Math 600 Day 1: Review of advanced Calculus

Ryan Blair

University of Pennsylvania
Thursday September 8, 2010

Outline

(1) Differentiation

- Chain Rule
- Partial Derivatives
- Critical Points
- Inverse Function Theorem
- The Implicit Function Theorem

Outline

(1) Differentiation

- Chain Rule
- Partial Derivatives
- Critical Points
- Inverse Function Theorem
- The Implicit Function Theorem

Definition

A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is said to be differentiable at the point $x_{0} \in \mathbb{R}^{m}$ if there is a linear map $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ such that

$$
\lim _{h \rightarrow 0} \frac{\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)-A(h)\right|}{|h|}=0
$$

The linear map A is called the derivative of f at x_{0} and written as either $f^{\prime}\left(x_{0}\right)$ or as $d f_{x_{0}}$.

Theorem

(Chain Rule) Let

$$
\mathbb{R}^{m}-f \rightarrow \mathbb{R}^{n}-g \rightarrow \mathbb{R}^{p}
$$

with $x_{0}-f \rightarrow y_{0}-g \rightarrow z_{0}$.
Suppose f is differentiable at x_{0} with derivative $f^{\prime}\left(x_{0}\right)$ and that g is differentiable at y_{0} with derivative $g^{\prime}\left(y_{0}\right)$.

Then the composition $g \circ f$ is differentiable at x_{0} with derivative

$$
(g \circ f)^{\prime}\left(x_{0}\right)=g^{\prime}\left(y_{0}\right) f^{\prime}\left(x_{0}\right)
$$

Proof of the Chain Rule.

In an intuitively taught calculus course, the truth of the chain rule is sometimes suggested by multiplying "fractions":

$$
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}
$$

This argument comes to grief when nonzero changes in x produce zero changes in y.
The simple finesse is to avoid fractions, as follows.

Without loss of generality, and for ease of notation, we will assume that the points $x_{0} \in \mathbb{R}^{m}, y_{0} \in \mathbb{R}^{n}$ and $z_{0} \in \mathbb{R}^{p}$ are all located at their respective origins.

We let $L=f^{\prime}\left(x_{0}\right)$ and $M=g^{\prime}\left(y_{0}\right)$.
Then differentiability of f and g at these points means that

$$
\begin{gathered}
\frac{(f(x)-L(x))}{|x|} \rightarrow 0 \text { as } x \rightarrow 0, \text { and } \\
\frac{(g(y)-M(y))}{|y|} \rightarrow 0 \text { as } y \rightarrow 0 .
\end{gathered}
$$

We must show that

$$
\frac{(g \circ f(x)-M \circ L(x))}{|x|} \rightarrow 0 \text { as } x \rightarrow 0 .
$$

Using the differentiability of f and g at their origins, we have that

$$
\begin{gathered}
|g f(x)-M L(x)| \\
=|g f(x)-M f(x)+M f(x)-M L(x)| \\
\leq|g f(x)-M f(x)|+|M||f(x)-L(x)| \\
<\varepsilon|f(x)|+|M| \varepsilon|x|
\end{gathered}
$$

for $|x|$ sufficiently small.
Then dividing by $|x|$, we get

$$
\frac{|g f(x)-M L(x)|}{|x|}<\varepsilon \frac{|f(x)|}{|x|}+|M| \varepsilon
$$

We must show that this is small when $|x|$ is small, and the issue is clearly to show that $\frac{|f(x)|}{|x|}$ remains bounded.

But,

$$
\frac{|f(x)|}{|x|} \leq \frac{|L(x)|}{|x|}+\frac{|f(x)-L(x)|}{|x|},
$$

and the first term on the right is bounded by $|L|$ while the second term goes to $\rightarrow 0$ as $|x| \rightarrow 0$.

It follows that $\frac{|f(x)|}{|x|}$ remains bounded as $|x| \rightarrow 0$, and this completes the proof of the chain rule. \square

Partial Derivatives

Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. Then we can write

$$
f(x)=\left(f_{1}\left(x_{1}, x_{2}, \ldots, x_{m}\right), f_{2}\left(x_{1}, x_{2}, \ldots, x_{m}\right), \ldots, f_{n}\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right),
$$

and consider the usual partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$.
If f is differentiable at x_{0}, then all of the partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ exist at x_{0} , and the derivative $f^{\prime}\left(x_{0}\right)$ is the linear map corresponding to the $n \times m$ matrix of partial derivatives.

The converse is false, that is, the existence of partial derivatives at a point does not imply that the function is differentiable there.

Definition

Let $L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$ denote the set of all linear maps of \mathbb{R}^{m} into \mathbb{R}^{n}. This set is a vector space of dimension $m n$ whose elements can be represented by $n \times m$ matrices.

Definition

Let U be an open set in \mathbb{R}^{m} and $f: U \rightarrow \mathbb{R}^{n}$ a differentiable map. Since the derivative $f^{\prime}(x)$ at each point x of U is a linear map of $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we can think of f^{\prime} as a map $f^{\prime}: U \rightarrow L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$. We call f^{\prime} the derivative of f.

Definition

Let U be an open subset of \mathbb{R}^{m}. If $f: U \rightarrow \mathbb{R}^{n}$ is differentiable and $f^{\prime}: U \rightarrow L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$ is continuous, then we say that f is continuously differentiable, and write $f \epsilon C^{1}$.

Theorem

Let U be an open set in \mathbb{R}^{m} and let $f: U \rightarrow \mathbb{R}^{n}$. Then f is continuously differentiable if and only if all of the partial derivatives $\frac{\partial f_{j}}{\partial x_{j}}$ exist and are continuous on U.

Simple Fact:Let f be a differentiable real-valued function defined on an open set U in \mathbb{R}^{m}. Suppose that f has a local maximum or local minimum at a point x_{0} in U. Then $f^{\prime}\left(x_{0}\right)=0$.

Simple Fact: Let U be a connected open set in \mathbb{R}^{m} and $f: U \rightarrow \mathbb{R}^{n}$ a differentiable map such that $f^{\prime}(x)=0$ for every $x \in U$. Then f is constant on U.

Theorem

Let U be an open set in \mathbb{R}^{m} and let $f: U \rightarrow \mathbb{R}$ be a function such that all partial derivatives of orders one and two exist and are continuous on U.
Then

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

for all $1 \leq i, j \leq m$. In other words, the order of differentiation in mixed partials is irrelevant.

Remark

If all partial derivatives of orders $\leq n$ are continuous, then the order of differentiation in them is irrelevant.

Functions with Preassigned Partial Derivatives

Let U be an open set in \mathbb{R}^{m} and $f: U \rightarrow \mathbb{R}$ a function of class C^{2} (remember this means that all partial derivatives of orders one and two exist and are continuous). We know that

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

for all $1 \leq i, j \leq m$.
Now we run this story in reverse, and imagine that we are seeking a function $f: U \rightarrow \mathbb{R}$ of class C^{2}, where U is, for simplicity, an open set in the plane \mathbb{R}^{2}.

We are given two functions r and $s: U \rightarrow \mathbb{R}$ of class C^{1} such that

$$
\frac{\partial f}{\partial x}=r \text { and } \frac{\partial f}{\partial y}=s
$$

If f exists, then

$$
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial r}{\partial y}
$$

and

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y}=\frac{\partial s}{\partial x}
$$

hence by equality of mixed partials, we'll have

$$
\frac{\partial r}{\partial y}=\frac{\partial s}{\partial x}
$$

So if we want to find f, we'd better make sure that

$$
\frac{\partial r}{\partial y}=\frac{\partial s}{\partial x}
$$

But is this enough to guarantee that f exists?
Surprisingly, the answer is,
"Sometimes yes and sometimes no."
We will see that it depends on the topology of the domain U on which these functions are defined.
This influence of the topology of a domain on the behavior of functions defined there is a theme that will be repeated throughout the course.

Theorem

Let r and $s: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be C^{1} functions such that $\frac{\partial r}{\partial y}=\frac{\partial s}{\partial x}$. Then there exists a C^{2} function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $\frac{\partial f}{\partial x}=r$ and $\frac{\partial f}{\partial y}=s$.

Remark

If two such functions f_{1} and f_{2} exist, then their difference $f_{1}-f_{2}$ is a constant, as an immediate consequence of the mean value theorem.

Example

Let $U=\mathbb{R}^{2}-(0,0)$. Let $r(x, y)=\frac{-y}{x^{2}+y^{2}}$ and $s(x, y)=\frac{x}{x^{2}+y^{2}}$. Then $\frac{\partial r}{\partial y}=\frac{\partial s}{\partial x}$, yet there is no function $f: U \rightarrow \mathbb{R}$ such that $\frac{\partial f}{\partial x}=r$ and $\frac{\partial f}{\partial y}=s$.

Differentiating under the integral sign

The following lemma will be used in proving the theorem.

```
Lemma
Suppose \(f(x, t)\) is \(C^{1}\) for \(x \in \mathbb{R}^{1}\) and \(t \in[0,1]\). Define \(F(x)=\int_{t=0}^{1} f(x, t) d t\).
``` Then \(F\) is of class \(C^{1}\) and \(F^{\prime}(x)=\int_{t=0}^{1} \frac{\partial f(x, t)}{\partial x} d t\).

The proof is an application of the mean value theorem.

There are various generalizations of this lemma, all proven similarly. For example, we can replace \(x \in \mathbb{R}^{1}\) by \((x, y) \in \mathbb{R}^{2}\), define \(F(x, y)=f(x, y, t) d t\) and conclude that
\[
\frac{\partial F(x, y)}{\partial x}=\int_{t=0}^{1} \frac{\partial f(x, y, t)}{\partial x} d t
\]

We are ready to prove our theorem, and restate it for convenience.

\section*{Theorem}

Let \(r, s: \mathbb{R}^{2} \rightarrow \mathbb{R}\) be \(C^{1}\) functions such that \(\frac{\partial r}{\partial y}=\frac{\partial s}{\partial x}\). Then there exists a \(C^{2}\) function \(f: \mathbb{R}^{2} \rightarrow \mathbb{R}\) such that \(\frac{\partial f}{\partial x}=r\) and \(\frac{\partial f}{\partial y}=s\).

Proof:First suppose we are given \(f(x, y)\) with \(f(0,0)=0\). Define \(g(t)=f(t x, t y)\), and note that, by the chain rule,
\[
g^{\prime}(t)=\frac{\partial f}{\partial x}(t x, t y) x+\frac{\partial f}{\partial y}(t x, t y) y
\]

Then
\[
\begin{gathered}
f(x, y)=g(1)=\int_{t=0}^{1} g^{\prime}(t) d t \\
=\int_{t=0}^{1} \frac{\partial f}{\partial x}(t x, t y) x+\frac{\partial f}{\partial y}(t x, t y) y d t .
\end{gathered}
\]

Therefore, to find a function \(f(x, y)\) such that \(\frac{\partial f}{\partial x}=r\) and \(\frac{\partial f}{\partial y}=s\), we should define \(f\) by
\[
f(x, y)=\int_{t=0}^{1} r(t x, t y) x+s(t x, t y) y d t
\]
and aim to show that \(\frac{\partial f}{\partial x}=r\) and \(\frac{\partial f}{\partial y}=s\).

Given
\[
f(x, y)=\int_{t=0}^{1} r(t x, t y) x+s(t x, t y) y d t
\]
we differentiate under the integral sign, using our lemma:
\[
\begin{aligned}
& \frac{\partial f(x, y)}{\partial x}=\int_{t=0}^{1} r(t x, t y)+\frac{\partial r}{\partial x}(t x, t y) t x+\frac{\partial s}{\partial x}(t x, t y) t y d t \\
& \frac{\partial f(x, y)}{\partial x}=\int_{t=0}^{1} r(t x, t y)+\frac{\partial r}{\partial x}(t x, t y) t x+\frac{\partial r}{\partial y}(t x, t y) t y d t
\end{aligned}
\]

Now define \(h(t)=r(t x, t y)\) and note that
\[
h^{\prime}(t)=\frac{\partial r}{\partial x}(t x, t y) x+\frac{\partial r}{\partial y}(t x, t y) y .
\]

Thus,
\[
\begin{gathered}
\frac{\partial f(x, y)}{\partial x}=\int_{t=0}^{1} h(t)+t h^{\prime}(t) d t \\
=\int_{t=0}^{1}(t h(t))^{\prime} d t \\
h(1)=r(x, y) .
\end{gathered}
\]

Likewise, \(\frac{\partial f(x, y)}{\partial y}=s(x, y)\), and our theorem is proved. \(\square\)

\section*{Critical points}

Let \(U\) be an open set in the plane \(\mathbb{R}^{2}\), and let \(f: U \rightarrow \mathbb{R}\) be a real valued function on \(U\), all of whose first and second partial derivatives exist and are continuous on \(U\). In such a case, we say that \(f\) is of class \(C^{2}\) on \(U\).

We know that if \(f\) has a local maximum or minimum at a point \(\left(x_{0}, y_{0}\right)\) of \(U\), then the first partials \(\frac{\partial f}{\partial x}\) and \(\frac{\partial f}{\partial y}\) are both zero at \(\left(x_{0}, y_{0}\right)\).
Searching for such points, we call \(\left(x_{0}, y_{0}\right)\) a critical point of \(f\) if \(\frac{\partial f}{\partial x}\) and \(\frac{\partial f}{\partial y}\) are both zero at \(\left(x_{0}, y_{0}\right)\), and want to learn whether \(\left(x_{0}, y_{0}\right)\) is a local maximum or minimum point, a saddle point, or perhaps something more exotic.

\section*{Models:}
\[
\begin{gathered}
f(x, y)=-x 2-y 2 \text { has a local maximum at }(0,0) \\
f(x, y)=x 2+y 2 \text { has a local minimum at }(0,0) \\
f(x, y)=x 2-y 2 \text { has a saddle point at }(0,0) .
\end{gathered}
\]

The issue hinges upon consideration of the Hessian matrix of second partial derivatives at the point \(\left(x_{0}, y_{0}\right)\) :
\[
\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right)
\]

We know from equality of mixed partials that this matrix is symmetric.

\section*{Theorem}

Suppose that \(\left(x_{0}, y_{0}\right)\) is a critical point of \(f\), and let \(H\) denote the Hessian of \(f\) at \(\left(x_{0}, y_{0}\right)\).
(1) If \(\operatorname{det}(H)>0\) and both diagonal terms are \(>0\), then \(f\) has a local minimum at \(\left(x_{0}, y_{0}\right)\).
(2) If \(\operatorname{det}(H)>0\) and both diagonal terms are \(<0\), then \(f\) has a local maximum at \(\left(x_{0}, y_{0}\right)\).
(3) If \(\operatorname{det}(H)<0\), then \(\left(x_{0}, y_{0}\right)\) is a saddle point of \(f\).
(9) If \(\operatorname{det}(H)=0\), the test is inconclusive.
(5) If \(f\) has a local minimum or local maximum at \(f\), then \(\operatorname{det}(H) \leq 0\).

\section*{Definition}

Let \(U\) be an open set in \(/ R^{2}\) and \(f: U \rightarrow \mathbb{R}\) a real valued function on \(U\) of class \(C^{2}\). Let \(\left(x_{0}, y_{0}\right)\) be a critical point of \(f\), and let \(H\) be the Hessian matrix of second partials of \(f\), evaluated at \(\left(x_{0}, y_{0}\right)\). Then \(\left(x_{0}, y_{0}\right)\) is called a nondegenerate critical point if \(\operatorname{det}(H) \neq 0\), and a degenerate critical point if \(\operatorname{det}(H)=0\).

\section*{Inverse Function Theorem}

\section*{Theorem}
(Inverse Function Theorem) Let \(f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\) be continuously differentiable on an open set containing a, with nonsingular derivative \(d f_{a}\). Then there exists an open set \(V\) containing a and an open set \(W\) containing \(f(a)\), such that \(f: V \rightarrow W\) is one-one and onto, and its inverse \(f^{-1}: W \rightarrow V\) is also differentiable.

Furthermore, \(d\left(f^{-1}\right) f(a)=\left(d f_{a}\right)^{-1}\).

\section*{Example}

The mapping \(f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) given by \(f(x, y)=\left(e^{x} \cos (y), e^{x} \sin (y)\right)\) shows that in \(\mathbb{R}^{2}\), unlike \(\mathbb{R}^{1}\), the derivative of \(f\) can be nonsingular at each point without \(f\) being a diffeomorphism on all of \(\mathbb{R}^{2}\).

\section*{Proof of the Inverse Function Theorem.}

Following the map \(f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\) by the linear transformation \(\left(d f_{a}\right)^{-1}\) makes the derivative at \(a\) the identity, so we assume this from the start: \(d f_{a}=I\).

Since
\[
\lim _{h \rightarrow 0} \frac{\left|f(a+h)-f(a)-d f_{a}(h)\right|}{|h|}=0,
\]
with \(d f_{a}(h)=h\), we can not have \(f(a+h)=f(a)\) for nonzero \(h\) arbitrarily close to 0 .

Hence, there is a closed rectangle \(U\) centered at a with (1) \(f(x) \neq f(a)\) if \(x \in U\) and \(x \neq a\).

Since \(f\) is \(C^{1}\) on an open set containing \(a\), we can assume
(2) \(d f_{x}\) is nonsingular for \(x \in U\),
(3) \(\left|\frac{\partial f_{i}}{\partial x_{j}}(x)-\frac{\partial f_{i}}{\partial x_{j}}(a)\right|<\frac{1}{2 n^{2}}\) for all \(x \in U\) and all \(i, j\).

Condition (3) will force \(f\) to be one-to-one on \(U\). To that end, we first state and prove

\section*{Lemma}

Let \(A\) be a rectangle in \(\mathbb{R}^{n}\), and \(g: A \rightarrow \mathbb{R}^{n}\) of class \(C^{1}\). Suppose that \(\left|\frac{\partial g_{i}}{\partial x_{j}}\right| \leq M\) at all points of \(A\). Then \(|g(x)-g(u)| \leq n^{2} M|x-u|\) for all \(x, u \in A\).

\section*{Proof of Lemma.}

Going from \(u\) to \(x\) by changing one coordinate at a time, and applying the MVT at each step, we get
\[
\left|g_{i}(x)-g_{i}(u)\right| \leq \sum_{j=1}^{n}\left|x_{j}-u_{j}\right| M \leq n M|x-u| .
\]

Hence,
\[
|g(x)-g(u)| \leq \sum_{i=1}^{n}\left|g_{i}(x)-g_{i}(u)\right| \leq n^{2} M|x-u|,
\]
as claimed.

Now apply this lemma to the function \(g(x)=f(x)-x\), and use (3) \(\left|\frac{\partial f_{i}}{\partial x_{j}}(x)-\frac{\partial f_{i}}{\partial x_{j}}(a)\right|<\frac{1}{2 n^{2}}\) for all \(x \in U\) and all \(i, j\), which implies that \(\left|\frac{\partial g_{i}}{\partial x_{j}}(x)-\frac{\partial g_{j}}{\partial x_{j}}(a)\right|<\frac{1}{2 n^{2}}\).
Now \(\frac{\partial g_{i}}{\partial x_{j}}(a)=0\), and hence by the Lemma we get
\[
|g(x)-g(u)| \leq n^{2}\left(\frac{1}{2 n^{2}}|x-u|=\frac{1}{2}|x-u| .\right.
\]

Thus, \(|(f(x)-x)-(f(u)-u)| \leq \frac{1}{2}|x-u|\).

Hence, using the triangle inequality, we get
\[
|x-u|-|f(x)-f(u)| \leq|(f(x)-x)-(f(u)-u)| \leq \frac{1}{2}|x-u| .
\]

So,
(4) \(|f(x)-f(u)| \geq \frac{1}{2}|x-u|\),
for all \(x, u \in U\), implying that \(f\) is one-to-one on \(U\), as claimed earlier.

Now \(f(\partial U)\) is a compact set which does not contain \(f(a)\), since \(f\) is one-to-one on \(U\).

Let \(d=\) distance from \(f(a)\) to \(f(\partial U)\).
Let \(W=\left\{y:|y-f(a)|<\frac{d}{2}\right\}=\) open neighborhood of \(f(a)\).
Thus, if \(y \in W\) and \(x \epsilon \partial U\), we have
(5) \(|y-f(a)|<|y-f(x)|\).

CLAIM. For any \(y \in W\), there is a unique \(x \in U\) with \(f(x)=y\).
Proof. Fix \(y \in W\) and consider the real-valued function \(g: U \rightarrow \mathbb{R}\) defined by
\[
g(x)=|y-f(x)|^{2}=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} .
\]

Since \(g\) is continuous, it has a minimum value on \(U\).
By (5) above, this min can not occur on \(\partial U\). Say it occurs at \(x \in \operatorname{int}(U)\). Then \(\frac{\partial g}{\partial x_{j}}(x)=0\) for all \(j\). That is,
\[
\sum_{i=1}^{n} 2\left(y_{i}-f_{i}(x)\right)\left(\frac{\partial f_{i}}{\partial x_{j}}(x)\right)=0
\]
for all \(j\).
But the matrix \(\left(\frac{\partial f_{i}}{\partial x_{j}}(x)\right)\) is invertible. Hence \(y_{i}-f_{i}(x)=0\) for all \(i\), that is, \(y=f(x)\). This \(x\) is unique, since \(f\) is one-to-one on \(U\).

Now let \(V=\operatorname{int}(U) \cap f^{-1}(W)\).
By the previous claim, \(f: V \rightarrow W\) is one-to-one and onto.
Let \(f^{-1}: W \rightarrow V\) be its inverse. Then we rewrite (4) as (6) \(\left|f^{-1}(y)-f^{-1}\left(y^{\prime}\right)\right| \leq 2\left|y-y^{\prime}\right|\), showing that \(f^{-1}\) is continuous. It remains to show that \(f^{-1}\) is differentiable.

\section*{Proof that \(f^{-1}: W \rightarrow V\) is differentiable.}

Let \(x \in V\), and let \(y=f(x)\).
Let \(L=d f_{x}\), which we already know is nonsingular.
We will show \(f^{-1}\) is differentiable at \(y\) with \(d\left(f^{-1}\right)_{y}=L^{-1}\).
Write \(f\left(x^{\prime}\right)=f(x)+L\left(x^{\prime}-x\right)+\phi\left(x^{\prime}-x\right)\), with \(\operatorname{Lim}_{x^{\prime} \rightarrow x} \frac{\left|\phi\left(x^{\prime}-x\right)\right|}{\left|x^{\prime}-x\right|}=0\).
Then \(L^{-1}\left(f\left(x^{\prime}\right)-f(x)\right)=\left(x^{\prime}-x\right)+L-1 \phi\left(x^{\prime}-x\right)\), which we rewrite as
\(L^{-1}\left(y^{\prime}-y\right)=f^{-1}\left(y^{\prime}\right)-f^{-1}(y)+L^{-1} \phi\left(f^{-1}\left(y^{\prime}\right)-f^{-1}(y)\right)\), or
\(f^{-1}\left(y^{\prime}\right)=f^{-1}(y)+L^{-1}\left(y^{\prime}-y\right)-L^{-1} \phi\left(f^{-1}\left(y^{\prime}\right)-f^{-1}(y)\right)\).

To show that \(f^{-1}\) is differentiable at \(y\) with \(d\left(f^{-1}\right)_{y}=L^{-1}\), we must show that
\[
\operatorname{Lim}_{y^{\prime} \rightarrow y} \frac{\left|L^{-1} \phi\left(f^{-1}\left(y^{\prime}\right)-f^{-1}(y)\right)\right|}{\left|y^{\prime}-y\right|}=0
\]

Since \(L^{-1}\) is linear, it is sufficient to show that
\[
\operatorname{Lim}_{y^{\prime} \rightarrow y} \frac{\left|\phi\left(f^{-1}\left(y^{\prime}\right)-f^{-1}(y)\right)\right|}{\left|y^{\prime}-y\right|}=0 .
\]

Now write the fraction \(\frac{\left|\phi\left(f^{-1}\left(y^{\prime}\right)-f^{-1}(y)\right)\right|}{\left|y^{\prime}-y\right|}\) as the product of the two fractions \(\frac{\left|\phi\left(f^{-1}\left(y^{\prime}\right)-f^{-1}(y)\right)\right|}{\left|\left(f^{-1}\left(y^{\prime}\right)-f^{-1}(y)\right)\right|}\) and \(\frac{\left|\left(f^{-1}\left(y^{\prime}\right)-f^{-1}(y)\right)\right|}{\left|y^{\prime}-y\right|}\).

We must show that the product of these two fractions goes to zero as \(y^{\prime} \rightarrow y\).

Since \(f^{-1}\) is continuous, \(y^{\prime} \rightarrow y\) implies \(x^{\prime}=f^{-1}\left(y^{\prime}\right) \rightarrow x=f^{-1}(y)\). The first fraction \(\frac{\left|\phi\left(f^{-1}\left(y^{\prime}\right)-f^{-1}(y)\right)\right|}{\left|\left(f^{-1}\left(y^{\prime}\right)-f^{-1}(y)\right)\right|}\) can be rewritten as \(\frac{\left|\phi\left(x^{\prime}-x\right)\right|}{\left|x^{\prime}-x\right|}\), and this \(\rightarrow 0\) as \(x^{\prime} \rightarrow x\) since \(f\) is differentiable at \(x\).
By (6), the second fraction \(\frac{\left|\left(f^{-1}\left(y^{\prime}\right)-f^{-1}(y)\right)\right|}{\left|y^{\prime}-y\right|} \leq 2\). Hence the product of the two fractions \(\rightarrow 0\) as \(y^{\prime} \rightarrow y\), completing the proof that \(f^{-1}\) is differentiable at \(y\) with derivative \(d\left(f^{-1}\right)_{y}=L^{-1}=\left(d f_{x}\right)^{-1}\), and with it the proof of the Inverse Function Theorem.

\section*{The Implicit Function Theorem}

In calculus, we learn that the equation \(f(x, y)=x^{2}+y^{2}=1\) can be regarded as implicitly defining \(y\) as a function of \(x\),
\[
y=\sqrt{1-x^{2}} \text { or } y=-\sqrt{1-x^{2}}
\]
. We also learn that we can compute the derivative \(\frac{d y}{d x}\) without actually solving for \(y\). Just regard y as a function of \(x\), write \(y=y(x)\), and then the equation
\[
f(x, y(x))=1
\]
can be differentiated with respect to \(x\) by the chain rule.

Doing this, we get
\[
\frac{\partial f}{\partial x}+\left(\frac{\partial f}{\partial y}\right)\left(\frac{d y}{d x}\right)=0
\]
and hence
\[
\frac{d y}{d x}=\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=-\frac{2 x}{2 y} .
\]

There are some subtleties: we can not solve for \(y\) as a function of \(x\) near the points \((I, 0)\) and \((-1,0)\). The implicit function theorem handles these subtleties, and we begin with the simplest case.

\section*{Theorem}
(Implicit function theorem) Let \(f: \mathbb{R}^{2} \rightarrow \mathbb{R}\) be a \(C^{1}\) function defined on a neighborhood of \((a, b)\), with \(f(a, b)=c\). Suppose that \(\frac{\partial f}{\partial y}(a, b) \neq 0\). Then there is a \(C^{1}\) function \(g: \mathbb{R} \rightarrow \mathbb{R}\) defined on a neighborhood of a such that \(g(a)=b\) and such that \(f(x, g(x))=c\) for all \(x\) in that neighborhood.

Proof. Define a \(C^{1}\) function \(F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) on the given neighborhood of \((a, b)\) by \(F(x, y)=(x, f(x, y))\). The derivative \(F^{\prime}(a, b)\) is nonsingular because it is represented by a \(2 \times 2\) matrix with determinant \(\frac{\partial f}{\partial y}(a, b)\). Hence, by the Inverse Function Theorem, \(F\) is a \(C^{1}\) function with \(C^{1}\) inverse from a neighborhood \(U\) of \((a, b)\) to a neighborhood \(V\) of \(F(a, b)=(a, c)\).

Let \(H: V \rightarrow U\) be the inverse \(C^{1}\) map. Since \(F(x, y)=(x, f(x, y))\), we have \(H(x, z)=(x, h(x, z))\). If we define \(g(x)=h(x, c)\) on a neighborhod of \(x\), then
\[
F(x, g(x))=F(x, h(x, c))=F H(x, c)=(x, c)
\]
, SO
\[
f(x, g(x))=c
\]
as desired. \(\square\)

The general case is no more difficult to prove, and we style the notation so that its statement looks almost the same as the statement of its prototype above:
\[
\begin{aligned}
x & =\left(x_{1}, x_{2}, \ldots, x_{m}\right) \epsilon R^{m} \\
y & =\left(y_{1}, y_{2}, \ldots, y_{n}\right) \epsilon R^{n} \\
z & =\left(z_{1}, z_{2}, \ldots, z_{n}\right) \epsilon R^{n},
\end{aligned}
\]
and the \((i, j)\) entry of the \(n \times n\) matrix \(\frac{\partial f}{\partial y}(a, b)\) is the partial derivative \(\frac{\partial f_{i}}{\partial y_{j}}(a, b)\).

\section*{Theorem (Implicit function theorem (general case))}

Let \(f: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\) be a \(C^{1}\) function defined on a neighborhood of \((a, b)\), with \(f(a, b)=c\). Suppose that the \(n \times n\) matrix \(\frac{\partial f}{\partial y}(a, b)\) is nonsingular. Then there is a \(C^{1}\) function \(g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\) defined on a neighborhood of a such that \(g(a)=b\) and such that \(f(x, g(x))=c\) for all \(x\) in that neighborhood.```

