1. Calculate the average value of the function $g(x,y)=12xyz^2$ over the box defined by $\{(x,y,z)\,|\,1\leq x\leq 3,\,0\leq y\leq 1,\,-1\leq z\leq 2\}.$

(A) 0

(B) 2

(C) 3

(D) 4

(E) 12

(F) 13

2. Water is being poured into a container shaped like the paraboloid $z = x^2 + y^2$ at a constant rate (where x, y and z are all measured in meters). How much longer will it take to fill the container to a height of 3 meters than to fill it to a height of 1 meter?

(A) $\sqrt{3}$ times as long

(B) 3 times as long

(C) $3\sqrt{3}$ times as long

(D) 9 times as long

(E) $9\sqrt{3}$ times as long

(F) 27 times as long

- **3**. Calculate the work done by the force field $F=\langle 5y\,,\,7x^2\rangle$ on a particle that moves along the curve given by $x=t^2,\,y=2t^3$ for $0\leq t\leq 1$.
 - (A) 4

(B) 5

(C) 10

(D) 15

(E) 16

(F) 32

- 4. Calculate $\iiint_S \frac{1}{\sqrt{x^2 + y^2 + z^2}} dV$ where S is the spherical shell bounded by the two spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 9$.
- (A) 8π

(B) 12π

(C) 16π

(D) 24π

(E) 30π

(F) 36π

- 5. Calculate $\int_C (1+\sin\pi y)\,dx + (2+\pi x\cos\pi y)\,dy$ where the curve C follows the ellipse $4x^2+y^2=1$ from the point (0,-1) to the point (0,1).
- (A) 0

(B) 1

(C) 2

(D) 4

(E) 6

(F) 8

- **6.** Calculate $\int_C (y + e^{-2x}) dx + (2x \cos^2 y) dy$ where C is the circle of radius 2 centered at the point (1,3), traversed counterclockwise.
 - (A) 2π

(B) 4π

(C) 8π

(D) $2\pi e$

(E) $4\pi e$

(F) 0

7. Calculate $\iint_R 4x^2 dA$ where R is the region in the first quadrant bounded by the graphs of y = 1/x, y = 4/x, x = y and x = 9y (so R is a region with four corners, at (1,1), (2,2), (6,2/3) and (3,1/3). Letting u = xy and v = x/y might help. Don't

(A) 60 (E

(B) 120

(C) 180

(D) 225

forget...).

(E) 240

(F) 1200

- 8. Let H be the top half of the ball $x^2 + y^2 + z^2 \le 4$ (i.e., the part where $z \ge 0$). Calculate $\iiint_H x^2 dV$
- (A) $\frac{16\pi}{15}$

(B) $\frac{64\pi}{15}$

(C) $\frac{81\pi}{5}$

(D) $\frac{81\pi}{15}$

(E) $\frac{1250\pi}{3}$

(F) $\frac{1250\pi}{15}$