1. Homework 1

Due: In Lecture 9-21

Problem 1. Show that if $A \subset \mathbb{R}^{n}$ is a rectangle and $f: A \rightarrow \mathbb{R}$ is continuous, then f is Riemann integrable on A.

Problem 2. Show that if f and g are Riemann integrable on $A \subset \mathbb{R}^{n}$ a rectangle, then so is $f+g$, and

$$
\int_{A}(f+g)=\int_{A} f+\int_{A} g
$$

Problem 3. Let $f(x, y)=x^{2} y^{2}$. Show that the set of critical points of f consists of the union of the x and y axes, and that they are all degenerate. Sketch the graph of f to see how f behaves.

Problem 4. Show that the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y)=\left(e^{x}+e^{y}, e^{x}+e^{-y}\right)
$$

is locally invertible about any point $(a, b) \in \mathbb{R}^{2}$, and compute the Jacobian matrix of the inverse map.

Problem 5. Same for the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y)=\left(e^{x}+e^{y}, e^{x}-e^{y}\right)
$$

In this case, the whole map f is invertible, with an easily computed inverse, g. Compute g and its Jacobian matrix, and check that the Jacobians of f and g really are inverses of each other.

Problem 6. Show that the system of equations

$$
\begin{gathered}
3 x+y z+u^{2}=0 \\
x y+2 z+u=0 \\
2 x+2 y-3 z+2 u=0
\end{gathered}
$$

can be solved for x, y, u in terms of z;
for x, z, u in terms of y;
for x, y, z in terms of u;
but not for y, z, u in terms of x.
Problem 7. Define $f: \mathbb{R}^{2} \times \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ by

$$
f(x, y, z)=z^{2} x+e^{z}+y
$$

and note that $f(1,-1,0)=0$.
Use the Implicit Function Theorem to conclude that there is a function $g: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{1} defined in some neighborhood of $(1,-1)$ such that $g(1,-1)=0$ and such that $f(x, y, g(x, y))=0$ for all (x, y) in that neighborhood.

Then calculate $\frac{\partial g}{\partial x}(1,-1)$ and $\frac{\partial g}{\partial y}(1,-1)$.
Problem 8. Let $F(x, y)$ be of class C^{2}, and suppose that $F(x, f(x))=0$ and $\frac{\partial F}{\partial y}(x, f(x)) \neq 0$ for all $x \in \mathbb{R}$. Calculate f^{\prime} and $f^{\prime \prime}$ in terms of F and its derivatives.

