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Note:
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) { } Like the function in the Integral Test, the sequence  

needs to be decreasing "eventually" i.e., for all  for some 

nb b

n N N>



2

Math 104 – Rimmer

10.6 Alternating Series Test 

and Absolute Convergence ( )
Example 1:
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The series  by the Test For Divergence, since  does not exist.diverges
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An infinite series 

Absolute convergence implies converges.

An infinite series

1 1

 is called  if the positive series   converges.n n
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( )If the series of absolute value converges, then the original series also converges

If the series of absolute value , it is still possible 

for the original series to converge.

diverges

Use the Alternating Series Test on the original series.

If the Alternating Series Test gives convergence, then this is a special 

type of convergence.
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same terms

 different sums

then no matter how the terms are rearranged, the sum will always be .s
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Determine whether the series is absolutely convergent, 

conditionally convergent, or divergent.
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