1. Homework 11

Due: In Lecture 11-2

Problem 1. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
f(u, v)=(x(u, v), y(u, v))=\left(u^{2}-v^{2}, 2 u v\right) .
$$

Let $\omega=-y d x+x d y$, and compute $f^{*} \omega$.
Comment. Pulling forms back is mechanical, and feels like substitution.
Problem 2. If ω and η are differential k- and r-forms, then

$$
d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta
$$

Problem 3.(a) Compute the exterior derivative of each of the following forms:
(1) $x d y+y d x$
(2) $x d y-y d x$
(3) $x d x d y$
(4) $z d x d y+y d x d z$
(b) In each case that the exterior derivative is zero, find a form of one degree less whose exterior derivative is the given form.

