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The Direct Comparison Test:
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The inequality  or  doesn't need to be satisfied for all values of .n n n na b b a n≤ ≤

If it doesn't hold for the first few terms but it holds for all  for some ,n N N>

then the direct comparison test will still work.
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The convergence or divergence of the series does not depend on the first two terms.

These terms can be subtracted off and we can look at both series starting at 3.n =
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The Direct Comparison Test does not apply. We must use another test.⇒
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The Limit Comparison Test:

the series will behave alike, i.e. either both converge or both diverge.
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