1. Homework 4

Due: In Lecture 9-28

Problem 1. Show that if M is a k-dimensional differentiable manifold with boundary in \mathbb{R}^{n}, then ∂M is a ($k-1$)-dimensional manifold (without boundary) in \mathbb{R}^{n}.

Problem 2. Identify the set of real 2×2 matrices with R^{4}.
(a) Show that the subset M of matrices of rank 1 is a 3 -dimensional differentiable manifold in R^{4}.
(b) Show that the set of 2×2 matrices of determinant 1 is a 3 -dimensional differentiable submanifold of R^{4}.

Problem 3 Show that M_{x} consists of the tangent vectors to smooth curves in M passing through x.

Problem 4 (a) Find a basis for the tangent space to the unit 2-sphere S^{2} in R^{3} at the point $p=(a, b, c)$.
(b) What is the tangent space to the hyperboloid in \mathbb{R}^{3} defined by the equation $x^{2}+y^{2}-z^{2}=a^{2}$ at the point $(a, 0,0)$?

Problem 5 The orthogonal group $O(n)$ consists of all $n \times n$ matrices A such that $A A^{T}=I$. Identify the set $M(n)$ of all $n \times n$ matrices with Euclidean space of dimension n^{2}, and then show that the orthogonal group $O(n)$ is a differentiable submanifold. What is its dimension?

