Math 600 Day 10: Lee Brackets of Vector Fields

Ryan Blair

University of Pennsylvania

Thursday October 14, 2010

Ryan Blair (U Penn)

Math 600 Day 10: Lee Brackets of Vector Fie Thursday October 14, 2010 1 / 16

(3)

Ryan Blair (U Penn)

<ロ> (日) (日) (日) (日) (日)

- 2

Lie brackets of vector fields.

Let M be a smooth manifold. Then a smooth vector field V on M acts as a "first order differential operator" on smooth functions $f : M \to \mathbb{R}$ by taking $f \to V(f) \equiv L_V f$.

If V and W are both smooth vector fields on M, we can use them to operate in succession on smooth functions, taking $f \to V(W(f))$.

No single vector field can accomplish this composite operation, as is borne out by the appearance of second derivatives in the local coordinate expression of V(W(f)).

But if we take (VW - WV)(f), then we claim that there is a single vector field on M which can accomplish the same thing. We call it the **Lie bracket** of V and W, and write

$$[V,W]=VW-WV.$$

To confirm this, we will work in local coordinates and watch the second derivative terms disappear, as follows.

(日) (過) (王) (王) (王)

Lie Bracket

Supposing that
$$V = v^i \frac{\partial}{\partial x^i}$$
 and $W = w^i \frac{\partial}{\partial x^i}$, we have
 $[V, W]f = V(Wf) - W(Vf)$
 $= v^i \frac{\partial}{\partial x^i} (w^j \frac{\partial f}{\partial x^j}) - w^i \frac{\partial}{\partial x^i} (v^j \frac{\partial f}{\partial x^j})$
 $= v^i \frac{\partial w^j}{\partial x^i} \frac{\partial f}{\partial x^j} + v^i w^j \frac{\partial^2 f}{\partial x^i \partial x^j} - w^i \frac{\partial v^j}{\partial x^i} \frac{\partial f}{\partial x^j} - w^i v^j \frac{\partial^2 f}{\partial x^i \partial x^j}$
 $= [(v^i \frac{\partial w^j}{\partial x^i} - w^i \frac{\partial v^j}{\partial x^i}) \frac{\partial}{\partial x^j}]f.$

This shows that [V, W] = VW - WV is indeed a vector field, gives its expression in local coordinates, and reveals that

$$[V,W]=L_VW.$$

イロト 不得下 イヨト イヨト

Review: Why is $\varphi_t \varphi_s = \varphi_{t+s}$? Let *M* be a smooth manifold, *V* a smooth vector field on it, and $\{\varphi_t\}$ the associated local flow. Fixing a point $x \in M$, define the curves

$$\alpha(t) = \varphi_t \varphi_s(x)$$
 and $\beta(t) = \varphi_{t+s}(x)$, with
 $\alpha(0) = \varphi_s(x) = \beta(0).$

Then $\alpha'(t) = V(\alpha(t))$ and $\beta'(t) = V(\beta(t))$.

Hence both $\alpha(t)$ and $\beta(t)$ are integral curves of the smooth vector field V with $\alpha(0) = \beta(0)$. By uniqueness of solutions, we have $\alpha(t) = \beta(t)$, and hence $\varphi_t \varphi_s = \varphi_{t+s}$, as desired.

・ロット 4回 ア・4 日 ト・4 日 ト・9 クタマ

A vector field is invariant under its own flow.

A vector field V on the smooth manifold M is said to be **invariant** under the diffeomorphism h of M if $h_*V = V$.

If $\{\varphi_t\}$ is the local flow of V, we claim that V is invariant under each of the local diffeomorphisms φ_t . Fixing a point x in M, we must show that $(\varphi_t)_*V(x) = V(\phi_t(x))$.

Recall that if V is a tangent vector to M at x, and $f: M \to N$ a smooth map, one of the several definitions of f_*V is to take a smooth curve $\alpha(s)$ in M with $\alpha(0) = x$ and $\alpha'(0) = V$, and then $f_*V = \frac{d}{ds}|_{s=0} f\alpha(s)$.

Now in our case above, we can choose $\alpha(s) = \phi_s(x)$, since $\frac{d}{ds}|_{s=0}\varphi_s(x) = V(x)$. Then, using the fact that $\varphi_t\varphi_s = \varphi_{t+s}$,

$$(\varphi_t)_* V(x) = \frac{d}{ds}|_{s=0} \varphi_t \varphi_s(x)$$
$$= \frac{d}{ds}|_{s=0} \varphi_{s+t}(x) = \frac{d}{ds}|_{s=0} \varphi_s \varphi_t(x)$$
$$= V(\varphi_t(x)).$$

This shows that the vector field V is invariant under its own flow φ_t .

Theorem

A vector field W is invariant under the flow of a vector field V if and only if $L_V W = 0$.

Proof.

Suppose first that W is invariant under the flow φ_t of V:

$$(\varphi_t)_*W(x) = W(\varphi_t(x)).$$

Then

$$(L_V W)(x) =_{defn} lim_{t \to 0}[(\varphi_{-t})_* W(\varphi_t(x)) - W(x)]/t = 0,$$

because the numerator of this difference quotient is identically zero.

Next suppose that $L_V W = 0$. Let us define

$$W(t,x) = (\varphi_{-t})_* W(\varphi_t(x)),$$

so that if x is held fixed and t varies, we have a curve of tangent vectors at x. If we show that this curve has the constant value W(x), then we will have that

$$(\varphi_t)_*W(x)=W(\varphi_t(x)),$$

which will confirm that W is invariant under the flow φ_t of V.

Lie Bracket

To begin, we write

$$0 = (L_V W)(x) = \frac{d}{dt}|_{t=0}(\varphi_{-t})_* W(\varphi_t(x)) = \frac{d}{dt}|_{t=0} W(t,x).$$

Thus the curve W(t, x) has zero derivative at t = 0. We want to show that it has zero derivative for all t, which will imply that it is constant. To that end, we write

$$0 = (L_V W)(\varphi_s(x)) = \frac{d}{dt}|_{t=0}(\varphi_{-t})_* W(\varphi_t(\varphi_s(x)))$$
$$= \frac{d}{dt}|_{t=0}(\varphi_{-t})_* W(\varphi_{t+s}(x))$$
$$= \frac{d}{dt}|_{t=0}(\varphi_s)_*(\varphi_{-t-s})_* W(\varphi_{t+s}(x))$$
$$= \frac{d}{d\tau}|_{\tau=s}(\varphi_s)_*(\varphi_{-\tau})_* W(\varphi_{\tau}(x))$$
$$= \frac{d}{d\tau}|_{\tau=s}(\varphi_s)_* W(\tau, x)$$
$$= (\varphi_s)_* \frac{d}{d\tau}|_{\tau=s} W(\tau, x).$$

In the last step above, we used the linearity of $(\varphi_s)_*$ to interchange it with $\frac{d}{d\tau}|_{\tau=0}$, and so learn that

$$(\varphi_s)_* \frac{d}{d\tau}|_{\tau=s} W(\tau, x) = 0.$$

Then, since the linear map $(\varphi_s)_*$ is an isomorphism, we must have $\frac{d}{d\tau}|_{\tau=s}W(\tau,x)=0.$

This was our goal, since now W(t, x) is constant, with value W(0, x) = W(x), and hence, as indicated above, W is invariant under the flow φ_t of V.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition

A real vector space $\mathcal{V} = \{U, V, W, ...\}$ is a *real Lie algebra* if it has a product

$$[,]: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$$

which is bilinear and satisfies

(1)
$$[V, V] = 0$$
, or equivalently, $[V, W] = -[W, V]$
(2) $[U, [V, W]] + [V, [W, U]] + [W, [U, V]] = 0$,
known as the **Jacobi identity**.

Ryan Blair (U Penn)

▲ロト ▲圖ト ▲画ト ▲画ト 三画 - のへで

Thus the space VF(M) of smooth vector fields on a smooth manifold M forms a real Lie algebra.

The subspace of smooth divergence-free vector fields on M forms a Lie subalgebra.

So does the subspace of smooth vector fields on M which are tangent to ∂M .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example The goal of this example is to compute the Lie algebra of the Lie group S^3 of unit quaternions.

Notational convention. Name a tangent vector to S^3 at the point u by the name of a quaternion orthogonal to u. For example, at the identity 1, any imaginary quaternion ai + bj + ck will denote a tangent vector there.

(a) Consider the vector fields X, Y and Z on S^3 given by $X_u = ui, Y_u = uj, Z_u = uk$.

Show that the corresponding flows are given by

$$\varphi_t(u) = u(\cos(t) + i\sin(t))$$

$$\psi_t(u) = u(\cos(t) + j\sin(t)),$$

$$\zeta_t(u) = u(\cos(t) + k\sin(t)).$$

(b) Compute the Lie bracket [X, Y] directly from the definition,

$$[X, Y]_1 = (L_X Y)_1 = \lim_{t \to 0} (((\phi_{-t})_* Y)_1 - Y_1)/t,$$

and show that [X, Y] = 2Z. Conclude by symmetry that

$$[Y, Z] = 2X$$

and

$$[Z,X]=2Y.$$

Ryan Blair (U Penn)

イロト 不得 トイヨト イヨト 二日