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Integration Basic Definitions

Basic Definitions

The definition of the integral of a real-valued function f : A → R defined
on a rectangle A ⊂ R

n is almost identical to that of the ordinary integral
when n = 1.

Let [a, b] be a closed interval of real numbers. By a partition P of [a, b] we
mean a finite set of points x0, x1, ..., xn with a = x0 ≤ x1 ≤ ... ≤ xn = b.
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Integration Basic Definitions

Given a closed rectangle

A = [a1, b1] × ...× [an, bn]

in R
n, a partition of A is a collection P = (P1, ...,Pn) of partitions of the

intervals [a1, b1], ..., [an, bn] which divides A into closed subrectangles S in
the obvious way.

Suppose now that A is a rectangle in Rn and f : A → R is a bounded
real-valued function. If P is a partition of A and S is a subrectangle of P
(we’ll simply write SǫP), then we define

mS (f ) = GLBf (x) : xǫS

MS(f ) = LUBf (x) : xǫS .
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Integration Basic Definitions

Let vol(S) denote the volume of the rectangle S , and define

L(f ,P) = ΣSǫPmS(f )vol(S) = lower sum of f wrt P

U(f ,P) = ΣSǫPMS(f )vol(S) = upper sum of f wrt P .

Given the bounded function f on the rectangle A ⊂ R
n, if

LUBPL(f ,P) = GLBPU(f ,P), then we say that f is Riemann integrable
on A, call this common value the integral of f on A, and write it as

∫
A

f =

∫
A

f (x)dx =

∫
A

f (x1, ..., xn)dx1...dxn.
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Integration Measure Zero

Measure Zero and Content Zero

Definition

A subset A of R
n has (n-dimensional) measure zero if for every ε > 0 there

is a covering of A by a sequence of closed rectangles U1,U2, ... such that
Σivol(Ui) < ε.

Remark

Note that countable sets, such as the rational numbers, have measure zero.

Definition

A subset A of R
n has (n-dimensional) content zero if for every ε > 0 there

is a finite covering of A by closed rectangles U1,U2, ...,Uk such that
vol(U1) + vol(U2) + ...+ vol(Uk) < ε.

Remark

Note that if A has content zero, then it certainly has measure zero.
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Integration Integrable Functions

Integrable Functions

Let A ⊂ R
n and let f : A → R be a bounded function. For δ > 0, let

M(a, f , δ) = LUB{f (x) : xǫA and |x − a| < δ}

m(a, f , δ) = GLB{f (x) : xǫA and |x − a| < δ}.

Then we define the oscillation, o(f , a), of f at a by

o(f , a) = limδ→0[M(a, f , δ) − m(a, f , δ)].

This limit exists because M(a, f , δ) − m(a, f , δ) decreases as δ decreases.
The oscillation of f at a provides a measure of the extent to which f fails
to be continuous at a.
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Integration Integrable Functions

Theorem

Let A be a closed rectangle in R
n and f : A → R a bounded function. Let

B = {xǫA : f is not continuous at x}.

Then f is Riemann integrable on A if and only if B has measure zero.
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Integration Integrable Functions

Generalizing to Bounded Sets

If C ⊂ R
n, then the characteristic function χC of C is defined by

χC (x) = 1 if x lies in C and χC (x) = 0 if x does not lie in C .

If C ⊂ R
n is a bounded set, then C ⊂ A for some closed rectangle A. So if

f : A → R is a bounded function, we define
∫

C

f =

∫
A

f χC ,

provided that f χC is Riemann integrable. According to the homework, this
product will be Riemann integrable if each factor is.
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Integration Fubini’s Theorem

Fubini’s Theorem

In freshman calculus, we learn that multiple integrals can be evaluated as
iterated integrals:

∫
[a,b]×[c,d]

f (x , y)dydx =

∫
[a,b]

(

∫
[c,d]

f (x , y)dy)dx .

The precise statement of this result, in somewhat more general terms, is
known as Fubini’s Theorem.
When f is continuous, Fubini’s Theorem is the straightforward
multi-dimensional generalization of the above formula.
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Integration Fubini’s Theorem

When f is merely Riemann integrable, there is a slight complication,
because f (x0, y) need not be a Riemann integrable function of y . This can
happen easily if the set of discontinuities of f is x0 × [c , d ], and if f (x0, y)
remains discontinuous at all yǫ[c , d ].

Before we state Fubini’s Theorem, we need a definition.

If f : A → R is a bounded function defined on the closed rectangle A,
then, whether or not f is Riemann integrable over A, the LUB of all its
lower sums, and the GLB of all its upper sums, both exist. They are called
the lower and upper integrals of f on A, and denoted by L

∫
A

f and
U

∫
A

f , respectively.
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Integration Fubini’s Theorem

Theorem (Fubini’s Theorem.)

Let A ⊂ R
n and A′ ⊂ R

n′ be closed rectangles, and let f : A × A′ → R be
Riemann integrable. For each xǫA, define gx : A′ → R by gx(y) = f (x , y).
Then define

L(x) = L

∫
A′

gx = L

∫
A′

f (x , y)dy

U(x) = U

∫
A′

gx = U

∫
A′

f (x , y)dy .

Then L and U are Riemann integrable over A, and

∫
A×A′

f =

∫
A

L =

∫
A

(L

∫
A′

f (x , y)dy)dx

∫
A×A′

f =

∫
A

U =

∫
A

(U

∫
A′

f (x , y)dy)dx .
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Integration Fubini’s Theorem

Proof. Let P and P ′ be partitions of A and A′, and P × P ′ the
corresponding partition of A × A′. Then

L(f ,P × P ′) = ΣS×S ′ǫP×P′mS×S ′(f )vol(S × S ′)

= ΣSǫP(ΣS ′ǫP′mS×S ′(f )vol(S ′))vol(S).

If xǫS , then clearly mS×S ′(f ) ≤ mS ′(gx ). Hence

ΣS ′ǫP′mS×S ′(f )vol(S ′) ≤ ΣS ′ǫP′mS ′(gx )vol(S ′) ≤ L

∫
A′

gx = L(x).

Therefore

ΣSǫP(ΣS ′ǫP′mS×S ′(f )vol(S ′))vol(S) ≤ L(L,P).
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Integration Fubini’s Theorem

Hence

L(f ,P × P ′) ≤ L(L,P) ≤ U(L,P) ≤ U(U ,P) ≤ U(f ,P × P ′),

where the proof of the last inequality mirrors that of the first.

Since f is integrable on A × A′, we have

LUB L(f ,P × P ′) = GLB U(f ,P × P ′) =

∫
A×A′

f .

So by a squeeze argument,

LUB L(L,P) = GLB U(L,P) =

∫
A

L =

∫
A×A′

f .

Likewise,
∫
A
U =

∫
A×A′ f , completing the proof of Fubini’s Theorem. �
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Integration Fubini’s Theorem

Remark

If each gx is Riemann integrable (as is certainly the case when f (x , y) is
continuous), then Fubini’s Theorem says

∫
A×A′

f =

∫
A

(

∫
A′

f (x , y)dy)dx ,

and likewise, ∫
A×A′

f =

∫
A′

(

∫
A

f (x , y)dx)dy .

Remark

One can iterate Fubini’s Theorem to reduce an n-dimensional integral to
an n-fold iteration of one-dimensional integrals.
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Integration Partitions of Unity

Partitions of Unity

Theorem

Let A be an arbitrary subset of R
n and let U be an open cover of A. Then

there is a collection Φ ofC∞functions φ defined in an open set containing
A, with the following properties:

1 For each xǫA, we have 0 ≤ φ(x) ≤ 1.

2 For each xǫA, there is an open set V containing x such that all but
finitely many φǫΦ are 0 on V .

3 For each xǫA, we have ΣφǫΦφ(x) = 1. Note that by (2) above, this is
really a finite sum in some open set containing x.

4 For each φǫΦ, there is an open set U in U such that φ = 0 outside
some closed set contained in U.
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Integration Partitions of Unity

A collection Φ satisfying (1) - (3) is called a C∞ partition of unity.

If Φ also satisfies (4), then it is said to be subordinate to the cover U .

For now we will only use continuity of the functions φ, but in later classes
it will be important that they are of class C∞.
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Integration Partitions of Unity

Proof of Theorem.

Case 1. A is compact.
Then A ⊂ U1 ∪ U2 ∪ ... ∪ Uk . Shrink the sets Ui . That is, find compact
sets Di ⊂ Ui whose interiors cover A.

Let ψi be a non-negative C∞ function which is positive on Di and 0
outside of some closed set contained in Ui .

Then ψ1(x) +ψ2(x) + ...+ψk(x) > 0 for x in some open set U containing
A. On this set U we can define

φi (x) =
ψi (x)

(ψ1(x) + ...+ ψk(x))
.
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Integration Partitions of Unity

If f : U → [0, 1] is a C∞ function which is 1 on A and 0 outside some
closed set in U, then

Φ = {f φ1, ..., f φk}

is the desired partition of unity.
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Integration Partitions of Unity

Case 2. A = A1 ∪ A2 ∪ A3 ∪ ... where each Ai is compact and
Ai ⊂ int(Ai+1).
For each i , let

Ui = {U ∩ (int(Ai+1) − Ai−2) : UǫU}.

Then Ui is an open cover of the compact set Bi = Ai − int(Ai−1).

By case 1, there is a partition of unity Φi for Bi subordinate to Ui .

For each xǫA, the sum σ(x) = Σφφ(x), over all φ in all Φi , is really a
finite sum in some open set containing x . Then for each of these φ, define
φ′(x) = φ(x)

σ(x) . The collection of all φ′ is the desired partition of unity.
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Integration Partitions of Unity

Case 3. A is open.
Define Ai = {xǫA : |x | ≤ i and dist(x , ∂A) ≥ 1

i
} and then apply case 2.

Case 4. A is arbitrary.
Let B be the union of all U in U . By case 3, there is a partition of unity
for B . This is automatically a partition of unity for A. This completes the
proof of the theorem.�
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Integration Change of Variable

Change of Variable

Consider the technique of integration by “substitution”. To evaluate∫ 2
x=1(x

2 − 1)32xdx , we may substitute

y = x2 − 1,

dy = 2xdx

x = 1 iff y = 0, x = 2 iff y = 3.

Then ∫ 2

x=1
(x2 − 1)32xdx =

∫ 3

y=0
y3dy

=
y4

4
|30 =

81

4
.
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Integration Change of Variable

If we write f (y) = y3 and y = g(x) = x2 − 1, where g : [1, 2] → [0, 3],
then we are using the principle that

∫ 2

x=1
f (g(x))g ′(x)dx =

∫ g(2)

y=g(1)
f (y)dy ,

or more generally, ∫ b

a

(f ◦ g)g ′ =

∫ g(b)

g(a)
f .

Proof. If F ′ = f , then (F ◦ g)′ = (F ′ ◦ g)g ′ = (f ◦ g)g ′, by the Chain
Rule. So the left side is (F ◦ g)(b) − (F ◦ g)(a), while the right side is
F (g(b)) − F (g(a)).
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Integration Change of Variable

Here is the general theorem that we will prove.

Theorem (Change of Variables Theorem.)

Let A ⊂ R
n be an open set and g : A → R

n a one-to-one, continuously
differentiable map such that det(g ′(x)) 6= 0 for all xǫA. If f : g(A) → R is
a Riemann integrable function, then

∫
g(A)

f =

∫
A

(f ◦ g)|det(g ′)|.

Proof The proof begins with several reductions which allow us to assume
that f ≡ 1, that A is a small open set about the point a, and that g ′(a) is
the identity matrix. Then the argument is completed by induction on n
with the use of Fubini’s theorem.
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Integration Change of Variable

Step 1. Suppose there is an open cover U for A such that for each UǫU
and any integrable f , we have

∫
g(U)

f =

∫
U

(f ◦ g)|det(g ′)|.

Then the theorem is true for all of A.
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Integration Change of Variable

Proof.The collection of all g(U) is an open cover of g(A). Let Φ be a
partition of unity subordinate to this cover. If φ = 0 outside of g(U),
then, since g is one-to-one, we have (φf ) ◦ g = 0 outside of U. Hence the
equation ∫

g(U)
φf =

∫
U

((φf ) ◦ g)|det(g ′)|

can be written ∫
g(A)

φf =

∫
A

((φf ) ◦ g)|det(g ′)|.

Summing over all φǫΦ shows that

∫
g(A)

f =

∫
A

(f ◦ g)|det(g ′)|,

completing Step 1.
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Integration Change of Variable

Step 2. It suffices to prove the theorem for f = 1.

Proof. If the theorem holds for f = 1, then it also holds for f = constant.
Let V be a rectangle in g(A) and P a partition of V . For each
subrectangle S of P , let fS be the constant function mS (f ). Then

L(f ,P) = ΣSǫPms(f )vol(S) = ΣSǫP

∫
int(S)

fS

= ΣSǫP

∫
g−1(int(S))

(fS ◦ g)|det(g ′)|

≤ ΣSǫP

∫
g−1(int(S))

(f ◦ g)|det(g ′)|

=

∫
g−1(V )

(f ◦ g)|det(g ′)|.

Since
∫
V

f = LUBP L(f ,P), this proves that∫
V

f ≤

∫
g−1(V )

(f ◦ g)|det(g ′)|.
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Integration Change of Variable

Likewise, letting fS = MS(f ), we get the opposite inequality, and so
conclude that ∫

V

f =

∫
g−1(V )

(f ◦ g)|det(g ′)|.

Then, as in Step 1, it follows that

∫
g(A)

f =

∫
A

(f ◦ g)|det(g ′)|.
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Integration Change of Variable

Step 3. If the theorem is true for g : A → R
n and for h : B → R

n, where
g(A) ⊂ B , then it is also true for h ◦ g : A → R

n.

Proof. ∫
h◦g(A)

f =

∫
h(g(A))

f =

∫
g(A)

(f ◦ h)|det(h′)|

=

∫
A

[(f ◦ h) ◦ g ][|det(h′)| ◦ g ]|det(g ′)|

=

∫
A

[f ◦ (h ◦ g)]|det((h ◦ g)′)|.
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Integration Change of Variable

Step 4. The theorem is true if g is a linear transformation.

Proof. By Steps 1 and 2, it suffices to show for any open rectangle U that

∫
g(U)

1 =

∫
U

|det(g ′)|.

Note that for a linear transformation g , we have g ′ = g . Then this is just
the fact from linear algebra that a linear transformation g : R

n → R
n

multiplies volumes by |det(g)|.
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Integration Change of Variable

Proof of the Change of Variables Theorem.

By Step 1, it is sufficient to prove the theorem in a small neighborhood of
each point aǫA.

By Step 2, it is sufficient to prove it when f ≡ 1.

By Steps 3 and 4, it is sufficient to prove it when g ′(a) is the identity
matrix.

We now give the proof, which proceeds by induction on n. The proof for
n = 1 was given at the beginning of this section. For ease of notation, we
write the proof for n = 2.
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Integration Change of Variable

We are given the open set A ⊂ R
n and the one-to-one, continuously

differentiable map g : A → R
n with det(g ′(x)) 6= 0 for all xǫA.

Using the reductions discussed above, given a point aǫA, we need only find
an open set U with aǫU ⊂ A such that

∫
g(U)

1 =

∫
U

|det(g ′)|,

and in doing so, we may assume that g ′(a) is the identity matrix I .
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Integration Change of Variable

If g : A → R
2 is given by

g(x) = (g1(x1, x2), g2(x1, x2)),

then we define h : A → R
2 by

h(x) = (g1(x1, x2), x2).

Clearly h′(a) is also the identity matrix I , so that by the Inverse Function
Theorem, h is one-to-one on some neighborhood U ′ of a with
det(h′(x)) 6= 0 throughout U ′. So we can define k : h(U ′) → R

2 by

k(x1, x2) = (x1, g2(h
−1(x))),

and we’ll get g = k ◦ h. Thus we have expressed g as the composition of
two maps, each of which changes fewer than n coordinates (n = 2 here).
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Integration Change of Variable

By Step 3, it is sufficient to prove the theorem for h and for k, each of
which (in this case) changes only one coordinate. We’ll prove it here for h.

Let aǫ[c1, d1] × [c2, d2]. By Fubini’s theorem,

∫
h([c1,d1]×[c2,d2])

1 =

∫
[c2,d2]

(

∫
h([c1,d1]×{x2})

1dx1)dx2.

Define h|x2 : [c1, d1] → R by (h|x2)(x1) = g1(x1, x2). Then each map h|x2

is one-to-one and

det((h|x2)
′(x1) = det(h′(x1, x2)) 6= 0.
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Integration Change of Variable

Thus, by the induction hypothesis,

∫
h([c1,d1]×[c2,d2])

1 =

∫
[c2,d2]

(

∫
(h|x2)([c1,d1])

1dx1)dx2

=

∫
[c2,d2]

(

∫
[c1,d1]

det((h|x2)
′)(x1, x2)dx1)dx2

=

∫
[c2,d2]

(

∫
[c1,d1]

det(h′)(x1, x2)dx1)dx2

=

∫
[c1,d1]×[c2,d2]

det(h′)(x1, x2)dx1dx2

=

∫
[c1,d1]×[c2,d2]

det(h′),

completing the proof of the Change of Variables Theorem.
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