10.5 The Ratio Test

Let $\left\{a_{n}\right\}$ be a sequence and assume that the following limit exists: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$
i) If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
ii) If $L>1$ or if the limit is infinite, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
iii) If $L=1$, the Ratio Test is inconclusive.
(the series could be absolutely convergent, conditionally convergent, or divergent)

10.5 The Root Test

Let $\left\{a_{n}\right\}$ be a sequence and assume that the following limit exists: $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$
i) If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
ii) If $L>1$ or if the limit is infinite, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
iii) If $L=1$, the Root Test is inconclusive.
(the series could be absolutely convergent, conditionally convergent, or divergent)

Determine whether the series is convergent or divergent.
i) $\sum_{n=1}^{\infty} \frac{n^{3}}{4^{n}}$
i) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)^{3}}{4^{n+1}}}{\frac{n^{3}}{4^{n}}}\right|$

$$
=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{3}}{n^{3}} \cdot \frac{4^{n}}{4^{n+1}}\right|
$$

$$
=\lim _{n \rightarrow \infty}\left|\frac{(n+\not)^{x^{-x}}}{n^{3}} \cdot \frac{4^{n}}{4 \cdot 4^{n}}\right|=\frac{1}{4} \quad\left[\sum_{n=1}^{\infty} \frac{n^{3}}{4^{n}}\right. \text { is convergent }
$$

Determine whether the series is convergent or divergent.
ii) $\sum_{n=1}^{\infty} \frac{n!}{4^{n}}$
ii) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)!}{4^{n+1}}}{\frac{n!}{4^{n}}}\right|$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!} \cdot \frac{4^{n}}{4^{n+1}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(n+1) \not n!}{\not n!} \cdot \frac{4^{n}}{4 \cdot 4^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{4}=\infty
\end{aligned}
$$

$$
\sum_{n=1}^{\infty} \frac{n!}{4^{n}} \text { is divergent }
$$

Determine whether the series is convergent or divergent.
iii) $\sum_{n=1}^{\infty} \frac{(2 n+1)^{n}}{n^{2 n}}$
iii) $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{(2 n+1)^{n}}{\left(n^{2}\right)^{n}}\right|}$

$$
=\lim _{n \rightarrow \infty}\left[\left(\frac{2 n+1}{n^{2}}\right)^{n}\right]^{1 / n}=\lim _{n \rightarrow \infty} \frac{2 n+1}{n^{2}}=0 \quad \operatorname{deg}(\text { num. })<\operatorname{deg} .(\text { denom. })
$$

$$
\sum_{n=1}^{\infty} \frac{(2 n+1)^{n}}{n^{2 n}} \text { is convergent }
$$

Determine whether the series is convergent or divergent.
iv) $\sum_{n=1}^{\infty} \frac{n^{2}}{(2 n+1)!}$
iv) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)^{2}}{(2[n+1]+1)!}}{\frac{n^{2}}{(2 n+1)!}}\right|$

$$
\begin{aligned}
=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}}{n^{2}} \cdot \frac{(2 n+1)!}{(2 n+3)!}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(n+\gamma)^{2}}{n^{2}} \cdot \frac{(2 n+1)!}{(2 n+3) \cdot(2 n+2)(2 n+1)!}\right| \\
& =\lim _{n \rightarrow \infty} \frac{1}{(2 n+3) \cdot(2 n+2)}=0
\end{aligned}
$$

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{(2 n+1)!} \text { is convergent }
$$

v) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
v) $\begin{aligned} & \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{[(n+1)!]^{2}}{\frac{(2[n+1))!}{(n!)^{2}}}\right|=\lim _{n \rightarrow \infty}^{(2 n)!}\left|\frac{[(n+1)!]^{2}}{(2[n+1])!} \cdot \frac{(2 n)!}{(n!)^{2}}\right| \\ & \left.=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!} \cdot \frac{(n+1)!}{n!} \cdot \frac{(2 n)!}{(2 n+2)!}\right|=\lim _{n \rightarrow \infty} \right\rvert\, \frac{(n+1) \cdot K!}{\mid n!} \cdot \frac{(n+1) \cdot p!}{p!} \cdot \frac{(2 n)!}{(2 n+2)(2 n+1)(2 n)!}\end{aligned}$

$$
=\lim _{n \rightarrow \infty}\left|\frac{(n+1)(n+1)}{(2 n+2)(2 n+1)}\right|=\frac{1}{4}
$$

$$
\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} \text { is convergent }
$$

Determine whether the series is convergent or divergent.
$y=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}$
$\ln y=\lim _{n \rightarrow \infty} \ln \left(\frac{n}{n+1}\right)^{n}$

$$
\begin{array}{ll}
\ln y=\lim _{n \rightarrow \infty}^{\lim ^{L H}} \frac{\frac{1}{\frac{n}{n+1}} \frac{(n+1) \cdot 1-n \cdot 1}{(n+1)^{2}}}{\frac{\frac{-1}{n^{2}}}{n}} & \ln y=\lim _{n \rightarrow \infty} \frac{-n^{2}}{n^{2}+n} . \\
\ln y=\lim _{n \rightarrow \infty} \frac{\frac{n+1}{n} \cdot \frac{n+1-n}{(n+1)^{2}}}{\frac{\frac{-1}{n^{2}}}{}} & \ln y=-1 \\
\ln y=\lim _{n \rightarrow \infty} \frac{\frac{n+1}{n} \cdot \frac{1}{(n+1)^{2}}}{\frac{-1}{n^{2}}} & e^{\ln y}=e^{-1} \\
y=e^{-1} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\frac{1}{e}
\end{array}
$$

$\ln y=\lim _{n \rightarrow \infty} n \cdot \ln \left(\frac{n}{n+1}\right)=" \infty \cdot 0 "$
$n\left(\frac{n}{n}\right)$
$\ln y=\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{n}{n+1}\right)}{\frac{1}{n}}=\frac{" 0 "}{0}$

$$
\ln y=\lim _{n \rightarrow \infty} \frac{1}{n(n+1)} \cdot \frac{-n^{2}}{1}
$$

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}} \text { is convergent }
$$

$$
\begin{aligned}
& \text { vi) } \sum_{n=1}^{\infty} \frac{n!}{n^{n}} \\
& \text { vi) } \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{(n+1)^{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!} \cdot \frac{n^{n}}{(n+1)^{n+1}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{(n+1) \cdot h!}{\text { n! ! }} \cdot \frac{n^{n}}{(n+1)^{n}(\pi+1)}=\lim _{n \rightarrow \infty} \frac{n^{n}}{(n+1)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=" 1^{\infty} "
\end{aligned}
$$

