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The goal of this section is to explain and prove the following

Theorem

Stokes’ Theorem on Manifolds. If M is a compact oriented smooth

k-dimensional manifold-with-boundary, and ω is a smooth (k − 1) form on

M, then ∫
M

dω =

∫
∂M

ω.
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We’ll do this in three steps:

1 Explain what it means to integrate a k-form over an oriented
k-manifold, rather than over a singular k-chain.

2 Check that the orientation of M and the induced orientation of ∂M

are “consistent” with our earlier definitions of singular chains and
their boundaries.

3 Use partitions of unity to deduce the above version of Stokes’
Theorem from the older one on singular chains.
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Convention. We will drop the word “smooth” and understand all our
manifolds and forms to be smooth of class C∞.

If ω is a p-form on the k-dimensional manifold-with-boundary M, and if
c : [0, 1]p → M is a singular p-cube, then we define

∫
c

ω =

∫
[0,1]p

c∗ω,

just as we did earlier, and likewise for integrals over p-chains.
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When we come to the top dimension k, we are going to require our
singular k-cubes c : [0, 1]k → M to be rather “nonsingular”, in that there
be an open set U in R

k or Hk with [0, 1]k ⊂ U, and a coordinate system
f : U → M with f (x) = c(x) for all xǫ[0, 1]k .

If M is oriented, then the singular k-cube c will be called
orientation-preserving if f is.

Ryan Blair (U Penn) Math 600: Integration on Chains and Stoke’s TheoremThursday November 11, 2010 5 / 14



Integration on Manifolds

Lemma. Let c1 and c2 : [0, 1]k → M be two orientation-preserving
singular k-cubes in the oriented k-manifold M, and ω a k-form on M such
that ω = 0 outside of c1([0, 1]

k ) ∩ c2([0, 1]
k ). Show that

∫
c1

ω =

∫
c2

ω.

Ryan Blair (U Penn) Math 600: Integration on Chains and Stoke’s TheoremThursday November 11, 2010 6 / 14



Integration on Manifolds

Now let ω be a k-form on the oriented k-manifold M. If there is an
orientation-preserving singular k-cube c in M such that ω = 0 outside of
c([0, 1]k ), then we define ∫

M

ω =

∫
c

ω.

The lemma above shows that this definition does not depend on the
choice of c .
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Now suppose that ω is an arbitrary (smooth) k-form on M. There is an
open cover O of M such that for each UǫO, there is an
orientation-preserving singular k-cube c with U ⊂ c([0, 1]k ). Let Φ be a
partition of unity for M subordinate to this cover. We define

∫
M

ω = ΣφǫΦ

∫
M

φω

Fact.This definition of
∫
M

ω does not depend on the choice of open cover
O or on the partition of unity Φ.
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Now let M be a k-dimensional manifold-with-boundary with orientation µ.
Let ∂M have the induced orientation ∂µ.

Let c be an orientation-preserving k-cube in M such that the face c(k,0)

lies in ∂M, and is the only face of c which has any interior points in ∂M.

Fact. Show that c(k,0) is orientation-preserving if k is even, but not if k is
odd.
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Thus if ω is a (k − 1)-form on M which is 0 outside of c([0, 1]k ), we have

∫
c(k,0)ω = (−1)k

∫
∂M

ω.

Furthermore, c(k,0) is the only face of c on which ω is nonzero. Thus

∫
∂c

ω =

∫
(−1)kc(k,0)

ω = (−1)k
∫

c(k,0)

ω =

∫
∂M

ω.

Now we are ready to prove Stokes’ Theorem on manifolds.
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Theorem

Stokes’ Theorem on Manifolds. If M is a compact oriented smooth

k-dimensional manifold-with-boundary, and ω is a smooth (k − 1) form on

M, then ∫
M

dω =

∫
∂M

ω.

Proof. Case 1. Suppose there is an orientation-preserving singular k-cube
c in the interior of M such that ω = 0 outside of c([0, 1]k ). Then

∫
c

dω =

∫
[0,1]k

c∗(dω) =

∫
[0,1]k

d(c∗ω) =

∫
∂([0,1]k)

c∗ω =

∫
∂c

ω,

with the first and last equalities by definition of integration, the second
from our definition of d on manifolds, and the third from Stokes’ Theorem
in Euclidean space.
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Case 2. Next suppose there is an orientation-preserving singular k-cube c

in M such that c(k,0) is the only face on ∂M, and that ω = 0 outside of

c([0, 1]k ). Then

∫
M

dω =

∫
c

dω =

∫
∂c

ω =

∫
∂M

ω,

with the first equality following from our definition of integration over M,
the second from Stokes’ Theorem in Euclidean space, and the last from
earlier remarks.
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Case 3 - the general case. Take an open cover O of M and a partition
of unity Φ for M subordinate to O such that for each φǫΦ, the form φω is
either as in Case 1 or Case 2. Since M is compact, we can assume that
both O and Φ are finite sets.

Note that ΣφǫΦdφ = d(ΣφǫΦφ) = d(1) = 0, and so

ΣφǫΦdφ ∧ ω = 0,

hence

ΣφǫΦ

∫
M

dφ ∧ ω = 0.
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Therefore ∫
M

dω = ΣφǫΦ

∫
M

φdω = ΣφǫΦ

∫
M

dφ ∧ ω + φdω

= ΣφǫΦ

∫
M

d(φω) = ΣφǫΦ

∫
∂M

φω =

∫
∂M

ω,

completing the proof of the Stokes’ Theorem on manifolds.
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