Math 600 Day 10: Lee Brackets of Vector Fields

Ryan Blair

University of Pennsylvania

Thursday October 14, 2010

Outline

(1) Lie Bracket

Lie brackets of vector fields.

Let M be a smooth manifold. Then a smooth vector field V on M acts as a "first order differential operator" on smooth functions $f: M \rightarrow \mathbb{R}$ by taking $f \rightarrow V(f) \equiv L_{V} f$.

If V and W are both smooth vector fields on M, we can use them to operate in succession on smooth functions, taking $f \rightarrow V(W(f))$.

No single vector field can accomplish this composite operation, as is borne out by the appearance of second derivatives in the local coordinate expression of $V(W(f))$.

But if we take $(V W-W V)(f)$, then we claim that there is a single vector field on M which can accomplish the same thing. We call it the Lie bracket of V and W, and write

$$
[V, W]=V W-W V
$$

To confirm this, we will work in local coordinates and watch the second derivative terms disappear, as follows.

Supposing that $V=v^{i} \frac{\partial}{\partial x^{i}}$ and $W=w^{i} \frac{\partial}{\partial x^{i}}$, we have

$$
\begin{gathered}
{[V, W] f=V(W f)-W(V f)} \\
=v^{i} \frac{\partial}{\partial x^{i}}\left(w^{j} \frac{\partial f}{\partial x^{j}}\right)-w^{i} \frac{\partial}{\partial x^{i}}\left(v^{j} \frac{\partial f}{\partial x^{j}}\right) \\
=v^{i} \frac{\partial w^{j}}{\partial x^{i}} \frac{\partial f}{\partial x^{j}}+v^{i} w^{j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}-w^{i} \frac{\partial v^{j}}{\partial x^{i}} \frac{\partial f}{\partial x^{j}}-w^{i} v^{j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} \\
=\left[\left(v^{i} \frac{\partial w^{j}}{\partial x^{i}}-w^{i} \frac{\partial v^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}}\right] f .
\end{gathered}
$$

This shows that $[V, W]=V W-W V$ is indeed a vector field, gives its expression in local coordinates, and reveals that

$$
[V, W]=L_{V} W
$$

Review: Why is $\varphi_{t} \varphi_{s}=\varphi_{t+s}$? Let M be a smooth manifold, V a smooth vector field on it, and $\left\{\varphi_{t}\right\}$ the associated local flow. Fixing a point $x \in M$,define the curves

$$
\begin{gathered}
\alpha(t)=\varphi_{t} \varphi_{s}(x) \text { and } \beta(t)=\varphi_{t+s}(x), \text { with } \\
\alpha(0)=\varphi_{s}(x)=\beta(0)
\end{gathered}
$$

Then $\alpha^{\prime}(t)=V(\alpha(t))$ and $\beta^{\prime}(t)=V(\beta(t))$.
Hence both $\alpha(t)$ and $\beta(t)$ are integral curves of the smooth vector field V with $\alpha(0)=\beta(0)$. By uniqueness of solutions, we have $\alpha(t)=\beta(t)$, and hence $\varphi_{t} \varphi_{s}=\varphi_{t+s}$, as desired.

A vector field is invariant under its own flow.
A vector field V on the smooth manifold M is said to be invariant under the diffeomorphism h of M if $h_{*} V=V$.

If $\left\{\varphi_{t}\right\}$ is the local flow of V, we claim that V is invariant under each of the local diffeomorphisms φ_{t}. Fixing a point x in M, we must show that $\left(\varphi_{t}\right)_{*} V(x)=V\left(\phi_{t}(x)\right)$.

Recall that if V is a tangent vector to M at x, and $f: M \rightarrow N$ a smooth map, one of the several definitions of $f_{*} V$ is to take a smooth curve $\alpha(s)$ in M with $\alpha(0)=x$ and $\alpha^{\prime}(0)=V$, and then $f_{*} V=\left.\frac{d}{d s}\right|_{s=0} f \alpha(s)$.

Now in our case above, we can choose $\alpha(s)=\phi_{s}(x)$, since $\left.\frac{d}{d s}\right|_{s=0} \varphi_{s}(x)=V(x)$. Then, using the fact that $\varphi_{t} \varphi_{s}=\varphi_{t+s}$,

$$
\begin{gathered}
\left(\varphi_{t}\right)_{*} V(x)=\left.\frac{d}{d s}\right|_{s=0} \varphi_{t} \varphi_{s}(x) \\
=\left.\frac{d}{d s}\right|_{s=0} \varphi_{s+t}(x)=\left.\frac{d}{d s}\right|_{s=0} \varphi_{s} \varphi_{t}(x) \\
=V\left(\varphi_{t}(x)\right) .
\end{gathered}
$$

This shows that the vector field V is invariant under its own flow φ_{t}.

Theorem

A vector field W is invariant under the flow of a vector field V if and only if $L_{v} W=0$.

Proof.

Suppose first that W is invariant under the flow φ_{t} of V :

$$
\left(\varphi_{t}\right)_{*} W(x)=W\left(\varphi_{t}(x)\right) .
$$

Then

$$
\left(L_{V} W\right)(x)==_{\text {defn }} \lim _{t \rightarrow 0}\left[\left(\varphi_{-t}\right)_{*} W\left(\varphi_{t}(x)\right)-W(x)\right] / t=0,
$$

because the numerator of this difference quotient is identically zero.

Next suppose that $L_{V} W=0$. Let us define

$$
W(t, x)=\left(\varphi_{-t}\right)_{*} W\left(\varphi_{t}(x)\right)
$$

so that if x is held fixed and t varies, we have a curve of tangent vectors at x. If we show that this curve has the constant value $W(x)$, then we will have that

$$
\left(\varphi_{t}\right)_{*} W(x)=W\left(\varphi_{t}(x)\right)
$$

which will confirm that W is invariant under the flow φ_{t} of V.

To begin, we write

$$
0=\left(L_{V} W\right)(x)=\left.\frac{d}{d t}\right|_{t=0}\left(\varphi_{-t}\right)_{*} W\left(\varphi_{t}(x)\right)=\left.\frac{d}{d t}\right|_{t=0} W(t, x)
$$

Thus the curve $W(t, x)$ has zero derivative at $t=0$. We want to show that it has zero derivative for all t, which will imply that it is constant. To that end, we write

$$
\begin{gathered}
0=\left(L_{V} W\right)\left(\varphi_{s}(x)\right)=\left.\frac{d}{d t}\right|_{t=0}\left(\varphi_{-t}\right)_{*} W\left(\varphi_{t}\left(\varphi_{s}(x)\right)\right) \\
=\left.\frac{d}{d t}\right|_{t=0}\left(\varphi_{-t}\right)_{*} W\left(\varphi_{t+s}(x)\right) \\
=\left.\frac{d}{d t}\right|_{t=0}\left(\varphi_{s}\right)_{*}\left(\varphi_{-t-s}\right)_{*} W\left(\varphi_{t+s}(x)\right) \\
=\left.\frac{d}{d \tau}\right|_{\tau=s}\left(\varphi_{s}\right)_{*}\left(\varphi_{-\tau}\right)_{*} W\left(\varphi_{\tau}(x)\right) \\
=\left.\frac{d}{d \tau}\right|_{\tau=s}\left(\varphi_{s}\right)_{*} W(\tau, x) \\
=\left.\left(\varphi_{s}\right)_{*} \frac{d}{d \tau}\right|_{\tau=s} W(\tau, x)
\end{gathered}
$$

In the last step above, we used the linearity of $\left(\varphi_{s}\right)_{*}$ to interchange it with $\left.\frac{d}{d \tau}\right|_{\tau=0}$, and so learn that

$$
\left.\left(\varphi_{s}\right)_{*} \frac{d}{d \tau}\right|_{\tau=s} W(\tau, x)=0
$$

Then, since the linear map $\left(\varphi_{s}\right)_{*}$ is an isomorphism, we must have $\left.\frac{d}{d \tau}\right|_{\tau=s} W(\tau, x)=0$.
This was our goal, since now $W(t, x)$ is constant, with value $W(0, x)=W(x)$, and hence, as indicated above, W is invariant under the flow φ_{t} of V.

Definition

A real vector space $\mathcal{V}=\{U, V, W, \ldots\}$ is a real Lie algebra if it has a product

$$
[,]: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}
$$

which is bilinear and satisfies
(1) $[V, V]=0$, or equivalently, $[V, W]=-[W, V]$
(2) $[U,[V, W]]+[V,[W, U]]+[W,[U, V]]=0$,
known as the Jacobi identity.

Thus the space $\operatorname{VF}(M)$ of smooth vector fields on a smooth manifold M forms a real Lie algebra.

The subspace of smooth divergence-free vector fields on M forms a Lie subalgebra.

So does the subspace of smooth vector fields on M which are tangent to ∂M.

Example The goal of this example is to compute the Lie algebra of the Lie group S^{3} of unit quaternions.

Notational convention. Name a tangent vector to S^{3} at the point u by the name of a quaternion orthogonal to u. For example, at the identity 1 , any imaginary quaternion $a i+b j+c k$ will denote a tangent vector there.
(a) Consider the vector fields X, Y and Z on S^{3} given by $X_{u}=u i, Y_{u}=u j, Z_{u}=u k$.

Show that the corresponding flows are given by

$$
\begin{aligned}
& \varphi_{t}(u)=u(\cos (t)+i \sin (t)) \\
& \psi_{t}(u)=u(\cos (t)+j \sin (t)) \\
& \zeta_{t}(u)=u(\cos (t)+k \sin (t)) .
\end{aligned}
$$

(b) Compute the Lie bracket $[X, Y]$ directly from the definition,

$$
[X, Y]_{1}=\left(L_{X} Y\right)_{1}=\lim _{t \rightarrow 0}\left(\left(\left(\phi_{-t}\right)_{*} Y\right)_{1}-Y_{1}\right) / t
$$

and show that $[X, Y]=2 Z$. Conclude by symmetry that

$$
[Y, Z]=2 X
$$

and

$$
[Z, X]=2 Y .
$$

