1. Homework 7

Due: In Lecture 10-7

Problem 1. Show that with this choice of a, the one-to-one immersion $\pi \circ F$: $M^m \to \mathbb{R}^{2m+1}$ is proper, and hence, is an embedding. (See lecture notes for context)

Problem 2. Prove that every k-dimensional compact concrete manifold can be immersed in \mathbb{R}^{2k}

Problem 3. Let S(M) be the set of points $(x, y) \epsilon TM$ with |v| = 1. Prove that S(M) is a 2k - 1-dimensional submanifold of TM.

Problem 4.If df_x is surjective, f is called a submersion at x. A map that is a submersion at every point is simply called a submersion.

Prove that $p: TM \to M$ given by p(x, v) = x is a submersion.