Math 600 Day 4: Differentiable Manifolds

Ryan Blair

University of Pennsylvania

Tuesday September 21, 2010

Ryan Blair (U Penn)

Math 600 Day 4: Differentiable Manifolds Tuesday September 21, 2010 1 / 15

∃ → < ∃ →</p>

Outline

Differentiable Manifolds

• k-Dimensional Smooth Manifolds

(日) (周) (三) (三)

k-Dimensional Smooth Manifolds

Definition

A subset M of \mathbb{R}^n is called a k-dimensional differentiable (or smooth) manifold if for every point $x \in M$, there is an open set U of \mathbb{R}^n which contains x, another open set V in \mathbb{R}^n , and a diffeomorphism $h: U \to V$, such that

$$h(U\cap M)=V\cap \mathbb{R}^k.$$

∃ → < ∃ →</p>

Remark

(1) We regard

$$\mathbb{R}^{k} = \{x \in \mathbb{R}^{n} : x_{k+1} = \dots = x_{m} = 0\} \subset \mathbb{R}^{n}.$$

Thus $\mathbb{R}^1 \subset \mathbb{R}^2 ... \mathbb{R}^k \subset ... \mathbb{R}^m \subset ...$

Remark

(2) The above definition says that each point of M has a neighborhood in M which sits inside \mathbb{R}^n the same way, up to diffeomorphism, that \mathbb{R}^k does.

Remark

(3) If the diffeomorphisms are of class C^r , we say that the manifold M is of class C^r . Most of the time, we will be dealing with differentiable manifolds of class C^{∞} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Example $S^2 = \{x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$ is a 2-manifold

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

Theorem

Let $A \subset \mathbb{R}^n$ be open and let $f : A \to \mathbb{R}^p$ be a differentiable function whose derivative f'(x) has maximal rank p whenever f(x) = 0. Then $f^{-1}(0)$ is a (n - p)-dimensional manifold in \mathbb{R}^n .

Proof:

Fix a such that f(a) = 0. By hypothesis, the $p \times n$ matrix f'(a) has rank p. Consider f as a function $f : \mathbb{R}^{n-p} \times \mathbb{R}^p \to \mathbb{R}^p$.

Since $(D_j f^i(a))$ has rank p, we can reorder the coordinates so that the $p \times p$ matrix $M = (D_{n-p+j}f^i(a_1, a_2))$, where $1 \le i, j \le m$ and $(a_1, a_2) = a$, has the property that $det(M) \ne 0$.

Define $F : \mathbb{R}^{n-p} \times \mathbb{R}^p \to \mathbb{R}^{n-p} \times \mathbb{R}^p$ by F(x, y) = (x, f(x, y)). Then $det(F'(a_1, a_2)) = det(M) \neq 0$.

By the inverse function theorem, there is an open set $W \subset \mathbb{R}^{n-p} \times \mathbb{R}^{p}$ containing $F(a_1, a_2) = (a_1, 0)$ and an open set in $\mathbb{R}^{n-p} \times \mathbb{R}^{p}$ containing (a_1, a_2) , which may be taken to be of the form $A \times B$ such that $F : A \times B \to W$ has a differentiable inverse $h : W \to A \times B$.

h is of the form h(x, y) = (x, k(x, y)) since F is of this form.

Let $\pi: \mathbb{R}^{n-p} \times \mathbb{R}^p \to \mathbb{R}^p$ be the projective map. Then $\pi \circ F = f$. Therefore,

$$f(x, k(x, y)) = f \circ h(x, y) = (\pi \circ F) \circ h(x, y) = \pi \circ (F \circ h)(x, y) = \pi(x, y) = y$$

Hence we have found an h such that $f \circ h(x_1, ..., x_n) = (x_{n-p+1}, ..., x_n)$ in a nbh of a where f(a) = 0.

It follows that $f^{-1}(0)$ is a differentiable manifold.

・ロト ・国ト ・ヨト ・ヨト 三日

Example $S^{n-1} \subset \mathbb{R}^n$ are all n-1 manifolds.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example A subset *M* of \mathbb{R}^n has condition *C* if for every $x \in M$:

There is an open set U of \mathbb{R}^n containing x, an open subset $W \subset \mathbb{R}^k$ and a one-to-one differentiable function $f: W \to \mathbb{R}^n$ such that (1) $f(W) = M \cap U$ (2) f'(y) has maximal rank k for each point $y \in W$. (3) $f^{-1}: f(W) \to W$ is continuous.

The function f is called a **coordinate system** around $x \in M$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Theorem

M having condition (C) is equivalent to M being a k-manifold.

Proof: Assume *M* is a manifold. For every $x \in M$ there exists an open set $U \subset \mathbb{R}^n$ containing *x* and an open set $V \subset \mathbb{R}^n$ and a diffeomorphism $h: U \to V$ such that

$$h(U \cap M) = V \cap \{y \in V : y^{k+1} = ... = y^n = 0\}.$$

Let $W = \{a \in \mathbb{R}^k : (a, 0) \in h(M)\}$ and define

$$f: W \to \mathbb{R}^n$$
 by $f(a) = h^{-1}(a, 0)$.

 $f(W) = M \cap U$

 f^{-1} is continuous since it is the restriction of a continuous map.

If $H: U \to \mathbb{R}^k$ is given by $H(z) = (h^1(z), h^2(z), ..., h^k(z))$, then H(f(y)) = y for all $y \in W$. Therefore, H'(f(x))f'(y) = Id and f'(y) has rank k. Hence, M has condition (C). Assume M has condition (C) and show M is a manifold.

There is an open set U of \mathbb{R}^n containing x, an open subset $W \subset \mathbb{R}^k$ and a one-to-one differentiable function $f : W \to \mathbb{R}^n$ such that (1) $f(W) = M \cap U$ (2) f'(y) has maximal rank k for each point $y \in W$. (3) $f^{-1} : f(W) \to W$ is continuous.

Let $x = f(y) \in M$. Assume that $(D_j f^i(y))$, $1 \le i, j \le k$ has non-zero determinant.

Define $g: W \times \mathbb{R}^{n-k} \to \mathbb{R}^n$ by

$$g(a,b) = f(a) + (0,b) = (f^{1}(a),...,f^{k}(a),b_{1},...,b_{n-k})$$

Then $det(g'(a, b)) = det(D_j f^i(a)) \neq 0$

In particular, $g'(y,0) \neq 0$. By the inverse function theorem, there is an open set V'_1 containing (y,0) and an open set V'_2 containing g(y,0) such that $g: V'_1 \rightarrow V'_2$ has a differentiable inverse $h: V'_2 \rightarrow V'_1$.

Since, f^{-1} is continuous, $\{f(a): (a,0)\in V'_1\} = U \cap f(W)$ for some open set U.

Let
$$V_2 = V'_2 \cap U$$
 and $V_1 = g^{-1}(V_2)$. Then $V_2 \cap M$ is exactly $\{f(a) : (a,0) \in V_1\} = \{g(a,0) : (a,0) \in V_1\}$. So,

$$h(V_2 \cap M) = g^{-1}(V_2 \cap M) = g^{-1}(\{g(a, 0) : (a, 0) \in V_1\}) = V_1 \cap \mathbb{R}^k$$

The closed half-space $H^k \subset \mathbb{R}^k$ is defined to be

$$H^k = x \in \mathbb{R}^k : x_k \leq 0.$$

A subset M of \mathbb{R}^n is called a *k*-dimensional differentiable manifold with boundary if for every point $x \in M$, there is an open set U of \mathbb{R}^n which contains x, another open set V in \mathbb{R}^n , and a diffeomorphism $h: U \to V$, such that either

$$h(U\cap M)=V\cap \mathbb{R}^k$$

or

$$h(U\cap M)=V\cap H^k.$$

The set of points in M which satisfy the second condition is called the boundary of M and denoted by ∂M .

Let M be a k-dimensional differentiable manifold in \mathbb{R}^n , and let (f_1, U_1, u_1) be a coordinate system around $x \in M$. Since $f'_1(u_1)$ has rank k, the linear transformation $(f_1)_* : \mathbb{R}^k_{u_1} \to \mathbb{R}^n_x$ is one-to-one, and hence $(f_1)_*(\mathbb{R}^k_{u_1})$ is a k-dimensional subspace of R^n_x . If (f_2, U_2, u_2) is another coordinate system around $x \in M$, then

$$(f_2)_*(\mathbb{R}^k_{u_2}) = (f_1)_*(f_1^{-1} \circ f_2)_*(\mathbb{R}^k_{u_2}) = (f_1)_*(\mathbb{R}^k_{u_1}).$$

Thus the k-dimensional subspace $(f_1)_*(\mathbb{R}_{u1}^k)$ does not depend on the choice of coordinate system around x. This subspace is denoted by M_x or TM_x or T_xM , and is called the **tangent space** to M at x.

- 御子 と言と と言と 二日