## 

A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots
$$

where:
a) $x$ is a variable
b) The $c_{n}$ 's are constants called the coefficients of the series.

For each fixed $x$, the series above is a series of constants that we can test for convergence or divergence.

A power series may converge for some values of $x$ and diverge for other values of $x$.

The sum of the series is a function

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}+\ldots
$$

whose domain is the set of all $x$ for which the series converges. $f(x)$ is reminiscent of a polynomial but it has infinitely many terms

If all $c_{n}{ }^{\prime} s=1$, we have

$$
f(x)=1+x+x^{2}+\ldots+x^{n}+\ldots=\sum_{n=0}^{\infty} x^{n}
$$

This is the geometric series with $r=x$.
The power series will converge for $|x|<1$ and diverge for all other $x$.

$$
a=1, r=x \Rightarrow s=\frac{a}{1-r}=\frac{1}{1-x} \quad \frac{1}{1-x}=1+x+x^{2}+\ldots+x^{n}+\ldots=\sum_{n=0}^{\infty} x^{n}
$$

## In general, a series of the form

$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots$
is called a power series centered at $a$ or a power series about $a$

We use the Ratio Test (or the Root Test) to find for what values of $x$ the series converges.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1 \text { for convergence } \\
& \text { solve for }|x-a| \text { to get }|x-a|<R \\
& \Rightarrow-R<x-a<R \\
& \Rightarrow a-R<x<a+R
\end{aligned}
$$

$$
R \text { is called the radius }
$$

of convergence (R.O.C.).

This is called the interval Plug in the endpoints to check for convergence of convergence (I.O.C.). or divergence at the endpoints.
use parentheses ( or )

$$
\begin{aligned}
& \text { Find the radius of convergence and the interval of convergence. } \\
& \text { Math } 104 \text { - Rimmer } \\
& \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2} x^{n}}{2^{n}} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}}{(-1)^{n}} \cdot \frac{(n+1)^{2}}{n^{2}} \cdot \frac{2^{n}}{2^{n+1}} \cdot \frac{x^{n+1}}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{\prime} \cdot(-1)}{(-1)} \cdot \frac{(n+1)^{2}}{n^{2}} \cdot \frac{2}{2^{n} \cdot 2} \cdot \frac{y \cdot x}{y^{\prime}}\right|=\left|\frac{-x}{2}\right| \\
& \begin{array}{l}
\qquad\left|\frac{-x}{2}\right|<1 \Rightarrow \frac{1}{2}|x|<1 \Rightarrow|x|<2 \quad \text { so, }-2<x<2
\end{array} \begin{array}{l}
\text { This is the radius } \quad \begin{array}{l}
\text { Plug in } x=2 \text { and } x=-2 \text { to see if there } \\
\text { of convergence. }
\end{array} \\
\begin{array}{l}
\text { is conv. or div. at the endpoints. }
\end{array}
\end{array} \\
& \begin{array}{lc}
\underline{x=2} & \frac{x=-2}{\infty} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2} 2^{n}}{2^{n}}=\sum_{n=1}^{\infty}(-1)^{n} n^{2} & \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}(-2)^{n}}{2^{n}}=\sum_{n=1}^{\infty} \frac{((-1) \cdot(-2))^{n}}{2^{n}} n^{2} \\
2^{n} & \sum_{n=1}^{\infty} n^{2}
\end{array} \\
& \text { Diverges by the Test for Divergence } \\
& \text { since } \lim _{n \rightarrow \infty}(-1)^{n} n^{2} \text { does not exist. } \\
& \text { Diverges by the Test for Divergence } \\
& \text { since } \lim _{n \rightarrow \infty} n^{2}=\infty \text {. } \\
& \text { Radius of convergence: } R=2 \\
& \text { Interval of convergence: }(-2,2)
\end{aligned}
$$

Find the radius of convergence and the interval of convergence.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{3^{n}(x+4)^{n}}{\sqrt{n}} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3^{n+1}}{3^{n}} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \cdot \frac{(x+4)^{n+1}}{(x+4)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3^{y} \cdot 3}{2^{n}} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \cdot \frac{(x+4)^{n}(x+4)}{(x+4)^{n}}\right|=|3(x+4)| \\
& \text { For convergence, this limit } \\
& |3(x+4)|<1 \Rightarrow 3|x+4|<1 \Rightarrow|x+4|<\frac{1}{3} \quad \text { so, }-\frac{1}{3}<x+4<\frac{1}{3} \\
& \text { Now we need to solve } \\
& \text { this inequality for }|x+4| \text {. } \\
& \begin{array}{l}
\text { This is the radius } \\
\text { of convergence. }
\end{array} \\
& \begin{array}{c}
-\frac{1}{3}-4<x<\frac{1}{3}-4 \\
\frac{-13}{3}<x<\frac{-11}{3} \quad \begin{array}{l}
\text { Plug in } x=\frac{-13}{3} \text { and } x=\frac{-11}{3} \\
\text { to see if there is conv. or div. } \\
\text { at the endpoints. }
\end{array}
\end{array} \\
& \frac{x=\frac{-13}{3}}{\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{-13}{3}+4\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{-1}{3}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}} \quad \frac{\frac{-11}{3}}{\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{-11}{3}+4\right)^{n}}{\sqrt{n}}}=\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{1}{3}\right)^{n}}{\sqrt{n}} \\
& \text { Converges by the Alt. Series Test } \\
& b_{n}=\frac{1}{\sqrt{n}} \text { is decreasing and } \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0 \text {. } \\
& =\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \\
& \begin{array}{l}
\text { R.O.C.: } R=\frac{1}{3} \\
\text { I.O.C. : }\left[\frac{-13}{3}, \frac{-11}{3}\right)
\end{array}
\end{aligned}
$$

Find the radius of convergence and the interval of convergence.
Math 104 - Rimmer
$\sum_{n=1}^{\infty} \frac{(4 x+1)^{n}}{n^{2}}$
$\lim _{n \rightarrow \infty}^{n=1}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n^{2}}{(n+1)^{2}} \cdot \frac{(4 x+1)^{n+1}}{(4 x+1)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n^{1}}{(n+1)^{2}} / \frac{(4 x+1) \cdot(4 x+1)}{(4 x+1)^{n}}\right|=|4 x+1|$ needs to be less than 1
$|4 x+1|<1 \quad$ For this one, the value $a$ isn't very obvious, so we will proceed as follows:

$$
\begin{gathered}
\left|4\left(x+\frac{1}{4}\right)\right|<1 \\
4\left|x+\frac{1}{4}\right|<1 \\
\left|x+\frac{1}{4}\right|<\frac{1}{4}
\end{gathered}
$$


so in this case with $a^{4}=\frac{-1}{4}$ and the interval going from $\frac{-1}{2}$ to 0 , the radius of convergence is $R=\frac{1}{4}$
Check endpoints:

$$
\begin{array}{ll|l}
\frac{x=\frac{-1}{2}}{} & \underline{x=0} \\
\sum_{n=1}^{\infty} \frac{\left(4\left(\frac{-1}{2}\right)+1\right)^{n}}{n^{2}} \\
\text { convergent Alt. series }
\end{array} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \quad \begin{array}{ll}
\sum_{n=1}^{\infty} \frac{(1)^{n}}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
\text { convergent } p-\text { series }
\end{array} \quad \text { R.O.C.: } R=\frac{1}{4}, 1\left[\frac{-1}{2}, 0\right]
$$

Sometimes the Root Test can be used just as the Ratio Test.
When $a_{n}$ can be written as $\left(b_{n}\right)^{n}$, then the Root Test should be used.

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{3^{n}(x-5)^{n}}{n^{n}}=\sum_{n=1}^{\infty}\left(\frac{3(x-5)}{n}\right)^{n} \quad \begin{array}{l}
\text { No value of } x \text { will } \\
\text { make this limit }>1 \\
\text { to give divergence }
\end{array} \\
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\left(\frac{3(x-5)}{n}\right)^{n}\right|}=\lim _{n \rightarrow \infty}\left|\frac{3(x-5)}{n}\right|=0<1 \\
\begin{array}{l}
\text { We get convergence } \\
\text { no matter what } x \text { is }
\end{array} \\
\begin{array}{l}
\text { R.O.C. }=\infty \\
\text { I.O.C. }=(-\infty, \infty)
\end{array}
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0 \Rightarrow \text { R.O.C. }=\infty \Rightarrow \text { I.O.C. }(-\infty, \infty) \quad\left(\operatorname{orlim}_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=0\right)
$$ the power series converges for all $x$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{n!(x-7)^{n}}{2^{n}} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!} \cdot \frac{2^{n}}{2^{n+1}} \cdot \frac{(x-7)^{n+1}}{(x-7)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1) n!}{n!} \cdot \frac{2^{n}}{Z^{n} \cdot 2} \cdot \frac{(x) \cdot(x-7)}{(7)}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{1}{2}(n+1)(x-7)\right|=\infty>1 \\
& \text { No value of } x \text { will } \\
& \text { make this limit }<1 \quad \text { for all values of } x \\
& \text { to give convergence except at } x=a \\
& \text { at } x=a \text {, each term of the series is } 0 \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty \Rightarrow \text { R.O.C. }=0 \Rightarrow \text { I.O.C. }\{a\} \quad\left(\operatorname{or} \lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty\right) \\
& \text { the power series only converges at the point } x=a
\end{aligned}
$$

Find the radius of convergence.
$\sum_{n=1}^{\infty} \frac{(-1)^{n}(n!)^{2} x^{2 n}}{(2 n)!\quad[(n+1) n!]^{2}}$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}}{(-1)^{n}} \cdot \frac{[(n+1)!]^{2}}{(n!)^{2}} \cdot \frac{(2 n)!}{[2(n+1)]!} \cdot \frac{x^{2(n+1)}}{x^{2 n}}\right|
$$



$$
=\left|\frac{(-1) x^{2}}{4}\right| \begin{aligned}
& \text { For convergence, this limit } \\
& \text { needs to be less than } 1
\end{aligned}\left|\frac{(-1) x^{2}}{4}\right|<1 \Rightarrow \frac{1}{4}\left|x^{2}\right|<1 \Rightarrow|x|^{2}<4 \Rightarrow|x|<2
$$

Radius of convergence: $R=2$

## Functions as Power Series

The very first function we have seen represented as a power series is the geometric series with $a=1$ and $r=x$

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots,|x|<1
$$

We can find the power series representation of other functions by algebraically manipulating them to to be some multiple of this series.

$$
\begin{aligned}
\frac{1}{1+x} & =\frac{1}{1-(-x)}=\sum_{n=0}^{\infty}(-x)^{n} \quad,|x|<1 \quad \begin{array}{l}
\text { The interval of convergence remains unchanged } \\
\text { since this is still a type of geometric series. }
\end{array} \\
\frac{1}{1+x} & =\sum_{n=0}^{\infty}(-1)^{n} x^{n},|x|<1 \\
& =1-x+x^{2}-x^{3}+\cdots
\end{aligned}
$$



> Math 104 - Rimme 10.7 Power Series
$f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots$
If the power series representation of $f(x)$ has a radius of convergence $R>0$,
we can obtain a power series representation for $f^{\prime}(x)$ by

## term - by - term differentiation:

$f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots$
$f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots$

$$
f^{\prime}(x)=\frac{d}{d x}\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right)=\sum_{n=0}^{\infty} \frac{d}{d x}\left[c_{n}(x-a)^{n}\right]=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \begin{gathered}
\text { with the same radius } \\
\text { starts at } n=1
\end{gathered} \text { of convergence } R
$$

we can obtain a power series representation for $\int f(x) d x$ by

## term -by - term integration:

$\int f(x) d x=C+c_{0} x+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+c_{3} \frac{(x-a)^{4}}{4}+\cdots$
$\int\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right) d x=\sum_{n=0}^{\infty} \int\left[c_{n}(x-a)^{n}\right] d x=C+\sum_{n=0}^{\infty} \frac{c_{n}(x-a)^{n+1}}{n+1} \quad \begin{aligned} & \text { with the same radius } \\ & \text { of convergence } R\end{aligned}$
$C$ is a constant of integration

$$
f(x)=\frac{1}{1-x} \text { Find } f^{\prime}(x)
$$

$$
f(x)=(1-x)^{-1}
$$

$$
f^{\prime}(x)=(-1) \cdot(1-x)^{-2} \cdot(-1)
$$

$$
f^{\prime}(x)=\frac{1}{(1-x)^{2}}
$$

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}, \text { convergent for }|x|<1
$$

take the derivative
$\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots=\sum_{n=1}^{\infty} n x^{n-1}$, convergent for $|x|<1$

$$
\begin{array}{ll}
f(x)=\frac{1}{1-x} \text { Find } \int f(x) d x . & \begin{array}{ll}
u=1-x & =-1 \cdot \int \frac{1}{u} d u \\
d u=-d x & =-\ln u \\
-1 \cdot d u=d x
\end{array} \\
\left.\begin{array}{ll}
1-x \\
1
\end{array}\right]=-\ln (1-x)+C & \\
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}, \text { convergent for }|x|<1 \\
-\ln (1-x)+C=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots &
\end{array}
$$

$$
\text { plug in } x=0 \text { to find } C
$$

$$
\begin{aligned}
& -\underbrace{\ln (1)}_{0}+C=0+0+0+\cdots \Rightarrow C=0 \\
& -\ln (1-x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \text { convergent for }|x|<1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n},|x|<1 \\
& \frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=1+\left(-x^{2}\right)+\left(-x^{2}\right)^{2}+\left(-x^{2}\right)^{3}+\cdots=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n},|x|<1 \\
& \frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n},|x|<1 \left\lvert\, \int \frac{1}{1+x^{2}} d x=\arctan (x)+C\right.
\end{aligned}
$$

## integrate

$\arctan (x)+C=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$
plug in $x=0$ to find $C \quad \underbrace{\arctan (0)}_{0}+C=0+0+0+\cdots \Rightarrow C=0$

$$
\arctan (x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1},|x|<1
$$

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n},|x|<1
$$

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots=\sum_{n=1}^{\infty} n x^{n-1}, \text { convergent for }|x|<1
$$

$$
-\ln (1-x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \text { convergent for }|x|<1
$$

$$
\arctan (x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1},|x|<1
$$

Represent the function as a power series

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{(1-x)^{2}}=x^{3}\left[\frac{1}{(1-x)^{2}}\right] \\
& \frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots=\sum_{n=1}^{\infty} n x^{n-1}, \text { convergent for }|x|<1 \\
& \left.x^{3}\left[\frac{1}{(1-x)^{2}}\right]=x^{3}\left(1+2 x+3 x^{2}+4 x^{3}+\cdots\right)=x^{3} \cdot \sum_{n=1}^{\infty} n x^{n-1} \quad \right\rvert\, x^{n-1} \cdot x^{3}=x^{n-1+3} \\
& \frac{x^{3}}{(1-x)^{2}}=x^{3}+2 x^{4}+3 x^{5}+4 x^{6}+\cdots=\sum_{n=1}^{\infty} n x^{n-1} \cdot x^{3} \\
& \frac{x^{3}}{(1-x)^{2}}=x^{3}+2 x^{4}+3 x^{5}+4 x^{6}+\cdots=\sum_{n=1}^{\infty} n x^{n+2} \text { with } R=1
\end{aligned}
$$

Find the coeff. of $x^{6}$ in the power series representation of

$$
\frac{3}{4+x^{2}}=3\left(\frac{1}{4+x^{2}}\right)=3\left(\frac{1}{4\left(1+\frac{x^{2}}{4}\right)}\right)=\frac{3}{4}\left(\frac{1}{1+\frac{x^{2}}{4}}\right)=\frac{3}{4}\left(\frac{1}{1-\left(-\frac{x^{2}}{4}\right)}\right)
$$

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n} \quad,|x|<1
$$

$$
\frac{3}{4}\left(\frac{1}{1-\left(-\frac{x^{2}}{4}\right)}\right)=\frac{3}{4}\left(1+\left(-\frac{x^{2}}{4}\right)+\left(-\frac{x^{2}}{4}\right)^{2}+\left(-\frac{x^{2}}{4}\right)^{3}+\cdots\right)
$$

$$
=\frac{3}{4}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{16}-\frac{x^{6}}{64}+\cdots\right)
$$

$$
=\frac{3}{4}-\frac{3}{16} x^{2}+\frac{3}{64} x^{4}-\frac{3}{256} x^{6}+\ldots
$$

coeff on $x^{6}$
$-\frac{3}{256}$

$$
\begin{array}{l|l}
\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \text {,with } R=1 & \ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \text { with } R=1 \\
\begin{array}{l}
\text { arctan } x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots \\
\arctan \left(\frac{\sqrt{3}}{3}\right)=\frac{\sqrt{3}}{3}-\frac{\left(\frac{\sqrt{3}}{3}\right)^{3}}{3}+\frac{\left(\frac{\sqrt{3}}{3}\right)^{5}}{5}-\frac{\left(\frac{\sqrt{3}}{3}\right)^{7}}{7}+\ldots .7 \text { Pawer Series }
\end{array} \\
& \ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \\
\frac{\pi}{6}=\frac{\sqrt{3}}{3}-\frac{\left(\frac{\sqrt{3}}{3}\right)^{3}}{3}+\frac{\left(\frac{\sqrt{3}}{3}\right)^{5}}{5}-\frac{\left(\frac{\sqrt{3}}{3}\right)^{7}}{7}+\ldots & \ln \left(1-\frac{1}{2}\right)=-\frac{1}{2}-\frac{\left(\frac{1}{2}\right)^{2}}{2}-\frac{\left(\frac{1}{2}\right)^{3}}{3}-\frac{\left(\frac{1}{2}\right)^{4}}{4}+\ldots \\
\pi=6\left(\frac{\sqrt{3}}{3}-\frac{(\sqrt{3})^{3}}{3 \cdot 3^{3}}+\frac{(\sqrt{3})^{5}}{5 \cdot 3^{5}}-\frac{(\sqrt{3})^{7}}{7 \cdot 3^{7}}+\ldots\right) & \ln \left(\frac{1}{2}\right)=-\frac{1}{2}-\frac{1}{2 \cdot 2^{2}}-\frac{1}{3 \cdot 2^{3}}-\frac{1}{4 \cdot 2^{4}}+\ldots \\
\pi=2 \sqrt{3}\left(1-\frac{(\sqrt{3})^{2}}{3 \cdot 3^{2}}+\frac{(\sqrt{3})^{4}}{5 \cdot 3^{4}}-\frac{(\sqrt{3})^{6}}{7 \cdot 3^{6}}+\ldots\right) & \ln 1-\ln 2=-\frac{1}{2}-\frac{1}{2 \cdot 2^{2}}-\frac{1}{3 \cdot 2^{3}}-\frac{1}{4 \cdot 2^{4}}+\ldots \\
\begin{array}{ll}
\pi
\end{array} & \ln 2=\frac{1}{2}+\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot 2^{3}}+\frac{1}{4 \cdot 2^{4}}+\ldots \\
\hline
\end{array}
$$

