8.4 Partial Fraction Decomposition

 Algebra Review:The degree of a polynomial is the highest exponent on x

Polynomials that can be factored (over the reals) are called reducible.
Polynomials that can't be factored (over the reals) are called irreducible.

Fundamental Theorem of Algebra

Every polynomial of degree $n>0$ with real coefficients can be written as a product of linear and/or irreducible quadratic factors.

How can you tell whether $a x^{2}+b x+c$ is reducible?

$$
\begin{aligned}
& b^{2}-4 a c \geq 0 \Rightarrow a x^{2}+b x+c \text { is reducible } \\
& b^{2}-4 a c<0 \Rightarrow a x^{2}+b x+c \text { is irreducible }
\end{aligned}
$$

8.4 Partial Fraction Decomposition

Algebra Review:

Reducible

Example 1: $x^{2}+3 x-18 \quad b^{2}-4 a c=9+72=81$
When $b^{2}-4 a c>0$ and is a perfect square, the polynomial should factor nicely because it will have rational roots.
$x^{2}+3 x-18=(x+6)(x-3)$

Example 2: $x^{2}-4 x+4 \quad b^{2}-4 a c=16-16=0$
When $b^{2}-4 a c=0$, the polynomial will have a double root.
$x^{2}-4 x+4=(x-2)(x-2)=(x-2)^{2}$

Example 3: $x^{2}+2 x-10 \quad b^{2}-4 a c=4+40=44$
When $b^{2}-4 a c>0$ but not a perfect square, the polynomial doesn't factor nicely because it will have irrational roots These rarely show up in the context of partial fractions.

Irreducible
Example 4: $x^{2}-4 x+13 \quad b^{2}-4 a c=16-52=-36$
When $b^{2}-4 a c<0$, the polynomial does not factor because it will have imaginary roots.

8.4 Partial Fraction Decomposition

Rational Function : $\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomials
Goal of the Partial Fraction technique: To integrate rational functions.
\odot Write $q(x)$ as a product of linear factors and irreducible quadratic factors.
\odot Use algebra to express the rational function as a sum of simpler fractions.
\odot The simpler fractions should be integrable without too much trouble.

Examples of simpler fractions that can be integrated quickly:

$$
\frac{1}{x-4} \quad \frac{1}{(x-4)^{2}} \quad \frac{1}{x^{2}+4}
$$

8.4 Partial Fraction Decomposition

Q. Math 104-Rimmer 8.4 Partial Fraction Decomposition

$$
\int \frac{1}{x-4} d x=\ln |x-4|+C
$$

$$
\begin{gathered}
u=x-4 \quad \int \frac{1}{u} d u=\ln |u|+C \\
d u=d x
\end{gathered}
$$

$$
\int \frac{1}{(x-4)^{2}} d x=\frac{-1}{x-4}+C
$$

$$
\begin{gathered}
u=x-4 \\
d u=d x
\end{gathered} \quad \int \frac{1}{u^{2}} d u=\int u^{-2} d u=\frac{-1}{u}+C
$$

$$
\int \frac{1}{x^{2}+4} d x=\frac{1}{2} \arctan \left(\frac{x}{2}\right)+C
$$

$$
\frac{1}{x^{2}+4}=\frac{1}{4\left(\frac{x^{2}}{4}+1\right)}=\frac{1}{4} \cdot \frac{1}{\left(\frac{x}{2}\right)^{2}+1}
$$

$$
\int \frac{1}{x^{2}+4} d x=\frac{1}{4} \int \frac{1}{\left(\frac{x}{2}\right)^{2}+1} d x \quad \begin{aligned}
u & =\frac{x}{2}
\end{aligned} \Rightarrow 2 d u=d x
$$

$$
=\frac{1}{4} \int \frac{2}{u^{2}+1} d u=\frac{1}{2} \arctan u+C
$$

8.4 Partial Fraction Decomposition

1. The degree of the denominator must be greater than the degree of the numerator $\frac{p(x)}{q(x)}$
If it is not, then long divide the denominator into the numerator.
2. Decompose the fraction in the following manner: (A, B, C, and D are constants)
i) $q(x)$ can be written as a product of only linear polynomials

$$
\frac{5 x}{(x-4)(2 x+3)}=\frac{A}{x-4}+\frac{B}{2 x+3}
$$

ii) $q(x)$ can be written as a product involving powers of linear polynomials

$$
\frac{x^{2}+6 x-4}{(x-3)^{3}(x+5)}=\frac{A}{x-3}+\frac{B}{(x-3)^{2}}+\frac{C}{(x-3)^{3}}+\frac{D}{x+5}
$$

iii) $q(x)$ can be written as a product involving irreducible quadratic polynomials

$$
\frac{16 x-5}{\left(x^{2}+2 x+10\right)(x-7)}=\frac{A x+B}{x^{2}+2 x+10}+\frac{C}{x-7}
$$

3. Use algebra to find the constants and then integrate the simpler fractions.

$$
\begin{aligned}
& \int\left(\frac{4}{x-2}+\frac{2 x-3}{x^{2}-4 x+13}\right) d x \\
& \int\left(\frac{4}{x-2}+\frac{2 x-3-1+1}{x^{2}-4 x+13}\right) d x \\
& \left(\frac{4}{x-2}+\frac{2 x-4}{x^{2}-4 x+13}+\frac{1}{x^{2}-4 x+13}\right) \\
= & 4 \ln |x-2|+\ln \left|x^{2}-4 x+13\right| \\
= & 4 \ln |x-2|+\ln \left|x^{2}-4 x+3\right|+\frac{1}{3} \arctan \left(\frac{x-2}{3}\right)+c
\end{aligned}
$$

$$
\begin{aligned}
& n=x^{2}-4 x+13 \\
& d n=(2 x-4) d x \\
& \begin{aligned}
d n & =(2 x-4) d x \\
& \int \frac{1}{u} d y \\
& =\ln \ln 1
\end{aligned} \\
& \begin{aligned}
d n & =(2 x-4) d x \\
& \int \frac{1}{u} d y \\
& =\ln \ln 1
\end{aligned} \\
& \begin{array}{l}
\text { Math } 104 \text { - Rimm } \\
\text { 8.4 Partial Fractio }
\end{array} \\
& x^{2}-4 x+13 \\
& \underbrace{x^{2}-4 x+4}_{(x-2)^{2}+9}+\underbrace{13-4}= \\
& \int \frac{1 d x}{(x-2)^{2}+9}\left(\begin{array}{l}
4=x-2 \\
d x=d x
\end{array}\right. \\
& \int \frac{1 d u}{u^{2}+9}
\end{aligned}
$$

$$
\begin{aligned}
& =\int\left(\frac{x-2}{4}+\frac{2 x+3}{x^{2}+16}\right) d x \int \frac{2 x}{x^{2}+16} d x+\int \frac{3}{x^{2}+16} d x \\
& =\frac{x^{2}}{2}-2 x+\ln \left|x^{2}+16\right|+3 \cdot \frac{1}{4} \arctan \left(\frac{x}{4}\right)+C
\end{aligned}
$$

