1. Homework 7

Due: In Lecture 10-14

Problem 1. Consider the maps $\phi_t : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$\phi_t(x,y) = (xe^{2t}, ye^{-3t}).$$

- (1) Show that $\{\phi_t : t \in \mathbb{R}\}$ is a one-parameter group of linear maps of \mathbb{R}^2 to itself. (2) Find the corresponding vector field V on \mathbb{R}^2 .
- (3) Sketch V and its integral curves.

Problem 2. On \mathbb{R}^3 , consider the vector fields

$$X = z\frac{\partial}{\partial y} - y\frac{\partial}{\partial z}$$
$$Y = x\frac{\partial}{\partial z} - z\frac{\partial}{\partial x}$$
$$Z = y\frac{\partial}{\partial x} - x\frac{\partial}{\partial y}.$$

Show that the flow of aX + bY + cZ is a rotation of \mathbb{R}^3 about the line through the origin and the point (a, b, c).

Problem 3. Compute the flow of each of the following vector fields on \mathbb{R}^2 :

(1)
$$V = y \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$$

(2) $W = x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}$
(3) $X = x \frac{\partial}{\partial x} + -y \frac{\partial}{\partial y}$
(4) $Y = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$

(3)
$$X = x \frac{\partial}{\partial x} + -y \frac{\partial}{\partial x}$$