1. Homework 7

Due: In Lecture 10-14

Problem 1. Consider the maps $\phi_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
\phi_{t}(x, y)=\left(x e^{2 t}, y e^{-3 t}\right) .
$$

(1) Show that $\left\{\phi_{t}: t \in \mathbb{R}\right\}$ is a one-parameter group of linear maps of \mathbb{R}^{2} to itself.
(2) Find the corresponding vector field V on \mathbb{R}^{2}.
(3) Sketch V and its integral curves.

Problem 2. On \mathbb{R}^{3}, consider the vector fields

$$
\begin{aligned}
& X=z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z} \\
& Y=x \frac{\partial}{\partial z}-z \frac{\partial}{\partial x} \\
& Z=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y} .
\end{aligned}
$$

Show that the flow of $a X+b Y+c Z$ is a rotation of \mathbb{R}^{3} about the line through the origin and the point (a, b, c).

Problem 3. Compute the flow of each of the following vector fields on \mathbb{R}^{2} :
(1) $V=y \frac{\partial}{\partial x}+\frac{\partial}{\partial y}$
(2) $W=x \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial y}$
(3) $X=x \frac{\partial}{\partial x}+-y \frac{\partial}{\partial y}$
(4) $Y=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$

