1. Homework 1

Due: In Lecture 9-21

Problem 1. Show that if $A \subset \mathbb{R}^n$ is a rectangle and $f : A \to \mathbb{R}$ is continuous, then f is Riemann integrable on A.

Problem 2. Show that if f and g are Riemann integrable on $A \subset \mathbb{R}^n$ a rectangle, then so is f + g, and

$$\int_{A} (f+g) = \int_{A} f + \int_{A} g,$$

Problem 3. Let $f(x, y) = x^2 y^2$. Show that the set of critical points of f consists of the union of the x and y axes, and that they are all degenerate. Sketch the graph of f to see how f behaves.

Problem 4. Show that the map $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$f(x,y) = (e^x + e^y, e^x + e^{-y})$$

is locally invertible about any point $(a, b) \in \mathbb{R}^2$, and compute the Jacobian matrix of the inverse map.

Problem 5. Same for the map $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$f(x, y) = (e^x + e^y, e^x - e^y)$$

In this case, the whole map f is invertible, with an easily computed inverse, g. Compute g and its Jacobian matrix, and check that the Jacobians of f and g really are inverses of each other.

Problem 6. Show that the system of equations

$$3x + yz + u2 = 0$$
$$xy + 2z + u = 0$$
$$2x + 2y - 3z + 2u = 0$$

can be solved for x, y, u in terms of z;

for x, z, u in terms of y;

for x, y, z in terms of u; but not for y, z, u in terms of x.

Problem 7. Define $f : \mathbb{R}^2 \times \mathbb{R}^1 \to \mathbb{R}^1$ by

$$f(x, y, z) = z^2 x + e^z + y,$$

and note that f(1, -1, 0) = 0.

Use the Implicit Function Theorem to conclude that there is a function $g: \mathbb{R}^2 \to \mathbb{R}^1$ defined in some neighborhood of (1, -1) such that g(1, -1) = 0 and such that f(x, y, g(x, y)) = 0 for all (x, y) in that neighborhood. Then calculate $\frac{\partial g}{\partial x}(1, -1)$ and $\frac{\partial g}{\partial y}(1, -1)$.

Problem 8. Let F(x, y) be of class C^2 , and suppose that F(x, f(x)) = 0 and $\frac{\partial F}{\partial y}(x, f(x)) \neq 0$ for all $x \in \mathbb{R}$. Calculate f' and f'' in terms of F and its derivatives.