(p, ∂Σ \ ∂M) ≤ (Indexs(Σ) + 1)
2
√

2C

HΣ

(3.30)

for all p ∈ Σ; and

� in case Σ is capillary

diamΣ(Σ) ≤ Indexs(Σ)
2
√

2C

HΣ

, (3.31)

where diamΣ(Σ) is the intrinsic diameter of Σ.
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