

Math 104 – Rimmer 9.1 Intro to Diff. Eq. A more difficult differential equation is: $\frac{dy}{dx} = f(x, y)$ This is called a first order differential equation This is asking you to find the function y(x)that has a derivative that is the right hand side (a function of the input variable x and the function itself) $\frac{dy}{dx} = y^2 x \qquad \frac{dy}{dx} = \frac{3x^2 y^3 - 6x^2}{y^2} \qquad \frac{dy}{dx} = y - x \qquad \frac{dy}{dx} = \frac{y + 2x \ln x}{x}$ Separable Linear These are examples where we can actually find an explicit formula for the solution. In Math 104, we learn 2 techniques to solve first order differential equations: • Separable Differential Equations Covered in section 7.2 • Linear Differential Equations Covered in section 9.2

TABLE 9.1 Euler solution of $y' = 1 + y$, $y(0) = 1$, step size $dx = 0.1$				
x	y (Euler)	y (exact)	Error	¹ 2
0	1	1	0	
0.1	1.2	1.2103	0.0103	· · · · ·
0.2	1.42	1.4428	0.0228	3 -
0.3	1.662	1.6997	0.0377	
0.4	1.9282	1.9836	0.0554	$2 - y = 2e^x - 1$
0.5	2.2210	2.2974	0.0764	
0.6	2.5431	2.6442	0.1011	
0.7	2.8974	3.0275	0.1301	$0 \longrightarrow x$
0.8	3.2872	3.4511	0.1639	
0.9	3.7159	3.9192	0.2033	FIGURE 9.7 The graph of $y = 2e^x - 1$
1.0	4.1875	4.4366	0.2491	superimposed on a scatterplot of the Eule approximations shown in Table 9.1